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Abstract: Amidst the wide popularity of imitation learning algorithms
in robotics, their properties regarding hyperparameter sensitivity, ease of
training, data efficiency, and performance have not been well-studied in
high-precision industry-inspired environments. In this work, we explore the
limitations and advantages of prominent imitation learning algorithms and
evaluate them on a complex bimanual manipulation task involving multiple
contacts. We show that while imitation learning is effective for such tasks,
not all algorithms are equal in handling environmental and hyperparameter
perturbations, training demands, and usability. Our study uses a carefully
designed experimental procedure to assess these key characteristics.
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Figure 1: The robot completes the final stage of the high-precision four-peg insertion task.

1 Introduction

Given the desirable properties of imitation learning (IL) and the importance of bimanual
manipulation in achieving more sophisticated human-like robots, a natural question is
how to approach the intersection of these two fields. We address this question directly by
combining several foundational algorithms in IL with a benchmark MuJoCo [2] environment
that seeks to fairly and extensively compare algorithms in terms of sample efficiency, noise
robustness, compute time, and performance. In doing so, we provide an extensive discussion
related to the various advantages and disadvantages of these algorithms as well as the
engineering approaches that allow for learning in such an environment. More specifically, we
focus on Generative Adversarial Imitation Learning (GAIL) [3], Implicit Behavioral Cloning
(IBC) [4], Dataset Aggregation (DAgger) [5], Behavioral Cloning (BC) [6], Acting Chunking
Transformer (ACT) [7], and the Diffusion Policy [8]. In the environment, the robot learns to
transfer an adapter with four holes and insert it into a stationary adapter with four pegs.
The difficulty in the task lies within the low tolerance of the adapters, such that success only
occurs when the robot is precise; i.e., the holes have a diameter of 11mm and the rounded
pins have a base diameter of 10mm, leaving approximately 1mm of tolerance.
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2 Related Work

A few prominent learning-based approaches have emerged in the domain of bimanual
manipulation. Reinforcement learning is one class of approaches that have been applied. For
example, [9] presents a set of bimanual manipulation tasks and associated reward structures
that were empirically found to work well with deep reinforcement learning. One study also
utilized a marker-based vision system, sim-to-real, and reinforcement learning for connecting
two blocks with magnetic connection points with two robotic arms [10].

A method for mastering contact-rich manipulation in a similar setup has been proposed,
using motor primitives to train the robot for an insertion task [1]. This approach involves
utilizing force feedback and environment feedback as stimuli during the filtering process
outlined in Bayesian Interaction Primitives [11]. Although this method displays efficacy, our
objective is to eliminate the inductive bias associated with motor primitives and explore
neural network-based approaches instead. In doing so, we adopt a more general class of
function approximation.

ALOHA is a recent approach to learning several fine-grained bimanual manipulation tasks
with everyday objects [7]. This approach is notable due to its high degree of success on many
tasks that — to our knowledge — were previously only achievable by human demonstrators.
ALOHA presents an action-chunking transformer (ACT), which we implement for comparison
in this work. Although there are related works in the area of bimanual manipulation, such
as HDR-IL [12] and SIMPLe [13], we seek to investigate algorithms that have been widely
used over the last several years in robotics and require a minimal number of demonstrations.

A separate study discusses the essential components of training adversarial imitation learning
algorithms [14]. This study is extensive in terms of evaluating different hyperparameters,
discriminator configurations, and training-related metrics. In this investigation, we are
interested in not only adversarial methods but also how they compare to other methods for
bimanual manipulation. Other studies evaluate various imitation learning algorithms and
their hyperparameters [15, 16]. However, key algorithms such as DAgger and IBC have been
excluded from the scope of these studies. Moreover, the gym environments employed in these
studies fall short in directly capturing the nuanced dynamics and fine-grained behaviors
inherent in our bimanual robot setup.

3 Algorithm Selection

The selection of algorithms is a critical point of consideration; consequently, the chosen
algorithms can be seen as an orthogonal set of approaches to imitation learning in general.
On one hand, the offline and supervised learning (SL) aspect of IL is captured by both an
expressive energy-based policy implementation (IBC) and the widely familiar Gaussian neural
network-based policy (BC). On the other hand, methods that interact with the environment
in the form of (a) an oracle (DAgger) to minimize covariate shift, and (b) a reinforcement
learning policy (GAIL) help capture the class of approaches reliant on sampling states online.
We additionally adopt some of the most recent and successful methods in IL for robotics,
namely ACT and Diffusion Policy. We believe that while there are many derivatives of these
methods, their longstanding impact on the field of imitation learning helps justify the need
to compare them.

BC is one of the most well-known and widely used imitation learning algorithms, largely
due to its simplicity and effectiveness on large datasets. BC is typically implemented using
the following objective: @ = argmax, E(s,a)~75 [l0g(mo(als))], where T represents the state-
action trajectories from the expert, mg is the current policy, a is a continuous action, and s
is the observed continuous state. We additionally include a tunable L, and Lo penalty on
the parameters of the policy (known as elastic net regularization) to help prevent overfitting.
In the context of this paper, we refer to BC as solely training a Gaussian policy whose mean
is given by a feed-forward neural network, 7(als). Recent successes in behavioral cloning for
robot manipulation include the RT-X [17] model and its precursors, all trained on very large
datasets (each consisting of 130,000 training demonstrations or more). Our work, however,
studies BC in the small data regime, using a maximum of 200 expert demonstrations.



Algorithm Env. Interaction Policy Class Train 7
BC, ACT X Gaussian, Deterministic SL
IBC, Diffusion X EBM, Langevin SL
DAgger v Gaussian SL
GAIL v Gaussian RL

Table 1: Comparison of Algorithms.

ACT performs behavioral cloning using a conditional variational autoencoder (CVAE)
implemented as a multi-headed attention transformer [18]. While the objective for training
ACT is largely the same as vanilla BC (Section 3), we will briefly describe its differences from
the standard formulation. For one, ACT is trained (as in the original work) using the L,
loss, which can be interpreted as being proportional to the square root of the Mahalanobis
distance used in the objective of vanilla BC, assuming a fixed variance. This deterministic
policy then predicts a sequence of actions instead of a single action and- in our formulation-
uses a history of observations as input to the transformer instead of image observations.

IBC is a supervised learning approach using energy-based models, trained using the Negative
Counter Example (NCE) loss function [19]. Energies are assigned to the state-action pairs,
and the policy takes the action that minimizes the energy landscape. As the minimum over
the actions is taken, IBC has the advantage of handling discontinuities that can arise in
the typical regression setting, where behavioral cloning may simply interpolate. This is a
desirable feature of implicit models, and it is one of the presented advantages in the IBC
work that makes it unique compared to other imitation learning algorithms. In short, the
IBC policy can be summarized as: & = argmin, Fy(s,a), where Eyg is the energy function
and a is the optimal action. However, many works have found that the IBC objective is
numerically unstable and does not consistently yield high-quality policies [20].

Diffusion Policy, like IBC, performs an iterative procedure to generate actions. Diffusion
models have achieved significant success in areas like image generation [21]. Their observed
stability, compared to energy-based models, makes them a promising method for the robotics
domain. Using a series of denoising steps, this method presents a way to refine noise into
actions through a learned gradient field. The Diffusion Policy in this work is implemented
using a U-Net architecture, which conditions on an observation history and generates an action
sequence similar to ACT. Algorithms such as IBC and Diffusion Policy (based on Langevin
dynamics) provide viable alternatives to the standard behavioral cloning formulation, which
may lack the expressiveness these models provide.

GAIL formulates imitation learning as an inverse reinforcement learning (IRL) problem,
wherein the reward function is learned based on the discriminator’s scores [3] using a
Generative Adversarial Network (GAN). The parameters w for the discriminator D are
updated using the following objective: B, [Vy log (Dy(s,a))] +Er, [V log (1 — Dy (s, a))],
where T; represents state-action trajectories from the most recent policy (at iteration ).
Our policy is updated using Trust Region Policy Optimization (TRPO) [22]. Derivitavies of
GAIL, such as VAIL [23], seek to address the issue of generator/discriminator imbalance by
using a variational bottleneck to constrain the gradient updates of the networks.

DAgger addresses the covariate shift problem, where the distribution of observations the
policy encounters differs from those in the expert dataset [5]. To tackle this challenge, a data
aggregation scheme is used wherein the policy is re-trained on the history of expert-labeled
states encountered over time. The need to specify an optimal action at all possible states
without using a human can make implementing DAgger challenging. DAgger theoretically
bounds the training loss of the best policy under its distribution of sampled trajectories,
where the tightness of this bound depends on, e.g., the number of iterations, samples per
iteration, and mixing coefficient. However, its practical efficacy is constrained by factors
such as the quality of the oracle and the difficulty of the environment.

4 Methodology

In the following section, we describe the methods for creating the bimanual manipulation
insertion expert, as well as the design considerations necessary for learning with such a



system. The implementation contains a two-stage expert, as outlined in Algorithm 1. A
dynamics model is proposed that allows for implicit control of the torso, such that the
state formulation (described in Section 4.2) can be predominantly characterized by the
end-effectors. The robot consists of two UR5 arms, each mounted to a rotating torso and
equipped with Robotiq 2F-85 grippers.

4.1 Bimanual Manipulation Expert Controller

We are first given n original demon-
strations, where the i’th demonstra- Algorithm 1 Bimanual Insertion Expert

tion contains positions p(t) € R?
and quaternions ¢.7(t) € so(3) for
all timesteps t € [1,2,..,T;] for for j in [1,...,.J] do

1

2

3
DoF j. Every original demonstra- 4. Ap’ = FEEDBACKCTRL(p? — p% (¢'))
tion is then converted to a sequence 5. A¢l = CLIP(DIFF(qu’ ¢i’j(t/)))
6
7
8

: procedure PATHFOLLOWEXPERT (1, t)
p, ¢ = GETROBOTSTATE() ; t' = MIN(¢,T})

of expert state-action pairs using L J L ;
return ([Ap',... A7), g([A0", .., A0")))

the GENERATEEXPERTDEMO proce-
dure. In doing so, we obtain state- : )

: procedure GETEXPERTACTION(i, t)
if poPATHFOLLOW then

action pairs from the same environ-
ment and robot used during training. 10: (Ap, Ag) = PATHFOLLOWEXPERT(i, )

©

Instead of using quaternions to rep- qj. else if DOINSERTION then
resent the end effector rotations, we 19. (Ap, Agp) = INSERTEXPERT()
use the six dimensional rotation repre- 3. return (Ap, Ag)

14: ’

sentation (6DRR) [28] when training .
the policies. In Algorithm 1, g(.) rep- 15 procedure GENERATEEXPERTDEMO(%)

resents the conversion to 6DRR and 16 Di<0;t=1;A¢=0;Ap=0

. 17: while not DONEINSERT do
é&gtgigfgze;nts the conversion back to 1. p,® = GETROBOTSTATE()
' 19: s = AppLYOSC(p + Ap, ¢ + f(A@))
Algorithm 1 describes the process 20: a = GETEXPERTACTION(i, t)
for collecting the expert demonstra- 21: D;+ D;U(s,a);t=t+1
tions.  The process consists of a 292 return D;

PATHFOLLOWEXPERT used to transfer
the dynamic object above the station-
ary object, similar to the original demonstrator. The INSERTEXPERT is then used to precisely
align the holes and pegs of the adapters to complete the task, using the features of the
objects to create a feedback signal. The INSERTEXPERT is omitted for brevity in Algorithm
1, but it can be used independently of the first stage (hence its independence of time ¢ and
demonstration index 7).

The operational space controller (OSC) [26] is used in this work to facilitate learning in
the task space [27]. We adopt the Jacobian pseudo-inverse method, using the dynamically
consistent generalized inverse. Because we control two UR5 arms and one base joint implicitly,
q is 13-dimensional. Consequently, we have the Jacobian J(q) € R'2*13 inertia matrix
M(q) € R3*13 and forces due to gravity g(q) € R'3. The force vector used to control
the robot is then calculated as: u = J(q) M, (q)% + M(q)q + g(q), where M, (q) =
(J(a)M(q)~'J(q)")!. Finally, we apply a nullspace filter to the force output: u = u +
(I-J(a)"J(a)") wnun, where J(q) = M~ (a)J(q) "M.(a) and unu = K,M(q)(q, — a).
We take q, to be 0 (as in the velocity controller), and K,, is a parameterized diagonal matrix.

4.2 Environments

The base environment consists of an 18-dimensional action space and a 36-dimensional
observation space. The action space, as previously described in Section 4.1, consists of a
delta-position (Ap) and delta-rotation (A¢) command for both end-effectors. The observation
space is characterized by (1) the difference in the "expert’s pose at the hover position above
the stationary adapter" and the "current end-effector pose"; (2) the cube-root of the distance
between the end-effector and respective near-side pin; and (3) the forces and torques acting



upon the gripper sensors. This observation space is "duplicated" for both arms, so it can be
viewed as having an 18-dimensional observation per arm.

At the start of every episode, the stationary adapter remains at a fixed location and the
dynamic adapter is placed at a randomly chosen starting location based on the 200 original
expert demonstrations. During the original expert demonstrations, this adapter is placed at
a randomly generated position on the right side of the robot’s workspace. An environment
reward is available at every timestep, although it is not used by the learning algorithms.
The environment reward, which we use to help measure an algorithm’s success (Section 6),
is defined as follows:
J
R(s,t) = Z {ew(w—xi(t)f @ ex(dw(tmi(t»)?} 4w (1)
j=1
where 7 is a time penalty; w is a positive reward for successfully inserting the adapter; and
@ is used to concatenate the six terms in the summand with the previous iteration, and
then take mean of this result after iteration J (for lack of better notation). There are three
environments in total, namely, the Zero Noise, Low Noise, and High Noise environments (see
Section 5.2 for more detail). In all environments, v = —10, A = —10, n = 1, and w = 100,
resulting in an average expert reward of 64.03 £ 0.45 (1 SE) over 600 demonstrations.

5 Experimental Setup
Our experiment is divided into Analysis of Action and Observation Noise (5.2), Hyperpa-
rameter Search (5.1), and Analysis of Hyperparameter Sensitivity (5.3). The results of each

phase are used to provide an interpretation of key metrics presented in Section 6.

5.1 Hyperparameter Search

A hyperparametel: search is DAgger HP | HP Search Points .
conducted to obtain the best : e BERHTE b4 SeanchBoints
N Learn Rate [6e-5%, le-4, 5e-4]
parameters for all algorithms, | = rayers [2, 3%] Learn Rate | [Se=5, 1e-4, Se-4x]
. . 7 Units [256, 512%] 7 Layers [2, 3]
using the Zero Noise en- |7 5" iion | (Relw, Tanhs] ™ Units [256, 512+]
vironment with 200 expert | Normalize [Expert, Nonex] m Activation | [Relu, Tanh]

. . Epochs [64%, 128] Normalize [Expert*, None]
demonstrations. For a given | pecay 4 f0.9%, 0.05] BC L1 A [0, 1le-6, 1e-4%]
. BC L1 A 0.0, 1e-6x, le-d BC L2 A [0, 1e-6, le-4x]
set of hyperparameters, 10 | EC LA 0t 1o | LBaten 5. [128+, 256, 512]
evenly spaced evaluations dur- | gc patch sz. | (128, 256%] IBC HP HP Search Points
ing training are conducted, [gam mp HP Search Points Learn Rate [5e-5, le-4%, 5e-4]
and the evaluation resulting | rajers (2%, 3] 7 Layers [2, 4x]
in the highest average reward | = Units [256x, 5121 T hetioation E{‘{ii’; 5'}‘23;}1]

. 7 Activation [Relu, Tanh*] ’
(out of 10 rollouts) is returned |  wax k. [le-2%, 3e-2] b et | o 00 O
to the optimizer. Each al- |7 C:G Damping | [0.1, 0.3%] Norm Samples | [1e3, 5e3]
. ) . ™ Ent. Reg | [0.0, e3¢, le-2] Action Samples | [256, 512%, 1024]
gOI‘lthl’Il s best (1.e., reward Normalize [Expert*, None] Pctl Langzvin 0.8, 1.0%]
e . R Learn Rate | [le-5, 5e-5%, le-4] - 5 100
maximizing) hyperparameters ; ’ Langevin Iter. | [50, 100%]
g) yp p R Layers {1, 2+] Counter Ex. [8, 16, 32%]
have an asterisk in Table 2. ggmts Exﬁ’ 25?*3111] Batch Sz. [256, 512+]
. ctivation elux, Tas
We note that for behavioral |z gat. Reg. | [0.0, 1e-3+, 1e-2] | LSR8y 52 [1e3, le4x]
cloning-based algorithms, al- | Discount [0.87, 0.99+] ACT HP HP Search Points

c V Layers [1, 2%]
ternative hyperparameter con- | v units [128%, 256] Batch Sz. [256%, 512]

. . _ V Activation [Relu*, Tanh] Enc. Layers | [1*, 2, 3]
ﬁguratlo.ns. achieved perfor- |, 30 [to-2e. 30-] boc. Layers | [1x. 2, 3]
mance similar to that of the |V ¢.G Damping | [0.1%, 0.3] Latent Dim | [8*, 16]

: Attn. Heads | [4x, 8]
SeleCted conﬁguratlon. We Diffusion HP | HP Search Points Learn Rate [5e-5, le-4x, 5e-4]
found that the default U-Net [ . "r.cc | (se-s, 1e-a, se-4] | | Dropout Rate | [0.0, 0.1x, 0.2]
architecture for the Diffusion | Adam Decay | [1e-6, 1e-3] Hidden Dim | [128%, 256]
. . . Batch Sz. [128, 256, 512%] ™ Units [256, 5124]
Policy (having channel sizes | pifs. sieps | [50, 100%] Activation | [Relu*, Gelu]
L.R. Warmu [500%, 1000] i » 10,
[256,512,1024]) worked well p KL Veight | [1, 10, 100+]

without the need for addi-
tional hyperparameter tuning.
Additionally, using an action,
observation, and prediction horizon of 4, 4, and 8, respectively worked well for both ACT
and Diffusion without the need for tuning.

Table 2: Hyperparameter search for all algorithms. Asterisks
denote the value used for policy training.



5.2 Action and Observation Noise Analysis

We study the effects of both observation noise and action noise on the success of the learning
algorithms. As such, a noise perturbation is applied to the actions (a} = mg,a; + bs,)
and observations (0] = m,,0; + b,,) of the expert and environment, respectively. The bias
terms, by, and b,,, are randomly sampled from the uniform distributions Unif[bJ™, b22~]
and Unif[bg‘:in, bg:*¥], respectively. The scaling terms, mg, and m,,, are uniformly distributed
about 1, having endpoints [0.9,1.1] in the Low Noise environment and [0.7,1.3] in the High
Noise environment. The noisy actions are not only used to augment the dataset but they

are also passed to the inverse dynamics model.

5.3 Hyperparameter Sensitivity Analysis

We conduct a sensitivity analysis on the hyperparameters of each algorithm to assess their
local stability using the Zero Noise environment with 200 expert demonstrations. Local
stability refers to an algorithm’s robustness when hyperparameters deviate slightly from
their optimal values. As the number of combinations grows exponentially with the number
of hyperparameters, a grid search over all configurations is computationally infeasible. To
address this, we use a NIST covering array [29], providing a computationally feasible subset
of sampling configurations. We perturb each hyperparameter’s best value by + 15% and
evaluate these combinations.

6 Results and Discussion

The results for the Action and Observation Noise Analysis (Section 5.2) are shown in Table 3,
and those for the Hyperparameter Sensitivity Analysis (Section 5.3) are in Table 4. During
training, 10 evenly-spaced evaluations are conducted, each with 10 rollouts. The evaluation
with the highest average return determines the policy’s performance. This average return is
standardized across all tagged rollouts from different algorithms in the table.

Figure 5 summarizes our findings from
Zero Noise Low Noise High Noise  the experimental procedure (Section 5).

Alg. N-T. For the Hyperparameter Tolerance met-
BC 50 0.36+ 001 —1.06+ 0.13 —2.434+ 0.13 ric (Section 5.1), we calculate the aver-
%88 8:33i 8:8 :S:Sf,;i 8:82 :éégi 8:82 age percent success'(where success indi-

cates the adapter is correctly placed)

IBC 50 039+ 0.01 —1.584+ 0.09 —3.14+ 0.08 I b fi
100 04 + 0.0 -1.33+ 0.11 —2.81+ 0.07 across all hyperparameter coniigura-
200 0.4 + 001 —135+ 0.1 —2.46+ 0.09 tions. The Noise Tolerance metric (Sec-
DAgger  — 042400 039+ 001 039+ 001 tion 5.2) reflects the average percent
GAIL 50 0434+ 00 0444 00 043+ 00 success in Low and High Noise environ-
100 044+ 0.0 044+ 0.0 043+ 0.0 ments for all tagged rollouts. Compute
200 044+ 0.0 044+ 00 043+ 0.0 Efficiency is the negative log of the aver-
ACT 50 043+ 0.0 043+ 00 043+ 00 age total time (in seconds) to reach the
100 042+ 0.0 042+ 00 042£ 0.0 selected policy, linearly scaled to [0, 100].

200 042+ 0.0 042+ 00 042+ 0.0 . )
We use the log scale due to the wide vari-
Diffusion 50 043+ 0.0 0434 0.0 042+ 0.0

X : X :
100 044+ 00 044+ 0.0 043+ 0.0 ance in runtime, exemplified by GAIL's
200 045+ 0.0 044+ 00 043+ 0.0 128,000 training rollouts per policy (ap-
Expert 040+ 0.0 040+ 00 040+ 0.0 prox. 2 days). Performance indicates

- - - - the average percent success in the Zero
Table 3: Action and Observation Noise Analysis- Noise environment across all numbers

Environment Reward (Normalized + 1 SE) of expert demonstrations. Training Sta-

bility is determined by the frequency
BC IBC DAgger GAIL ACT Diffusion Expert of evaluation intervals (during training)
where the average return shifts from
positive to negative, suggesting a de-
cline in policy success. A higher value
Table 4: Hyperparameter SenSlthlty Analysis lmphes more 11’1stablhty7 thus’ we use

Environment Reward (Normalized £ 1 SE) the negative average, scaled to [0, 100].

0.35 0.25 0.30 —-1.35 0.30 0.33 0.29
0.00 £0.01 0.00 +0.13 0.00 0.00 0.00




M1: Hyperparameter Tolerance, M2: Noise Tolerance
M3: Compute Efficiency, M4: Performance, M5: Training Stability

Figure 5: A high-level interpretation of the key metrics describing the algorithms in the
bimanual insertion environments.

We observe that algorithms which either interact with the environment (i.e., GAIL and
DAgger) or perform action/observation chunking (i.e., ACT and Diffusion) are more robust
to noise perturbations. In the former case, this highlights the benefit of exploring during
training and the effectiveness of having an oracle in the presence of increased noise, at
the expense of more computing and training time. In the latter case, we observe that the
action and observation horizons introduced by Diffusion and ACT help cope with potentially
non-Markovian environments. However, this design choice increases the dimensionality of
the observation and action space, making it less suitable for RL-based methods and IBC,
which we observe to be more susceptible to the curse of dimensionality. As an ablation
study, we found that observation and action chunking can improve the performance of BC in
noisy environments. We also observe that the time required to generate an action during
evaluation is longer for IBC and Diffusion; however, for Diffusion, this time is largely affected
by the number of de-noising iterations and the length of chunking horizons.

GAIL, Diffusion, and ACT obtained high rewards in all environments, suggesting they
are viable options for bimanual manipulation. However, GAIL performs the worst in the
hyperparameter sensitivity category, and while an improvement would be made here with an
increased maximum time limit for training (approx. 2 days), other algorithms can achieve
suitable results in a matter of hours or less. These results indicate that ACT and Diffusion are
favorable options, whereas GAIL (and to some extent DAgger) are suitable options for tasks
that benefit from extensive interaction with the environment during training. Furthermore,
our findings regarding training stability and high performance in fine-grained manipulation
environments align with those reported for Diffusion Policy and ACT, respectively.

7 Conclusion

We present a comprehensive assessment of various imitation learning algorithms in a bimanual
manipulation environment. A carefully selected set of experiments is conducted to evaluate
the key characteristics inherent to these algorithms, such as sample efficiency, sensitivity to
perturbations in hyperparameter values, and robustness under observation and action noise.
This investigation leads to new insights regarding the applicability of imitation learning
for fine-grained industrial tasks and highlights the effectiveness of the chosen methodology.
Furthermore, we discuss the implications of selecting these approaches, elucidating how they
behave at an empirical and conceptual level. Further investigation into deploying these
methods in physical environments will highlight the feasibility of using these systems in
everyday situations.
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