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Abstract

The Neural Tangent Kernel is an important mile-
stone in the ongoing effort to build a theory for deep
learning. Its prediction that sufficiently wide neural
networks behave as kernel methods, or equivalently
as random feature models arising from linearized
networks, has been confirmed empirically for cer-
tain wide architectures. In this paper, we compare
the performance of two common finite-width con-
volutional neural networks, LeNet and AlexNet, to
their linearizations on common benchmark datasets
like MNIST and modified versions of it, CIFAR-10
and an ImageNet subset. We demonstrate empiri-
cally that finite-width neural networks, generally,
greatly outperform the finite-width linearization of
these architectures. When increasing the problem
difficulty of the classification task, we observe a
larger gap which is in line with common intuition
that finite-width neural networks perform feature
learning which finite-width linearizations cannot.
At the same time, finite-width linearizations im-
prove dramatically with width, approaching the
behavior of the wider standard networks which
in turn perform slightly better than their standard
width counterparts. Therefore, it appears that fea-
ture learning for non-wide standard networks is im-
portant but becomes less significant with increasing
width. We furthermore identify cases where both
standard and linearized networks match in perfor-
mance, in agreement with NTK theory, and a case
where a wide linearization outperforms its standard
width counterpart.

1 INTRODUCTION

The Neural Tangent Kernel (NTK) [Jacot et al., 2018] is a
seminal contribution to the study of deep neural networks

which extended important insights about the connection
of Gaussian processes and neural networks [Neal, 1996,
Williams, 1996, de G. Matthews et al., 2018, Lee et al.,
2018, Garriga-Alonso et al., 2019]. Ever since, subsequent
investigations have refined our view on the NTK with results
suggesting both its validity as well as insufficiency as an ex-
planation for the performance of practical finite-width neural
networks, and the focus of investigation has moved to the
network parameterization and architecture differences and
their relationship to the NTK [Chizat et al., 2019, Lee et al.,
2019, Chen et al., 2020, Hanin and Nica, 2020, Xiao et al.,
2020, Seleznova and Kutyniok, 2022]. The NTK framework
has inspired work in many directions like infinite ensembles
of trees [Kanoh and Sugiyama, 2022], federated learning
[Huang et al., 2021] and thus continues to stimulate various
advances in deep learning theory.
Jacot et al. [2018] proved that when modeling neural network
training under gradient flow, i.e. full batch gradient descent
of infinitesimal step size, the training trajectory f (w, x) sat-
isfies an ordinary differential equation (ODE) involving the
finite-width Neural Tangent Kernel

Θ(w, x, x′) =
⟨

∇wf (w, x),∇wf (w, x′)
⟩

=
p
∑

i=1

)
)wi

f (w, x) )
)wi

f (w, x′) (1)

for weights w ∈ ℝp and inputs x, x′ ∈ ℝd . The form of this
kernel depends on the network architecture and the current
time-dependent weights w as well as a particular initializa-
tion. In this NTK parameterization, they showed that when
scaling the learning rate per layer in an appropriate way and
letting the width tend to infinity, the kernel converges to the
infinite-width NTK Θ̂ which is independent of the weights
and stays constant during training, greatly simplifying the
ODE in this limit. They showed for the L2 loss that the pre-
dictor at convergence is precisely what a kernel regression
using the infinite-width NTK would produce. Importantly,
the infinite-width NTK depends only on the architecture
of the network; it is not learned and thus data-independent.
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The formalism was extended from fully-connected to other
architectures including convolutional networks [Arora et al.,
2019, Yang, 2019], recurrent neural networks [Alemoham-
mad et al., 2020], residual networks [Huang et al., 2020] and
more general architectures [Yang, 2020].
This result can be understood as the convergence of wide
networks to random feature models [Chizat et al., 2019].
Let f ∶ ℝd → ℝL be the function given by a network
parameterized by weights w ∈ ℝp with input x ∈ ℝd and
let f l be the output in component l = 1,… , L, withL being
typically the number of classes in a classification task. For
w sufficiently close to the random initial weights w0 and
u = w−w0, the first order Taylor expansion in the weights
f l(w, x) ≈ f l(w0, x) + ∇wf l(w0, x) ⋅ u =∶ f llin(u, x) (2)

is an accurate approximation. The right-hand side flin(u, x)is a random feature model with weights u ∈ ℝp and the
feature mapping �(x) ∈ ℝL×p is given by the gradients
�l(x) = ∇wf l(w0, x) with respect to the weights at initial-ization w0. If approximation (2) holds, then also the gra-
dients ∇wf (w, x) and ∇uflin(u, x) of the two models will
be close. When training these models with some form of
gradient descent and sufficiently small step size for a suffi-
ciently small number of steps, then the training trajectories
will stay close, as long as the weight vectors remain in the
region around u = 0 or w = w0, respectively. Using an
L2 loss in over-parameterized models, one can expect both
models to converge to zero loss [Du et al., 2019]. If conver-
gence occurs before leaving this region, then the models –
whether trained with early stopping or until convergence –
will predict a similar function. For the infinite-width case,
Lee et al. [2019] proved that f (w, x) and flin(u, x) convergein distribution to the same Gaussian distribution. Further-
more, the NTK result can be proved by showing that for
very wide neural networks the models f (w, x) and flin(u, x)reach zero loss and thus stop evolving before leaving the re-
gion where the approximation in Eq. (2) is accurate [Chizat
et al., 2019, Lee et al., 2019], known as lazy training. The
linearized model flin does not learn a representation but usesthe random representation ∇wf l(w0, x) which is fixed by
the initial weights w0 and remains unchanged throughout
training. More in line with Gaussian processes and random
feature models [Rahimi and Recht, 2007] but at odds with
general intuition on deep learning, NTK theory predicts that,
at large widths, a network and its linearization behave sim-
ilarly and no significant feature learning takes place. This
seems to imply that – even for standard neural networks –
learning a good representation might become decreasingly
relevant with increasing over-parameterization.
Motivated by this conjecture, we study standard convolu-
tional neural networks (CNNs) and their respective lineariza-
tions (at initialization) given by Eq. (2). We complement
previous work in that direction (see Sec. 2) and extend these
results for more standard architectures in more common

classification tasks. In particular, we perform a thorough
study of two standard CNNs, LeNet [LeCun et al., 1998]
and AlexNet [Krizhevsky et al., 2012], for increasingly diffi-
cult classification tasks at different widths. We observe test
accuracy gaps between these networks, in line with the idea
that standard neural networks perform feature learning while
their linearizations do not. For the wider networks the gen-
eralization gap closes, in line with NTK theory, supporting
the picture summarized in Fig. 1.
However, we also observe low training accuracy for the lin-
earized networks. We investigate numerical issues which
can explain reduced training performance in the lineariza-
tions and consider a simplified binary classification setting
in which we can solve the linear system in Eq. (2) with a
standard solver achieving 100% training accuracy, but ob-
serve that this generally causes even worse test accuracy for
the linearized models.
In this work, we make the following contributions:

• We show that for (nearly) all considered widths, there is
a prominent performance gap between the standard and
linearized LeNet and AlexNet and this gap increases
when the classification task increases in difficulty. This
is shown for MNIST, CIFAR-10, and a subset of Ima-
geNet. We believe this gap exhibits the importance of
feature learning for non-wide standard networks.

• We present further instances where wide linearized
networks perform as well as the standard network and
cases where linearized wide networks outperform their
standard width counterpart.

• As for wider networks the generalization gap closes,
in line with NTK theory, we raise the question if this
means that the non-wide and wide standard network
generalize due to a very different mechanism: feature
learning for non-wide networks and effectively employ-
ing unlearned random features at larger widths.

• We extend the discussion in previous work of numerical
aspects of training the non-wide linearized models by
considering the effective rank of the kernel.

2 RELATED WORK

The original motivation and prevailing appeal of (finite)
deep neural networks is that they are powerful methods to
extract statistics and learn features leading to strong per-
formance for down-stream tasks (regime I in Fig. 1) [Lee
et al., 2009, Alekseev and Bobe, 2019]. The behavior of
neural networks in the highly over-parameterized regime
has been extensively studied, too, suggesting minor weight
changes from initialization during training (regime II) [Du
et al., 2019, Allen-Zhu et al., 2019, Zou et al., 2020]. In the
NTK literature, typically, the infinite-width limit for finite-
depth neural networks is considered (connection between
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Figure 1: Our results on neural networks exhibit different
behavior in different regimes: For wide architectures, stan-
dard networks and their linearization become increasingly
alike. While the performance of linearized networks bene-
fits substantially from width, standard networks only show
small improvements. At usual widths, standard networks and
their linearization behave differently due to the relevance of
feature learning.

regimes II and IV). In contrast, Deep Equilibrium Models
consider the infinite-depth limit at finite width [Bai et al.,
2019]. Hanin and Nica [2020] study the NTK for both in-
finitely wide and deep ReLU networks, showing particular
data-dependent features of the resulting NTK in these limits.
Focusing on the finite-depth case, there are several studies
which compare the finite-width NTK Θ or infinite-width
NTK Θ̂ to their standard network (regimes I and IV) and
provide, to some extent, diverging results.
The original work by Jacot et al. [2018] gives experimental
results for small synthetic datasets, as well as fully-connected
networks trained onMNIST of widths n = 102, 103, and 104,
showing good agreement with the infinite-width NTK for
the widest network. Lee et al. [2019] extend the original
work and show good agreement for small synthetic datasets
(of size ≤ 256) and for a two hidden layer fully-connected
network trained with SGD on MNIST. Most interestingly,
a wide ResNet trained on CIFAR-10 shows similar behav-
ior, though the non-linearized model appears to have been
trained only to below 80% training accuracy, and in the test
accuracy a gap seems to develop towards the end of train-
ing (see Fig. 7 in their paper). In contrast to that, in Chizat
et al. [2019] VGG-11 and ResNet-18 – trained on CIFAR-10
and widened with a scaling factor � for tuning the mod-
els into the non-linearized and linearized regimes – exhibit
large gaps in test accuracy. They highlight that the decreased
training performance of the linearization is due to bad con-
ditioning and effectively low rank of the associated kernel
matrix. In their extension to CNNs, Arora et al. [2019] com-
pare CNNs with two to 20 convolutional layers combined
with fully-connected or global average pooling output layers
to the derived infinite-width convolutional NTK (CNTK),
observing large gaps in test accuracy on CIFAR-10.

Our work is most closely related to Lee et al. [2020] and
Geiger et al. [2020]. In Lee et al. [2020] an extensive em-
pirical study of neural networks, their linearizations and the
infinite-width NTK as well as the Neural Network Gaussian
process (NNGP) kernel [Lee et al., 2018, de G. Matthews
et al., 2018] is conducted. For fully-connected and simple
convolutional architectures, they show cases where NTK can
both outperform but also underperform their corresponding
networks on CIFAR-10. Importantly, they study the rele-
vance of regularization of the kernels and identify bad condi-
tioning of the kernel as a reason for decreased performance.
In line with results by Wei et al. [2020], they showed that L2
regularization (like weight decay) of the kernel is required
for good performance in practice, although this breaks the
infinite-width correspondence to kernel methods. In con-
trast to their work, we focus on two more standard but also
more extensive CNNs where we increase the widths of the
standard and linearized networks explicitly and study their
properties with a focus on feature learning. In that regard,
our work differs from Geiger et al. [2020] who also study
lazy training and feature learning but for fully-connected
networks of depth three to five and CNNs with four convo-
lutional layers and in the framework of Chizat et al. [2019]
with a scaling factor � controlling the lazy training regime.
Another related line of research was conducted by Ortiz-
Jiménez et al. [2021] which study linearizations with respect
to task complexity defined on the basis of theNTK eigenfunc-
tions as targets. In their evaluation on CIFAR-10, they show
that linearization performance can rank learning complexity
and show that neural networks do not always outperform
their kernel approximations.
Other relevant work includes Seleznova andKutyniok [2022]
which investigates the ordered and chaotic phase phenom-
ena of vanishing and exploding gradients in the context
of NTK theory, providing guarantees when the NTK is ill-
conditioned (ordered phase) or well-conditioned (chaotic
phase and at the border between the two phases). Further-
more, Yang and Hu [2021] note that standard and NTK
parameterizations do not lead to representations that learn
features in the infinite-width limit and propose an alternative
parameterization enabling feature learning in this limit.

3 METHOD

We examine two standard ReLU CNNs, LeNet and AlexNet,
trained for classification tasks of increasing difficulty. One
task is digit recognition in MNIST [LeCun et al., 1998] and
modified versions which include random translations of the
otherwise centered digits. In addition, we train on CIFAR-10
[Krizhevsky et al., 2009], and a subset of ImageNet [Rus-
sakovsky et al., 2015] which contains ten different snake
classes (see Supp. Sec. A.1), whereby we deliberately chose
similar classes to form a challenging classification task.
In this setup, we study the performance of the standard net-



work and its linearization flin (see Eq. (2)) and the effect of
increasing the width of the networks, thereby investigating
the relationships between regimes I and III as well as III
and IV in Fig. 1. This is done by multiplying the number of
channels in each convolutional layer and all widths of fully-
connected layers by a common factor. Due to GPU memory
limitations, we are able to train LeNet and LinLeNet up to
width factors of 60 and for AlexNet and LinAlexNet up to
width factors of 4. As the number of parameters increase
quadratically in the width, and standard width LeNet and
AlexNet have about 60k and 60m parameters, we were hence
able to train networks of up to 216m and 960m parameters,
respectively.
Our implementation makes use of PyTorch’s [Paszke et al.,
2019] standard modules for defining and training neural
networks with our own custom-made modifications for lin-
earization of the architectures. For LeNet, we adapt the orig-
inal LeNet-5 architecture [LeCun et al., 1998] to use max-
pooling and ReLU activations. For AlexNet, we use the Py-
Torch implementation [Krizhevsky, 2014] with 10 outputs
rather than 1000 (see below). Despite training for classifica-
tion, we use the L2 loss with one-hot encoded target vectors.
Firstly, with standard cross-entropy loss the networks never
converge to exactly zero loss, so the networks must at some
point leave the region where the approximation in Eq. (2) is
valid, causing some ambiguity in the heuristic. Secondly, the
L2 loss allows for an easier and more efficient implementa-
tion of the training of the linearized models. We furthermore
do not make use of dropout, since it is not clear to us how to
model it in the NTK framework (see however Novak et al.
[2020]). We find that after optimizing hyperparameters, we
can train LeNet and AlexNet to similar train and test perfor-
mance as with cross-entropy loss without dropout (see Supp.
Sec. A.1). We predict the class whose one-hot vector is clos-
est to the output vector, which is equivalent to predicting
the argmax of the output layer. We train flin(u, x) with SGDin the standard way by optimizing u with gradient updates
obtained by

∇u ||flin(u, x) − y||
2 = 2

L
∑

l=1
∇wf l(w0, x)

×
(

f llin(u, x) − y
l) . (3)

Computing the gradients of the linear model with L out-
puts requires computing L gradients of the original net-
work per data point, and thus L backward passes, which is
computationally intensive if L is large. We therefore train
(Lin)AlexNet on the snakes subset of ImageNet consisting of
L = 10 classes, while we can use full MNIST and CIFAR-10
for (Lin)LeNet.
As our goal is to stay as close as possible to standard neural
network training practices, we use SGD with weight decay
and momentum. In addition, we use the standard PyTorch
weight initialization, which is a variant of Kaiming initializa-

tion [He et al., 2015], rather than the NTK parameterization
used in the NTK proofs.

4 EXPERIMENTAL RESULTS

In the experiments, five independent reruns of the speci-
fied networks for 100 epochs and batch size 32 were per-
formed unless stated otherwise. Hyperparameter search
was conducted for each network architecture and its lin-
earization at all widths separately, for learning rates includ-
ing {1, 0.1, 0.01, 0.001} and weight decay values including
5 × {10−4, 10−5, 10−6, 10−7, 10−8}. The momentum param-
eter was set to the default value of 0.9. For each rerun, a
different fixed random seed was used to ensure that both the
standard and linearized models at a particular width are ini-
tialized exactly the same and receive the same mini-batches
during training. For experiments involving CIFAR-10 and
the snakes dataset, the learning rate was decreased by a factor
10 every 30 epochs. Otherwise, we follow the standard pre-
processing for standardizing the input images and standard
resizing (256 pixels) and center cropping (224 pixels) for
ImageNet images. Computations were conducted on Nvidia
GeForce Titan X Pascal and Tesla V100 GPUs. For experi-
ments involving LinAlexNet×3 and LinAlexNet×4, we used
an Nvidia Quadro RTX 8000 with 48 GB memory due to
the increased memory requirement. All displayed results
are obtained with single precision. We also carried out all
experiments in section 4.1 with double precision, but did
not observe any striking differences.

4.1 CLASSIFICATION WITH INCREASING
FEATURE LEARNING REQUIREMENT

LeNet trained on MNIST and CIFAR-10: For LeNet
with about 60k parameters, we used width factors rang-
ing from 1 to 60. In all experiments involving MNIST and
CIFAR-10, a learning rate of 0.1 andweight decay of 5×10−5
led to overall best test accuracies.
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Figure 2: Accuracy of LeNet (∙) and LinLeNet (⋆) trained
on MNIST at different widths (values in Supp. Table A.2).

The results for MNIST are presented in Fig. 2. For the stan-



dard width, a substantial difference of 4.67 percentage points
in (mean) test error between LeNet and LinLeNet is observed.
While LeNet does not gain appreciably from increasing the
width, LinLeNet does, and the gap shrinks to 0.48 percent-
age points for width factor 60. Similarly, though not close
in a path-wise sense, the statistics of trajectories of output
values become more alike with increasing width (shown
in Supp. Fig. A.2), indicating a more similar behavior of
training dynamics of the linearized and standard models at
large width factors.
For factor 1 the linearized model outperforms a logistic
regression on normalized MNIST pixels only by a small
margin, which achieves about 93% train and 92% test accu-
racy. The low training accuracy of the linearized models is
investigated in more detail in Sec. 4.2 and 4.3.
When increasing the problem difficulty by randomly trans-
lating the digits horizontally and vertically, larger gaps in
test (and train) accuracy are observed which also decrease
with width. For factors 1 and 60, we observe 27.65 and 3.91
percentage points difference in test error. The full results are
illustrated in Fig. 3 for translations up to 7 pixels (i.e. up to
a quarter of the image size).
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Figure 3: Accuracy of LeNet (∙) and LinLeNet (⋆) trained
on MNIST at different widths (values in Supp. Table A.2).
Digits were shifted randomly by up to 7 pixels.
When training on the more challenging CIFAR-10 dataset
even larger gaps are observed, as shown in Fig. 4. For the
standard width, a difference of 20.22 percentage points in
test error between LeNet and LinLeNet is observed. This
shrinks to a smaller but still appreciable gap of 13.17 percent-
age points at width factor 60. Interestingly, LinLeNet×60
outperforms standard width LeNet×1 in both training and
test error (gray dashed line).
AlexNet trained on snakes dataset: For AlexNet with
about 60m parameters, width factors 1, 2, 3, and 4 were
used and the networks were trained on the ten-class snakes
subset of ImageNet (see Supp. Sec. A.1). For the linearized
networks, a learning rate of 1 and weight decay of 5 × 10−7
provided the best test errors. For the standard networks,
however, a learning rate of 0.1 and weight decay of 5×10−6
lead to best test performance. In addition, we trained the
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Figure 4: Accuracy of LeNet (∙) and LinLeNet (⋆) trained on
CIFAR-10 at different widths (values in Supp. Table A.2).

linearized networks with these hyperparameters settings,
too, for comparison.
Figure 5 summarizes the findings, which fall in line with
the observed trend for LeNet but give even larger gaps in
test error. Trained with the same hyperparameters as their
non-linearized counterparts, the gaps in test error between
standard AlexNet and LinAlexNet are more than 20 percent-
age points at all considered widths. For the optimal hyper-
parameters in the linearized setting, the generalization gap
shrinks only slightly to 20.4 and 18.56 percentage points for
widths 1 and 4. While increasing the width has little impact
on train and test error of AlexNet, for LinAlexNet the test
error shows a slight decrease and the training error a strong
decrease with width.
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Figure 5: Accuracy of AlexNet (∙), LinAlexNet with learning
rate 0.1 (⋆) and learning rate 1 (⋆) trained on the snakes
dataset at different widths (values in Supp. Table A.1).

These results show that, at standard width or small width ex-
pansion factors, the random feature models given by the lin-
earized networks perform poorly compared to their standard
network counterpart or the random feature models of wider
linearized networks. With increasing problem difficulty, the
increasing gap between linearized and standard LeNet and
AlexNet suggests that at standard widths significant fea-
ture learning is taking place in the standard (non-linearized)
model. But with increased over-parameterization, these gaps
indeed shrink as predicted by NTK theory. The way the



gap shrinks is through a dramatic improvement in perfor-
mance of the linearized networks with width, while standard
networks are less affected in their performance by width.
However, as theory proves that the wide standard trained
networks behave as random feature models, we hypothesize
that the small improvements in accuracy of standard net-
works with width might be hiding a significant transition is
the underlying reason for their good performance, namely
from feature learning for the non-wide networks to utilizing
non-learned random features that apparently provide a good
inductive bias for the tasks at hand for the wider networks
(both linearized and non-linearized).

4.2 NUMERICAL ASPECTS

The low training accuracy of the non-wide linearized models
in the previous experiments raise the question of whether
they are well-trained at all. Fitting the linearized model with
m data points x ∈ ℝd is effectively solving the linear system

y − f (w0, x) = ∇wf (w0, x) ⋅ u (4)
for weights u ∈ ℝp and target y ∈ ℝL, where p is the num-
ber of parameters of the original model and the rows of
the matrix ∇wf (w0, x) are the gradients of each output ofthe network at data point x. With X ∈ ℝm×d , the matrix
∇wf (w0, X) ∈ ℝn×p has n = 10 × m rows since one must
fit each of the L = 10 outputs for each data point. LeNet at
width factors 1 and 2 has roughly p1 = 60k and p2 = 240kparameters, respectively. Thus, the matrix ∇wf (w0, X) can-not have full rank when fitting a dataset of size m = 50k
(CIFAR-10) orm = 60k (MNIST), i.e. p1, p2 < 10×m, mak-
ing it impossible to fit arbitrary targets. Moreover, even for
wider networks it appears that matrix ∇wf (w0, X) remains
effectively of low rank.
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Figure 6: Effective rank of matrix ∇wf (w0, X) in LinLeNetand LinAlexNet for 600 data samples of the MNIST (stan-
dard in ⋆ and shifted in ⋆) and snakes datasets, respectively,
with full rank 6000.

We quantify this by computing the effective rank [Roy and
Vetterli, 2007] which takes the distribution of singular val-
ues into consideration and can be viewed as the exponen-
tial entropy of normalized singular values (see Supp. Sec.
A.3). For computational reasons, we consider m = 600
data samples and the corresponding 6000 × 6000 kernel ma-
trix ∇wf (w0, X)∇wf (w0, X)⊤ for each width factor. For

LinLeNet and considering MNIST samples, these effective
ranks are much lower than the number of rows, i.e. 6000,
and increase with width factor as illustrated in Fig. 6 (left).
A similar but less pronounced improvement in effective rank
with width is obtained for MNIST samples with additional
random translation of up to 7 pixels. Although AlexNet×1
with about 60m parameters is well in the over-parameterized
regime for m = 13k datapoints and thus n = 130k rows in
matrix ∇wf (w0, X), we still observe large gaps in trainingaccuracy. As for LinLeNet, we show for 600 examples in Fig.
6 (right) that the effective ranks at all widths are significantly
lower than the number of rows of ∇wf (w0, X) and increasewith width (marginally).
In Fig. 7, the distribution of singular values � of the ker-
nel matrix is shown (see Supp. Fig. A.3 for LinAlexNet).
We observe that increasing the width effectively increases
the smallest (non-vanishing) singular values of matrix
∇wf (w0, X) and generally leads to a lower condition num-
ber (i.e. ratio �max∕�min), for this matrix, thereby improving
numerical properties.
We suspect that, in order to perfectly fit the training data,
one needs to fit u also in a subspace with very small singular
values, making it difficult to achieve close to 100% train
accuracy with SGD with non-infinitesimal step sizes.
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Figure 7: Singular value distribution of LinLeNet for 600
samples of MNIST and MNIST digits randomly shifted by
up to 7 pixels. See Supp. Fig. A.3 for LinAlexNet.

4.3 BINARY CLASSIFICATION ON MNIST

In order to study these numerical aspects in more detail,
we take a closer look at the solution of the linear system in
Eq. (4). In particular, we examine if the multiclass setting
might be the cause for numerical stability issues due to
having multiple outputs (the different classes) for a single
input, potentially leading to e.g. collinearity of rows in the
matrix. Therefore, we consider binary classification with one
output and train to classify a digit as 0 or not 0. Qualitatively
similar results were obtained for other target classes. In the
following, we solve the one-vs-rest classification task with
the same least-squares objective in three ways: by training
LeNet with SGD, by training LinLeNet with SGD, and by
using a standard solver for linear systems. The presented



results are obtained from single runs of the respective model
with a fixed random seed.
Solving the linear system with SGD: The training is per-
formed in the samemanner as before, but with a learning rate
of 0.01 and for 200 epochs. Tables 1 and 2 summarize the
binary classification results with target class 0 for standard
MNIST and MNIST with up to 7 pixels translation. The
qualitative behavior with SGD training follows the same
trend as in Fig.s 2 and 3 for the multiclass results (for this
reason an illustration is omitted). As before, by including
translations of up to 7 pixels of the digits, we observe a
drop in accuracies which is particularly pronounced for the
linearized setting.
Table 1: Accuracy of LeNet, LinLeNet and the solver on
binary MNIST (0 vs. not 0) at different widths.

×1 ×2 ×5 ×10 ×25 ×60

Te
st

Solver 97.8 99.86 99.89 − − −
Lin. 99.61 99.75 99.81 99.85 99.85 99.89
LeNet 99.89 99.89 99.88 99.89 99.89 99.88

Tr
ai

n Solver 100 100 100 − − −
Lin. 99.42 99.74 99.88 99.97 99.9983 100
LeNet 100 100 100 100 100 100

In comparison to the harder multiclass task, the gap in train-
ing accuracy between LeNet and LinLeNet is greatly re-
duced but persists for the less wide networks, especially for
LinLeNet×1 in the translated MNIST task. While training
the standard network consistently leads to perfect training
accuracy in the standard MNIST setting, it is not possible
to achieve 100% training accuracy when solving the linear
system in Eq. (4) with SGD, in most cases. However, from a
width factor of 5 on, we observe for LinLeNet in the standard
MNIST task that the linearized networks start agreeing (up
to the second decimal place) with the results of the corre-
sponding LeNet. In particular, LinLeNet×60 matches the
train and test results of LeNet at all considered widths, which
is in agreement with NTK theory.
Table 2: Accuracy of LeNet, LinLeNet and the solver on
binary MNIST (0 vs. not 0) at different widths. Input digits
were randomly shifted by up to 7 pixels.

×1 ×2 ×5 ×10 ×25 ×60

Te
st

Solver 86.05 98.7 99.17 − − −
Lin. 95.48 98.51 98.97 99.31 99.51 99.55
LeNet 99.72 99.80 99.82 99.77 99.82 99.86

Tr
ai

n Solver 100 100 100 − − −
Lin. 95.42 98.29 98.90 99.25 99.49 99.61
LeNet 99.77 99.83 99.86 99.90 99.92 99.90

Solving the linear system with a standard solver: Since
SGD is not able to attain high train accuracy for linearized
models for all widths, it raises the question whether a dif-
ferent algorithm can, and if so, what its generalization prop-
erties are for the tasks at hand. An advantage of the binary
classification setting is that we can directly solve the linear
system in Eq. (4) for u for width multipliers 1, 2, and 5, as
the amount of memory required to store the entire matrix
∇wf (w0, x) in memory is reduced and becomesmanageable.
Larger widths were not feasible for us as more than 1 TB of
memory is required even for binary classification, without
taking additional memory requirements for the computation
into account. We make use of the SciPy least-squares solver
which utilizes the highly optimized LAPACK library [An-
derson et al., 1999]. The results are included in Tables 1 and
2.
Interestingly, the solver attains perfect training accuracy in
all considered cases, but at the cost of a diminished test accu-
racy for LinLeNet×1 in standard MNIST (see Table 1) and,
particularly, in translated MNIST (see Table 2), indicating
overfitting of the solver solution. Apparently, the implicit
regularization of the SGD solution significantly improves
generalization for these widths, while precluding a perfect
train accuracy. For LinLeNets of larger widths, an improved
generalization is attained which we view to match the SGD
results to a reasonable degree (considering fluctuations in
the second decimals place as in the multiclass results, see
Supp. Table A.2). In the standard MNIST task, the attained
solver solutions for LinLeNet×2 and LinLeNet×5 match
the test accuracies of their corresponding standard LeNets
at otherwise 100% train accuracy. It should be noted that
the solver results were obtained without regularization. Ad-
ditional regularization should lead to similar results as for
LinLeNet×1 trained with SGD, that is higher generalization
and lower training accuracy.
Therefore, it appears that the observed generalization gaps
and poor performance of non-wide linearized models in Sec.
4.1 are not due to poor training optimization. We suspect
that moderately wide linearized networks in the multiclass
experiments operate in a similar regime as LinLeNet×1 in
the binary classification setting.

5 CONCLUSION

Motivated by conflicting results in NTK literature, we stud-
ied two classical convolutional neural networks, LeNet and
AlexNet, and their corresponding linearizations at different
widths and increasing difficulty of classification tasks. We
investigated four regimes of different behavior in neural net-
works (see Fig. 1) which complement previous results on
lazy training [Chizat et al., 2019] and random feature models
[Lee et al., 2019, 2020] summarized in the following.
Firstly, in agreement with previous results like by Arora



et al. [2019], we observed significant train and test perfor-
mance gaps between standard width LeNet and AlexNet
and their corresponding linearization. By considering differ-
ent classification tasks of increasing difficulty, we showed
that the performance gaps increase accordingly suggesting
that richer features need to be learned, which the effectively
random feature models LinLeNet and LinAlexNet cannot
provide.
Secondly, in agreement with work such as Lee et al. [2019],
Jacot et al. [2018], we showed, however, that width improves
the performance of linearized networks significantly. We hy-
pothesize that the comparatively minor improvements in per-
formance of standard networks might hide a transition from
feature learning to utilizing random features at moderate
widths. This might be related to previous results suggesting
that the intermediate representations of networks of increas-
ing width become increasingly alike to each other and to
the representation in the large width limit [Kornblith et al.,
2019].
Thirdly, we showed that numerical aspects like the effective
rank (see Fig. 6) and distribution of singular values (see
Fig. 7 and A.3) of the feature mapping ∇wf (w0, X) havea role in explaining low training accuracy of SGD trained
non-wide linearized models. Increasing width appears to
remedy these numerical issues of the associated kernel.
In summary, our investigation is based on the finite-width
NTK at initialization and explores deviations, as described
above, but also convergence to NTK theory. In particular,
we show agreement in performance of standard networks
and their linearization as well as an instance where a wide
LinLeNet(×60) outperforms its standard width LeNet(×1)
on CIFAR-10.
Our study highlights the need to study theoretical descrip-
tions of neural network generalization beyond the finite-
width NTK at initialization, for instance by considering
time-dependent NTK [Huang and Yau, 2019, Jacot et al.,
2018] for finite-width networks (see e.g. Fort et al. [2020])
or by further developing the various proposed mean-field
theories [Chizat and Bach, 2018, Hu et al., 2019, Javanmard
et al., 2019, Mei et al., 2019, Nguyen, 2019, Rotskoff et al.,
2019]. Additionally, it highlights the need to study the nature
of the potential transition to effectively random features at
moderate widths in standard neural network training.
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