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Abstract: Robotic grasping is a crucial task in industrial automation, where
robots are increasingly expected to handle a wide range of objects. However, a sig-
nificant challenge arises when robot grasping models trained on limited datasets
encounter novel objects. In real-world environments such as warehouses or man-
ufacturing plants, the diversity of objects can be vast, and grasping models need
to generalize to this diversity. Training large, generalizable robot-grasping models
requires geometrically diverse datasets. In this paper, we introduce GraspFactory,
a dataset containing over 109 million 6-DoF grasps collectively for the Franka
Panda (with 14,690 objects) and Robotiq 2F-85 grippers (with 33,710 objects).
GraspFactory is designed for training data-intensive models, and we demonstrate
the generalization capabilities of one such model trained on a subset of Grasp-
Factory in both simulated and real-world settings. The dataset and tools are made
available for download at graspfactory.github.io.
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1 Introduction

Large datasets have been a major contributor to the success of Al models. The fields of Computer
Vision and Natural Language Processing have seen tremendous progress due to the presence of
internet-scale datasets like ImageNet [1] and Laion-5b [2]. Models such as Chat-GPT [3] and Dall-
E[4] demonstrate strong generalization capabilities for tasks that were not explicitly represented in
their training data, thanks to the use of diverse training datasets and large-scale transformer-based
architectures. Similar efforts have been undertaken in robotics to collect large datasets, such as Open
X-Embodiment [5] and DROID [6]. These datasets focus on end-to-end training of robots but there
is still a need for task-specific datasets. Robot grasping is one such task, and a generalized grasping
model remains elusive, in part due to the lack of geometrically diverse objects in existing datasets.
In this work, we present an object-centric grasping dataset that offers greater geometric diversity
compared to existing datasets.

Currently, object-centric grasping datasets [7, 8, 9] and scene-based grasping datasets [10, 11, 12]
are mostly geared toward domestic robotics applications. These datasets have been used to train
robot grasping models such as [13, 14, 15, 16]. The grasping datasets are generated using 3D
CAD models' from 3D datasets such as Shapenet [17], YCB [18], Objaverse [19] and the Princeton
Shape Benchmark [20]. These datasets, however, contain objects of low geometric diversity, as
they contain only a small number of semantic classes [8]. Some of the recent advancements in 3D
generative models, however, are fueled by larger 3D datasets like those presented in [21, 19, 17]. We
leverage one such 3D dataset, ABC-Dataset [21], that contains /M+ high quality geometric models.

We introduce GraspFactory, a large-scale dataset of 6-DoF parallel-jaw grasps generated in simula-
tion. The dataset provides two-fingered grasps for the Franka Panda and Robotiq 2F-85 grippers. We
utilize a scalable robotics simulation and synthetic data generation tool to annotate the objects with

"We use the term “CAD models” in this paper to specifically refer to triangular meshes.
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6-DoF grasps. Further, we train an existing diffusion-based grasping model, SE(3)-DiffusionFields
[14] on the Franka Panda subset, and evaluate the model’s generalization capabilities on unseen
objects. To the best of our knowledge, this is the largest object-centric grasping dataset containing
6-DoF, parallel-jaw grasps for geometrically diverse 3D data.

Our contributions are as follows:

* We present GraspFactory, a large-scale, object-centric dataset of 6-DoF parallel-jaw grasps
with corresponding gripper widths, comprising over 109 million grasps in total. The dataset
includes grasps for 33,710 objects randomly selected from the ABC dataset [21] for the
Robotiq 2F-85 gripper, and 14,690 objects for the Franka Panda gripper, selected as a
subset of the Robotiq object set. As part of ongoing work, we plan to extend the dataset
with grasps for additional objects from [21].

* We train a diffusion-based grasp generative model [14] on the Franka Panda subset of
GraspFactory, and demonstrate that training on geometrically diverse data improves gener-
alization in both simulation and real-world experiments.

The rest of the paper is organized as follows: In Section 2, we review prior work. In Section 3, we
present the method used for generating the dataset. Section 4 describes the experimental setup, both
in simulation and real, and the results from training a model with GraspFactory.

2 Related Work

2.1 Existing datasets

Robot grasping datasets are generally collected through one of the following three methods: simula-
tion, human annotation or human teleoperation. Datasets collected through simulation offer scalabil-
ity, but they require highly accurate physics simulators to overcome the sim-to-real gap. Simulators
built on physics engines such as PhysX [22] and Bullet [23] offer some level of physical realism.
These simulators require CAD models of objects for scene generation. There are several datasets
containing 3D CAD models [21, 17, 19, 24] that are currently used to train 3D generative models
[25, 26], 3D segmentation and classification models [27], and normal estimation methods [21].

Prior work [7, 28, 8] uses physics simulators and 3D datasets to generate grasping datasets. Kappler
et al. [29] show that physics simulation can be used to predict successful grasps. Eppner et al. [7] use
ShapeNet [17], Mahler et al. [28] use 3D-Net [30] and the KIT object database [31] while Murali
et al. [9] use the Objaverse dataset [19] to generate grasping datasets. However, the objects in these
datasets are primarily used for 3D object recognition tasks containing only a small number of seman-
tic classes, resulting in low geometric diversity within the datasets [8]. Morrison et al. [8] propose
a method to use evolutionary algorithms to generate objects and grasps of varying complexities, but
the generated objects are not representative of those encountered in the real-world.

There are also several datasets in the literature that contain grasps for images and point clouds of
scenes with multiple objects. Jiang et al. [10] and Depierre et al. [11] propose datasets containing
planar grasps in the image frame. Fang et al. [12] present a dataset that contains over 1.1 billion
grasp annotations for cluttered, complex scenes. Zhang et al. [32] expand the Visual Manipulation
Relationship Dataset [33] containing planar grasps for 15k+ objects. Despite the large number of
grasp annotations in them, the planar nature of the grasps in these datasets limits their utility for
tasks like bin-picking, where the objects may not be presented on a plane. GraspFactory uses [21] to
generate, to the best of our knowledge, the largest object-centric 6-DoF grasping dataset containing
objects of varied geometries.

2.2 Grasp Sampling Methods

Given an object CAD model, one desired behavior of a grasp, is to maintain force closure in the
presence of disturbing forces and moments while respecting velocity and kinematic constraints of the



manipulator [34]. A number of methods have been proposed in the literature to sample robust grasps
from a CAD model. Gatrell [35] uses the information from CAD models such as polygons, edges
and vertices to generate grasps using Extended Gaussian Images [36] that achieve force closure.
Other grasp sampling methods using CAD models include uniform samplers [37], approach based
samplers [38] and antipodal-based samplers [39, 28]. Zhu and Wang [40] and Han et al. [41] propose
analytical approaches to test force-closure condition for the sampled grasps. Eppner et al. [7] present
a two-fingered grasp dataset using objects from [17]. They evaluate the sampled grasps using the
FleX [42] physics simulator. Similar to [7], we use a physics simulator to evaluate the robustness
of sampled grasps under external wrenches. Our work uses the antipodal sampling method [43]
to sample 6-DoF parallel-jaw grasps, and uses the Isaac Sim simulator [44] for evaluating grasp
robustness.

2.3 Learning-based grasping

A number of deep learning-based methods have been proposed to estimate grasps from an object’s
CAD model and also directly from the scene point cloud. Newbury et al. [45] present a comprehen-
sive survey on different methods and datasets used in the literature. Grasps are broadly classified
into 4-DoF and 6-DoF, where 4-DoF planar grasp estimation methods involve determining the x, y,
z and 6 parameters, where, x, y, z are the 3D spatial position and @ is the rotation about the z-axis of
the gripper and 6-DoF grasp estimation methods involve determining the full 6D pose of the gripper
for a suitable grasp. Morrison et al. [46] proposed a convolution-based neural network for detecting
suitable grasps from a depth image while also considering the width of the gripper as a parame-
ter. Mousavian et al. [47] propose a Variational Auto-Encoder [48] based model and sample grasps
through the latent space of the model. Sundermeyer et al. [15] propose an end-to-end network to
sample grasps from a depth image of the scene. Barad et al. [16], Urain et al. [14], and Murali et al.
[9] use diffusion models to generate 6-DoF grasps.

3 Approach: Generating the GraspFactory Dataset

Our approach to the GraspFactory dataset generation involves grasp sampling to generate candidate
grasps, collision checks to filter out grasps where the gripper may be in collision with the object and
physics based evaluation to determine whether the grasp can hold the object firmly. This section
provides a detailed description of our approach.

3.1 Object CAD Models

We source the CAD models used in this study from the ABC dataset, which contains 1M+ diverse
objects. We choose to work with 33,710 randomly selected objects from the ABC dataset for the
Robotiq 2F-85 gripper and a subset of 14,690 of these objects for the Franka Panda gripper.

3.2 Grasp Sampling

The first step in our approach is to sample candidate grasps for all the chosen objects. Given the CAD
model for an object, we utilize the antipodal sampling method to sample grasps. We ensure that the
CAD models are watertight using [49]. We sample points on the mesh surface and compute their
surface normals, denoted as 1. We then cast three rays within a cone aligned with the surface normal,
with a vertex angle of 30°, and identify the points on the CAD model that these rays intersect. We
only consider the points whose surface normal is in the opposite direction of the ray origin’s surface
normal, as these points represent potential antipodal contact points. The gripper pose is determined
by aligning the fingers’ surface normals with the line connecting these antipodal points, and the
z-axis of the gripper is aligned with four uniformly spaced vectors, each 90° apart, around this line.

Additionally, we decimate the object CAD model by a factor of 0.6 and repeat the antipodal grasp
sampling process described above. A mesh decimation factor of 0.6 enables us to preserve the
underlying shape of the mesh while also increasing the number of potential graspable surfaces. We



define a graspable surface on a mesh as a collection of triangles that come in contact with the finger
grasping the object.

As shown in Fig. 3a, we perform collision checks between the gripper in sampled grasp poses
and the object’s CAD model using an internally developed robotics research software platform,
eliminating grasps where finger geometry collides with the object.

We sample a total of 391.38 million non-colliding grasp candidates across 33,710 objects from the
ABC dataset [21] using this approach.

3.3 Physics Based Grasp Evaluation

We evaluate the accuracy of each of the sampled grasps from Section 3.2 in the Isaac Sim simulator
[44]. Due to computational limitations, we evaluate 2,000 grasps per object for Franka Panda robot
equipped with a Franka hand as shown in Fig. 3b and 5,000 grasps per object for the Robotiq 2F-85
gripper as shown in Fig. 3c. The evaluated grasps are selected using Agglomerative Hierarchical
Clustering [50] in the SE(3) space, which does not require a predefined number of clusters and can
capture complex cluster structures. The distance d between two grasps g; and g5 in the clustering
process is defined as:

d = ||t1 — ta|| + arccos (|q1 - g2|) (D

where t; and t, are the translation components of g; and go, respectively, in R3. The orientations
of g1 and g, are represented as unit quaternions, ¢; and g, respectively.

We spawn 2,000 Franka Panda robots in the simulated environment, as shown Appendix B, to test
each of the selected grasps for 14,690 objects. For each grasp, we spawn the object such that the
grasp’s z-axis is aligned with the world z-axis. We move the robot to the grasp pose and close
the fingers around the object. Fig. 3b in Appendix B shows an example of a successfully grasped
object. To ensure that the grasp is robust against external forces, we move the robot through a set
of pre-defined poses, effectively testing whether the grasp can withstand perturbations. We record
some extra information from the simulation runs and include it in the dataset for possible future use.
Using the contact force information from the simulated environment, we record grasps that are in
contact with the fingers during the entire simulation, and also record contact forces exerted on each
spawned objects. We also record the duration of contact for the failed grasps.

Additionally, we spawn 5,000 Robotiq 2F-85 grippers in the simulated environment, as shown in
Fig. 3c of Appendix B, to test each of the selected grasps for 33,710 objects. We move the gripper
along the positive and negative world z-axis and rotate the gripper about the world z-axis to test the
grasp robustness against external forces. We record a grasp to be successful if the object remains in
between the fingers at the end of the simulation.

Successfully evaluated grasps are also referred to as good or feasible grasps in this paper.

Algorithm 1 summarizes our approach to generating the GraspFactory dataset.

3.4 Dataset Statistics

The GraspFactory dataset contains object-centric 6-DOF parallel grasps for the Franka Panda and
Robotiq 2F-85 grippers. We include a list of grasp poses ,7, in the object coordinate frame and
corresponding grasping width, and a list of indices of grasps that succeeded in physics simulation,
Gw»> Where:

T, = { {Jg ﬂ ReSO3), t e R3} )

Grasping width is defined as the distance between the fingers of the gripper when grasping an object,
measured in mm.



Algorithm 1: Grasp Sampling and Evaluation

Input: CAD Model M, Decimation Factor d
Output: Successful Grasp Poses {,7',} with gripper widths {g,, } in mm

Step 1: Grasp Sampling
foreach point p on M do
Compute surface normal 7 at p
Cast rays within 30° cone aligned with
Find antipodal points (p1, p2) satisfying 7y - i = —1
Align fingers with points (p1, p2) and gripper z-axis spaced 90° apart
if collision-free then
| Add (,Ty, gw) to list;

e ® N R W N

18 Decimate M by factor d and repeat sampling

11 Step 2: Grasp Clustering

12 Apply Agglomerative Hierarchical Clustering algorithm on sampled grasps in SFE(3)
space

13 Select N representative grasps {,7,} and their corresponding gripper widths {g,, };

14 Step 3: Grasp Evaluation
15 foreach grasp , T, in {,T,} do

16 Spawn object in simulation such that z-axis of ,T} is aligned with the world z-axis
17 Move robot to ,T}; and close gripper

18 Apply perturbations to test grasp robustness

19 Record success and failures

20 Output: Successful grasps with poses, failed grasps with poses and widths

After physics based evaluation, GraspFactory contains 12.2 million feasible grasps for 14,690 ob-
jects for the Franka Panda gripper and 97.1 million feasible grasps for 33,710 objects for the Robotiq
2F-85 gripper, surpassing [7] in both the number of objects and grasps.

Given the size, diversity, and the real-world nature of this dataset, it is well-suited for training
grasping models. We present the results of the point cloud-based SE(3)-DiffusionFields model [14]
trained on Franka Panda subset of the GraspFactory dataset in Section 4.

3.5 Model Training

We train the point cloud-based model proposed in SE(3)-DiffusionFields using the Franka Panda
Hand subset of GraspFactory and the ACRONYM datasets on two NVIDIA RTX-4090s with a
batch size of 4 for 2,900 epochs over 19 days. We focus on the Franka Panda subset to align with
the ACRONYM dataset, which also contains grasps for the Franka Panda gripper. SE(3)-Diffusion-
Fields has been shown to outperform other grasp generative models in capturing and generating
diverse grasps [14]. We use the same learning rate scheduler provided by [14]. We use 12,903
objects in the training set, 1,434 objects in the validation set, and 353 objects held out as part of the
test set.

4 Experiments and Results

We evaluate the model’s performance on a set of industrial objects of varying geometric complexities
that were not part of the training data. We compare the model trained using GraspFactory to the same
model trained using the ACRONYM dataset. We test the performance in both simulation and real-
world settings. Simulation allows testing a larger set of grasps, predicted by the model, for their
accuracy, while real-world settings test the physical feasibility and robustness of the grasps.



4.1 Simulated Experiments

We sample 100 grasps from the models trained on GraspFactory and ACRONYM for the objects
shown in Fig. 1a. Since simulation is non-deterministic, there are minor differences in the absolute
success rate numbers. To avoid any bias and to provide statistical consistency, we run the experi-
ments with two random seeds. Qualitative evaluation shown in Appendix D demonstrates that the
model trained on the ACRONYM dataset generates grasps that intersect with the object meshes,
whereas the model trained on GraspFactory produces non-intersecting grasps, showing the effec-
tiveness of our dataset for applications involving complex geometries.

Grasp success rate is evaluated using the same metrics to identify successful grasps as explained in
Sec. 3.3 and define accuracy as the percentage of successful grasps in simulation. We show the suc-
cess rate for 100 grasps sampled from the model trained on GraspFactory and ACRONYM datasets
in Table 1. The model trained on GraspFactory outperforms the model trained on ACRONYM
across all objects shown in Fig. 1a in simulation by a wide margin in most cases. In fact, the success
rates are close only for objects like the Strut, whose constituent geometric primitives (cuboid and
cylinder) are well represented in the ACRONYM dataset.
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(a) Top row: Hanger, Hardcore Bearing, Top Plate, (b) Zoomed-in view of the Base, showing its
Wheel, Base complexity.
Middle row: Axle, Elbow Joint, Kingpin Bolt, Strut,
Kingpin Nut
Bottom row: Shoulder Screw, Axle Nut, Hollow
Cylinder

Figure 1: Examples of objects used in experiments and simulations.

Objects Round 1 Round 2
GraspFactory (Ours) ACRONYM GraspFactory (Ours) ACRONYM

Hanger 0.97 0.30 0.93 0.22
Hardcore Bearing 0.99 0.00 0.94 0.00
Top Plate 0.91 0.53 0.96 0.49
Wheel 1.00 0.00 1.00 0.00
Base 0.75 0.00 0.72 0.47
Axle 0.85 0.00 0.72 0.00
Elbow Joint 1.00 0.00 1.00 0.00
Kingpin Bolt 0.71 0.48 0.93 0.00
Strut 0.96 0.94 0.83 0.87
Kingpin Nut 0.84 0.00 0.85 0.00
Shoulder Screw 0.85 0.00 0.81 0.00
Axle Nut 0.99 0.00 0.96 0.00
Hollow Cylinder 0.97 0.40 0.91 0.55

Table 1: Simulation Results: Success rates for 100 grasps generated by the model trained on
GraspFactory (Ours) and ACRONYM datasets in simulation.

The success rate in simulation is lower for Base, shown in Fig. 1b compared to the other objects,
as the flat finger geometry results in unstable grasps near its center of mass. Incorporating finger
geometry may improve the model’s ability to predict stable grasps for a specific finger geometry.
Axle and Kingpin Bolt have hexagonal heads, and we observe that some of the grasp poses generated
by the model are located over the vertices of the hexagon. In simulation, these grasps fail during



grasp evaluation when we attempt to move the grasped object around (in the manner described in

Section 3.3).
Test Dataset
Train Dataset GraspFactory ACRONYM

GraspFactory (Ours) 0.75 0.59
“ACRONYM |

Table 2: Average success rates of 100 grasps for 353 and 95 test object's from GraspFactory (Ours)
and ACRONYM respectively in simulation.

Results of the model trained on GraspFactory and ACRONYM on held-out objects from both the
datasets are in Table 2.

4.2 Hardware Experiments

We evaluate the strengths of GraspFactory using physical experiments based on two metrics: real-
world feasibility and grasp robustness using the hardware setup and perception pipeline outlined
in Appendix E.> We use real-world feasibility to evaluate whether grasps generated by the model
trained on GraspFactory can be used reliably to pick up an object without colliding with the ob-
ject or the surrounding objects, such as the table. Grasp robustness measures the consistency of a
grasp across repeated trials, highlighting its ability to maintain performance under minor uncertainty
introduced by perception.

For each object, we sample 200 grasps from the model. Using the perception pipeline described
in Appendix E, we obtain the pose of the object and grasps in the world-frame. Grasps that are in
collision with the support surface (table) are then eliminated, resulting in a smaller non-colliding
grasp set that we process further.

Parts Random Pose 1 Random Pose 2 Random Pose 3
Num Eval Num Success Success Rate (%) Num Eval Num Success Success Rate (%) Num Eval Num Success Success Rate (%)

Strut 30 29 96.67 30 29 96.67 30 30 100.00
Elbow Joint 30 28 9333 30 30 100.00 30 29 96.67
Wheel 30 30 100.00 30 29 96.67 30 30 100.00
Hanger 30 30 100.00 30 30 100.00 30 30 100.00
Base 30 24 80.00 30 29 96.67 30 27 90.00
Gear 30 30 100.00 30 26 86.67 30 29 96.67
Kingpin Bolt 30 28 9333 30 30 100.00 30 29 96.67
Regrasp Fixture 30 30 100.00 30 29 96.67 30 28 9333

Table 3: Hardware results with real objects: Evaluation of real-world feasibility of grasps sampled
from the model trained on GraspFactory for three random poses across eight parts.

Part Grasp 1 Grasp 2 Grasp 3 Grasp 4 Grasp 5 Average Success Rate (%)
Base 10 10 10 8 10 96.00
Hanger 10 10 10 10 10 100.00
Gear 10 10 10 10 10 100.00
Regrasp Fixture 10 10 10 10 10 100.00

Table 4: Hardware results with real objects: Evaluation results for grasp robustness for five random
non-colliding grasps. Num Trials=10

Real-World Feasibility We evaluate real-world feasibility by randomly selecting 30 grasps per
object from the non-colliding grasp set, resulting in a total of 720 grasps evaluated across eight
objects for three random stable poses (shown in Fig. 10 in Appendix E). We consider a grasp to be
successful if the gripper fingers do not collide with the object or the table, and the robot successfully
picks up the object 100mm off the table and places it back.

2We use a UR10e robot and Robotiq 2F-85 gripper for testing on real-hardware due to an unanticipated lack
of availability of our Franka Panda robot.



Part Part

Axle (5/5) Camera Mount B (5/5)
GPU Cooling Bracket (5/5)  Drone RPM Sensor Mount (5/5)
GPU Fan Bracket (4/5) Drone Landing Gear Mount (3/5)
Camera Mount A (5/5) Drone Support Structure (5/5)
Automotive Relay (5/5) Drone Motor Mount (5/5)

Table 5: Results of real world experiments (number of successful grasps / number of grasps tested).

Table 3 shows the grasp success rate per object in each of the three selected poses.> We show
that the model trained on GraspFactory produces grasps that can be executed in the real-world,
demonstrating the real-world usefulness of the dataset.

We run our perception pipeline in an open-loop manner, meaning that we do not estimate the pose
of the object when it is placed back on the support surface. We observe a minor change in the pose
of the object (due to its shape) when the robot places the object back, resulting in subsequent picks
to fail sometimes (without human intervention to restore the object to its original location). This is
particularly pronounced for Base in Pose 1 and Gear in Pose 2 as shown in Table 3. Tested poses of
objects are shown in Appendix E.

Grasp Robustness Grasp robustness is evaluated by selecting five grasps from the non-colliding
grasp set for four objects. We perform 10 trials per grasp, where each trial involves picking up
the object and placing it down, resulting in a total of 200 grasp evaluations. We use the same
metrics as outlined in Section 4.2 for grasp success and note the average success rate across the five
selected grasps in Table 4. Our results show that the tested grasps are fairly robust even with small
perturbations in object pose.

We also evaluate five grasps per each of the 10 additional objects of varying geometric complexities
shown in Appendix E’s Fig. 8 and present our results in Table 5.

One of the challenges and limitations in our real-world experiments is differentiating errors due
to pose estimation from those caused by grasp estimation. Any calibration error also affects our
estimates of where the objects are, hence affecting the success of our chosen grasps as well. We
note, however, that pose estimation is not the focus of our work presented here.

5 Conclusion

In this paper, we introduce GraspFactory, a large parallel-jaw grasp dataset containing 12.2 million
feasible grasps for the Franka Panda gripper across 14,690 geometrically diverse objects and 97.1
million feasible grasps for the Robotiq 2F-85 gripper across 33,710 objects. The geometric diversity
of the dataset addresses a critical gap in existing grasp datasets, which focus on objects with limited
shape complexity or variety. Our results in simulation show that a model trained on GraspFactory
significantly outperforms a model trained on existing datasets, such as ACRONYM, in terms of
generalization to novel objects. Furthermore, we evaluated more than 900 grasps generated by the
model trained on GraspFactory in real-world settings, demonstrating that our dataset enables models
to generate grasps that can be used reliably in the real-world. GraspFactory contains information
about grasping width for each grasp pose, which could be used to learn collision-free grasps in
cluttered scenarios.

In the future, we plan to integrate finger geometry into training, enhancing both feasibility and
robustness of generated grasps. We also aim to extend our dataset to include a larger number of
objects from the ABC dataset. Subsequently, we aim to extend GraspFactory to include grasps
for other end-effectors, such as suction-cup grippers. This extension would enhance the dataset’s
versatility, enabling researchers to develop and evaluate grasping algorithms applicable to a wider
range of robotic systems and applications.

3Grasps generated by the ACRONYM-trained model were not evaluated, since qualitative inspection
showed poor grasp quality.
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6 Appendix

We provide additional information about our dataset in Appendix A, B, and C. Appendix D and E
show qualitative results and real-world experiment setup respectively.

A Objects in the dataset

Fig. 2 shows a random subset of objects in the dataset. We compare the GraspFactory dataset with
prior work in the literature and highlight the comparison in Table 6.

»”

X ®I « o> L ISICAY
O.J . p a l\\__\ Ve

Figure 2: A subset of the objects in the GraspFactory Dataset showing Geometric Variability.

Dataset Planar/6D Labels Number of Objects Candidate Grasps Good Grasps/ Object-Centric
luated Grasps Grasps

Cornell [10] Planar Manual 240 8k NA X
Jacquard [11] Planar Sim 11k 1.IM NA X
VMRD + Grasps [32] Planar Manual ~15k 100k NA X
Columbia [51] 6D Analytical 7256 238k NA v
Dex-Net [28] 6D Analytical 1500 6.7"M NA X
6-DoF GraspNet [13] 6D Sim 206 7.07TM NA X
GraspNet [12] 6D Analytical 88 1.1B NA X
EGAD [8] 6D Analytical 2331 233k NA v
ACRONYM [7] 6D Sim 8872 17. M 10.5M/17.7M v
GraspGen [9] 6D Sim 8515 53.1M NA v
GraspFactory (Ours) 6D Sim 14,690 227.22M 12.2M/29.38M v
GraspFactory - Robotiq 2F-85 (Ours) 6D Sim 33,710 391.38M 97.1M/164.16M v

Table 6: Summary of various grasp datasets, highlighting labeling methods, number of objects and
grasps.
NA - no data available, v'- dataset contains object centric grasps,
X - dataset contains grasps for a scene (images and point clouds).

B Data Generation

We use an internally developed robotics research platform to perform collision check between the
gripper fingers and the sampled objects as shown in Fig. 3a. Simulated Robotiq 2F-85 is shown in
Fig. 3c and Franka Panda Hand in Isaac Sim to test physical feasibility is shown in Fig. 3d.

The evaluation pipeline for ABC-Grasp dataset generation in simulation assumes uniform physical
properties, including mass and the coefficient of friction, across all objects in the dataset to ensure
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N\

(a) Collision check between an object and the grip- (b) Single robot executing a sampled grasp.
per fingers using our internally developed robotics re-
search software platform.

LN

(c) Isaac Sim evaluation environment with Robotiq 2F- (d) Isaac Sim evaluation environment with Franka
85. Panda Robot with Panda Hand.

Figure 3: Simulation environments for evaluating collision checks, sampled grasp execution, and
physics-based evaluation.

computational feasibility. We note that variations in mass and friction may influence grasp stability
and robustness for objects with slippery or uneven surfaces. Additionally, we treat all objects in the
dataset as rigid.

C Data Quality

A plot of the location of successful grasps, shown in Fig. 4 shows that our method covers the entire
space around the objects.

Fig. 5 presents metrics such as the number of triangles, number of vertices, and edge length statistics
for the GraspFactory, ACRONYM, Dex-Net, and EGAD datasets. The graphs demonstrate that
GraspFactory exhibits a wider spread compared to both ACRONYM and Dex-Net. While EGAD
shows a more uniform distribution than GraspFactory, GraspFactory contains approximately seven
times more objects, and its objects better align with those encountered in the real world compared
to the EGAD dataset.

These metrics were chosen to highlight geometric diversity as they are directly related to the struc-
tural complexity of the meshes, serving as quantifiable indicators of geometric diversity. They are
also computationally efficient to calculate and provide an immediate sense of the detail in a CAD
model.
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Figure 4: Qualitative analysis of grasp coverage for four randomly selected objects from the
dataset. Purple points represent gripper positions around the objects.
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Figure 5: Density distribution curves for the number of triangles, number of vertices and edge
lengths’ mean and standard deviation for GraspFactory (Ours), ACRONYM [7], Dex-Net [28],
EGAD [8] showing a larger variance in GraspFactory.

EGAD shows more uniform spread in Edge Length metrics, but contains approximately seven
times fewer objects and is less representative of real-world objects.

D Qualitative results

We show the qualitative results of the model trained on GraspFactory and ACRONYM datasets in
Fig. 6. The model trained on ACRONYM produces grasps that intersect with the objects, whereas,
the model trained on our GraspFactory dataset produces grasps uniformly around the objects.

E Real-World Experiments

We perform physical experiments on 18 real-world objects shown in Fig. 8. The workcell setup
for the experiment consists of a Zivid 24+ M60 camera mounted on a UR-10 robot, and grasping is
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Figure 6: Qualitative comparison of grasps generated for unseen objects by the model trained on

GraspFactory (ours, left two columns in green) and the model trained on ACRONYM (right two
columns in orange).

. &
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¥

performed by a UR-10e robot, equipped with a Robotiq 2F-85 two-fingered gripper * as shown in
Fig. 7. We note that the model was trained on grasps that were validated using a Franka Panda robot
with Franka hand in simulation. This gripper has a finger width of 18mm, while our real-world
evaluation is performed using a Robotiq 2F-85 two-fingered gripper whose finger width is 22mm.

Zivid 2+ M60

UR10e (Grasping
— robot)

UR10
(Stationary)

Figure 7: Workcell setup for real-world experiments. We use a UR-10e robot equipped with a
Robotiq 2F-85 gripper for grasping. Zivid 2+ M60 camera is mounted on a UR-10 robot.

In each experiment, we first place individual objects in front of the robot and implement a perception
based pipeline, as shown in Fig. 9, to locate the object with respect to the robot. Our perception

“Due to an unanticipated lack of availability of our Franka Panda robot, we chose to use a UR10e robot and
Robotiq 2F-85 gripper for testing on real-hardware.
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Figure 8: Objects used for real-world experiments
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Figure 9: Pipeline for real-world experiments

pipeline builds on CNOS presented by Nguyen et al. [52], a method that utilizes segmentation pro-
posals generated from the captured RGB image using the Segment Anything Model [53] or Fast
Segment Anything model (FastSAM) [54] to localize an object of interest in the scene. CNOS
matches the DINOV2 cls [55] tokens of the proposed segmentation regions against tokens of object
templates that are pre-rendered using their CAD models. We use this localization information to
segment the point cloud of the object captured by the camera.

With the object localized in the scene, we use the model-based setup of FoundationPose [56], which
uses the CAD model and the segmented point cloud of the object (which we obtain from CNOS) to
estimate the object’s 6-DoF pose in the camera frame, denoted by .T,. We then use the camera ex-
trinsics and robot calibration parameters to transform the computed grasps into the world-coordinate
frame, as described by the equation below:

ng = wTr . rTf . ch : cTo : ng (3)

where, T is a transformation matrix defined as shown in Eq. 2, w is the world frame, r is the robot
frame, f is the robot flange frame, c is the camera frame, o is the part or the object frame.
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Figure 10: Real world experiment with eight objects, each in three random stable poses.
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Figure 11: Sequence of frames depicting the Base slipping out of the fingers. Frame sequence
numbers are embedded in the images.

We choose 18 diverse set of objects, shown in Fig. 8 to evaluate the model trained on our dataset in
real-world settings.

Fig. 11 shows that the flat finger geometry leads to unstable grasps near the center of mass of the
Base, a behavior also observed in our simulation experiments. Since the model we train does not
account for finger geometry, incorporating this factor could help ensure the generation of only stable
grasps.
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