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Abstract

One popular deep-learning approach for the task
of Out-Of-Distribution (OOD) detection is based
on thresholding the values of per-class Gaussian
likelihood of deep features. However, two issues
arise with that approach: first, the distributions are
often far from being Gaussian; second, many OOD
data points fall within the effective support of the
known classes’ Gaussians. Thus, either way it is
hard to find a good threshold. In contrast, our pro-
posed solution for OOD detection is based on a
new latent space where: 1) each known class is
well captured by a nearly-isotropic Gaussian; 2)
those Gaussians are far from each other and from
the origin of the space (together, these properties
effectively leave the area around the origin free for
OOD data). Concretely, given a (possibly-trained)
backbone deep net of choice, we use it to train
a conditional variational model via a Kullback
Leibler loss, a triplet loss, and a new distancing
loss that pushes classes away from each other. Dur-
ing inference, the class-dependent log-likelihood
values of a deep feature ensemble of the test point
are also weighted based on reconstruction errors,
improving further the decision rule. Experiments
on popular benchmarks show that our method
yields state-of-the-art results, a feat achieved de-
spite the fact that, unlike some competitors, we
make no use of OOD data for training or hyperpa-
rameter tuning. Our code is available at https:
//github.com/BGU-CS-VIL/vmdls.

1 INTRODUCTION

Out-of-Distribution (OOD) detection is the following classi-
fication task. During training, there are labeled data points
where each label is associated with one out of C classes.

(a) Known classes: MNIST. OOD: Omniglot.

(b) Known classes: CIFAR-10. OOD: ImageNet-resize.

Figure 1: The t-SNE visualizations of feature ensembles,
obtained using the proposed method, of test data in two dif-
ferent experiments (see text for details). The known classes
are well separated from each other and from the OOD data.

The latter are referred to as known classes while the points
from all the C classes are collectively called in-distribution
train data. In test time, in addition to previously-unseen (and
unlabeled) points from the C known classes – such points
are called in-distribution test data – there are also (unla-
beled) points that belong to neither of the known classes –
such points are called OOD data. OOD detection is then
the binary classification between in-distribution (test) data
and OOD data. Note that in general, unlike the case of in-
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distribution data, the availability of OOD data during the
training cannot be assumed.

In Deep Learning (DL) [LeCun et al., 2015], OOD de-
tection is especially important: e.g., when Deep Neural
Nets (DNNs) misclassify data, they often do this with high
confidence [Goodfellow et al., 2015, Nguyen et al., 2015,
Hendrycks and Gimpel, 2016, Moosavi-Dezfooli et al.,
2017]. As such mistakes often stem from OOD data, it
is beneficial to detect the latter.

Attempts to solve classification tasks, OOD detection in-
cluded, are often based on trying to learn a low-dimensional
latent space wherein classes are well separated. Many ex-
isting OOD-detection methods try to do so using metric
learning (typically based on a contrastive loss) or a varia-
tional loss. Then, in test time, they use a decision rule based
on thresholding the values of per-class Gaussian likelihoods.
However, the problem with that Gaussian-based approach,
at least when used naively, is twofold: 1) the distribution of
each known class is usually not well captured by a Gaussian;
2), many of the OOD points tend to fall within the effective
support of one or more of the known classes’ Gaussians.
Consequently, finding a good threshold is difficult.

Our proposed method eliminates these issues (see Figure 1),
a feat achieved partly by leveraging in a synergistic way
some of aforementioned ideas and partly by introducing
new ideas.

For example, part of our method is based on using both a
variational term and a metric loss. The variational term is
a class-conditioned Gaussian Kullback-Leibler (KL) diver-
gence loss [Sun et al., 2020a]. However, rather than using
a contrastive loss, our metric loss consists of two terms: a
triplet loss [Schroff et al., 2015] and a new loss called dis-
tancing. The distancing loss helps achieving a much better
inter-class separation than what the triplet loss can do by
itself. The key insight in this context is that without the dis-
tancing loss, the combination of the variational and triplet
losses, which may work well in other classification tasks,
tends to be less effective here (in OOD detection) as each
loss pushes in a different direction, leading to insufficient
separation and much of the OOD data ending up within the
known classes’ support. Adding the distancing term solves
this, implicitly helping to form, between the known classes,
an empty area wherein most of the OOD data ends up.

Another key difference between the learning stage of our
method and others is that we measure our metric loss on the
output of a stochastic generator, and not, as is usually done
with such losses, on deterministic representations.

Our overall loss results in a new latent space, coined a
Variational- and Metric-based Deep Latent Space (VMDLS),
wherein: 1) the distribution of each known class is (a nearly-
isotropic) Gaussian; 2) these Gaussians are well separated
from each other; 3) the in-distribution (train and test) points

are well separated from the OOD points.

After the DNN training and before the inference, we par-
tially follow [Lee et al., 2018b] in that we extract a deep fea-
ture ensemble from our trained model for each of the train-
ing points, and fit, using a new implicit scheme, a (usually-
anisotropic) Gaussian to the feature ensembles of each class.
During inference, we compute for the feature ensemble of
each test point its negative log-likelihood (ll) according to
each of those Gaussians. Then, our method has two versions.
In the basic one, denoted by VMDLSb, we compare the best
negative ll value against an application-specific threshold.
As we will show, VMDLSb is already a good OOD method –
it has State-of-the-art (SOTA) results or close to it in terms of
the F1 score (which takes in account both the classifier accu-
racy and OOD detection) – and achieves fairly-decent results
in binary OOD detection. However, a better version, denoted
by VMDLS, is obtained with the help of a reconstruction-
based weighting scheme (see § 3.3). VMDLS yields results
that are uniformly better than VMDLSb and sets new SOTA
results on several popular benchmarks in OOD detection
(at least among methods that do not need OOD data for
training/tuning). In Figure 1 we show, using t-SNE visual-
izations [Van der Maaten and Hinton, 2008], example results
of the latent space associated with the learned feature ensem-
ble in two different experiments: in one, the in-distribution
data is MNIST [LeCun, 1998] and the OOD data is Om-
niglot [Lake et al., 2015]; in the second, the in-distribution
data is CIFAR-10 [Krizhevsky, 2009] and the OOD data is
ImageNet-resize [Liang et al., 2018]. All of the data shown
in Figure 1 is test data.

To summarize, our main contributions are: 1) A new
learning scheme of a novel latent space, where classes are
well separated from each other and from OOD data based on
a stochastic generator as well as a synergy between KL and
metric losses via the help of a new metric-loss term; 2) A
new inference scheme using that latent space, together with
a reconstruction of low-level features, for OOD detection.

Together, these contributions give rise to a new end-to-end
solution for OOD detection that yields SOTA results in mul-
tiple benchmarks and, importantly and unlike some existing
methods, requires no OOD data for training/tuning.

Finally, all our experiments are reproducible, as the reader
can verify by running our publicly-available code

2 RELATED WORK

Hendrycks and Gimpel [2016] proposed a popular OOD-
detection baseline that uses a threshold on the maximal
SoftMax score of a classifier to determine whether a point is
OOD or not. ODIN [Liang et al., 2018] is a method that is
applied to a previously-trained DNN and, by using small per-
turbations on the input and temperature scaling, calibrates
the classifier’s SoftMax scores, improving the separation



between in-distribution and OOD data. Lee et al. [2018b]
proposed a method, called Mahalanobis, that extracts a fea-
ture ensemble from a trained DNN for all the known classes,
and then fits class-conditioned Gaussian distributions (an
idea we use too). Given a test point, they compute the Maha-
lanobis distance according to each of the Gaussians. Next,
the decision (OOD or not) is made based on that distance,
with the aid of a logistic-regression detector that they tune
on a small validation set, which, in addition to in-distribution
points, also includes some OOD data. Masana et al. [2018]
proposed using metric learning for OOD detection. Specifi-
cally, they use a contrastive loss [Chen et al., 2020b] with
OOD mining, incorporating an OOD set (different from the
set they use at testing) during training. In [Winkens et al.,
2020], a contrastive loss is used in several self-supervision
tasks, together with a SoftMax-based classifier, for learning
meaningful latent representations. In CSI [Tack et al., 2020]
a contrastive loss is used as well, with shifting instances.
Two other smart methods that use OOD data during training
are Outlier Exposure (OE) [Hendrycks et al., 2019] and the
energy-based model in [Liu et al., 2020].

More generally, note that the dependency of the elegant
methods in [Hadsell et al., 2006, Hendrycks et al., 2019, Lee
et al., 2018b, Liang et al., 2018, Liu et al., 2020] on OOD
data for either tuning or training is a limitation. Moreover,
that dependency also makes a comparison between these
methods and ones that do not rely on OOD data (like ours)
unfair against the latter.

Hsu et al. [2020] proposed Generalized ODIN, an ODIN
variant that requires no hyperparameter tuning on OOD
data. Recently, Zaeemzadeh et al. [2021] proposed using
1-dimensional subspaces for OOD detection; similarly to
Generalized ODIN, their method requires no tuning on OOD
data. Yoshihashi et al. [2019] proposed CROSR, where
instead of using only the DNN’s output, they also used a
latent representation extracted from the DNN. They have
also introduced DHRNet, a DNN which assists the learning
of meaningful representations via reconstruction.

While methods that rely on trained classifiers (e.g., [Liang
et al., 2018, Lee et al., 2018b, Hendrycks and Gimpel, 2016])
have proven to be successful, they are, as was noted in [Lee
et al., 2018a], limited by the trained classifier. In contrast,
rather than relying on such trained DNNs, our method is
based on a novel training scheme. Our method may be
viewed as belonging to the hybrid discriminative-generative
camp, an approach adopted by several recent works such
as OpenHybrid [Zhang et al., 2020], OSAD [Shao et al.,
2020] (which is used for adversarial defense) and SSD [Se-
hwag et al., 2020] (which utilizes unlabeled in-distribution
samples).

A reconstruction-based method was proposed by Perera et al.
[2020] who trained a generative model for the known classes,
and augmented the input with representations obtained from

that model for training a classifier. They also used self-
supervision to learn more informative features. Chen et al.
[2020a] used Reciprocal Point Learning (RPL) to learn com-
pact and discriminative representations. More relevant to
our work is a method called CGDL [Sun et al., 2020a]
which trains a Variational Auto Encoder (VAE) with a class-
conditioned Gaussian distribution. Particularly, their model
learns a different Gaussian for each class and uses a ladder
architecture to extract high-level features, a SoftMax-based
classifier, and a detector of unknown classes in the learned
latent space. From their work we have adopted (and adapted)
a single idea and that is the usage of class-conditioned Gaus-
sians. Another recent work employing a conditional VAE is
CVAECapOSR [Guo et al., 2021] which is based on fitting
to each class a predefined Gaussian. One key difference
between our usage of a Conditional VAE and [Sun et al.,
2020a, Guo et al., 2021] is that while they use predefined
target Gaussians [Guo et al., 2021], or explicitly learn the tar-
get Gaussians [Sun et al., 2020a], we learn them implicitly
by the metric losses. This helps us achieve better separation
between the classes.

3 THE PROPOSED METHOD

We design our model to have a deep latent space with
two desiderata: 1) That the empirical distribution of each
class will be well approximated by a Gaussian (this simpli-
fies inference and implies that the level sets of each class-
dependent empirical distribution are nearly convex). 2) That
each such Gaussian will be far from the Gaussians of all
of the other classes. Once these properties are achieved,
a likelihood-based decision whether a point belongs to a
known class or not is easily made, as we explain below.

Let D be the dimension of the data, let x ∈ RD denote a
data point, and let d < D be the dimension of the sought-
after latent space. Our model is an encoder (an RD → Rd

function) that consists of a backbone DNN denoted by g :
RD → Rk (where d < k < D) and a stochastic generator,
f : Rk → Rd, that generates d-dimensional samples and
whose functionality is closely related to the sampling step
in a VAE [Kingma and Welling, 2014]. More concretely, let

f(g(x)) = µ(g(x)) + (σ(g(x))⊙ ϵ) ∈ Rd

µ = (µ1, . . . , µd) : Rk → Rd

σ = (σ1, . . . , σd) : Rk → Rd
>0

ϵ ∼ N (0d×1, Id×d) (1)

where ⊙ is the Hadamard (element-wise) product. Each
of the functions µ and σ is defined via its own fully-
connected layer whose input is g(x) (the positivity of σ is
ensured by exponentiating the output of its layer). A dif-
ference from a standard VAE is that here f(g(x)) ∈ Rd is
never transformed back to RD; i.e., there is no “decoding”
as we do not try to reconstruct x. The role of the latent
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Figure 2: The proposed model with a ResNet backbone.

space will become apparent when we discuss our loss func-
tion. As for g, in principle any backbone could be used
within our method. In our experiments we explored sev-
eral types: ResNet18 [He et al., 2016]; ResNet34 [He et al.,
2016]; DenseNet-BC100 [Huang et al., 2017]; WideRes-
Net28 [Zagoruyko and Komodakis, 2016]; VGG [Simonyan
and Zisserman, 2015]; a simple Convolutional Neural Net
(CNN). The values of k and d depend on the backbone and
dataset; for the concrete values used in our experiments see
our Supplemental Material (SupMat). The model’s architec-
ture (with a ResNet backbone) is shown in Figure 2, where
(as we explain in the next sections) the red lines are used
only during training, the solid blue lines are used during
both training and testing, and the dashed blue lines are used
only during testing.

3.1 TRAINING

Recall that C is the number of known classes. Let N be the
number of training points and let yi ∈ {1, . . . , C} be the
class label of a training point xi ∈ RD. We split the training
data into batches using the following standard mining strat-
egy. For each batch we choose BC classes at random, where
BC ∈ {2, . . . , C} (i.e., there must be representatives from
at least two classes in each batch), and then, from each such
a randomly-chosen class we choose BN examples at ran-
dom. These examples constitute the batch. The values of BC

and BN depend on both the backbone and the dataset (the
concrete values used in our experiments appear in the Sup-
Mat). Our overall loss combines three loss types. The first
loss is the popular triplet loss [Schroff et al., 2015] which
is based on three input examples (from the same batch) at
each time: an anchor example, xa

i ; a positive example, xp
i ; a

negative example, xn
i . This loss aims to make (in the latent

space) the squared ℓ2 distance between xa
i and xp

i smaller
than the squared ℓ2 distance between xa

i and xn
i by, at least,

a user-defined margin Mt:

Lt(x
a
i ,x

p
i ,x

n
i ) ≜max(0,Mt + ∥f(g(xa

i ))− f(g(xp
i ))∥

2

− ∥f(g(xa
i ))− f(g(xn

i ))∥
2
) . (2)

The anchor and the positive examples are chosen from the
same class, while the negative example is from some other
class. The rationale is to push examples of different classes
away from each other while drawing same-class examples
closer to each other. While this is desired in our context
as well, it turns out that it is not enough for pushing the
classes sufficiently far from each other. In other words, we
want to push the anchor away from the negative examples
independently of the current distance between xa

i and xp
i .

We thus propose adding a new simple metric loss term,
called distancing. It uses the same xa

i and xn
i from the

nominal triplet used in Lt (and ignores xp
i ) and has its own

user-defined margin parameter, Md:

Ld(x
a
i ,x

n
i )≜max(0,Md−∥f(g(xa

i ))−f(g(xn
i ))∥

2
). (3)

The idea here is to further push the anchor from the negative
examples, without affecting its distances from the positive
ones. As an aside, the addition of the Md hyperparameter
does not increase the number of knobs to tweak; as it turns
out, the presence of the Ld term lets us fix the value of Mt

(the margin from the standard triplet loss) to Mt = 0.1 in
all our experiments on all the datasets (changing the value
of Mt is equivalent to scaling all the other hyperparameters
accordingly). As for the value of Md, we usually use Md =
d. Lastly, our combined metric loss for triplet (xa

i ,x
p
i ,x

n
i ),

measured on the output of the stochastic generator, f , is:

Lm(xa
i ,x

p
i ,x

n
i ) = Lt(x

a
i ,x

p
i ,x

n
i ) + Ld(x

a
i ,x

n
i ) . (4)

The third loss term is a Gaussian class-conditioned KL
divergence loss, proposed by [Sun et al., 2020a] (based
on [Kingma and Welling, 2014]). Its purpose is to make
the intra-class distribution in the latent space as close as
possible to an isotropic Gaussian. The KL-divergence loss
(i.e., the negated KL divergence) for xi is

LKL(xi) = −DKL(q(·|g(xi))||p(·|yi)) (5)

where q(·|g(xi)) is a d-dimensional Gaussian probabil-
ity density function (pdf) with a mean vector µ(g(xi))
and a diagonal covariance matrix whose (j, j) entry is



σ2
j (g(xi)) while p(·|yi) is an isotropic d-dimensional Gaus-

sian pdf, associated with class yi, with a mean vector
m(yi) = (m1(yi), . . . ,md(yi)) and variance s2 (we use
s2 = 0.1 in all classes and in all our experiments; changing
s2 to another constant will only change the scaling of the
other hyper-parameters). We now explain how (m(c))Cc=1

are defined. While in [Guo et al., 2021] the means are prede-
fined, and in [Sun et al., 2020a] the means were learned at
the same time with the rest of the model, we compute them
based on the previous epoch. That is, at epoch t, for each
class c we set m(c) = 1

Nc

∑
xi:yi=c ft−1(g(xi)), where

Nc = |{i : yi = c}| is the number of training points in class
c, and ft−1(g(xi)) is the previous epoch’s output for xi.

The reason for using the fixed results from the previous
epoch is that since the distancing loss pushes the classes
away from each other, learning the target means from the
previous epoch gradually pushes the target Gaussians from
each other, and does so without the added complexity of
learning them separately (as was done in [Sun et al., 2020a]).
This encourages the classes to have Gaussian distributions of
similar shape and (small) size in the latent space, simplifying
learning and inference. Based on the above, it can be shown
(SupMat) that LKL(xi) equals

d∑
j=1

−log s
σj(g(xi))

− σ2
j (g(xi))+(µj(g(xi))−mj(yi))

2

2s2 + 1
2 . (6)

Lastly, L(xi), the overall loss of xi, and L((xi)
N
i=1), the

loss across the entire training data, are

L(xi) =LKL(xi) +
1

|T (xi)|

∑
xp

i ,x
n
i ∈T (xi)

Lm(xi,x
p
i ,x

n
i )

and L((xi)
N
i=1) =

1
N

∑N

i=1
L(xi) (7)

where T (xi) consists of all of the possible triplets for xi in
the batch.

At this point, the reader may wonder about the role of the
stochastic generator as seemingly the metric loss can be mea-
sured on the deterministic µ(g(·)) instead of the stochas-
tic f(g(·)). However, empirically, the deterministic option
rarely works well (and even then it is no better than the
stochastic one) while in most cases it led to unstable op-
timization and poor results. We did not encounter these
issues with the stochastic version. A plausible theoretical
explanation (similar to one used in the classical VAE) to
this phenomenon is that the sampling leads, during the back
propagation, to unbiased estimates of the true gradient.

Importantly, the effect of the overall loss is not only creating
small isotropic Gaussians that are far from each other but
also creating a large empty area between them (for an intu-
itive explanation, see SupMat). Empirically, this is where
the OOD data ends up during test time.

Learning C Anisotropic Gaussians over Deep Feature
Ensembles. After the training, following an idea from [Lee

et al., 2018b], we run a forward pass on the training set
(with no augmentations) and for each xi collect a feature
ensemble, ti:

ti ≜ t(xi) = (t1(xi), t
2(xi), t

3(xi), g(xi),µ(g(xi)) (8)

where (t1, t2, t3) are the outputs (after performing average
pooling) of 3 different layers from the backbone. The choice
of those layers depends on the backbone’s architecture. In
block-based architectures (e.g., ResNet or DenseNet) we use
the outputs of the first 3 blocks; see, e.g., Figure 2. In other
architectures, various choices may be made. See SupMat
for examples in our experiments. Next, for each class c,
we fit a multivariate anisotropic Gaussian to (ti)i:yi=c, the
feature ensembles associated with that class.

3.2 TESTING

Given a test point x ∈ RD we extract its feature ensemble t
and calculate its log-likelihood values according to each of
the C Gaussians from § 3. Let (lc)Cc=1 denote these values
and let l = maxc lc and cmax = argmaxc lc. The t-SNE
visualizations (Figure 1) of the feature ensembles for the
test data in two benchmarks show that the known classes
are well separated from each other as well as from the OOD
data; i.e., the properties of the last latent layer propagate
to the other latent layers, hence also to the additional fea-
tures in the ensemble. Moreover, likelihood values of the
OOD points are in general much lower than those of the
in-distribution test points. In principle we can stop here,
and use the following rule to decide whether x belongs to
class cmax or if it is an OOD point: ŷ = cmax if l > λ
and ŷ = OOD otherwise where ŷ is the predicted label of
x. Here, λ is a user-defined threshold whose application-
specific value can be determined based on either the train set
or a small validation set (neither of these sets contains OOD
data) according to the allowed False Negative Rate (FNR)
while taking into account the model accuracy (if interested
in classification as well as OOD detection). That is, λ is
chosen according to the relative importance the user gives
to False Positives (FP) or False Negatives (FN). We refer
to this basic version of our method as VMDLSb. As we
show in § 4, VMDLSb already achieves SOTA results when
benchmarking F1 score (taking in account both classifica-
tion and OOD) or close to it, and has good results in binary
OOD detection. That said, a simple change improves results
even further; see § 3.3.

3.3 RECONSTRUCTION-BASED WEIGHTING

To improve results we use and adapt a popular tech-
nique [Sun et al., 2020a,b, Yoshihashi et al., 2019] based on
test-point reconstruction. Concretely, we train, on the same
training data (but independently of our model) a simple
(non-conditional, non-variational) autoencoder (see Sup-
Mat for details) with an ℓ2 reconstruction loss. Let x̂ denote



(a) Unmodified values
(VMDLSb)

(b) Modified values (VMDLS)

Figure 3: Negative ll (scaled to one) without (a) and with (b)
the modification. In-distribution: CIFAR-10 (blue). OOD:

ImageNet-resize (orange). Note the better separation in (b).

the reconstruction of test point x using that AE. We run a
forward pass of our model on both x and x̂. Let t1 and t̂1 de-
note the first features (see Eq. (8)) associated with x and x̂,
respectively, and let w = ||t1− t̂1||2ℓ2 . If x is in-distribution,
then w is usually small. We now modify l (from § 3.2) by w:
i.e., lnew ≜ w · l. Within the modified values, the separation
of OOD points from the rest is better than before, a fact
becoming clearer when the negative log-likelihood values
are normalized to lie in the unit interval and a similar pro-
cedure is applied to their modified version: while most of
the OOD values are hardly affected by the modification, the
in-distribution values are vastly reduced; see Figure 3. This
leads to a new rule: ŷ = cmax if lnew > λ and ŷ = OOD
otherwise. We refer to our method, when using this rule, as
VMDLS.

One difference in how we use the reconstruction-based
weighting from how such schemes are commonly used is
that we rely of the reconstruction of the (relatively) shallow
feature. The reason is that in the deeper features, the differ-
ences between the OOD and in-distribution are (empirically)
less noticeable as many fine details get washed out. For some
intuition, suppose that in-distribution points are cars and the
OOD points are animals. When a dog image enters the sim-
ple AE (trained on cars) its reconstruction is poor; e.g., it
might look like a blurry/unrecognizable car. Both the dog
image and its poor reconstruction are fed to our model. The
low-level features (e.g., edges) in both cases will still be
fairly-well captured but will be very different across the two
images of the dog and its poorly-reconstructed version. That
disparity, however, becomes smaller when moving deeper
into the model. This is because the (true) high-level features
of the dog image (e.g., the dog’s legs) are poorly captured
by our model (learned on cars) and will appear in neither
the dog’s image nor its reconstructed version. Thus, our
reconstruction-based weighting is based on the shallow fea-
tures. See SupMat for empirical comparison with deeper
features.

4 EXPERIMENTS AND RESULTS

We evaluated our method on several OOD-detection bench-
marks and compared it with several key relevant methods,
focusing on methods whose authors made their code avail-

able and/or published results on those benchmarks. We ex-
cluded methods that use OOD data during training (e.g.,
OE [Hendrycks et al., 2019]) as such methods enjoy an
unfair advantage. We did include, however, two methods
that use OOD data for hyperparameter tuning (ODIN [Liang
et al., 2018] and Mahalanobis [Lee et al., 2018b]). In our ex-
periments, we followed testing methodologies employed
in recent works [Sun et al., 2020a,b, Yoshihashi et al.,
2019, Oza and Patel, 2019, Liang et al., 2018, Lee et al.,
2018b, Hsu et al., 2020]. We split the experiments to two
types. In the first, the binary OOD detection benchmark, we
used two widely-used metrics: 1) The Area Under the Re-
ceiver Operating Characteristic curve (AUROC), which is a
threshold-independent metric (unlike, e.g., the F1 score). 2)
The true-negative rate at a true-positive rate of 0.95, denoted
as TNR@TPR95. For the second, we evaluated our method
on the popular Open Set Recognition (OSR) [Scheirer et al.,
2012] task, in which one measures how well a method pre-
dicts (in the test data) the C + 1 labels, where the (C + 1)-
th label represents the OOD data. To that aim, and as is
common, we computed the F1 score per class, and then
computed the macro-average across those C + 1 values.

We experimented with several backbones: ResNet18;
ResNet34; WideResNet28; DenseNet-BC100; a modified
version of VGG (as defined in [Yoshihashi et al., 2019]); a
plain CNN (as defined in [Yoshihashi et al., 2019]). For each
model and dataset we used a suitable (and fairly-standard)
training strategy (except in the CIFAR-100 DenseNet and
the CIFAR-10 WideResnet28 experiments where we fine-
tuned a network pretrained on the data with a standard Soft-
Max classifier, in all the other experiments we trained the
models from scratch); see SupMat for details.

Benchmarks. For Binary OOD detection, we used the
benchmarks proposed in [Liang et al., 2018]: using CIFAR-
10 [Krizhevsky, 2009] or CIFAR-100 [Krizhevsky, 2009]
for the known classes, and either of the following 4 datasets
as OOD: ImageNet-crop; ImageNet-resize; LSUN-crop;
LSUN-resize. Thus, there were 8 experiments (one per com-
bination). ImageNet-crop and ImageNet-resize are subsets
of ImageNet [Deng et al., 2009], either cropped or resized
to the appropriate size for CIFAR. Likewise, LSUN-crop
and LSUN-resize are cropped/resized subsets of LSUN [Yu
et al., 2015]. Each of the OOD sets contains 10K images,
curated by [Liang et al., 2018]. For OSR, in one type of ex-
periments we used CIFAR-10 as the known classes, and
the same aforementioned 4 OOD sets (so there were 4
such experiments). We also did three experiments using
MNIST [LeCun, 1998] as the known classes, and one of
the following three OOD sets each time: Omniglot’s test
set [Lake et al., 2015], which contains different handwritten
characters from multiple alphabets; MNIST-noise, a version
of MNIST with random uniform noise added to it; NOISE,
where each observation is a random uniform noise. Each
OOD set contains 10K images.



Table 1: OOD-detection results on CIFAR-10 and
CIFAR-100. Results: macro-averages over 4 OOD datasets:

ImageNet-resize; ImageNet-crop; LSUN-crop;
LSUN-resize. Backbones: ResNet18 for CSI;

WideResnet28 for SubSpaces; DenseNet-BC100 for the
rest.

CIFAR-10 CIFAR-100

Method AUROC TNR@TPR95 AUROC TNR@TPR95

ODIN1 0.987 0.945 0.910 0.599
Mahalanobis2 0.993 0.979 0.986 0.940
DeConf-C 0.989 0.946 0.820 0.556
Mahalanobis* 0.962 0.820 0.916 0.649
ODIN* 0.904 0.556 0.911 0.581
CSI 0.981 0.897 0.913 0.582
SubSpaces 0.988 0.943 0.930 0.675
VMDLSb (Ours) 0.977 0.866 0.975 0.878
VMDLS (Ours) 0.990 0.982 0.995 0.980

1 Uses an OOD set (though not the OOD test set) for tuning.
2 Uses 1/10 of the test and OOD sets for tuning and training a

linear regressor during inference.

Binary OOD Detection. On the binary OOD-detection
benchmark described above, we compared our method
against 5 other methods: ODIN [Liang et al., 2018];
Mahalanobis [Lee et al., 2018b]; DeConf-C [Hsu et al.,
2020];CSI [Tack et al., 2020]; SubSpaces [Zaeemzadeh
et al., 2021]. Note this comparison is biased in favor of
ODIN and Mahalanobis; unlike the other methods (ours
included) which require no tuning on OOD data, ODIN
requires tuning on a different OOD set, while Mahalanobis
uses 1

10 of both the test sets of the known classes and the
OOD to tune its hyperparameters. To account for that, we
also include the results for versions of those methods which
do not depend on OOD sets for tuning, as described by Hsu
et al. [2020]. We mark them as ODIN* and Mahalanobis*.
We report the results in Table 1 (the numbers for ODIN*,
Mahalanobis* and DeConf-C are taken from [Hsu et al.,
2020]), where we show the macro-average results across the
4 OOD sets (full results are in the SupMat). It is observable
that in most cases VMDLS outperforms the others. The
exception is the AUROC score for CIFAR-10 where Maha-
lanobis has a slightly higher score than VMDLS; however,
once its usage of OOD sets is denied (i.e., Mahalanobis*),
its results drop below ours.

OSR. On the CIFAR-10-as-in-distribution benchmark
described above, we compared with the following meth-
ods: SoftMax; OpenMax [Bendale and Boult, 2016];
CROSR [Yoshihashi et al., 2019], C2AE [Oza and Pa-
tel, 2019]; ODIN [Liang et al., 2018]; CGDL [Sun et al.,
2020a]; CPGM-AAE [Sun et al., 2020b] RPL [Chen et al.,
2020a]; CVAECapOSR [Guo et al., 2021]. Unlike in the
previous benchmark (where most methods used DenseNet-
BC100), here some methods use different backbones and,
in addition, ODIN uses a different OOD set for hyperpa-

Table 2: Macro-average F1-scores of 11 classes (10 known;
1 unknown) on CIFAR-10 as the known classes and 4

different OOD sets.

Method Backbone ImageNet-c ImageNet-r LSUN-c LSUN-r

SoftMax VGG 0.639 0.653 0.642 0.647
OpenMax VGG 0.660 0.684 0.657 0.668
CROSR VGG 0.721 0.735 0.720 0.749
C2AE CNN 0.837 0.826 0.783 0.801
CGDL VGG 0.840 0.832 0.806 0.812
CPGM-AAE VGG 0.793 0.830 0.820 0.865
RPL WResNet 0.811 0.810 0.846 0.820
CVAECapOSR ResNet34 0.857 0.834 0.868 0.882
ODIN1 DenseNet 0.910 0.904 0.898 0.911
VMDLSb (Ours) VGG 0.850 0.845 0.849 0.844
VMDLSb (Ours) ResNet18 0.889 0.875 0.888 0.882
VMDLSb (Ours) DenseNet 0.913 0.908 0.914 0.911
VMDLSb (Ours) WResNet 0.934 0.901 0.935 0.910
VMDLS (Ours) VGG 0.907 0.861 0.900 0.886
VMDLS (Ours) ResNet18 0.926 0.906 0.904 0.924
VMDLS (Ours) ResNet34 0.930 0.911 0.928 0.907
VMDLS (Ours) DenseNet 0.939 0.927 0.941 0.934
VMDLS (Ours) WResNet 0.945 0.930 0.942 0.936

1 Uses an OOD set (though not the OOD test set) for tuning.

rameter tuning, giving it an advantage. For a fair compar-
ison, we have evaluated our method with several different
backbones used by the other methods: 1) the same mod-
ified VGG used in [Yoshihashi et al., 2019, Sun et al.,
2020a,b]; 2) ResNet34 [He et al., 2016] (used in [Guo et al.,
2021]); 3) DenseNet-BC100 (used in [Liang et al., 2018]);
4) WideResNet28 (used in [Zaeemzadeh et al., 2021]); 5)
For completeness, we also used the popular ResNet18 [He
et al., 2016]. On the MNIST-as-in-distribution bench-
mark described above, we compared our method with 5
others: A standard SoftMax; OpenMax [Bendale and Boult,
2016]; CROSR [Yoshihashi et al., 2019]; CPGM-VAE [Sun
et al., 2020a]; CPGM-AAE [Sun et al., 2020b]; CVAECa-
pOSR [Guo et al., 2021]. For a fair comparison, as the
backbone for our method we used the same CNN specified
in [Yoshihashi et al., 2019]. Table 2 and Table 3 summarize
the results. The results in Table 2 show that, for a given
backbone, VMDLS outperforms the other methods that use
that backbone. Moreover, even with ResNet18 VMDLS out-
performs the DenseNet-based ODIN (despite ODIN’s usage
of tuning on OOD data). Likewise, the results in Table 3
show that VMDLS outperforms the others by a large margin.
Finally, note that in Table 2, after VMDLS, VMDLSb is
almost always the runner-up.

Remarks. 1) As ODIN’s published code (targeting binary
OOD detection) was easy to adapt for OSR we included it
in these experiments. 2) F1-score is threshold-dependent.
For the purpose of benchmarking, the F1-scores values in
this paper were computed (as was done, e.g., in [Sun et al.,
2020a]) using a threshold that aims to recognize 95% of
the train set as belonging to known classes. 3) Except our
own results and ODIN’s results (which we computed our-



(a) Lt (b) Lt + Ld,
Md = 32

(c) LKL + Lt

(d) LKL +Lt +Ld, Md = 1 (e) LKL + Lt + Ld,
Md = 32

Figure 4: The effect of the losses on (µ(xi))
N
i=1 in

MNIST’s train data with d = 2 (i.e., this is not a t-SNE plot
but the actual features). Each digit has its own color.

selves), the rest of the results in Table 2 and Table 3 were
reported in [Sun et al., 2020b,a, Guo et al., 2021, Chen et al.,
2020a]. 4) As the tables show, VMDLS always outperforms
VMDLSb. This is also true for individual OOD sets, not
just the averages. Thus, even if sometimes the improvement
from VMDLSb to VMDLS is small, we always recommend
the latter.

4.1 ABLATION STUDY

Losses. We trained the model on MNIST several times
each time using a different loss: (a) Lt; (b) Lt + Ld with
Md = 32; (c) LKL + Lt; (d) LKL + Lt + Ld, Md = 1; (e)
LKL + Lt + Ld, Md = 32. The last two options are the
proposed loss (with different Md values). In this ablation
study, we chose d = 2 to let us visualize µ directly, without
having to resort to a t-SNE visualization which might distort
the structure. Figure 4 depicts the values of (µ(xi))

N
i=1.

Using only Lt (Figure 4a) or using Lt + Ld without LKL

Table 3: Macro-average F1-scores of 11 classes (10 known;
1 unknown) score on MNIST as the known classes and 3

different OOD sets

Method Omniglot MNIST-noise Noise

SoftMax 0.595 0.801 0.829
OpenMax 0.780 0.816 0.826
CROSR 0.793 0.827 0.826
CGDL 0.850 0.887 0.859
CPGM-AAE 0.872 0.865 0.872
CVAECapOSR 0.971 0.982 0.982
VMDLSb (Ours) 0.969 0.961 0.963
VMDLS (Ours) 0.974 0.984 0.984

Table 4: Marco-average F1 scores with several losses.
Known classes: MNIST. Unknown: Omniglot. Mt = 0.1

unless stated otherwise.

Losses F1-score

LKL + Lt + Ld (Md = 32) 0.969
LKL + Lt + Ld (Md = 1) 0.941
LKL + Lt 0.860
Lt + Ld (Md = 32) 0.935
Lt 0.858
Lt (Mt = 1) 0.829

(Figure 4b) leads to small distances between the classes
whose clusters also differ from each other drastically in
shape and size. Using LKL + Lt (Figure 4c) leads to better
results, but the clusters are far from being isotropic and,
worse, are still close to each other in the vicinity of the origin.
Using the proposed loss with either Md = 1 (Figure 4d)
or, even more so, Md = 32 (Figure 4e), leads to nearly-
isotropic clusters of similar sizes that are also much further
away from each other. Table 4 summarizes the quantitative
results obtained with VMDLSb using the different losses on
the MNIST-as-in-distribution benchmark, again with d = 2.
We avoided here using VMDLS (which got slightly-better
results – which we omit – than VMDLSb) to focus on the
loss aspect. Table 4 also includes the (inferior) result of
using Lt with Mt = 1 (higher Mt values were even worse).

Feature Ensemble. To study the effect of the feature ensem-
ble, we compared VMDLS with different versions of itself
where each version uses a different subset of the features,
and evaluated the F1 performance of the different models in
the OOD task where CIFAR-10 served as the in-distribution
data while ImageNet-resize acted as the OOD data. As Ta-
ble 5 shows, while the results were reasonably-good even
when merely using µ, the added features helped and the
best results were achieved when using the entire ensemble.

Table 5: The effect of the feature ensemble.
In-distribution data: CIFAR-10. OOD data: ImageNet-resize.

Features (t1, t2, t3, g,µ) (t2, t3, g,µ) (t3, g,µ) (g,µ) µ

F1-score 0.927 0.925 0.919 0.918 0.906

5 CONCLUSION

We proposed an end-to-end SOTA method, for OOD de-
tection, which requires no OOD data for learning/tuning.
Its success lies in the good inter-class separation in the
latent space, which also translates to a large empty area
between the known classes where the OOD points end up.
Our method has 2 main limitations. While some methods
use a pre-trained DNN as is, ours requires either full DNN
training or fine-tuning a pretrained DNN. However, besides



the fact that this is also the case with most recent meth-
ods, our SOTA results justify the training effort. The second
limitation is that our training is about 4x slower than the
training of a simple SoftMax-based classifier with the same
backbone. However, this limitation can be mitigated consid-
erably by using a pre-trained backbone (as we did in a few
of the experiments in § 4) followed by fine tuning.

An interesting future direction which we have not explored
in this work is how to incorporate uncertainty decomposition
within the proposed method in order to improve the OOD
detection, as was done in Bayesian neural networks and/or
ensemble approaches [Vadera et al., 2020b, Malinin et al.,
2019, Vadera et al., 2020a, Depeweg et al., 2018].
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