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Abstract

We present novel techniques for neuro-symbolic
concurrent stochastic games, a recently proposed
modelling formalism to represent a set of prob-
abilistic agents operating in a continuous-space
environment using a combination of neural net-
work based perception mechanisms and traditional
symbolic methods. To date, only zero-sum variants
of the model were studied, which is too restrictive
when agents have distinct objectives. We formalise
notions of equilibria for these models and present
algorithms to synthesise them. Focusing on the
finite-horizon setting, and (global) social welfare
subgame-perfect optimality, we consider two dis-
tinct types: Nash equilibria and correlated equi-
libria. We first show that an exact solution based
on backward induction may yield arbitrarily bad
equilibria. We then propose an approximation algo-
rithm called frozen subgame improvement, which
proceeds through iterative solution of nonlinear
programs. We develop a prototype implementation
and demonstrate the benefits of our approach on
two case studies: an automated car-parking system
and an aircraft collision avoidance system.

1 INTRODUCTION

Stochastic games [Shapley, 1953] are a well established
model for the formal design and analysis of probabilistic
multi-agent systems. In particular, concurrent stochastic
games (CSGs) provide a natural framework for modelling
a set of interactive, rational agents operating concurrently
within an uncertain or probabilistic environment. For finite-
state CSGs, algorithms for their solution are known [Chatter-
jee et al., 2013, de Alfaro and Majumdar, 2004, De Alfaro
et al., 2007] and, more recently, techniques and tools for
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their formal modelling, analysis and verification have been
developed [Kwiatkowska et al., 2020, 2021] and applied to
examples across robotics, computer security and networks.

In more complex scenarios, for example sequential decision
making in continuous-state or mixed discrete-continuous
state environments, CSGs are again a natural formalism for
problems such as multi-agent reinforcement learning [Pa-
poudakis et al., 2021, Yan et al., 2022a]. A recent trend in
this setting is the use of neural networks (NNs), to represent
learnt approximations to value functions [Omidshafiei et al.,
2017] or strategies [Lowe et al., 2017] for CSGs. However,
the scalability and efficiency of such approaches are limited
when NNs are used to manage multiple, complex aspects of
the system. To overcome this, a further promising direction
is the use of neuro-symbolic approaches. These deploy NNs
within certain data-driven components of the control prob-
lem, e.g., for perception modules, and traditional symbolic
methods for others, e.g., nonlinear controllers.

In this paper, we work with the recently proposed formal-
ism of neuro-symbolic concurrent stochastic games (NS-
CSGs) [Yan et al., 2022b], designed to model probabilis-
tic multi-agent systems comprising neuro-symbolic agents
operating concurrently within a shared, continuous-state
environment. In [Yan et al., 2022b], the zero-sum control
problem is considered, namely to synthesise strategies for
one set of agents who are aiming to maximise their (dis-
counted, infinite-horizon) expected reward, while the other
agents aim to minimise this value. However, in practice, this
is limiting: even for the case of just two coalitions of agents,
they will often have distinct, but not directly opposing goals,
which cannot be modelled in a zero-sum fashion.

To tackle this problem, we work with equilibria, defined by
a separate, independent objective for each agent. These are
particularly attractive since they ensure stability against de-
viations by individual agents, improving the overall system
outcomes. We formalise the equilibrium synthesis prob-
lem for NS-CSGs, considering two distinct variants: Nash
equilibria (NEs), which aim to ensure that no agent has
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an incentive to deviate unilaterally from their strategy, and
correlated equilibria (CEs), which allow agent coordination,
e.g., through public signals, and where agents have no in-
centive to deviate from the resulting actions. The latter can
both simplify strategy synthesis and improve performance.

Our focus is on (undiscounted) finite-horizon objectives,
which simplifies the analysis (note that the existence of
infinite-horizon NE for CSGs is an open problem [Bouyer
et al., 2014], and the verification of non-probabilistic infinite-
horizon reachability properties for neuro-symbolic games is
undecidable [Akintunde et al., 2020a]), but also has a num-
ber of useful applications, e.g. in receding horizon control.
Since multiple equilibria may exist, we target social welfare
(SW) optimal equilibria, which maximise the sum of the
individual agent objectives.

We also work with subgame-perfect equilibria (SPE), which
are equilibria in every state of the game, ensuring that opti-
mality remains as later states of the game are reached [Abreu
et al., 2020, Fudenberg and Levine, 2009, Littman et al.,
2006, Osborne et al., 2004]. Crucially, we consider globally
optimal equilibria which, from a fixed initial state, are op-
timal over the chosen time horizon. This is in contrast to
techniques for equilibria in finite-state CSGs [Kwiatkowska
et al., 2021, 2022], which consider only local optimality at
each time step in the finite-horizon setting.

We first adapt (classical) backward induction to NS-CSGs
based on local optimality, but show that it may find an arbi-
trarily bad SPE. Then, for a fixed initial state, we show how
to compute optimal equilibria by unfolding the game tree
(including invocation of the NN perception function) and
solving a nonlinear program. However, this suffers from
limited scalability. So we then propose frozen subgame im-
provement (FSI), an approximation algorithm which itera-
tively solves nonlinear programs to monotonically improve
the social welfare. Our approach is wholly different from
the zero-sum (discounted, infinite-horizon) solution of NS-
CSGs in [Yan et al., 2022b], which applies value/policy
iteration to finite model abstractions that rely on assump-
tions about the functions used to specify the model.

Finally, we implement our algorithms and evaluate them on
two case studies, a car-parking example and the VerticalCAS
(VCAS) aircraft system for collision avoidance, showing
that they are capable of automatically generating equilibria
that can improve over zero-sum strategies.

Related Work. Several papers have considered verification
and synthesis of equilibria for stochastic games [Fernando
et al., 2018, Horák and Bošanskỳ, 2019, Kwiatkowska et al.,
2021, Mari et al., 2009], aiming to prove that a game satisfies
a given equilibrium-related requirement specification and
also to find such an equilibrium. However, none of these
support CSGs whose agents are partly realized via NNs.
The PRISM-games tool [Kwiatkowska et al., 2020] provides

modelling, verification and equilibria synthesis for (discrete-
state) CSGs, including finite-horizon analysis via backward
induction, but for the simpler case of local optimality, as
discussed abvove. [Kwiatkowska et al., 2020] also includes
infinite-horizon ε-optimal social welfare Nash equilibria,
and [Kwiatkowska et al., 2022] correlated equilibria with
two types of optimality conditions, computed using value
iteration, but again only for discrete models.

Numerous methods have been proposed to compute SPEs
since their introduction in the 1970s [Selten, 1975]. Most
of these address the infinite horizon, for which fixed-point
algorithms are the most common methods, from operator
design for SPE payoff correspondence [Abreu et al., 2020,
Brihaye et al., 2020, Burkov and Chaib-draa, 2010, Kitti,
2016, Yeltekin et al., 2017], to homotopy methods [Li and
Dang, 2020]. For the finite horizon, which we consider
here for reasons of decidability, backward induction is a
simple and common bottom-up algorithm for finding an SPE
efficiently. However, all these approaches fail to identify
SW-SPEs over a finite horizon. In [Littman et al., 2006], a
polynomial algorithm is proposed for computing optimal
SPEs for turn-based games played over trees, which cannot
deal with the concurrency in CSGs.

Neuro-symbolic computing has been attracting attention
recently, see [Kahneman, 2011] and the surveys [De Raedt
et al., 2020, Lamb et al., 2020]. The works of [Akintunde
et al., 2020a,b] consider neuro-symbolic multi-agent sys-
tems represented as neural interpreted systems and study the
finite-horizon verification problem for Alternating Temporal
Logic, solved through reduction to an MILP problem, but
no equilibria properties. The agents are endowed with per-
ception similarly to what we do here, but are not stochastic.

2 NEURO-SYMBOLIC CSGS

We begin by describing neuro-symbolic concurrent stochas-
tic games (NS-CSGs) [Yan et al., 2022b], the modelling
formalism that we use in this paper, for which we then
define our notions of equilibria.

An NS-CSG comprises a number of interacting neuro-
symbolic agents acting in a shared environment. Each agent
has finitely many local states and actions, and is addition-
ally endowed with a perception mechanism implemented
as a neural network (NN), through which it can observe the
state of the environment, storing the observations locally in
percepts. For the purposes of this paper it suffices to assume
that an NN is a function f : Rm1 → Rm2 over finite real
vector spaces. Formally, an NS-CSG is defined as follows.

Definition 1 (NS-CSG). A neuro-symbolic concurrent
stochastic game (NS-CSG) C comprises agents (Agi)i∈N ,
for N = {1, . . . , n}, and an environment E where:

Agi = (Si, Ai,∆i, obsi, δi) for i ∈ N, E = (SE , δE)



and we have:

• Si = Loci × Per i is a set of states for Agi, where
Loci ⊆ Rbi and Per i ⊆ Rdi are finite sets of local
states and percepts, respectively;

• SE ⊆ Re is a finite or infinite set of environment states;

• Ai is a nonempty finite action set for Agi, and A :=
(A1∪{⊥})×· · ·×(An∪{⊥}) is the set of joint actions,
where ⊥ is an idle action disjoint from ∪ni=1Ai;

• ∆i : Si → 2Ai is an available action function, defining
the actions Agi can take in each state;

• obsi : (S1×· · ·×Sn×SE)→ Per i is an observation
function for Agi, mapping the state of all agents and
the environment to a percept of the agent, implemented
via an NN classifier;

• δi : Si × A → P(Loci) is a probabilistic transition
function for Agi, where P(X) denotes the set of proba-
bility distributions over a set X , determining the prob-
ability of moving to local states given its current state
and joint action;

• δE : SE × A → SE is a deterministic environment
transition function determining the environment’s next
state given its current state and joint action.

Each (global) state s of NS-CSG C comprises the state si =
(loci, per i) ∈ Si of each agent Agi and the state sE ∈ SE of
the environment. Starting from some initial state, the game
evolves as follows. First, each agent Agi observes the state
of the agents and the environment to generate a new percept
per ′i according to its observation function obsi implemented
via an NN. Then, each agent Agi synchronously chooses one
of the actions from the set ∆i(si), which are available in its
state si. This results in a joint action α = (a1, . . . , an) ∈ A.
Each agent Agi then updates its local state to loc′i ∈ Loci
according to the probabilistic local transition function δi,
applied to the state of agent (loci, per

′
i) and joint action α.

The environment updates the environment state to s′E ∈ SE
according to the environment transition function δE , applied
to its state sE and joint action α. Thus, the game reaches
the state s′ = (s′1, . . . , s

′
n, s
′
E), where s′i = (loc′i, per

′
i)

for i ∈ N . For simplicity, we consider here deterministic
environments, but the results can be directly extended to
discrete probabilistic environments with finite branching.

For brevity, we omit the formal semantics of an NS-CSG,
which can be found in [Yan et al., 2022b]. In fact, in this
paper we consider a slight variant, differing in the point at
which observations are made during each transition.

NS-CSGs are a subclass of continuous-state CSGs, which
assume a particular structure for the transition function,
distinguishing between agent and environment states and
using an NN-based observation function to characterise
which environment states have the same characteristics. This
provides a trade-off between exploiting the full generality
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Figure 1: Geometry for the VCAS[2] example with trust
level tri and advisory adi, for i ∈ {own, int}.

of a continuous-state CSG model and allowing for tractable
computational methods for its analysis.

Our use of NNs as perception functions to yield observa-
tions is in line with a recent trend in autonomous systems,
where agents make decisions based on the output of NNs,
for instance, probabilistic observation functions extracted
from NNs by abstracting them with the help of robustness
verification tools [Calinescu et al., 2022].

To illustrate NS-CSGs, we model the VerticalCAS Collision
Avoidance Scenario [Julian and Kochenderfer, 2019, Julian
et al., 2019] presented as a two-agent neurosymbolic system
(VCAS[2]) in [Akintunde et al., 2020a]. Our model differs in
that we separate the states of the agents and the environment
state by adding to the agents’ states a variable that measures
their trust in the advisory’s output, whereas [Akintunde et al.,
2020a] replicates the climb rates in both agents’ local states
and the environment state. We update the agents’ trust level
probabilistically to account for possible uncertainty.

Example 1. In the VCAS[2] system (Figure 1) there are
two aircraft (ownship and intruder: Agi for i ∈ {own, int}),
each of which is equipped with an NN-controlled collision
avoidance system called VCAS. Each second, VCAS issues
an advisory (adi) from which, together with the current trust
level (tri) in the previous advisory, the pilot needs to make
a decision about accelerations, aiming at avoiding a near
mid-air collision (NMAC) [Akintunde et al., 2020b].

The input of the VCAS is (h, ḣown, ḣint, t) recording the rel-
ative altitude h of two aircraft, the climb rate ḣown of the
ownship, the climb rate ḣint of the intruder, and the time t un-
til loss of their horizontal separation. VCAS is implemented
via nine feed-forward NNs F = {fi : R4 → R9 | i ∈ [9]},
each of which corresponds to an advisory and outputs the
scores of nine possible advisories, where [k] is the set
{1, . . . , k}. Each advisory will provide a set of accelera-
tions for the agent to select from. There are four trust levels
{4, 3, 2, 1} indicating the trust scores. The trust level is
increased probabilistically if the current advisory is compli-
ant with the executed action, and decreased otherwise. We
formulate VCAS[2] as an NS-CSG with the agents Agi for
i ∈ {own, int} and the environment defined as follows:

• si = (tri, adi) is a state of the agent Agi with local
state tri∈[4] and percept adi∈[9];

• sE = (h, ḣown, ḣint, t) is an environment state;



• Ai is a finite set of accelerations (ḧi);

• ∆i(si) returns a set of available accelerations;

• observation function obsi is implemented via F ;

• the local transition function δi updates its trust level
according to its current trust level, its updated advisory
and its executed action;

• the environment transition function δE(sE , α) is de-
fined as: h′ = h−∆t(ḣown−ḣint)−0.5∆t2(ḧown−ḧint),
ḣ′own = ḣown + ḧown∆t, ḣ′int = ḣint + ḧint∆t and
t′ = t−∆t, where ∆t = 1 is the time step.

Game Tree Unfolding. The finite-horizon evolution of an
NS-CSG C from a given global state s can be unfolded into
a finite tree in the usual way by applying strategies to select
actions. We distinguish between (past) histories of a given
state and its (future) paths.

We assume that the duration of the game is finite with K
stages. A history h of C in stage ` ∈ [0,K] is a sequence

h = s0 α0

−→ s1 α1

−→ · · · α`−1

−−−→ s` where sk ∈ S, αk ∈
A and δ(sk, αk)(sk+1) > 0. The prefix of h ending in
stage ¯̀ is denoted by h≤¯̀ for any ¯̀ ≤ `. The set of all
histories in stage ` for all initial states (for an initial state s)
is denoted by H` (H`

s), the set of all histories before stage
K is H<K = ∪0≤`<KH

` (H<K
s = ∪0≤`<KH

`
s) and the

set of all histories from s is Hs = H<K
s ∪HK

s . We denote
by last(h) the last state of the history h ∈ Hs. If h ∈ H<K ,
we denote by Succ(h) the set of one-stage successors of h.

For a state s = (s1, . . . , sn, sE), the available actions of Agi
are denoted by Ai(s), i.e., Ai(s) equals ∆i(si) if ∆i(si) 6=
∅ and equals {⊥} otherwise, and we denote byA(s) the pos-
sible joint actions in a state, i.e. A(s) = A1(s)× · · ·An(s).

We can now define strategies, strategy profiles and corre-
lated profiles. In each case, we follow [Yan et al., 2022b] in
assuming a fully observable setting as a baseline, i.e., where
decisions are made based on the full state of the NS-CSG,
not just the parts of it revealed by the agents’ observation
functions. An extension to partial observability (i.e., where
the NS-CSG represents a continuous-state partially observ-
able stochastic game) is left for future work.

Definition 2 (Strategy). A strategy for Agi is a function
σi : H<K → P(Ai ∪ {⊥}) such that, if σi(h)(ai) > 0,
then ai ∈ Ai(last(h)). A strategy profile σ = (σ1, . . . , σn)
comprises a strategy for each agent. We denote by ΣN

i the
set of all strategies for Agi and by ΣN = ΣN

1 × · · · × ΣN
n

the set of all strategy profiles.

Alternatively, we can use a correlated profile, in which agent
choices are correlated. For brevity, we refrain from formally
defining a correlation mechanism (such as public signals)
and map directly to joint actions.

Definition 3 (Correlated profile). A correlated profile is a
function τ : H<K → P(A) such that if τ(h)(α) > 0, then
α = (a1, . . . , an) and ai ∈ Ai(last(h)) for all i ∈ N . We
denote by ΣC the set of correlated profiles.

A (future) path π of C starting from a history h ∈ H`

in stage ` until the game ends in stage K is a sequence

π = s`
α`

−→ · · · αK−1

−−−−→ sK where s` = last(h), sk ∈ S,
αk ∈ A and δ(sk, αk)(sk+1) > 0. For path π, π(k) is the
(k+ 1)th state, π[k] the action associated with the (k+ 1)th
transition from π(k) to π(k+ 1), and last(π) the final state.

Rewards. We endow NS-CSGs with rewards that define
agents’ objectives. We use r = (ri)i∈N where each agent
Agi has a reward structure ri = (rAi , r

S
i ) comprising action

reward function rAi : S ×A→ R and state reward function
rSi : S → R. An objective profile is Y = (Y1, . . . , Yn),
where Yi(π) is the accumulated reward of Agi until the final
stage K, along a path π that starts in some stage ` ∈ [0,K]:

Yi(π)=

K−`−1∑
k=0

(
rAi (π(k), π[k])+rSi (π(k))

)
+rSi (last(π)).

Given a strategy profile σ ∈ ΣN, we denote by Eσ`,h[Yi]

the expected value of Yi when starting from h ∈ H` at the
`th stage until the game ends. Given a correlated profile
τ ∈ ΣC, we denote by Eτ` [Yi, a

′
i|ai, h] the expected value of

Yi when starting from h ∈ H` at the `th stage until the game
ends, under the strategy that Agi takes the actual action a′i
instead of the recommended action ai at h, and otherwise
the recommendation by τ is followed by all agents.

An NS-CSG is zero-sum if
∑n
i=1

(
rAi (s, α) + rSi (s)

)
= 0

for all s ∈ S and all α ∈ A; otherwise, it is nonzero-sum.

Social Welfare Subgame-Perfect Equilibria. A Nash
equilibrium (NE) ensures that no agent has an incentive
to deviate unilaterally from their strategy. Here we work
with subgame-perfect Nash equilibria (SPNEs) [Osborne
et al., 2004], which are NEs in every state of the game.
Since an SPNE is therefore an NE of every subgame of the
original game, the agents’ behaviour from any point in the
game onward forms an NE of the continuation game, re-
gardless of what happened before. We also consider the less
well studied notion of subgame-perfect correlated equilib-
ria (SPCEs) [Murray and Gordon, 2007]. For an SPCE, no
agent can expect to gain by disobeying the recommendation
of the correlated profile after any history of play.

The formal definitions of both types of subgame-perfect
equilibria (SPE) follow, where we denote by µ = µ−i[µi] =
(µ1, . . . , µn) (i ∈ N) the strategy profile, where µ−i refers
to the strategy profile except µi. For SPCEs, we again omit
a correlation mechanism and abuse notation by expressing
it as individual deviations from the recommended actions
associated to a correlated profile τ .



Definition 4 (Subgame-perfect equilibrium). For an initial
state s ∈ S, a strategy profile σ∗ = (σ∗1 , . . . , σ

∗
n) ∈ ΣN is

a subgame-perfect Nash equilibrium (SPNE) if Eσ
∗

`,h[Yi] ≥
E
σ∗−i[σi]

`,h [Yi] for all σi ∈ ΣN
i , all i ∈ N and all h ∈ H<K

s . A
correlated profile τ∗ ∈ ΣC is a subgame-perfect correlated
equilibrium (SPCE) if Eτ

∗

` [Yi, ai|ai, h] ≥ Eτ
∗

` [Yi, a
′
i|ai, h]

for all ai, a′i ∈ Ai(last(h)), all i ∈ N and all h ∈ H<K
s .

We emphasize that the SPE is defined here for a given initial
state. Since multiple SPEs can exist, we introduce additional
optimality constraints. First, we define the social welfare
Wσ
`,h (W τ

`,h, resp.) of a history h ∈ H` (` < K) under
a strategy profile σ (a correlated profile τ , resp.) as the
sum of expected values of objective profiles Yi starting in
h for all agents, that is, Wσ

`,h = Eσ`,h[
∑n
i=1 Yi] (W τ

`,h =

Eτ`,h[
∑n
i=1 Yi], resp.). Social-welfare optimal SPNE and

and SPCE are then defined as follows.

Definition 5 (Social welfare SPE). For an initial state s ∈
S, an SPNE σ∗ is a social welfare optimal SPNE (SW-
SPNE) of C if Wσ∗

0,s ≥ Wσ
0,s for all SPNEs σ of C. An

SPCE τ∗ is a social welfare optimal SPCE (SW-SPCE) of C
if W τ∗

0,s ≥W τ
0,s for all SPCEs τ of C.

Notice that, starting from a fixed initial state, SW-SPNE and
SW-SPCE are globally optimal, i.e. over the social welfare
achieved over a finite horizon from that start state.

Our approach of defining optimality in terms of the value
from a fixed initial state is further motivated by the following
result, which reveals that SW-SPNEs and SW-SPCEs do
not possess the property of subgame perfection on social
welfare, i.e., an SPNE or SPCE with optimal social welfare
at one state might induce a non-optimal social welfare at
another state as the game moves forward.

Lemma 6 (No optimal subgame perfection). For an initial
state s ∈ S, an NS-CSG may have no SPNE (resp., SPCE)
that is an SW-SPNE (resp., SW-SPCE) for all its subgames.

A proof of this, and all other results in the paper can be
found in the appendix. Note also that this and the following
results are stated in the context of NS-CSGs, but they also
apply to general CSGs with discrete states and actions.

3 GENERALIZED BI

We now consider how to compute equilibria for NS-CSGs.
For a fixed initial state, finite-horizon NS-CSGs are finite
games, obtained by unfolding the game tree while invoking
the NN perception function. In principle, this allows us to
employ established game-theoretic solution such as back-
ward induction. We next prove that the classical generalized
backward induction (GBI) [Shoham and Leyton-Brown,
2009] can be used to find a finite-horizon SPNE or SPCE

Algorithm 1 Generalized b/w induction (GBI) via SWE
Input: NS-CSG C, rewards r, equ. type T, initial state s
Output: an equilibrium µ, equilibrium payoff vector V

1: H`
s ← HISTORY(C, s, `) for all ` ≤ K

2: for ` = K,K − 1, . . . , 0;h ∈ H`
s do

3: if ` = K then
4: V h ← (rS1 (last(h)), . . . , rSn(last(h)))
5: else
6: Succ(h)← SUCCESSOR(C, H`+1

s , h)
7: (µh, V h)← SWE_SOLVER

(
C, r,T, , h,

{V h′ |h′ ∈ Succ(h)}
)

8: µ← {µh}h∈H<K
s

, V ← {V h}h∈Hs

9: return µ, V

through local optimisation, but that this equilibrium might
have an arbitrarily bad social welfare.

Algorithm 1 shows a version of the classical GBI method,
for concurrent extensive-form games over a finite horizon,
which aims to find an SPNE or SPCE that maximises so-
cial welfare, by computing an NE or CE which is locally
social welfare maximal at each history. In Algorithm 1,
HISTORY(C, s, `) computes a set of all histories in stage
` given an initial state s ∈ S. SUCCESSOR(C, H`+1

s , h)
extracts a set of all successors of a history h in stage ` from
H`+1
s . SWE_SOLVER

(
C, r,T, , h, {V h′ |h′ ∈ Succ(h)}

)
computes an SWNE or SWCE µh (depending on the equi-
librium type T ∈ {CE,NE}) of an induced normal-form
game with actions available at last(h) and utilities from the
equilibrium payoffs V h

′
of all successors h′ of h, and then

assigns the equilibrium payoff associated with this equilib-
rium to V h. This procedure is iterated from the bottom up
until ` = 0, i.e., h = s, where the equilibrium payoffs of
histories at stage K (i.e., where the game ends) are equal
to final states’ rewards. For this algorithm, we have the
following proposition.

Proposition 7. Given an initial state s ∈ S, GBI finds
an SPNE σ (SPCE τ , resp.) with social welfare Wσ

0,s =∑
i∈N V

s
i (W τ

0,s =
∑
i∈N V

s
i , resp.).

Although GBI can find an SPNE or SPCE, unfortunately it
may return one with an arbitrarily bad social welfare with
respect to the optimum.

Lemma 8 (Bad social welfare). The SPNE (SPCE, resp.)
obtained by GBI SWE can be arbitrarily bad on social wel-
fare with respect to an SW-SPNE σ∗ (SW-SPCE τ∗, resp.)
for some state s ∈ S, i.e., Wσ∗

0,s−Wσ
0,s (W τ∗

0,s−W τ
0,s, resp.)

is positive and unbounded.

4 FROZEN SUBGAME IMPROVEMENT

Lemma 8 indicates that a GBI-based approach does not
guarantee optimal social welfare. Motivated by this, we now



consider further techniques to synthesize SW-SPNE and
SW-SPCE for NS-CSGs. We first present an exact approach
based on an unfolding of the game tree and the solution
of a nonlinear program. However, this does not scale to
large games. So we then propose an iterative approximation
method called frozen subgame improvement. This works
by first finding an arbitrary initial SPNE or SPCE and then
iteratively freezing a set of variables and computing a new
SPNE or SPCE with an increasing social welfare.

In this section, we focus initially on the case of two-agent
NS-CSGs and then later discuss how to generalise this.

Exact Computation of SW-SPNE and SW-SPCE. Given
an initial state s ∈ S, the game unfolds by considering
all paths, thus generating a game tree which can be fully
characterized by Hs. During the game tree construction,
last(h) can be computed for any h ∈ Hs, and if h′ is a
successor of h, the joint action(s) that leads to h′ from h
can be determined. In contrast to [Akintunde et al., 2020a],
where perception functions are assumed to be piecewise
linear and encoded as constraints, unfolding the game tree
allows us to treat NNs outside the optimisation problem.

We encode subgame perfection as a nonlinear program. An
SPNE of the original game is an NE of every subgame, i.e.,
for each history h ∈ H<K

s , it can be encoded as follows 1:

V hi −
∑

(ai,aj)∈Ai×Aj
µhi (ai) · µhj (aj) · Z

h,(ai,aj)
i = 0

V hi −
∑
aj∈Aj

µhj (aj) · Z
h,(ai,aj)
i ≥ 0, ∀ai ∈ Ai∑

ai∈Ai
µhi (ai) = 1, µhi (ai) ≥ 0

(1)

for i, j ∈ {1, 2}, i 6= j, where µhi ∈ P(Ai(last(h))), V h =
(V h1 , V

h
2 ) ∈ R2 denotes the expected accumulated reward

vector from h to the end of the game, and Zh,αi denotes the
expected accumulated reward to be received by Agi after
executing the joint action α at h. In an SPCE, no agent can
gain by deviating from the recommendation in any given
history, and thus we have:

V hi −
∑
α∈Aµ

h
α · Z

h,α
i = 0∑

aj∈Aj
(Z
h,(ai,aj)
i −Zh,(a

′
i,aj)

i ) · µh(ai,aj) ≥ 0∑
α∈Aµ

h
α = 1, µhα ≥ 0

(2)

where i, j ∈ {1, 2}, i 6= j, ai, a′i ∈ Ai, µh = {µhα}α∈A
and µhα represents the probability of the joint action α being
recommended at h.

The SPNE and SPCE imply that, for each h ∈ H<K
s and

α ∈ A(last(h)), the reward for Agi satisfies:

Zh,αi = rAi (last(h), α) + rSi (last(h))

+
∑
h′∈Succ(h)δ(last(h), α)(last(h′))V h

′

i

(3)

1To simplify notation, ai ∈ Ai refers to ai ∈ Ai(last(h)) in
(1) and (2), and similarly for aj and a′

i.

where, for each history h ∈ HK
s , we take the re-

ward vector V h = (rS1 (last(h)), rS2 (last(h))). For each
h ∈ H<K

s , let CN,h(µh1 , µ
h
2 , V

h, {V h′}h′∈Succ(h)) be the
union of constraints (1) and (3) (for Nash equilibria), and
CC,h(µh, V h, {V h′}h′∈Succ(h)) be the union of constraints
(2) and (3) (for correlated). The union of CN,h for all
such histories is denoted by CN(µN, V ) and the union
of CC,h by CC(µC, V ), where µN := {µh1 , µh2}h∈H<K

s
,

µC := {µh}h∈H<K
s

and V := {V h}h∈H<K
s

. Note that
CN(µN, V ) (CC(µC, V ), resp.) is polynomial in µN (µC,
resp.) and V , and is nonlinear as Zh,αi is related to variables
V h
′

i for h′ ∈ Succ(h).

Theorem 9 (Computation of SW-SPNE and SW-SPCE).
For a two-agent NS-CSG C with an initial state s ∈ S,

(i) a strategy profile σ is an SPNE iff there is a solution of
the constraints CN(µN, V ) such that σ1(h) = µh1 and
σ2(h) = µh2 for each h ∈ H<K

s ;

(ii) a correlated profile τ is an SPCE iff there is a solution
of the constraints CC(µC, V ) such that τ(h) = µh for
each h ∈ H<K

s ;

(iii) a strategy profile σ is an SW-SPNE iff there is an opti-
mal solution (µ∗, V ∗) of the nonlinear program:

max
µN, V

∑
i∈NV

s
i subject to CN(µN, V ) (4)

such that σ1(h) = µ∗,h1 and σ2(h) = µ∗,h2 for each
h ∈ H<K

s , and the social welfare Wσ
0,s is equal to the

optimal value
∑
i∈N V

∗,s
i ;

(iv) a correlated profile τ is an SW-SPCE iff there is an
optimal solution (µ∗, V ∗) of the nonlinear program:

max
µC, V

∑
i∈NV

s
i subject to CC(µC, V ) (5)

such that τ(h) = µ∗,h for each h ∈ H<K
s , and

the social welfare W τ
0,s is equal to the optimal value∑

i∈N V
∗,s
i .

Although our goal here is to work with NNs, the computa-
tion of SW-SPNE and SW-SPCE in Theorem 9 also applies
to conventional stochastic games, because the game tree
construction can work for general transition functions with
finite branching. The fact that our approach is not limited to
NNs (or NNs of a certain class) is an advantage, and allows
us to avoid the scalability issues suffered by the method of
[Akintunde et al., 2020a], which represents a ReLU neural
network as a set of constraints.

Frozen Subgame Improvement. Nonlinear programs in
Theorem 9 can be used to find an SW-SPNE or SW-SPCE
efficiently for a small joint action profile and a short hori-
zon. For larger problems, scalability is an issue because the
numbers of variables and constraints are both exponential.



To deal with this, we propose an approximation algorithm
called Frozen Subgame Improvement (FSI) (Algorithm 2)
that trades optimality for scalability.

Algorithm 2 Frozen Subgame Improvement (FSI)
Input: NS-CSG C, reward r, equ. type T, init. state s, mmax
Output: an equilibrium µ, equilibrium payoff vector V

1: (µ, V )← GENERALIZED_BI(C, r,T, , s)
2: m← 0
3: repeat
4: h← A_HISTORY(H<K

s , µ, V )
5: P ← (4) or (5) (depending on T) after freezing
µh
′
, V h

′
for each history h′ ∈ H<K

s that is not a prefix
of h (say h ∈ H`

s for some ` < K);
6: {µ∗,h≤¯̀, V ∗,h≤¯̀}¯̀≤` ← NP_SOLVER(P )

7: µ← {µ∗,h≤¯̀}¯̀≤` ∪ {the frozen µh
′}

8: V ← {V ∗,h≤¯̀}¯̀≤` ∪ {the frozen V h
′}

9: m← m+ 1
10: until m = mmax
11: return µ, V

The main idea of FSI is as follows. First, GBI is used to
find a feasible solution to (4) or (5) depending on the equi-
librium type T ∈ {CE,NE}, i.e., an SPNE or SPCE. Then,
a history h ∈ H<K

s is selected, for example by sampling
uniformly. We freeze the distributions over (joint) actions
and equilibrium payoffs corresponding to the histories that
are not prefixes of h. Thus, (4), and similarly (5), can be
simplified into a nonlinear program with a smaller number
of variables and constraints. Finally, a new solution is com-
puted by merging the frozen part of the current solution and
an optimal solution of the simpler nonlinear program. The
process performs a predefined number mmax of iterations.

In Algorithm 2, GENERALIZED_BI(·) computes an SPNE
or SPCE µ and the associated equilibrium payoff vector V
by adopting a simpler version of Algorithm 1, in which an
NE or CE is computed at step 7 instead of an SWNE or
SWCE. A_HISTORY(·) returns a history. Here, we sample
a history from HK−1

s uniformly; an alternative is presented
in Appendix. NP_SOLVER(·) computes an optimal solution
to a given nonlinear program.

For FSI, we have the following results:

Theorem 10 (FSI). If FSI is adopted to solve (4) ((5), resp.)
approximately, then:

(i) the pair (µ, V ) is a feasible solution to (4) ((5), resp.)
at the end of each iteration m, that is, µ is an SPNE
(SPCE, resp.) and V is the equilibrium payoff vector;

(ii) the social welfare
∑
i∈N V

s
i is monotonically increas-

ing in m, and also monotonically increasing in mmax.

FSI over Regions. If each agent has a limited memory and
takes actions conditioned on the current state and stage, we

` = 0 :

` = 1 :

` = 2 :

` = 3 :

Figure 2: FSI over regions. Sampled history (left) and the
corresponding region (right).

can unfold the game into a graph where each node in a
stage represents one reachable state exactly in that stage,
as in Fig. 2. With respect to the game tree, the number of
nodes in this graph is greatly decreased if many states are
frequently visited in a stage. The FSI can be directly adapted
to this graph by first sampling a history (Fig. 2: left) and
then optimising over a region of states, which contain all
histories that reach its last state (Fig. 2: right).

Multi-agent. SW-SPNE and SW-SPCE computation for
multi-agent (n>2) NS-CSGs can be performed by replacing
(1) or (2) with the encoding of NE/CE computation for the
induced multi-agent normal-form game at each h ∈ H<K

s .

Complexity. We focus here on practical methods to com-
pute equilibria, which depend on the horizon K and the size
of the model (specifically the number of actions and agent
states), as well as the underlying solution method used to
solve either normal form games (at each state, for SWNE or
SWCE) or nonlinear optimisation problems (for SW-SPNE
or SW-SPCE). Computing NEs of a normal form game with
two players is known to be PPAD-complete [Chen et al.,
2009]. For extensive games, it has been proved that finding
SPNEs for quantitative reachability objectives of a two-
player game is PSPACE-complete [Brihaye et al., 2019].
Computing SWCEs of a normal form game can be done in
polynomial time [Gilboa and Zemel, 1989].

From a practical perspective, any method that relies on find-
ing all NEs in the worst case cannot be expected to achieve
a running time that is polynomial with respect to the size
of the game, as there can be exponentially many equilibria.
GBI requires us to compute an SWNE or SWCE for all
states that could be reached from a given initial state in K
steps. FSI relies on GBI as an initialisation step (Algorithm
2, line 1). Furthermore, the optimisation problem defined for
computing SW-SPNE in (4) has at most (|A1|+ |A2|+ 2)v
variables and (2|A1||A2|+ 2|A1|+ 2|A2|+ 4)v constraints,
and for computing SW-SPCE defined in (5) has at most
(|A1||A2|+ 2)v variables and (|A1||A2|+ |A1|2 + |A2|2−
|A1| − |A2| + 3)v constraints, where v is the number
of non-leaf nodes in the generated game tree and v =(
(|A1||A2||S1||S2|)K − 1

)
/(|A1||A2||S1||S2| − 1) in the

worst case.



5 EXPERIMENTAL EVALUATION

We have implemented a prototype version of our FSI method
(Algorithm 2). This uses components from PRISM-games
3.0 [Kwiatkowska et al., 2020], which supports discrete
CSGs without perception. In particular, we use its SMT-
based/linear programming method for synthesising CSG
SWNE/SWCE to initialise the vector of equilibria values
in line 1 of Algorithm 2. Its support for two-player finite-
horizon equilibria [Kwiatkowska et al., 2019] also gives an
equivalent version of the GBI algorithm (Algorithm 1).

The optimisation problems for computing SW-SPNE and
SW-SPCE values for states are solved using Gurobi. In or-
der to improve the scalability of FSI, our implementation
considers a reduced set of histories by: (i) limiting the in-
formation that the players have access to at each state to be
the values of the variables in that state plus time, i.e., how
many transitions have been made up until that point; and (ii)
constructing histories not over states, but regions of states
which are independent from a decision-making standpoint.

Our evaluation employs two case studies: the first is used
to show the applicability of our equilibria improvement
algorithm, and the second to demonstrate the usefulness of
equilibria properties for analysing NS-CSGs. An overview
is provided below, with more detail given in the appendix.

Automated Parking. We first formulate a dynamic vehicle
parking problem as an NS-CSG (a static assignment game is
considered in, e.g., [Ayala et al., 2011]). There are 2 players
(vehicles) targeting 2 parking slots in a 5× 4 grid, shown
in Fig. 3 (target cells are green, forbidden cells are red,
black arrows show traffic rules). We consider two reward
structures. One minimises time, while the other extends the
first by giving a bonus to player 2 for visiting a designated
cell (in yellow). This is a discrete-state model in which
percepts identify agent locations precisely. We use it to
compare the equilibria algorithms for two different time
horizons K = 8 and K = 6. For this model, both vehicles
get a reward of -1 for each move, vehicle 2 gets a reward of
5.5 when visiting the bonus cell and the speeds of vehicle 1
and 2 are of two and one grid cell per move, respectively.

We first consider Nash equilibria. For the first reward struc-
ture, our FSI algorithm and the GBI algorithm, which only
considers local SWNE values, both return the SW-SPNE
strategy with reward sum −5.0 in Fig. 3 (top-left). For the
second reward structure, FSI finds a new SW-SPNE strategy
with reward sum −4.5 in Fig. 3 (top-right) giving a higher
social welfare, while GBI still returns the strategy on the
left, which is not an SW-SPNE in this case.

With correlated equilibria, for K = 8 both algorithms pro-
duce the same strategy as in Fig. 3 (bottom-right), for which
the reward sum is -1.5. We then reduce the time horizon
to K = 6. For this case, in the strategy constructed by the
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Figure 3: Strategies for the automated parking example.

K States Trans.
Constr.
time (s)

GBI Region FSI
time (s) size time (s)

NE CE NE CE NE CE

6 258 1080 0.01 0.6 2.1
24.0% 22.5% 0.4 1.5
19.4% 20.2% 0.4 1.0
17.8% 16.3% 0.2 0.3

8 386 1689 0.2 1.4 4.9
37.3% 32.4% 3.8 2.5
32.4% 27.5% 1.8 2.6
25.9% 25.9% 1.1 1.8

Table 1: Statistics for the automated parking example.

GBI algorithm in Fig. 3 (bottom-left), vehicle 2 is instructed
to move left in order to get the bonus, while vehicle 1 is
instructed to park in the closest spot. However, given the
shorter horizon, vehicle 2 does not have enough time to park
in the remaining spot and the overall reward sum is -2.5. The
possible final positions for vehicle 2 are indicated by the
blue stars. In the strategy synthesised by the FSI algorithm,
however, both cars park and the sum of rewards is higher.
Table 1 shows statistics for the models constructed and the
time for equilibria computation.

Two-Agent Aircraft Collision Avoidance Scenario. Sec-
ondly, we consider an NS-CSG model of the VCAS[2]
system, as described earlier in Example 1. We study its equi-
libria strategies, in contrast to the zero-sum (reachability)
properties analysed in [Akintunde et al., 2020a]. Fig. 4 plots
the altitude h for equilibria and zero-sum strategies when
maximising h for a given instant k. It can be seen that, with
respect to the safety criterion established by [Akintunde
et al., 2020a, Julian and Kochenderfer, 2019], i.e., avoid-
ing a near mid-air collision, equilibria strategies allow the
two aircraft to reach a safe configuration within a shorter
horizon, which would be missed by a zero-sum analysis.

We also consider a second reward structure that incorporates
the trust level and fuel consumption, and we vary the agent
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Figure 4: Altitude (h) for the VCAS[2] example.

uncertainty parameters εi (see the appendix for details). We
also fix a different safety limit of h = 200. Table 2 shows
the altitude and number of violations (times that no advisory
is taken) for the generated equilibria. To give an indication
of scalability and performance, we also include the total
number of states in the game unfolding and the time for
model construction and algorithm execution for both NE
and CE. For this example, both types of equilibria yield the
same values for the properties considered.

Finally, we discuss equilibria strategies for different values
of the uncertainty parameter εown. We find that the agents
always comply with the advisory system for smaller initial
values of t (time until loss of horizontal separation), given
that reaching safety would be of higher priority. Fig. 5 (left)
illustrates that following the advisories is the best strategy
when safety and trust are the priority, as the trust levels trown
and trint of the two agents never decrease from the initial
score of 4. This changes, however, when both aircraft have
a larger horizon to consider. The strategy in Fig. 5 (right)
shows a deviation from the advisory (denoted by value 0 for
aown in state s2), resulting in trown dropping to 3 in s3 with
probability 0.9, reduced fuel consumption and the safety
limit of 200 being approached.

Efficiency and scalability. For equilibria computation us-
ing GBI, which computes locally optimal equilibria, CE are
generally considerably faster to compute than NE. This is
due to the fact that finding an optimal CE in a state can be
reduced to solving a linear program, while computing an
optimal NE requires finding all solutions of a linear com-
plementarity problem. The same, however, is not observed
when comparing the performance of FSI on the two types of
equilibria. This is because a path-based encoding requires a
greater number of constraints and variables for CE, and we
need to solve nonlinear programs.

6 CONCLUSIONS

We have considered finite-horizon equilibria computation
for CSGs whose agents are equipped with NN-based percep-
tion mechanisms. We developed an approximate algorithm

εown, εint t States
Constr.
time (s)

GBI
h Viol.time (s)

NE CE

0, 0
2 100 0.06 0.1 0.05 82 0
3 836 0.6 0.7 0.3 123 0
4 6997 36.6 8.0 1.8 199 25%

0.1, 0
2 157 0.1 0.2 0.1 82 0
3 1622 1.4 1.0 0.3 123 0
4 16028 273.8 14.2 3.3 199 20%

0.1, 0.2
2 251 0.1 0.2 0.07 82 0
3 3174 4.4 1.5 0.6 123 0
4 36639 1497.2 26.7 5.8 199 20%

Table 2: Statistics for the VCAS[2] example.

(trown, adown)

(trint, adint)

(h, ḣown, ḣint, t)

State

sk

(aown, aint)

(4, 1)

(4, 1)

(50,−5, 5, 3)
s0

(4, 4)

(4, 1)

(66,−14, 8, 2)
s1

(4, 1)

(4, 1)

(91,−17, 11, 1)
s2

(4, 1)

(4, 1)

(123,−20, 14, 0)
s3
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s3
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(4, 1)
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Figure 5: Strategies for the VCAS[2] example: (a) εown = 0,
εint = 0 and t initially 3; (b) εown = 0.1, εint = 0 and t
initially 4.

that improves on social welfare equilibria values and strate-
gies, for both SPNE and SPCE, compared to backward
induction, which can only reason about local optimality. A
prototype implementation showcased its applicability and
advantages on two case studies. Future work will focus
on infinite-horizon properties (incorporating finite-horizon
equilibria with receding horizon synthesis [Raman et al.,
2015]) and temporal logic specifications.

Acknowledgements

This project was funded by the ERC under the European
Union’s Horizon 2020 research and innovation programme
(FUN2MODEL, grant agreement No. 834115).

http://www.fun2model.org


References

Dilip Abreu, Benjamin Brooks, and Yuliy Sannikov. Al-
gorithms for stochastic games with perfect monitoring.
Econometrica, 88(4):1661–1695, 2020.

Michael E. Akintunde, Elena Botoeva, Panagiotis Kouvaros,
and Alessio Lomuscio. Verifying Strategic Abilities of
Neural-symbolic Multi-agent Systems. In Proceedings
of the 17th International Conference on Principles of
Knowledge Representation and Reasoning (KR 2020),
pages 22–32. IJCAI Organization, 9 2020a.

Michael E Akintunde, Elena Botoeva, Panagiotis Kouvaros,
and Alessio Lomuscio. Formal verification of neural
agents in non-deterministic environments. In Proceed-
ings of the 19th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2020), pages
25–33. Springer, 2020b.

Daniel Ayala, Ouri Wolfson, Bo Xu, Bhaskar Dasgupta, and
Jie Lin. Parking slot assignment games. In Proceedings
of the 19th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, page
299–308. Association for Computing Machinery, 2011.

Patricia Bouyer, Nicolas Markey, and Daniel Stan. Mixed
Nash equilibria in concurrent terminal-reward games. In
FSTTCS 2014, pages 1–12, 2014.

T. Brihaye, V. Bruyère, A. Goeminne, J.-F. Raskin, and
M. van den Bogaard. The complexity of subgame per-
fect equilibria in quantitative reachability games. In
Wan Fokkink and Rob van Glabbeek, editors, Proc.
CONCUR’19, volume 140 of LIPIcs, pages 13:1–13:16.
Leibniz-Zentrum für Informatik, 2019.

Thomas Brihaye, Véronique Bruyère, Aline Goeminne,
Jean-François Raskin, and Marie van den Bogaard. The
complexity of subgame perfect equilibria in quantitative
reachability games. Logical Methods in Computer Sci-
ence, 16(4):1–43, 2020.

Andriy Burkov and Brahim Chaib-draa. An approximate
subgame-perfect equilibrium computation technique for
repeated games. In Proceedings of the Twenty-Fourth
AAAI Conference on Artificial Intelligence (AAAI 10),
page 729–736. AAAI Press, 2010.

Radu Calinescu, Calum Imrie, Ravi Mangal, Corina Păsăre-
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