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ABSTRACT

Agents cannot make sense of many-agent societies through direct consideration of
small-scale, low-level agent identities, but instead must recognize emergent col-
lective identities. Here, we take a first step towards a framework for recognizing
this structure in large groups of low-level agents so that they can be modeled as
a much smaller number of high-level agents—a process that we call agent ab-
straction. We illustrate this process by extending bisimulation metrics for state
abstraction in reinforcement learning to the setting of multi-agent reinforcement
learning and analyze a straightforward, if crude, abstraction based on experienced
joint actions. It addresses non-stationarity due to other learning agents by improv-
ing minimax regret by a intuitive factor. To test if this compression factor provides
signal for higher-level agency, we applied it to a large dataset of human play of the
popular social dilemma game Diplomacy. We find that it correlates strongly with
the degree of ground-truth abstraction of low-level units into the human players.

1 INTRODUCTION

Much of the complexity in life arises from the way that individuals organize into collective be-
haviours. This becomes evermore the case when we acknowledge that what we often think of as
’individuals’ are really abstract entities comprised of many smaller entities that can be separately
viewed as agents (Levin, 2019). When tackling this complexity, it often becomes useful to exploit
the coherence in that behaviour by abstracting the space of joint actions that those individuals can
take. We provide the following working definition:

Definition 1.1. Agent Abstraction. An approximate clustering of part or all of the action space of
two or more other agents in the environment, performed by either another interacting agent or an
outside observer for the benefit of its own learning and/or planning.

What about the utility of such abstractions? For example, it would seem so obviously advantageous
to abstract cells of a human into a whole, given how many there are, how well-separated they are
from the outside-human environment, and how completely dependent they have evolved to become
on the inside-human environment. However, there are collectives of simple and complex organisms
for which the abstraction is more tenuous insofar as its utility is less certain. The uncertainty about
the utility grows when considering abstractions for groups of agents that are not so obviously act-
ing collectively and reminds us that the utility of agent abstraction arises from the strength of the
collective behaviour and how a behaving agent can make use of that knowledge in maximizing the
value of its actions. So, how can we measure the strength of collective behaviour and how can we tie
abstracted representations of this behaviour to formal utility in multi-agent reinforcement learning
(MARL)?
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Given the overhead inherent in identifying proper abstractions, is building this capability into arti-
ficial intelligence even advantageous? In this paper, we show formally that, yes, agent abstractions
can help each agent navigate the learning and planning process in the face of the non-stationarity
in the environment arising from the presence of other learning agents, a key challenge to efficient
reinforcement learning in multi-agent settings.

This is perhaps not surprising, given that abstraction is a well-studied concept in reinforcement
learning and there is a vast literature on state and temporal abstraction in single agent settings.
So, in the MARL setting, where other agents can be viewed as part of the environment, there is a
natural extension of these ideas to abstracting the actions of other agents. Here, we begin paving
that extension, bringing us a step closer to a good agent abstraction metric that can be deployed by
agents in MARL settings.

We make the following theoretical contributions:
• We formulate agent abstraction as a special case of well-established bisimulation metrics and

present a simple, but limited strategy to obtain one based on unique joint actions (Section 2.1).

• We define a compression measure inspired by a connection that we reveal between this abstraction
and an improvement factor in the standard minimax regret bound for a RL agent (Section 2.2).

• We reduce a two-level MARL system to a single, low-level version that serves to test a com-
pression measure’s ability to reveal higher-level agency from the joint actions of low-level agents
(Section 3.1).

Finally in Section 3.2, we applied our reduction scheme to the game Diplomacy for which we ob-
tained access to a large dataset of human-played games (Paquette et al., 2019). We show that despite
its obvious limitations, the abstraction strategy we present gives a compression factor that correlates
strongly with true player-groupings of unit agents controlled by individual human players. This sug-
gests that more sophisticated metrics of the kind we outline that make better use of the action space
structure could serve in forming useful agent abstractions.

2 AGENT ABSTRACTION FOR BEHAVING IN MULTI-AGENT ENVIRONMENTS

In MARL, the environment transition dynamics and reward function do not just depend on the en-
vironment state and actions from a single agent, but rather the joint space of actions of all agents
acting in the environment. To be concrete, in an environment with N agents the environment tran-
sitions dynamics can be expressed by T (s′|s, a1, . . . , aN ) with state s ∈ S , next state s′ ∈ S ,
and an action for each agent ai ∈ Ai ∀i ∈ {1, . . . , N} ≡ N . Each agent i has their own re-
ward function Ri(s, a1, . . . , aN ) ∈ R and policy πi(ai|s) for generating actions. Whereas in
single agent RL a stationary model of the environment can be learned as only a function of an
agent’s own behavior, in MARL an attempt to do this has an implicit dependence on the poten-
tially changing policies of other agents. Without loss of generality, we will conduct our anal-
ysis from the perspective from an arbitrary agent 1: the transitions for this agent are given by
T (s′|s, a1) =

∑
a2∈A2,...,aN∈AN [π2(a2|s)×· · ·×πN (aN |s)×T (s′|s, a1, a2, . . . , aN )]. As such,

even in decentralized and model-free settings it is necessary for agents to predict the actions of other
agents in order to stabilize learning (Littman, 1994; Tesauro, 2003; Lowe et al., 2017). This stability
is then achieved by approximating an action value function Qπ(s, a1, . . . , aN ) over the joint policy
space π = (π1, . . . , πN ) of all N agents.

Even in the best case scenario where all actions are observed and all policies are known ahead of
time, a single agent can naively view this as a single agent RL problem with a state space augmented
by the action space of other agents, S+

1 = S×A−1 where A−1 = A2×· · ·×AN . Without exploit-
ing the structure in the state and action spaces, a well-known result in the RL literature (Osband &
Van Roy, 2016) is that an agent cannot achieve minimax regret (i.e. best in worst-case) better than

Ω

(√
HT |S+

1 ||A1|
)

= Ω
(√

HT |S||A−1||A1|
)
= Ω


√√√√HT |S|

(
N∏
i=2

|Ai|

)
|A1|

 , (1)

where H is the episode horizon length (or the minimum diameter for continuing problems), T is the
number of steps in the environment, and Ω is standard notation for asymptotic lower-bound scaling
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behaviour. However, such structure often exists so that, e.g., leveraging an abstract state space of
reduced size can help significantly by reducing the |S| factor in Equation (1). There is already a
vast literature on constructing such abstractions (Ferns et al., 2004; Li et al., 2006; Taylor et al.,
2008; Ferns et al., 2011; Ferns & Precup, 2014; Castro, 2020; Zhang et al., 2020). In this work, we
will focus instead on reducing the potentially much larger contribution for many agent settings from
A−1 by formulating abstractions on this action space of other agents in the environment.

2.1 AGENT ABSTRACTION AS A BISIMULATION METRIC

Our view of agent abstraction can be seen as a special case of bisimulation-based state abstraction
metrics following the results of (Ferns et al., 2004). The factored state view of agent abstraction
presented previously can indeed be seen as a special case of a general MDP over the augmented
state space S+

1 from the perspective of arbitrary agent 1. This leads to the following definition
for state abstraction bisimulation metric d(x, y) ∀x, y ∈ S+

1 (Lemma 4.1 of (Ferns et al., 2004))
leveraging the Wasserstein distance function between distributions W:

d(x, y) = 0 ⇔ R1(x, a1) = R1(y, a1) and W
(
T (·|x, a1), T (·|y, a1)

)
= 0 ∀a1 ∈ A1 . (2)

For agent abstraction, we are interested in further decomposition of the augmented state space, S+
1 .

To illustrate, let us focus on whether an abstraction is valid between only a pair of agents, i ̸= 1
and j ̸= 1 (i ̸= j), for which we consider the decomposition S+

1 = S × Ai × Aj × Arest, where
Arest denotes the joint action space of all other agents not including agent 1. We can then narrow the
scope of the metric onto Ai ×Aj .
Definition 2.1. A bisimilar agent abstraction metric for agent 1 on a pair of agents i and j with any
pair of joint actions aij = (ai, aj) and ai

′j′ = (ai
′
, aj

′
) satisfies:

d(aij , ai
′j′) = 0 ⇔ R1(s, a1, ai, aj , arest) = R1(s, a1, ai

′
, aj

′
, arest) and

W
(
T (·|s, a1, ai, aj , arest), T (·|s, a1, ai

′
, aj

′
, arest)

)
= 0 ∀a1 ∈ A1 .

(3)

For example, consider a partition, C = {Ck}, on Ai×Aj . Then, aij ∈ Ck and ai
′j′ ∈ Ck′ for some

k and k′, respectively. The semi-metric dC(aij , ai
′j′) = 1− δkk′ always satisfies Equation (3) when

Ck and Ck′ contain only aij and ai
′j′ , respectively. This is true when C is the set of all singletons for

which |C| = |Ai ×Aj |. We are interested instead in partitions that compress the joint action space,
i.e. for which |C| < |Ai × Aj |. The exactness of partitions, however, limits their usefulness as a
basis for constructing bisimulation metrics, especially in the typical case of stochastic joint action
dependencies. We can thus broaden our notion of agent abstraction by specifying the following
ϵ-approximate abstraction, following the general form proposed in (Ferns et al., 2004).
Definition 2.2. An ϵ-bisimilar agent abstraction by agent 1 for the joint action aij of agents i and j

within a given neighborhood ϵ identifies any two joint actions aij and ai
′j′ if the metric

d(aij , ai
′j′) = max

a1∈A1

[
cR
∣∣R1(s, a1, ai, aj , arest)−R1(s, a1, ai

′
, aj

′
, arest)

∣∣
+ cTW

(
T (·|s, a1, ai, aj , arest), T (·|s, a1, ai

′
, aj

′
, arest)

)]
≤ ϵ , (4)

where cR and cT are weighting constants such that cR, cT ≥ 0, cR + cT ≤ 1, and cT ≥ γ, where γ
is the discount factor.

The central result of this formulation is that the optimal value function defined over an agent-
abstracted state space (based on this kind of metric) is guaranteed to be within 2ϵ

cR(1−γ) of the optimal
value function on S for agent 1 (following Theorem 5.2 of Ferns et al. (2004)). The primary goal of
constructing an agent abstraction is then to maximize the compression of the joint action space such
that |Ai × Aj |/|C| is as large as possible (i.e. |C| as small as possible) while keeping ϵ in equation
4 as small as possible.

2.2 UNIQUE JOINT ACTIONS EXPERIENCED AS A BISIMILAR AGENT ABSTRACTION

Note that an arbitrary fixed policy πi need not leverage its full action space when used in the envi-
ronment. We can denote by |Ai

w| the total number of unique actions in a realized action sequence
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Figure 1: Illustrative examples of abstracting the joint action space of two agents. Three con-
trived cases of trajectories of in the action space (a1, a2) of two agents (the coverage of the respective
trajectories is shown in color): (a) the copy case where the two agents behave identically; (b) the
iterative case, where agents take turns sequencing through their actions; and (c) the space-filling
case via snaking along coordinate directions. (d) The compression factor F (a

{1,2}
0w ) Equation (5) as

a function of w for cases (a-c) (same colors). The maximum possible value |A|K−1 is attained by
case (a; blue). Cases (a) and (b) grow to a fixed value F (a

{1,2}
0∞ ) > 1 with w because their trajecto-

ries do not fill the joint action space. The values for trajectories that do fill the space (e.g. case (c))
end up on max{1, |A|K/w} (black-dashed line). (K = 2, |A| = 3.)

up to time w that agent i has taken in the environment. Thus, |Ai
w| ≤ min{w, |Ai|} so that in

the limit w → ∞, |Ai
∞| ≤ |Ai|. Without considering any additional structure then, this result

can be used to obtain an improved minimax regret bound, Ω
(√

HT |S|
(∏N

i=2 |Ai
∞|
)
|A1|

)
. One

important structural constraint of MARL not exploited in this result is the fact that every policy πi

is a function of the current state s. Thus, to the extent that the actions taken by each agent are
correlated with this state, it is very possible that large regions of the joint action space will never
be experienced at any single state (e.g. competitive actions when conditioned on states of plenty).
Exploiting these correlations for a subset K ≡ {i1, . . . , iK} ⊂ N , of K = |K| agents suggests

an improvement factor of as much as
√(∏K

k=1 |A
ik∞|
)/

|AK
∞| in the minimax regret, where |AK

∞|

denotes the number of unique joint actions experienced in AK ≡ Ai1 × · · · ×AiK . For illustration,
consider two arbitrary agents i and j and the set of unique joint actions taken in the environment
over a window of time w, which we denote Ai,j

w (|Ai,j
w | ≤ w). Note that in the limit w → ∞,

|Ai,j
∞ | ≤ |Ai

∞||Aj
∞| ≤ |Ai ×Aj | = |Ai||Aj |. Some examples of these sets are given in Figure 1(a-

c). Importantly, the partition of Ai×Aj into singleton sets of the unique action pairs that are counted
to obtain |Ai,j

∞ | (with the complement of their union added as an element) must by definition satisfy
equation 3 and thus serves as a straightforward (if not optimal) bisimilar agent abstraction since it is
easy to implement. We suggest some strategies for retrieving optimally compressed abstractions in
the discussion, but leave their development to future work.

The form of the regret improvement factor and this metric that partitions the joint action space into
visited joint actions suggests a definition for a crude measure of the utility of abstracting an action
block, i.e. the joint action trajectories of a subset of K agents over an time interval from t to t′,
denoted aK

tt′ :

Definition 2.3. The compression factor achievable by abstracting an action block aK
tt′ (formed from

the subset K ⊂ N , of K = |K| agents over the interval from t to t′) with unique joint actions is
the multiplicative factor,

F (aK
tt′) :=

(
K∏

k=1

n(a
{ik}
tt′ )

)/
n(aK

tt′) ≥ 1 . (5)

where n(aK
tt ) is the number of unique joint actions in the action block for the agent subset K.

This factor is largest for the contrived case of |A|-periodic joint action sequences with non-repeating
single agent actions in the period (here we assumed for simplicity that all agents have the same
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A B C

Figure 2: The Diplomacy dataset. (a) The graph of positions and movement lines along which units
move (adapted from Paquette et al. (2019)). There are |V| = 81 positions, |Vj | = {3, 4} number
of unit-build locations/player, |Vsupply| = 34 supply centers, nplayers = 7 players and nunits = 18
units/player. (b) Number of in-the-game units versus time in the game (2 time steps/year). Mean
and standard deviation over ngames = 103 randomly selected games from the Paquette et al. (2019)
no-press Diplomacy dataset of the ∼ 105 human-player games are shown, grouped by the winning
player (orange), and the rest (blue). Players aim to increase over the course of the game the size of
the pool of units they control. (c) Histogram of game durations, p(tf), over the same games as used
in (b).

action space, A). In this case, F (aK
tt′) = xK/x = xK−1 for x = min{t′ − t, |A|} (Figure 1(a)).

See Figure 1 for more examples.

3 MEASURING PLAYER CONTROL IN MULTI-UNIT, MULTI-PLAYER GAMES

Here, we investigate the compression factor (Definition 2.3) as a measure of higher-level agency.
In particular, when applied to a set of multi-agent trajectories, does it reflect the degree to which
they can be said to be coordinating? To have access to a ground truth higher-level agency to test
with, we focus on two-level, multi-agent settings, in which a set of higher-level controllers (‘play-
ers’, indexed by j = 1, . . . , nplayers) mutually compete for resources using their control of a set
of lower-level agents (‘units’, with each player allotted the same number of nunits units indexed by
i = 1, . . . , nunits). We marginalize out the effects of the players that are not directly tied to unit
actions, leaving a multi-agent Markov decision process (without reward) of player-labeled units in-
dexed by (i, j). We then perform two analyses: (1) using compression factors to classify pairs units
as belonging to the same versus two different players; and (2) the compression factor dependence
on the number of a subset of units that belong to the same player. As an application, we focus on
the board game Diplomacy, for which we analyzed 1000 games of a large dataset of human-played
games (see Figure 2; Paquette et al. (2019)). In this section, we first give a precise formulation of a
unit-level description of the game in 3.1 (to which we transformed the player action-structured data
from Paquette et al. (2019)), then in 3.2 we present the statistics of the compression factor computed
on multi-unit action sequences constructed from the data.

3.1 MULTI-UNIT MARKOV GAMES ON GRAPHS

Here we present a unit-level formulation of Markov games suited to describing even complicated
games like Diplomacy. The environment is a graph, G = (V, E), with set of unit positions V and
set of valid lines E along which units move between positions. We augment the graph with a set of
nplayers · nunits out-of-game positions, denoted v∅, one for each unit. The state of the ith unit of the
jth player is then sij ∈ S = {v∅} ∪ V . The state of the environment is then the tuple of positions
occupied by all units, s = (s11, . . . , s1nunits , s21, . . . , snplayersnunits) ∈ S⊗(nplayers·nunits)1. There are fixed,
player-labelled unit-build locations, Vj ⊂ V , Vj ∩ Vj′ = ∅ to which units of that player transition
from their out-of-game position when they are ‘built’. Units transition to their out-of-game position

1Positions can not be occupied by more than one unit so sij = si
′j′ only when i′ = i and j′ = j.
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when they are ‘disbanded’ from any in-game position as a result of an engagement (for details about
engagement and other aspects of a Markov formulation of Diplomacy, see Appendix A.1).

Gameplay requires action selection for all the units, which we consider stochastic. At the player-
level, action selection arises from a given set of player policies, {πj = π(a1j , . . . , anunitsj |s)}nplayers

j=1 .
Note that the conditioning on the state s means that each player could play the same, putative
optimal policy, π∗, in which case their play is distinguished by the different starting positions of
their respective units, encoded in s0. For any given set of player policies, the joint action given
the state s is determined by the effective joint policy π = (π1, . . . , πnplayers). Thus, for a given
environment state distribution, p(s), the game state distribution is pπ(s,a) = π(a|s)p(s).
The game dynamics are given by Tπ(s′|s) =

∑
a T (s′|s,a)π(a|s). Here, T (s′|s,a) is a de-

terministic map and encodes the game rules, including resolutions of engagement for complicated
spatial configurations. In contrast, the game evolution Tπ(s′|s) inherits stochasticity from π, such
that the variance of state distributions over games increases with time in the game from zero at
their shared initial state, s0. In particular, the distribution of the environmental state evolves as
the Markov chain given by Tπ(s′|s), pπ(s′) = Tπ(s′|s)pπ(s). For game time t = 0, 1, . . . , we
have pπ(st) = (Tπ)

t
p(s0), with st = (s11t , . . . , s

nplayersnunits
t ). Note that for Diplomacy, the ini-

tial state distribution,p(s0) = 1{s0}, is concentrated on s0, the deterministic starting state. Thus,
pπ(st,at) = π(at|s = st)p

π(st) with at = (a11t , . . . , a
nplayersnunits
t ).

The state distribution depends on time throughout the game even for fixed π, since the dynamics
approaches the termination condition linearly in nunits (i.e. one captured supply center allows for
transitioning one unit into the game), while the mixing time of Tπ(s′|s) that sets the characteristic
time until the stationary distribution is reached scales exponentially with nunits (keeping nunits/|V|
fixed).

A realization of a game initialized at s0 is produced by sampling joint actions according to
at ∼ π(·|s = st) and successive states from st+1 ∼ T (·|s = st,a = at). A complete realization
of a game is the corresponding sequence of ‘environment state’-‘joint action’ pairs τt = (st,at),
τ = (τ1, . . . , τtf), where tf = min{t|T(st)} is the (stochastic) time at which the termination condi-
tion is first satisfied and the game ends. The distribution over games for this π is denoted pπ(τ ) =∑∞

tf=1 p
π(τ |tf)p

π(tf) with pπ(τ |tf) =
(∏tf−1

t=0 Tπ(st+1|s = st,a = at)π(at|s = st)
)
1{s0}

and pπ(tf) the distribution of game durations. For a subset of units, K = {ik}Kk=1 for ik = (i, j)
for the ith unit of player j, the action block is denoted aK

tt′ = (aK
t , . . . ,aK

t′ ). Over the full set
of agents, we use att′ ≡ aN

tt′ for simplicity. Action blocks are realizations from the distribution,
pπ(aK

tt′) =
∑

tf

∑
s0tf ,a

K
t′+1,tf

pπ(τ |tf)p
π(tf|{tf > t′}).

3.2 COMPRESSION FACTOR FOR MULTI-UNIT ABSTRACTION

Within a realization τ of the game, the number of unique joint actions of the aK
tt′ block, i.e. the joint

actions of the K subset of agents over the interval from t to t′, can be written

n(aK
tt′) =

∑
ãK∈AK

Θ

 t′∑
t̃=t

δaK
t̃

,ãK

 , (6)

where Θ(x) = 1 for x > 0 and 0 otherwise. Note that n(aij
tt′), n(a

K
tt′) ≤ t′− t+1. Using this in the

definition of the compression factor Definition 2.3 F (aK
tt′) makes it a random variable depending

on the game realization τ sampled from pπ(τ ). For example, the expected compression factor over
the game ensemble for the joint policy π is then

F (aK
tt′) =

∑
aK

tt′

pπ(aK
tt′)F (aK

tt′) . (7)

We can increase the signal in this factor by conditioning on subsequences for which{
sK
t̃

∈ VK ∀ t̃ ∈ {t, t+ 1, . . . , t+ t′}
}

, i.e. the event that all the K agents are in the game be-
tween t and t′. The probability of this event vanishes quickly with increasing K and t′ − t.

To distinguish player information, however, we need only compare pairs of units from the same
and different players, Psame = {i1, i3} and Pdifferent = {i1, i2}, respectively, with K = {i1 =
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A nsameB

F

Figure 3: Compression factor for subsets of units from Diplomacy. (a) The average same-
different classification accuracy based on Equation (9) as a function of block window size, w, and
block start time, t, in years (ngames = 103). (b) The average compression factor, F̄ Equation (7), as
a function of block start time for nsame = 1, 2, 3, 4, 5 out of K = 5 agents in a subset that belong to
the same player (average over window size, w; ngames = 103).

(i, j), i2 = (i′, j′), i3 = (i′′, j))} with j′ ̸= j. We thus track the actions of a given unit triple K in
the game over the interval from t to t′. The corresponding compression factor abstracting the pair
of agents over the window from t to t′ is

F (aP
tt′) = n(aij

tt′)n(a
i′j′

tt′ )/n(a
P
tt′) , (8)

for unit pair, P = {(i, j), (i′, j′)}. Applying this to the pair of same and pair of different player
units in the triple blocks of length w that begin at time t in the game gives us

χK
t,w = (F (aPsame

tt+w), F (aPdifferent
tt+w )) . (9)

In obtaining the following results, we coarse-grained the single agent action space into A ∈
{H,M,S}. We calculated χK

t,w over the set of all in-game unit triples K = {K} ordered by t
and w. To assess the discriminability of this variable, we compute the classification accuracy based
on the fraction of mass below the diagonal to the sum of off-diagonal mass. This accuracy is plotted
as a function of t and w in Figure 3(a). The diagonal structure shows that there are periods in the
game that are more informative than others. The highest discriminability occurs at an intermediate
time in game.

Beyond discriminability, it remains to show that the compression factor correlates with how many
units, nsame = 1, . . . ,K, in K belong to the same player (with the remaining K − nsame units
randomly sampled from the remaining players). We conditioned on blocks whose duration is set
by the full duration during which all K units are in the game. This means that a unit is built at
the beginning of the block and another is disbanded at its end. For computational limitations, we
limited our analysis to K = 5. We plot the corresponding average compression factors as a function
of block starting time for different nsame in Figure 3(b). We find that the curves are well-ordered by
nsame and even reveal periods of enhanced compression when most units belong to the same player.

4 RELATED WORK

Facilitating learning in MARL settings is a focus of much current research, only some of which
are related to our work. For example, formation of effective teams and the emergence of player
roles in teams (Wang et al., 2020a), relates to partitioning the policy space to pull specialized agents
from. This is in contrast to partitioning the joint action space as considered here. Learning proto-
typical/archetypal agents also falls into this interesting, but unrelated research area.

Abstraction, on the other hand, is a well-studied concept in reinforcement learning from which our
work based on bisimulation metrics is a direct extension (Ferns et al., 2004). With these metrics
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now more accessible computationally via modern methods, e.g. function approximation (Castro,
2020; Zhang et al., 2020), they are poised to make an impact on RL and MARL in particular.
Another related area of work is factorized MDPs (e.g. VAST, CAMPs), which aim to lift the curse
of dimensionality by modelling the joint space through some factorized version (Phan et al., 2021;
Chitnis et al., 2020). While this approach builds in high-level agent structure, our work focusses
on how an agent might learn this latent structure. However, unlike inverse RL that extracts reward
function, e.g. from observed communication (Yuan* et al., 2022)– our agent abstraction metric does
not depend on reward. This makes it more generally useful to cases when rewards are not observed
or modelled.

A secondary challenge dealt with in Wang et al. (2020b) is coming up with a set of roles (associated
with subsets of possibly overlapping action spaces) to decompose the task in a way that serves a
bi-level learning hierarchy that assigns roles to different agents and learns the corresponding policy
of each role. To achieve this, the effect-based representation of the joint action space is clustered
using the K-means algorithm.

Our work differs from Wang et al. (2020b) in the following aspects: the goal is not to deal with
scalability issues by role assignment but to find partitions that maximally compress the joint action
space from the perspective of an arbitrary agent, and our focus is on a compression factor that reveals
the utility of abstraction. Furthermore, our metric is neither effect-based nor requires a learned action
representation.

5 DISCUSSION

In this paper we have presented the concept of agent abstraction and grounded it in existing formu-
lations of abstraction. We also presented a crude metric based on unique joint actions to measure
the degree of abstraction and showed it provides some signal in the complex multi-agent setting of
Diplomacy. Nevertheless, this metric has some obvious limitations. First, it is realization-dependent
at least for non-stationary settings. Second, it does not capture the correlations among experienced
joint actions. A more useful version would be based on running estimates of frequencies of joint
actions. Given this distribution, optimal compression schemes could be designed that cluster joint
actions with equal probability such that the entropy of the distribution over the abstracted space is
maximized. This optimization must be regularized by adding the constraint that an agent learning
a value function using this space does so with bounded error in the way that bisimulation metrics
for RL have been designed to accomplish. There may be an interesting connection to be made here
with the deterministic information bottleneck (Strouse & Schwab, 2017). See Appendix A.2 for a
formulation and estimation procedure for the conditional mutual information on the action block
distribution of a pair of units, MI(Aij

tt′ ;A
i′j′

tt′ |Stt′).

Our results on the game Diplomacy deserve some discussion. Why do subsets with few units from
a single player give lower compression factors at early times? We speculate this is because the
unconditioned case actually has more than 1 agent on average from the same player. More gener-
ally, the players in the dataset are played by different humans across samples. Thus, it is unclear
to what degree the player label, i.e. the country, constrains this play variability across individual
humans. While good games such as Diplomacy sculpt player agency into elaborate roles, individual
differences for players of the same country are bound to impact our results since we have likely
not averaged over enough games to cover the space of possibilities. Nonetheless, our paper has
taken critical first steps for the community to build on towards developing scalable methods that
address agent abstraction. Our work has the promise to open up an important area of future re-
search particularly for combatting the inherent combinatorial complexity of large scale multi-agent
RL applications.
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A APPENDIX

A.1 MARKOV FORMULATION FOR THE GAME OF DIPLOMACY

The game always begins from the same state, s0, having units positioned at all respective unit-build
locations. The remaining units are initialized at their out-of-game position. Occupation of each
of a target subset of positions, Vsupply ⊂ V , called supply centers, confers the ability to sustain an
additional unit. Thus, the recurrent goal of the game is to capture supply centers in order to build
more units to capture more supply centers. The termination condition that ends the game is the event
T(s) = {sij ∈ V ∀ i, for any j}, i.e. when some player j has managed to occupy nunits supply
centers such that all its units are in the game.

The full game has five distinct seasons of dynamics each year. However, marginalizing over the
players allows us to reduce this to only the two seasons when units act. Each season, every unit
must either hold (H), i.e. do nothing, move (M) to an adjacent position, or support (S) an adjacent
position. We denote the action of the ith unit of the jth player located at position k, aijk ∈ Ak =
{H,M1, . . . ,M|Ek|,S1, . . . ,S|Ek|}, where Ek is the set of lines connected to positions k. Thus,
the action space for each unit depends on its location (except for out-of-game positions from which
actions have no effect). We can remove this dependence on location by combining all position-
dependent action spaces, such that the action of the ith unit of the jth player aij ∈ A = ∪|V|

k=1Ak,
where state-conditioning narrows the accessible actions to Ak when sij = k. Thus, similar to the
joint state s, the joint action is denoted a = (a11, . . . , a1nunits , a21, . . . , anplayersnunits) ∈ A⊗(nplayers·nunits).

When a pair of agents engage, i.e. when at least one acts such that they would occupy the same
position, the unit having the larger support wins and can reside in that location, while the loser must
retreat or be disbanded. A unit’s support is the number of units supporting it, as well as itself. When
engagement results in a draw (matching support), the effect of the movement actions precipitating
the engagement are nullified.

A.2 MUTUAL INFORMATION ANALYSIS

The respective pair action distribution at a single time t is

pπ(aijt , a
i′j′

t |st) =
∑

at/{aij
t ,ai′j′

t }

pπ(st,at)

/∑
at

pπ(st,at)

=

{
π{i,i′}j(aijt , a

i′j
t |st), if j′ = j

π{i}j(aijt |st)π{i′}j′(ai
′j′

t |st), if j′ ̸= j ,
(10)

where πIj(·|s) ≡
∑

{aij}i/∈I
πj(a1j , . . . , anunitsj |s) is the marginal policy for the subset I of units of

the jth player.
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The mutual information between this pair of state sequence-conditioned unit action sequences, aijtt′
and ai

′j′

tt′ , is

MI(Aij
tt′ ;A

i′j′

tt′ |stt′) =
∑

aij

tt′ ,a
i′j′
tt′

pπ(aijtt′ , a
i′j′

tt′ |stt′) log

[
pπ(aijtt′ , a

i′j′

tt′ |stt′)
pπ(aijtt′ |stt′)pπ(a

i′j′

tt′ |stt′)

]
(11)

≥ 0 with 0 if j′ ̸= j (c.f. Equation (10)) ,

and where we have denoted the unit action sequence marginals pπ(aijtt′ |stt′) =∑
ai′j′
tt′

pπ(aijtt′ , a
i′j′

tt′ |stt′). This demonstrates that action sequences arising from coordinated

units (j′ = j) can be informative of each other. Can this mutual information serve to measure
coordination more broadly and be used as a way to define an effective higher-level agency between
observed units, even in the absence of prior information (j)?

Equation (11) can be rewritten in a more tractable form as

MI(Aij
tt′ ;A

i′j′

tt′ |stt′) = E
pπ(ai′j′

tt′ |stt′ )

[
DKL[p

π(Aij
tt′ |a

i′j′

tt′ , stt′)||p
π(Aij

tt′ |stt′)]
]
, (12)

with pπ(aijtt′ |a
i′j′

tt′ , stt′) = pπ(aijtt′ , a
i′j′

tt′ |stt′)/pπ(a
i′j′

tt′ |stt′). The conditional mutual information,
MI(Aij

tt′ ;A
i′j′

tt′ |Stt′), averages Equation (12) also over stt′ . In this form it can be computed directly
from a measured set of game trajectories, D = {τg}

ngames
g=1 , by approximating the expectation with

respect to the game trajectory marginal over the window pπ(stt′ , a
i′j′

tt′ ) using Monte Carlo estima-
tion (Strouse et al., 2018; Jaques et al., 2018):

MI(Aij
tt′ ;A

i′j′

tt′ |Stt′) ≈
1

ngames

ngames∑
g=1

DKL[p
π(Aij

tt′ |a
i′j′

tt′,g, stt′,g)||p
π(Aij

tt′ |stt′,g)] . (13)

Here, the DKL must still be computed via integration using the unit policies. This estimation still
suffers from the curse of dimensionality because of the high dimensions of the distributions of game-
long trajectories and so t′ = t+ w with small w.
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