
A Comparison of Imitation Learning
Algorithms for Bimanual Manipulation

Michael Drolet1,2, Simon Stepputtis3, Siva Kailas3, Ajinkya Jain4

Jan Peters2, Stefan Schaal4, and Heni Ben Amor1
1School of Computing and Augmented Intelligence, Arizona State University, United States

2Department of Computer Science, Technical University of Darmstadt, Germany
3The Robotics Institute, Carnegie Mellon University, United States

4Intrinsic AI, An Alphabet Company, United States

Abstract: Amidst the wide popularity of imitation learning algorithms
in robotics, their properties regarding hyperparameter sensitivity, ease of
training, data efficiency, and performance have not been well-studied in
high-precision industry-inspired environments. In this work, we explore the
limitations and advantages of prominent imitation learning algorithms and
evaluate them on a complex bimanual manipulation task involving multiple
contacts. We show that while imitation learning is effective for such tasks,
not all algorithms are equal in handling environmental and hyperparameter
perturbations, training demands, and usability. Our study uses a carefully
designed experimental procedure to assess these key characteristics.

Keywords: Bimanual Manipulation, Imitation Learning

Figure 1: The robot completes the final stage of the high-precision four-peg insertion task.

1 Introduction

Given the desirable properties of imitation learning (IL) and the importance of bimanual
manipulation in achieving more sophisticated human-like robots, a natural question is
how to approach the intersection of these two fields. We address this question directly by
combining several foundational algorithms in IL with a benchmark MuJoCo [2] environment
that seeks to fairly and extensively compare algorithms in terms of sample efficiency, noise
robustness, compute time, and performance. In doing so, we provide an extensive discussion
related to the various advantages and disadvantages of these algorithms as well as the
engineering approaches that allow for learning in such an environment. More specifically, we
focus on Generative Adversarial Imitation Learning (GAIL) [3], Implicit Behavioral Cloning
(IBC) [4], Dataset Aggregation (DAgger) [5], Behavioral Cloning (BC) [6], Acting Chunking
Transformer (ACT) [7], and the Diffusion Policy [8]. In the environment, the robot learns to
transfer an adapter with four holes and insert it into a stationary adapter with four pegs.
The difficulty in the task lies within the low tolerance of the adapters, such that success only
occurs when the robot is precise; i.e., the holes have a diameter of 11mm and the rounded
pins have a base diameter of 10mm, leaving approximately 1mm of tolerance.

CoRL 2024 Workshop on Whole-Body Control and Bimanual Manipulation (CoRL 2024 WCBM).



2 Related Work

A few prominent learning-based approaches have emerged in the domain of bimanual
manipulation. Reinforcement learning is one class of approaches that have been applied. For
example, [9] presents a set of bimanual manipulation tasks and associated reward structures
that were empirically found to work well with deep reinforcement learning. One study also
utilized a marker-based vision system, sim-to-real, and reinforcement learning for connecting
two blocks with magnetic connection points with two robotic arms [10].
A method for mastering contact-rich manipulation in a similar setup has been proposed,
using motor primitives to train the robot for an insertion task [1]. This approach involves
utilizing force feedback and environment feedback as stimuli during the filtering process
outlined in Bayesian Interaction Primitives [11]. Although this method displays efficacy, our
objective is to eliminate the inductive bias associated with motor primitives and explore
neural network-based approaches instead. In doing so, we adopt a more general class of
function approximation.
ALOHA is a recent approach to learning several fine-grained bimanual manipulation tasks
with everyday objects [7]. This approach is notable due to its high degree of success on many
tasks that – to our knowledge – were previously only achievable by human demonstrators.
ALOHA presents an action-chunking transformer (ACT), which we implement for comparison
in this work. Although there are related works in the area of bimanual manipulation, such
as HDR-IL [12] and SIMPLe [13], we seek to investigate algorithms that have been widely
used over the last several years in robotics and require a minimal number of demonstrations.
A separate study discusses the essential components of training adversarial imitation learning
algorithms [14]. This study is extensive in terms of evaluating different hyperparameters,
discriminator configurations, and training-related metrics. In this investigation, we are
interested in not only adversarial methods but also how they compare to other methods for
bimanual manipulation. Other studies evaluate various imitation learning algorithms and
their hyperparameters [15, 16]. However, key algorithms such as DAgger and IBC have been
excluded from the scope of these studies. Moreover, the gym environments employed in these
studies fall short in directly capturing the nuanced dynamics and fine-grained behaviors
inherent in our bimanual robot setup.

3 Algorithm Selection

The selection of algorithms is a critical point of consideration; consequently, the chosen
algorithms can be seen as an orthogonal set of approaches to imitation learning in general.
On one hand, the offline and supervised learning (SL) aspect of IL is captured by both an
expressive energy-based policy implementation (IBC) and the widely familiar Gaussian neural
network-based policy (BC). On the other hand, methods that interact with the environment
in the form of (a) an oracle (DAgger) to minimize covariate shift, and (b) a reinforcement
learning policy (GAIL) help capture the class of approaches reliant on sampling states online.
We additionally adopt some of the most recent and successful methods in IL for robotics,
namely ACT and Diffusion Policy. We believe that while there are many derivatives of these
methods, their longstanding impact on the field of imitation learning helps justify the need
to compare them.
BC is one of the most well-known and widely used imitation learning algorithms, largely
due to its simplicity and effectiveness on large datasets. BC is typically implemented using
the following objective: θ̂ = argmaxθ E(s,a)∼τ E

[log(πθ(a|s))], where τE represents the state-
action trajectories from the expert, πθ is the current policy, a is a continuous action, and s
is the observed continuous state. We additionally include a tunable L1 and L2 penalty on
the parameters of the policy (known as elastic net regularization) to help prevent overfitting.
In the context of this paper, we refer to BC as solely training a Gaussian policy whose mean
is given by a feed-forward neural network, π(a|s). Recent successes in behavioral cloning for
robot manipulation include the RT-X [17] model and its precursors, all trained on very large
datasets (each consisting of 130, 000 training demonstrations or more). Our work, however,
studies BC in the small data regime, using a maximum of 200 expert demonstrations.

2



Algorithm Env. Interaction Policy Class Train π
BC, ACT 7 Gaussian, Deterministic SL
IBC, Diffusion 7 EBM, Langevin SL
DAgger 3 Gaussian SL
GAIL 3 Gaussian RL

Table 1: Comparison of Algorithms.

ACT performs behavioral cloning using a conditional variational autoencoder (CVAE)
implemented as a multi-headed attention transformer [18]. While the objective for training
ACT is largely the same as vanilla BC (Section 3), we will briefly describe its differences from
the standard formulation. For one, ACT is trained (as in the original work) using the L1
loss, which can be interpreted as being proportional to the square root of the Mahalanobis
distance used in the objective of vanilla BC, assuming a fixed variance. This deterministic
policy then predicts a sequence of actions instead of a single action and- in our formulation-
uses a history of observations as input to the transformer instead of image observations.
IBC is a supervised learning approach using energy-based models, trained using the Negative
Counter Example (NCE) loss function [19]. Energies are assigned to the state-action pairs,
and the policy takes the action that minimizes the energy landscape. As the minimum over
the actions is taken, IBC has the advantage of handling discontinuities that can arise in
the typical regression setting, where behavioral cloning may simply interpolate. This is a
desirable feature of implicit models, and it is one of the presented advantages in the IBC
work that makes it unique compared to other imitation learning algorithms. In short, the
IBC policy can be summarized as: â = argmina Eθ(s,a), where Eθ is the energy function
and â is the optimal action. However, many works have found that the IBC objective is
numerically unstable and does not consistently yield high-quality policies [20].
Diffusion Policy, like IBC, performs an iterative procedure to generate actions. Diffusion
models have achieved significant success in areas like image generation [21]. Their observed
stability, compared to energy-based models, makes them a promising method for the robotics
domain. Using a series of denoising steps, this method presents a way to refine noise into
actions through a learned gradient field. The Diffusion Policy in this work is implemented
using a U-Net architecture, which conditions on an observation history and generates an action
sequence similar to ACT. Algorithms such as IBC and Diffusion Policy (based on Langevin
dynamics) provide viable alternatives to the standard behavioral cloning formulation, which
may lack the expressiveness these models provide.
GAIL formulates imitation learning as an inverse reinforcement learning (IRL) problem,
wherein the reward function is learned based on the discriminator’s scores [3] using a
Generative Adversarial Network (GAN). The parameters w for the discriminator D are
updated using the following objective: Êτ i

[∇w log (Dw(s,a))]+ Êτ E
[∇w log (1−Dw(s,a))],

where τ i represents state-action trajectories from the most recent policy (at iteration i).
Our policy is updated using Trust Region Policy Optimization (TRPO) [22]. Derivitavies of
GAIL, such as VAIL [23], seek to address the issue of generator/discriminator imbalance by
using a variational bottleneck to constrain the gradient updates of the networks.
DAgger addresses the covariate shift problem, where the distribution of observations the
policy encounters differs from those in the expert dataset [5]. To tackle this challenge, a data
aggregation scheme is used wherein the policy is re-trained on the history of expert-labeled
states encountered over time. The need to specify an optimal action at all possible states
without using a human can make implementing DAgger challenging. DAgger theoretically
bounds the training loss of the best policy under its distribution of sampled trajectories,
where the tightness of this bound depends on, e.g., the number of iterations, samples per
iteration, and mixing coefficient. However, its practical efficacy is constrained by factors
such as the quality of the oracle and the difficulty of the environment.

4 Methodology

In the following section, we describe the methods for creating the bimanual manipulation
insertion expert, as well as the design considerations necessary for learning with such a

3



system. The implementation contains a two-stage expert, as outlined in Algorithm 1. A
dynamics model is proposed that allows for implicit control of the torso, such that the
state formulation (described in Section 4.2) can be predominantly characterized by the
end-effectors. The robot consists of two UR5 arms, each mounted to a rotating torso and
equipped with Robotiq 2F-85 grippers.

4.1 Bimanual Manipulation Expert Controller

Algorithm 1 Bimanual Insertion Expert
1: procedure pathFollowExpert(i, t)
2: ρ,φ = getRobotState() ; t′ = min(t, Ti)
3: for j in [1, ..., J ] do
4: ∆ρj = feedbackCtrl(ρj − ρi,j∗ (t′))
5: ∆φj = clip(diff(φj ,φi,j∗ (t′)))
6: return

(
[∆ρ1, ...,∆ρJ ], g([∆φ1, ...,∆φJ ])

)
7:
8: procedure GetExpertAction(i, t)
9: if doPathFollow then

10: (∆ρ,∆φ) = pathFollowExpert(i, t)
11: else if doInsertion then
12: (∆ρ,∆φ) = insertExpert()
13: return (∆ρ,∆φ)
14:
15: procedure GenerateExpertDemo(i)
16: Di ← ∅ ; t = 1 ; ∆φ = 0 ; ∆ρ = 0
17: while not DoneInsert do
18: ρ,φ = GetRobotState()
19: s = ApplyOSC(ρ + ∆ρ,φ + f(∆φ))
20: a = GetExpertAction(i, t)
21: Di ← Di ∪ (s,a) ; t = t+ 1
22: return Di

We are first given n original demon-
strations, where the i’th demonstra-
tion contains positions ρi,j∗ (t) ∈ R3

and quaternions φi,j∗ (t) ∈ so(3) for
all timesteps t ∈ [1, 2, ..., Ti] for
DoF j. Every original demonstra-
tion is then converted to a sequence
of expert state-action pairs using
the generateExpertDemo proce-
dure. In doing so, we obtain state-
action pairs from the same environ-
ment and robot used during training.
Instead of using quaternions to rep-
resent the end effector rotations, we
use the six dimensional rotation repre-
sentation (6DRR) [28] when training
the policies. In Algorithm 1, g(.) rep-
resents the conversion to 6DRR and
f(.) represents the conversion back to
quaternions.
Algorithm 1 describes the process
for collecting the expert demonstra-
tions. The process consists of a
pathFollowExpert used to transfer
the dynamic object above the station-
ary object, similar to the original demonstrator. The insertExpert is then used to precisely
align the holes and pegs of the adapters to complete the task, using the features of the
objects to create a feedback signal. The insertExpert is omitted for brevity in Algorithm
1, but it can be used independently of the first stage (hence its independence of time t and
demonstration index i).
The operational space controller (OSC) [26] is used in this work to facilitate learning in
the task space [27]. We adopt the Jacobian pseudo-inverse method, using the dynamically
consistent generalized inverse. Because we control two UR5 arms and one base joint implicitly,
q is 13-dimensional. Consequently, we have the Jacobian J(q) ∈ R12×13, inertia matrix
M(q) ∈ R13×13, and forces due to gravity g(q) ∈ R13. The force vector used to control
the robot is then calculated as: u = J(q)>Mx(q)x̃ + M(q)˜̇q + g(q), where Mx(q) =
(J(q)M(q)−1J(q)>)†. Finally, we apply a nullspace filter to the force output: u = u +(

I− J(q)>J̄(q)>
)

unull, where J̄(q) = M−1(q)J(q)>Mx(q) and unull = KnM(q)(q̇∗ − q̇).
We take q̇∗ to be 0 (as in the velocity controller), and Kn is a parameterized diagonal matrix.

4.2 Environments

The base environment consists of an 18-dimensional action space and a 36-dimensional
observation space. The action space, as previously described in Section 4.1, consists of a
delta-position (∆ρ) and delta-rotation (∆φ) command for both end-effectors. The observation
space is characterized by (1) the difference in the "expert’s pose at the hover position above
the stationary adapter" and the "current end-effector pose"; (2) the cube-root of the distance
between the end-effector and respective near-side pin; and (3) the forces and torques acting

4



upon the gripper sensors. This observation space is "duplicated" for both arms, so it can be
viewed as having an 18-dimensional observation per arm.
At the start of every episode, the stationary adapter remains at a fixed location and the
dynamic adapter is placed at a randomly chosen starting location based on the 200 original
expert demonstrations. During the original expert demonstrations, this adapter is placed at
a randomly generated position on the right side of the robot’s workspace. An environment
reward is available at every timestep, although it is not used by the learning algorithms.
The environment reward, which we use to help measure an algorithm’s success (Section 6),
is defined as follows:

R(s, t) =
J∑
j=1

[
eγ(xj(t)−xj

∗(t))2
⊕ eλ(d(φj(t),φj

∗(t)))2
]
− η + ω (1)

where η is a time penalty; ω is a positive reward for successfully inserting the adapter; and
⊕ is used to concatenate the six terms in the summand with the previous iteration, and
then take mean of this result after iteration J (for lack of better notation). There are three
environments in total, namely, the Zero Noise, Low Noise, and High Noise environments (see
Section 5.2 for more detail). In all environments, γ = −10, λ = −10, η = 1, and ω = 100,
resulting in an average expert reward of 64.03± 0.45 (1 SE) over 600 demonstrations.

5 Experimental Setup

Our experiment is divided into Analysis of Action and Observation Noise (5.2), Hyperpa-
rameter Search (5.1), and Analysis of Hyperparameter Sensitivity (5.3). The results of each
phase are used to provide an interpretation of key metrics presented in Section 6.

5.1 Hyperparameter Search

DAgger HP HP Search Points
Learn Rate [5e-5*, 1e-4, 5e-4]
π Layers [2, 3*]
π Units [256, 512*]
π Activation [Relu, Tanh*]
Normalize [Expert, None*]
Epochs [64*, 128]
Decay β [0.9*, 0.95]
BC L1 λ [0.0, 1e-6*, 1e-4]
BC L2 λ [0.0, 1e-6*, 1e-4]
BC Batch Sz. [128, 256*]

GAIL HP HP Search Points
π Layers [2*, 3]
π Units [256*, 512]
π Activation [Relu, Tanh*]
π Max K.L [1e-2*, 3e-2]
π C.G Damping [0.1, 0.3*]
π Ent. Reg [0.0, 1e-3*, 1e-2]
Normalize [Expert*, None]
R Learn Rate [1e-5, 5e-5*, 1e-4]
R Layers [1, 2*]
R Units [128, 256*]
R Activation [Relu*, Tanh]
R Ent. Reg. [0.0, 1e-3*, 1e-2]
Discount λ [0.97, 0.99*]
V Layers [1, 2*]
V Units [128*, 256]
V Activation [Relu*, Tanh]
V Max K.L [1e-2*, 3e-2]
V C.G Damping [0.1*, 0.3]

Diffusion HP HP Search Points
Learn Rate [5e-5, 1e-4*, 5e-4]
Adam Decay [1e-6*, 1e-3]
Batch Sz. [128, 256, 512*]
Diff. Steps [50, 100*]
L.R. Warmup [500*, 1000]

BC HP HP Search Points
Learn Rate [5e-5, 1e-4, 5e-4*]
π Layers [2, 3*]
π Units [256, 512*]
π Activation [Relu, Tanh*]
Normalize [Expert*, None]
BC L1 λ [0, 1e-6, 1e-4*]
BC L2 λ [0, 1e-6, 1e-4*]
Batch Sz. [128*, 256, 512]

IBC HP HP Search Points
Learn Rate [5e-5, 1e-4*, 5e-4]
π Layers [2, 4*]
π Units [256*, 512]
π Activation [Relu*, Tanh]
Dropout Rate [0.0*, 0.1, 0.2]
Norm Batch Sz. [50, 100*]
Norm Samples [1e3, 5e3*]
Action Samples [256, 512*, 1024]
Pct. Langevin [0.8, 1.0*]
Langevin Iter. [50, 100*]
Counter Ex. [8, 16, 32*]
Batch Sz. [256, 512*]
Replay Sz. [1e3, 1e4*]

ACT HP HP Search Points
Batch Sz. [256*, 512]
Enc. Layers [1*, 2, 3]
Dec. Layers [1*, 2, 3]
Latent Dim [8*, 16]
Attn. Heads [4*, 8]
Learn Rate [5e-5, 1e-4*, 5e-4]
Dropout Rate [0.0, 0.1*, 0.2]
Hidden Dim [128*, 256]
π Units [256, 512*]
Activation [Relu*, Gelu]
KL Weight [1, 10, 100*]

Table 2: Hyperparameter search for all algorithms. Asterisks
denote the value used for policy training.

A hyperparameter search is
conducted to obtain the best
parameters for all algorithms,
using the Zero Noise en-
vironment with 200 expert
demonstrations. For a given
set of hyperparameters, 10
evenly spaced evaluations dur-
ing training are conducted,
and the evaluation resulting
in the highest average reward
(out of 10 rollouts) is returned
to the optimizer. Each al-
gorithm’s best (i.e., reward
maximizing) hyperparameters
have an asterisk in Table 2.
We note that for behavioral
cloning-based algorithms, al-
ternative hyperparameter con-
figurations achieved perfor-
mance similar to that of the
selected configuration. We
found that the default U-Net
architecture for the Diffusion
Policy (having channel sizes
[256, 512, 1024]) worked well
without the need for addi-
tional hyperparameter tuning.
Additionally, using an action,
observation, and prediction horizon of 4, 4, and 8, respectively worked well for both ACT
and Diffusion without the need for tuning.

5



5.2 Action and Observation Noise Analysis

We study the effects of both observation noise and action noise on the success of the learning
algorithms. As such, a noise perturbation is applied to the actions (a′i = maiai + bai)
and observations (o′i = moioi + boi) of the expert and environment, respectively. The bias
terms, bai and boi , are randomly sampled from the uniform distributions Unif[bmin

ai
, bmax
ai

]
and Unif[bmin

oi
, bmax
oi

], respectively. The scaling terms, mai
and moi

, are uniformly distributed
about 1, having endpoints [0.9, 1.1] in the Low Noise environment and [0.7, 1.3] in the High
Noise environment. The noisy actions are not only used to augment the dataset but they
are also passed to the inverse dynamics model.

5.3 Hyperparameter Sensitivity Analysis

We conduct a sensitivity analysis on the hyperparameters of each algorithm to assess their
local stability using the Zero Noise environment with 200 expert demonstrations. Local
stability refers to an algorithm’s robustness when hyperparameters deviate slightly from
their optimal values. As the number of combinations grows exponentially with the number
of hyperparameters, a grid search over all configurations is computationally infeasible. To
address this, we use a NIST covering array [29], providing a computationally feasible subset
of sampling configurations. We perturb each hyperparameter’s best value by ± 15% and
evaluate these combinations.

6 Results and Discussion

The results for the Action and Observation Noise Analysis (Section 5.2) are shown in Table 3,
and those for the Hyperparameter Sensitivity Analysis (Section 5.3) are in Table 4. During
training, 10 evenly-spaced evaluations are conducted, each with 10 rollouts. The evaluation
with the highest average return determines the policy’s performance. This average return is
standardized across all tagged rollouts from different algorithms in the table.

Zero Noise Low Noise High Noise
Alg. N.T.
BC 50 0.36± 0.01 −1.06± 0.13 −2.43± 0.13

100 0.4 ± 0.0 −0.23± 0.05 −1.16± 0.08
200 0.43± 0.0 −0.05± 0.03 −0.55± 0.04

IBC 50 0.39± 0.01 −1.58± 0.09 −3.14± 0.08
100 0.4 ± 0.0 −1.33± 0.11 −2.81± 0.07
200 0.4 ± 0.01 −1.35± 0.1 −2.46± 0.09

DAgger — 0.42± 0.0 0.39± 0.01 0.39± 0.01
GAIL 50 0.43± 0.0 0.44± 0.0 0.43± 0.0

100 0.44± 0.0 0.44± 0.0 0.43± 0.0
200 0.44± 0.0 0.44± 0.0 0.43± 0.0

ACT 50 0.43± 0.0 0.43± 0.0 0.43± 0.0
100 0.42± 0.0 0.42± 0.0 0.42± 0.0
200 0.42± 0.0 0.42± 0.0 0.42± 0.0

Diffusion 50 0.43± 0.0 0.43± 0.0 0.42± 0.0
100 0.44± 0.0 0.44± 0.0 0.43± 0.0
200 0.45± 0.0 0.44± 0.0 0.43± 0.0

Expert — 0.40± 0.0 0.40± 0.0 0.40± 0.0

Table 3: Action and Observation Noise Analysis-
Environment Reward (Normalized ± 1 SE)

BC IBC DAgger GAIL ACT Diffusion Expert

0.35 0.25 0.30 −1.35 0.30 0.33 0.29
0.00 ±0.01 0.00 ±0.13 0.00 0.00 0.00

Table 4: Hyperparameter Sensitivity Analysis
Environment Reward (Normalized ± 1 SE)

Figure 5 summarizes our findings from
the experimental procedure (Section 5).
For the Hyperparameter Tolerance met-
ric (Section 5.1), we calculate the aver-
age percent success (where success indi-
cates the adapter is correctly placed)
across all hyperparameter configura-
tions. The Noise Tolerance metric (Sec-
tion 5.2) reflects the average percent
success in Low and High Noise environ-
ments for all tagged rollouts. Compute
Efficiency is the negative log of the aver-
age total time (in seconds) to reach the
selected policy, linearly scaled to [0, 100].
We use the log scale due to the wide vari-
ance in runtime, exemplified by GAIL’s
128, 000 training rollouts per policy (ap-
prox. 2 days). Performance indicates
the average percent success in the Zero
Noise environment across all numbers
of expert demonstrations. Training Sta-
bility is determined by the frequency
of evaluation intervals (during training)
where the average return shifts from
positive to negative, suggesting a de-
cline in policy success. A higher value
implies more instability; thus, we use
the negative average, scaled to [0, 100].

6



BC

M1

M2

M3

M4

M5

50

75

100
IBC

M1

M2

M3

M4

M5

50

75

100
DAgger

M1

M2

M3

M4

M5

50

75

100

GAIL

M1

M2

M3

M4

M5

50

75

100
ACT

M1

M2

M3

M4

M5

50

75

100
Diffusion

M1

M2

M3

M4

M5

50

75

100

M1: Hyperparameter Tolerance, M2: Noise Tolerance
M3: Compute Efficiency, M4: Performance, M5: Training Stability

Figure 5: A high-level interpretation of the key metrics describing the algorithms in the
bimanual insertion environments.

We observe that algorithms which either interact with the environment (i.e., GAIL and
DAgger) or perform action/observation chunking (i.e., ACT and Diffusion) are more robust
to noise perturbations. In the former case, this highlights the benefit of exploring during
training and the effectiveness of having an oracle in the presence of increased noise, at
the expense of more computing and training time. In the latter case, we observe that the
action and observation horizons introduced by Diffusion and ACT help cope with potentially
non-Markovian environments. However, this design choice increases the dimensionality of
the observation and action space, making it less suitable for RL-based methods and IBC,
which we observe to be more susceptible to the curse of dimensionality. As an ablation
study, we found that observation and action chunking can improve the performance of BC in
noisy environments. We also observe that the time required to generate an action during
evaluation is longer for IBC and Diffusion; however, for Diffusion, this time is largely affected
by the number of de-noising iterations and the length of chunking horizons.
GAIL, Diffusion, and ACT obtained high rewards in all environments, suggesting they
are viable options for bimanual manipulation. However, GAIL performs the worst in the
hyperparameter sensitivity category, and while an improvement would be made here with an
increased maximum time limit for training (approx. 2 days), other algorithms can achieve
suitable results in a matter of hours or less. These results indicate that ACT and Diffusion are
favorable options, whereas GAIL (and to some extent DAgger) are suitable options for tasks
that benefit from extensive interaction with the environment during training. Furthermore,
our findings regarding training stability and high performance in fine-grained manipulation
environments align with those reported for Diffusion Policy and ACT, respectively.

7 Conclusion

We present a comprehensive assessment of various imitation learning algorithms in a bimanual
manipulation environment. A carefully selected set of experiments is conducted to evaluate
the key characteristics inherent to these algorithms, such as sample efficiency, sensitivity to
perturbations in hyperparameter values, and robustness under observation and action noise.
This investigation leads to new insights regarding the applicability of imitation learning
for fine-grained industrial tasks and highlights the effectiveness of the chosen methodology.
Furthermore, we discuss the implications of selecting these approaches, elucidating how they
behave at an empirical and conceptual level. Further investigation into deploying these
methods in physical environments will highlight the feasibility of using these systems in
everyday situations.

7



References
[1] S. Stepputtis, M. Bandari, S. Schaal, and H. B. Amor, “A system for imitation learn-

ing of contact-rich bimanual manipulation policies,” in 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2022.

[2] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based control,”
in 2012 IEEE/RSJ international conference on intelligent robots and systems. IEEE,
2012.

[3] J. Ho and S. Ermon, “Generative adversarial imitation learning,” Advances in neural
information processing systems, 2016.

[4] P. Florence, C. Lynch, A. Zeng, O. A. Ramirez, A. Wahid, L. Downs, A. Wong, J. Lee,
I. Mordatch, and J. Tompson, “Implicit behavioral cloning,” in Conference on Robot
Learning. PMLR, 2022.

[5] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning and structured
prediction to no-regret online learning,” in Proceedings of the fourteenth international
conference on artificial intelligence and statistics. JMLR Workshop and Conference
Proceedings, 2011.

[6] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural network,” Advances
in neural information processing systems, 1988.

[7] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn, “Learning fine-grained bimanual manipu-
lation with low-cost hardware,” arXiv preprint arXiv:2304.13705, 2023.

[8] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song, “Diffusion policy:
Visuomotor policy learning via action diffusion,” arXiv preprint arXiv:2303.04137, 2023.

[9] Y. Lin, A. Church, M. Yang, H. Li, J. Lloyd, D. Zhang, and N. F. Lepora, “Bi-touch:
Bimanual tactile manipulation with sim-to-real deep reinforcement learning,” IEEE
Robotics and Automation Letters, 2023.

[10] S. Kataoka, S. K. S. Ghasemipour, D. Freeman, and I. Mordatch, “Bi-manual ma-
nipulation and attachment via sim-to-real reinforcement learning,” arXiv preprint
arXiv:2203.08277, 2022.

[11] J. Campbell and H. B. Amor, “Bayesian interaction primitives: A slam approach to
human-robot interaction,” in Conference on Robot Learning. PMLR, 2017.

[12] F. Xie, A. Chowdhury, M. De Paolis Kaluza, L. Zhao, L. Wong, and R. Yu, “Deep
imitation learning for bimanual robotic manipulation,” Advances in neural information
processing systems, 2020.

[13] G. Franzese, L. d. S. Rosa, T. Verburg, L. Peternel, and J. Kober, “Interactive imitation
learning of bimanual movement primitives,” IEEE/ASME Transactions on Mechatronics,
2023.

[14] M. Orsini, A. Raichuk, L. Hussenot, D. Vincent, R. Dadashi, S. Girgin, M. Geist,
O. Bachem, O. Pietquin, and M. Andrychowicz, “What matters for adversarial imitation
learning?” Advances in Neural Information Processing Systems, 2021.

[15] K. Arulkumaran and D. O. Lillrank, “A pragmatic look at deep imitation learning,”
arXiv preprint arXiv:2108.01867, 2021.

[16] L. Hussenot, M. Andrychowicz, D. Vincent, R. Dadashi, A. Raichuk, S. Ramos, N. Mom-
chev, S. Girgin, R. Marinier, L. Stafiniak, et al., “Hyperparameter selection for imitation
learning,” in International Conference on Machine Learning. PMLR, 2021.

[17] A. Padalkar, A. Pooley, A. Jain, A. Bewley, A. Herzog, A. Irpan, A. Khazatsky, A. Rai,
A. Singh, A. Brohan, et al., “Open x-embodiment: Robotic learning datasets and rt-x
models,” arXiv preprint arXiv:2310.08864, 2023.

8



[18] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin, “Attention is all you need,” Advances in neural information processing
systems, vol. 30, 2017.

[19] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with contrastive predictive
coding,” arXiv preprint arXiv:1807.03748, 2018.

[20] S. Singh, S. Tu, and V. Sindhwani, “Revisiting energy based models as policies:
Ranking noise contrastive estimation and interpolating energy models,” arXiv preprint
arXiv:2309.05803, 2023.

[21] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in
neural information processing systems, vol. 33, pp. 6840–6851, 2020.

[22] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy
optimization,” in International conference on machine learning. PMLR, 2015.

[23] X. B. Peng, A. Kanazawa, S. Toyer, P. Abbeel, and S. Levine, “Variational discriminator
bottleneck: Improving imitation learning, inverse rl, and gans by constraining information
flow,” arXiv preprint arXiv:1810.00821, 2018.

[24] M. Kelly, C. Sidrane, K. Driggs-Campbell, and M. J. Kochenderfer, “Hg-dagger: In-
teractive imitation learning with human experts,” in 2019 International Conference on
Robotics and Automation (ICRA). IEEE, 2019.

[25] J. Zhang and K. Cho, “Query-efficient imitation learning for end-to-end autonomous
driving,” arXiv preprint arXiv:1605.06450, 2016.

[26] O. Khatib, “A unified approach for motion and force control of robot manipulators:
The operational space formulation,” IEEE Journal on Robotics and Automation, 1987.

[27] J. Peters and S. Schaal, “Learning to control in operational space,” The International
Journal of Robotics Research, 2008.

[28] Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li, “On the continuity of rotation represen-
tations in neural networks,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019.

[29] M. Forbes, J. Lawrence, Y. Lei, R. N. Kacker, and D. R. Kuhn, “Refining the in-
parameter-order strategy for constructing covering arrays,” Journal of Research of the
National Institute of Standards and Technology, 2008.

9


	Introduction
	Related Work
	Algorithm Selection
	Methodology
	Bimanual Manipulation Expert Controller
	Environments

	Experimental Setup
	Hyperparameter Search
	Action and Observation Noise Analysis
	Hyperparameter Sensitivity Analysis

	Results and Discussion
	Conclusion

