

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING TO ALLOCATE PROPAGATING TREAT- MENTS: MAXIMIZE UPLIFT UNDER NETWORK INTER- FERENCE

006 **Anonymous authors**

007 Paper under double-blind review

010 ABSTRACT

013 Uplift modeling and treatment allocation are classical tasks in promotion mar-
014 keting. Yet existing allocations ignore propagating treatments and network inter-
015 ference, where both outcomes and the propagation mechanism vary with peers’
016 treatment history, making policy value hard to estimate and optimize. We for-
017 malize a history-driven uplift objective with activation probability $g(\mathbf{Z}_i^t, \mathbf{X}_i)$ and
018 outcomes that depend on neighbors’ treated states. Theoretically, we establish
019 conditions for identification and provide finite-sample guarantees for policy eval-
020 uation under interference and model misspecification. Methodologically, we pro-
021 pose GUM-DT via a Monte-Carlo policy search: learn an ensemble of lightweight
022 propagation models and an outcome model, and evaluate candidate allocations via
023 double-robust (DR) estimators with IPW corrections. On synthetic networks, ex-
024 periments demonstrate consistent gains over uplift allocations of GUM-DT, vali-
025 dating robustness and effectiveness.

027 1 INTRODUCTION

030 Treatments in modern marketplaces often *propagate* over social graphs—referral-driven member-
031 ships, friend-invite trials, community bundles—where both activation and revenue *evolve with*
032 neighbors’ treatment states. We study how to allocate an initial budget of seeds on a network
033 $G = (V, E)$ to maximize *network-wide uplift* relative to a non-zero baseline policy π_0 , where activa-
034 tions and outcomes unfold over T periods under a history-dependent propagation mechanism g and
035 outcome mechanism m . This objective departs from independent-unit or non-propagating settings
036 by *jointly* modeling activation dynamics and the payoffs they induce through neighbors’ evolving
037 states. A representative case is a paid-membership program with peer referrals: “join-membership”
038 can spread over time, and a user’s incremental revenue depends on the contemporaneous and cu-
039 mulative membership of friends—exhibiting complementarities (co-purchases, retention) or crowd-
040 ing/fatigue.

041 To position our problem, we contrast it with three nearby paradigms. Individual Treatment Regime
042 (*ITR*) selects $x \mapsto a$ per individual while abstracting from network exposure (Zhao et al., 2012; Athey
043 & Wager, 2021). *Static uplift* ranks one-shot ROI under a budget, assuming treatments do not spread
044 (*non-propagating*). *Influence maximization* (*IM*) optimizes expected spread rather than causal value
045 (*proxy misalignment*) (Kempe et al., 2003). In contrast, we optimize uplift relative to a non-zero
046 baseline when both activation and payoffs are history-dependent, which breaks submodularity and
047 invalidates classical spread-based greedy guarantees.

048 Our setting relates to *approximate neighborhood interference* (*ANI*)—exposure-mapping ap-
049 proaches under local interference (Leung, 2022). Both frameworks formalize how neighbors’
050 treatment states shape outcomes. The distinction is twofold. First, *ANI* focuses on *estimation* of
051 exposure-defined effects at a given time, whereas we address *propagating* treatments whose acti-
052 vation trajectories are *endogenous to the seed set* and target *policy optimization* for uplift over a
053 non-zero baseline. Second, *ANI* exposures are typically static or period-wise, while our objective
054 *aggregates over history*, inducing non-submodularity and non-stationary marginal gains for which
055 one-shot ranking and classical greedy are inadequate. In short, we leverage *ANI*-style locality to

054 parameterize and learn exposure-sensitive mechanisms, but depart in targeting network-wide uplift
 055 under propagation and in coupling estimation with an optimizer aligned to history dependence.
 056

057 Two challenges arise naturally. On the estimation side, $\text{Value}(\pi)$ integrates over an exponential fam-
 058 ily of latent activation paths; g is unknown and history dependent; outcomes may be non-monotone
 059 in neighborhood treatment. On the optimization side, each seed perturbs the environment seen by
 060 the others, so marginal gains are non-stationary; heuristics that assume fixed gains or rely on spread
 061 proxies lack guarantees. We address these issues with a two-layer framework. An evaluation layer
 062 learns an ensemble of lightweight propagation models $\{\hat{g}\}$ and an outcome model \hat{m} , and scores
 063 candidate allocations using a targeted doubly robust (DR) estimator that combines inverse propen-
 064 sity weighting with TMLE-style targeting; the estimator is consistent if either \hat{g} or \hat{m} is correctly
 065 specified and attains improved finite-sample stability via ensembling and targeting. An optimiza-
 066 tion layer, GUM-DT, iteratively queries this targeted DR oracle under the current environment and
 067 refreshes stale gains before selection, aligning the search procedure with the history-dependent ob-
 068 jective rather than a spread proxy.

069 Our contributions are threefold. (i) *Formulation*. We formalize causal uplift maximization with
 070 propagating treatments on networks, defining value as uplift relative to a non-zero baseline under
 071 history-dependent interference and clarifying its relation to, and difference from, ANI-style expo-
 072 sure models. (ii) *Robust off-policy evaluation*. We develop a targeted DR estimator tailored to
 073 propagation settings that is doubly robust and more stable in finite samples through ensembling and
 074 targeting. (iii) *History-aligned optimization and theory*. We design GUM-DT, a dynamic-greedy
 075 allocator that refreshes marginal gains via the targeted DR oracle, and provide PAC-style analyses
 076 that decompose policy regret into model misspecification, statistical estimation, and algorithmic ap-
 077 proximation errors, accompanied by diagnostics for exposure non-monotonicity and misspecified
 078 propagation. Together, these elements provide a principled bridge from causal objectives to practi-
 079 cal, high-stakes allocation of propagating treatments in networked markets.

080 2 RELATED WORKS

081 Our research synthesizes three distinct but complementary lines of work: causal effect estimation
 082 on networks, off-policy policy learning, and Influence Maximization (IM). Details of off-policy pol-
 083 icy learning and IM part are in Appendix. A significant body of works address treatment effect
 084 estimation under network interference, where SUTVA is violated and treatment effects depend on
 085 peers' treatment and exposure (Hudgens & Halloran, 2008; Aronow & Samii, 2017). Recent meth-
 086 ods model exposure mappings and learn representations of neighborhood history to estimate direct
 087 and spillover effects (Ma & Tresp, 2021; Guo et al., 2022). These estimators can be adapted into up-
 088 lift-first baselines (e.g., estimate CATE or ITE (Shalit et al., 2017), then rank under a budget). While
 089 effective for estimation, they do not by themselves address the *policy design* problem with propa-
 090 gating actions: evaluating and optimizing an initial seed set whose value depends on the distribution
 091 of activation trajectories and on path-dependent outcomes.

092 3 PROBLEM FORMULATION

093 We first define basic notations and objective, then detail the system dynamics that govern the inter-
 094 vention process and state the assumptions for identification.

100 3.1 NOTAIONS AND OBJECTIVE

101 Let $G(V, E)$ be a graph observed over a discrete time horizon $t = 0, 1, \dots, T$. An intervention
 102 seeding policy, π_S , selects an initial seed set $S \subseteq V$ of size at most K . This policy initiates a
 103 stochastic propagation process, resulting in a full activation path over the network, denoted $\bar{A}_{\pi_S} =$
 104 (A^0, \dots, A^T) , where $A^t := (A_1^t, \dots, A_{|V|}^t) \in \{0, 1\}^{|V|}$ is the vector of binary activation states
 105 of all nodes at time t . We write $H^t = (A^0, \dots, A^t)$ for the global history up to t , and H_U^t for its
 106 restriction to nodes $U \subseteq V$. Features of nodes are denoted as $X = \{X_i : i \in V\}$.

108 **Definition 1** (Path-dependent Potential Outcome). *For any realized activation path $\bar{\mathbf{A}}$ on graph G ,
109 the potential outcome of node i is $Y_i(\bar{\mathbf{A}}) \in \mathbb{R}$, which may depend on the entire path (e.g., fatigue
110 or timing effects), not only on terminal activation.*

111 **Definition 2** (Policy Value: Net Uplift). *Given a seeding policy π_S (choosing an initial seed set
112 $S \subseteq V$, $|S| \leq K$) and the baseline policy π_\emptyset , define*

$$114 \quad V(\pi_S) := \mathbb{E}_{\bar{\mathbf{A}} \sim \mathbb{P}(\cdot | \pi_S, \mathbf{X})} \left[\sum_{i=1}^n Y_i(\bar{\mathbf{A}}) \right] - \mathbb{E}_{\bar{\mathbf{A}} \sim \mathbb{P}(\cdot | \pi_\emptyset, \mathbf{X})} \left[\sum_{i=1}^n Y_i(\bar{\mathbf{A}}) \right].$$

117 3.2 SYSTEM DYNAMICS AND IDENTIFICATION

119 **Definition 3** (Propagation Mechanism). *For $t \geq 1$, the state of any inactive node v_i evolves according
120 to a conditional probability function g depending on the node's features \mathbf{X}_i and an exposure
121 vector \mathbf{Z}_i^t , which summarizes the activation history of its neighbors $\mathcal{N}(i)$.*

$$122 \quad \mathbb{P}(A_i^t = 1 | \mathbf{H}^{t-1}, \mathbf{X}) = g(\mathbf{Z}_i^t, \mathbf{X}_i), \quad \text{where } \mathbf{Z}_i^t = h(\mathbf{X}_i, \mathbf{H}_{\mathcal{N}(i)}^{t-1}) \quad (1)$$

125 We assume that an activated node remains active, $A_i^{t-1} = 1 \Rightarrow A_i^t = 1$. This allows history-
126 dependent, possibly non-monotone peer effects, where, for instance, excessive neighbor ac-
127 tivity could decrease activation probability. Classic models like Independent Cascade (IC) or Linear
128 Threshold (LT) arise as special cases.

129 **Definition 4** (Outcome Mechanism). *The expected total utility is determined by node features and
130 nodes treated history*

$$131 \quad \mathbb{E} \left[\sum_{i \in V} Y_i(\bar{\mathbf{A}}, \mathbf{X}) \right] = m(\bar{\mathbf{A}}, \mathbf{X}) \quad (2)$$

134 where m may be instantiated by a model that captures graph structure and temporal dependence.
135 Intuitively, g induces a distribution over paths, while m assigns value to each realized path.

136 To connect our causal objective to observational data, we rely on the following standard assumptions,
137 adapted to our dynamic, networked setting.

139 **Assumption 1** (Consistency). *For the realized path $\bar{\mathbf{A}}$ under any intervention seeding, the observed
140 outcome for each node corresponds to the potential outcome under the specific realized activation
141 path that occurred: $Y_i = Y_i(\bar{\mathbf{A}})$.*

142 **Assumption 2** (Positivity). *For any local history that occurs with positive probability, the condi-
143 tional probability of a node's activation is bounded away from 0 and 1.*

144 **Assumption 3** (Sequential Ignorability). *Conditional on the observed local history of a node and its
145 neighbors up to time $t-1$, its activation at time t is independent of the set of all potential outcome
146 functions, $\{\mathbf{Y}(\cdot)\}$. Formally:*

$$147 \quad A_i^t \perp\!\!\!\perp \{\mathbf{Y}(\cdot)\} \mid \mathbf{H}_{\{i\} \cup \mathcal{N}(i)}^{t-1}, \mathbf{X} \quad (3)$$

148 This is the crucial no-unmeasured-confounders assumption, allowing us to treat the sequential prop-
149 agation as a series of conditionally randomized experiments.

150 Together, these assumptions ensure that our theoretical objective is empirically grounded.

152 **Proposition 1** (Identifiability of Policy Value). *Under Assumptions 1-3, $V(\pi_S)$ is identifiable from
153 observational data.*

154 *Proof sketch.* By the g-computation formula (Robins, 1986),

$$156 \quad \mathbb{E} \left[\sum_i Y_i(\bar{\mathbf{A}}) \mid \pi_S, \mathbf{X} \right] = \sum_{\mathbf{a}} \left(\sum_i \mathbb{E}[Y_i \mid \bar{\mathbf{A}} = \mathbf{a}, \mathbf{X}] \right) \mathbb{P}(\bar{\mathbf{A}} = \mathbf{a} \mid \pi_S, \mathbf{X}).$$

159 By Consistency, the counterfactual expectation equals the observable conditional expectation. By
160 chain rule and Sequential Ignorability given local histories, each factor $\mathbb{P}(A_i^t \mid \mathbf{H}_{\{i\} \cup \mathcal{N}(i)}^{t-1}, \mathbf{X})$ is
161 identifiable; Positivity ensures they are well-defined. Thus both terms in Def. 2 are identifiable,
hence $V(\pi_S)$ is identifiable. \square

162 **Computational Implication.** Although identifiable, direct evaluation of $V(\pi_S)$ is intractable due
 163 to the exponential number of activation paths. This motivates estimating $V(\pi_S)$ from data and opti-
 164 mizing allocations using this estimate, while controlling the resulting estimation and approxima-
 165 tion errors.

167 4 METHODOLOGY AND THEORETICAL GUARANTEES

170 Having established that our causal objective is identifiable but intractable to compute, our methodol-
 171 ogy directly confronts this challenge with a two-stage framework: **estimation** and **optimization**. We
 172 first develop robust methods to estimate the policy value from observational data, and then design
 173 efficient algorithms to find the optimal seed set based on this estimate.

174 4.1 ESTIMATING POLICY VALUE FROM OBSERVATIONAL DATA

177 Estimating the policy value $V(\pi_S)$ from observational data situates our problem within the frame-
 178 work of **off-policy evaluation**. We must use data generated under a historical *behavior policy* π_b
 179 to evaluate our new *target policy* π_S . This requires learning two key components of the system’s
 180 dynamics from the available data.

181 4.1.1 LEARNING THE SYSTEM DYNAMICS

183 **Modeling Choices.** Beyond the core identification assumptions that enable causal reasoning, our
 184 estimation framework relies on two modeling choices to build concrete estimators and quantify un-
 185 certainty. (M1) We assume that the point estimate for the activation probability $p = \hat{g}(\mathbf{Z}_i^t, \mathbf{X}_i)$
 186 follows a Beta distribution. (M2) We assume that the total observed outcome for a given path,
 187 $\sum_i Y_i$, follows a Gaussian distribution. These distributional assumptions are choices for the model-
 188 ing architecture and are not required for causal identification itself.

189 **Propagation Model.** The propagation probability $g(\mathbf{Z}_i^t, \mathbf{X}_i)$ is dynamic, depending on the evolv-
 190 ing history of network activations. We learn this function by training an ensemble of M lightweight
 191 models $\{\hat{g}^{(m)}\}_{m=1}^M$. The history is encoded into a vector \mathbf{Z}_i^t using a Time-Channel GNN, which
 192 captures spatio-temporal dependencies. Training an ensemble on bootstrap samples enhances ro-
 193 bustness and quantifies model uncertainty. For estimators requiring importance weighting, we simi-
 194 larly train a model of the behavior policy’s propagation dynamics, denoted \hat{g}_b . The detailed training
 195 procedure is presented in Algorithm 1.

196 **Outcome Model.** The second component is the outcome model, \hat{m} , which predicts the total network
 197 utility given a full activation history, $\mathbb{E}[\sum_i Y_i | \mathbf{A}, \mathbf{X}]$. We implement \hat{m} as a Graph Neural Network
 198 (GNN) to effectively capture how path-dependent dynamics on the underlying graph topology influ-
 199 ence the final outcome. This frames the learning problem as a graph-level regression task, mapping
 200 the entire history to a single utility score.

201 4.1.2 ESTIMATORS FOR POLICY VALUE

203 Based on the learned models, we can construct several estimators for $V(\pi_S)$.

205 **Outcome Regression (OR) Estimator.** The OR estimator (Algorithm 4) is a direct, simulation-
 206 based approach. To account for model uncertainty, each simulation rollout uses a propagation model
 207 randomly sampled from the trained ensemble. Its consistency, however, stringently requires that *both*
 208 the propagation models and the outcome model are correctly specified.

209 **Inverse Propensity Weighting (IPW) Estimator.** The IPW estimator (Algorithm 5) re-weights
 210 observed historical outcomes. To compute the importance weights, it requires a single propagation
 211 model for the target policy. We use the average of the ensemble, $\bar{g} = \frac{1}{M} \sum_m \hat{g}^{(m)}$. IPW’s consis-
 212 tency depends only on the correct specification of the propagation models (\bar{g}, \hat{g}_b) , but it can suffer
 213 from high variance if the target policy evaluates trajectories that were rare under the behavior policy.

214 **Doubly Robust (DR) Estimator.** The DR estimator (Algorithm 2) synthesizes the OR and IPW
 215 approaches to achieve superior statistical properties. It combines a direct simulation-based estimate
 216 with an importance-weighted correction term based on the observed outcome residual. We adopt a
 217 Monte-Carlo version of the DR estimator for evaluation.

216 **Algorithm 1** PROPAGATIONMODELLEARNING (Training an ensemble of M propagation model g)
217 **Require:** Cascades $\{A^{b,0:T_b}\}_{b=1}^B$; node features $\mathbf{X} = \{\mathbf{X}_i\}_{i \in V}$; history encoder h_ϕ ; model family
218 \mathcal{G} ; ensemble size M ; optional subsampling rates: time-step rate $\rho_t \in (0, 1]$, negative-node rate
219 $\rho_n \in (0, 1]$.
220 **Ensure:** Trained ensemble $\{\hat{g}^{(m)}\}_{m=1}^M$.

222 1: **History encoder** h_ϕ (**Time-Channel GNN**). For each node i and step t , compute the history
223 code Z_i^t via:
224

225
$$\mathbf{E}_i^{t-1} = [\mathbf{X}_i, \mathbf{H}^{t-1}], Z_i^t = \text{MLP}(\sigma(W_1 \mathbf{E}_i^{t-1} + U_1 \sum_{j \in \mathcal{N}(i)} \mathbf{E}_j^{t-1} + b_1)).$$

226

227 2: **Build supervised dataset** \mathcal{D} .
228 3: $\mathcal{D} \leftarrow \emptyset$
229 4: **for** $b = 1$ **to** B **do** ▷ iterate cascades
230 5: **for** $t = 1$ **to** T_b **do**
231 6: **if** $\text{Unif}(0, 1) > \rho_t$ **then continue** ▷ optional time-step subsampling
232 7: **end if**
233 8: $\mathcal{I}^{b,t} \leftarrow \{i \in V : A_i^{b,t-1} = 0\}$ ▷ inactive at $t-1$
234 9: **if** negative subsampling enabled **then**
235 10: $\mathcal{I}^{b,t} \leftarrow \{i \in \mathcal{I}^{b,t} : A_i^{b,t} = 1\} \cup \{i \in \mathcal{I}^{b,t} : A_i^{b,t} = 0 \wedge \text{Unif}(0, 1) \leq \rho_n\}$
236 11: **end if**
237 12: **for** each $i \in \mathcal{I}^{b,t}$ **do**
238 13: $Z_i^t \leftarrow h_\phi(\mathbf{X}, \mathbf{H}_{\mathcal{N}(i)}^{t-1,b})$ ▷ encode *local* neighbor history via h_ϕ in line 1
239 14: $y_i^t \leftarrow A_i^{b,t}$ ▷ label: activated at step t ?
240 15: $\mathcal{D} \leftarrow \mathcal{D} \cup \{(Z_i^t, \mathbf{X}_i, y_i^t)\}$
241 16: **end for**
242 17: **end for**
243 18: **end for**
244 19: **Train** M **models with bootstrap**
245 20: **for** $m = 1$ **to** M **do**
246 21: Train $\hat{g}^{(m)} \in \mathcal{G}$ on a bootstrap sample $\mathcal{D}^{(m)}$ from \mathcal{D} by minimizing the Bernoulli Negative
247 Log-Likelihood Loss (NLL):
248

249
$$\min_{\theta^{(m)}} \sum_{(Z_i^t, \mathbf{X}_i, y_i^t) \in \mathcal{D}^{(m)}} \text{BCE}(y_i^t, \hat{g}^{(m)}(Z_i^t, \mathbf{X}_i)).$$

250

251 22: **end for**
252 23: **return** $\{\hat{g}^{(m)}\}_{m=1}^M$

254 4.1.3 THEORETICAL COMPARISON OF ESTIMATORS

255 **Condition 1** (Model Specification). *Let g and m be the true data-generating functions. A learned
256 model is **correctly specified** if it is a consistent estimator of the true function.*

257 **Proposition 2** (Robustness and Consistency). *The DR estimator is consistent under weaker modeling
258 assumptions than the OR and IPW estimators, a property known as double robustness.*

262 *Proof.* Let V denote $V(\pi_S)$. **OR:** The expectation is $\mathbb{E}[\hat{V}_{OR}] = \mathbb{E}_{H \sim \hat{g}}[\hat{m}(H)]$. For consistency,
263 this must equal $V = \mathbb{E}_{H \sim g}[m(H)]$, which holds only if *both* models are correctly specified: $\hat{g} = g$
264 (to sample from the correct path distribution) and $\hat{m} = m$ (to evaluate paths correctly).

265 **IPW:** The expectation is $\mathbb{E}[\hat{V}_{IPW}] = \mathbb{E}_{H \sim g_b} \left[\frac{\mathbb{P}_g(H)}{\mathbb{P}_{\hat{g}_b}(H)} Y \right]$. If the propagation models are correct
266 ($\hat{g} = g, \hat{g}_b = g_b$), this becomes $\mathbb{E}_{H \sim g_b} \left[\frac{\mathbb{P}_g(H)}{\mathbb{P}_{g_b}(H)} Y \right] = \mathbb{E}_{H \sim g}[Y] = V$. Consistency thus requires a
267 correct \hat{g} but is independent of \hat{m} .

268 **DR:** The expectation is $\mathbb{E}[\hat{m}(H) + w(Y - \hat{m}(H))]$. This estimator is consistent if *either* model is
269 correctly specified.

270 **Algorithm 2** ESTIMATEPOLICYVALUE via DR with g -ensemble

271 **Require:** Target policy π_S , observed data $\{H^{(j)}, Y^{(j)}\}_{j=1}^N$ from behavior policy π_b , learned models

272 $\{\hat{g}^{(m)}\}_{m=1}^M, \hat{g}_b, \hat{m}$.

273 **Ensure:** Estimated policy value $\hat{V}_{\text{DR}}(\pi_S)$.

274 1: **function** ESTIMATEVALUEFORPOLICY(π_{target})

275 2: Define ensemble average model $\bar{g}(\cdot) = \frac{1}{M} \sum_{m=1}^M \hat{g}^{(m)}(\cdot)$.

276 3: total_value $\leftarrow 0$.

277 4: **for** $j = 1$ to N **do**

278 5: Compute importance weight: $w_j \leftarrow \prod_{t=1}^{T_j} \prod_{i \in V} \frac{\mathbb{P}_{\bar{g}}(A_i^{(j),t} | H^{(j),t-1}, \pi_{\text{target}})}{\mathbb{P}_{\hat{g}_b}(A_i^{(j),t} | H^{(j),t-1}, \pi_b)}$.

279 6: Get outcome model prediction (control variate): $m_j \leftarrow \hat{m}(H^{(j)})$.

280 7: total_value \leftarrow total_value + $w_j \cdot (Y^{(j)} - m_j) + m_j$.

281 8: **end for**

282 9: **return** total_value/ N .

283 10: **end function**

284

285 11: $\hat{V}_{\pi_S} \leftarrow \text{EstimateValueForPolicy}(\pi_S); \hat{V}_{\pi_{\emptyset}} \leftarrow \text{EstimateValueForPolicy}(\pi_{\emptyset})$.

286 12: **return** $\hat{V}_{\pi_S} - \hat{V}_{\pi_{\emptyset}}$.

290 1. If $\hat{m} = m$: The correction term's expectation is $\mathbb{E}_{H \sim \hat{g}, Y \sim g_b}[w(Y - m(H))] = \mathbb{E}_{H \sim g}[Y - m(H)] = 0$. The total expectation collapses to $\mathbb{E}_{H \sim g}[m(H)] = V$.

291 2. If $\hat{g} = g$: The expectation becomes $\mathbb{E}_{H \sim g}[\hat{m}(H) + w(Y - \hat{m}(H))]$. This correctly evaluates

292 to V regardless of the function \hat{m} .

293 Thus, DR requires only one of the two models to be correct, whereas OR requires both and IPW

294 requires the propagation model, demonstrating its superior robustness. \square

295 **Proposition 3** (Asymptotic Efficiency). *Under correct specification of both \hat{g} and \hat{m} , DR is semi-*

296 *parametrically efficient. It achieves the lowest possible asymptotic variance among all regular,*

297 *asymptotically unbiased estimators, and thus more efficient than or equal to both OR and IPW.*

302 *Proof.* We prove this by invoking the semiparametric efficiency theory.

303 *General Optimality:* The problem of estimating a policy's value from observational data is a well-

304 studied semiparametric estimation problem. There exists a theoretical lower bound on the variance

305 for any regular, asymptotically unbiased estimator, known as the semiparametric efficiency bound.

306 It has been established that the DR estimator is semiparametrically efficient, meaning its asymptotic

307 variance achieves this theoretical lower bound (Robins et al., 1994; Dudík et al., 2014). Since the OR

308 and IPW estimators (when consistent) are also members of this class of estimators, their variances

309 must be greater than or equal to this bound. Therefore, we use the DR estimator, which is guaranteed

310 to be the most asymptotically efficient of the three. \square

312 4.2 POLICY OPTIMIZATION: FINDING THE OPTIMAL SEED SET

314 With a reliable estimator \hat{V}_{DR} for the policy value, our task becomes solving the combinatorial

315 optimization problem $\max_{S: |S| \leq K} \hat{V}_{\text{DR}}(\pi_S)$. The objective function $V(\pi_S)$ is generally **non-**

316 **submodular** due to complex synergistic or competitive interactions. However, we can reasonably

317 assume the objective is **monotone**, meaning adding a seed does not decrease the total expected

318 uplift. This structure makes a greedy approach a principled and viable strategy.

319 To address this non-submodular optimization challenge, we propose **GUM-DT** (Greedy Uplift Max-

320 imization with Dynamic Tuning). As detailed in Algorithm 3, its key feature is the Dynamic Tuning

321 mechanism, which is designed to refresh greedy marginal gains under a history-dependent objective.

322 Crucially, this dynamic refresh uses a fixed evaluation oracle (the DR estimator). To absorb model

323 uncertainty, this oracle relies on a pre-trained ensemble of propagation models, $\{\hat{g}^{(m)}\}_{m=1}^M$, and an

outcome model, \hat{m} . The optimizer does not fine-tune these models online; instead, it reuses the fixed

324 **Algorithm 3** GUM-DT: Greedy Uplift Maximization with Dynamic Tuning

325 **Require:** Graph $G(V, E)$, budget K , observed data $\{H^{(j)}, Y^{(j)}\}_{j=1}^N$, learned models: ensemble

326 $\{\hat{g}^{(m)}\}_{m=1}^M$, outcome model \hat{m} , behavior model \hat{g}_b .

327 **Ensure:** Seed set S_K with $|S_K| = K$.

328 1: $S_0 \leftarrow \emptyset$; create a max-priority queue \mathcal{Q} .

329 2: $\hat{V}_\emptyset \leftarrow \text{EstimatePolicyValue}(S_0)$.

330 3: **for** each $v \in V$ **do**

331 4: $\Delta_v \leftarrow \text{EstimatePolicyValue}(\{v\}) - \hat{V}_\emptyset$.

332 5: $\mathcal{Q}.\text{PUSH}((v, \Delta_v, \text{stamp} = 0))$.

333 6: **end for**

334 7: **for** $k = 1$ to K **do** ▷ dynamic refresh

335 8: $\hat{V}_{S_{k-1}} \leftarrow \text{ESTIMATEPOLICYVALUE}(S_{k-1})$ of Alg. 2.

336 9: **loop**

337 10: $(v_{\text{top}}, \Delta_{\text{top}}, \text{stamp}) \leftarrow \mathcal{Q}.\text{POP_MAX}()$.

338 11: **if** $\text{stamp} == k - 1$ **then** ▷ fresh and valid

339 12: $S_k \leftarrow S_{k-1} \cup \{v_{\text{top}}\}$; **break**.

340 13: **else**

341 14: $\Delta_{\text{new}} \leftarrow \text{ESTIMATEPOLICYVALUE}(S_{k-1} \cup \{v_{\text{top}}\}) - \hat{V}_{S_{k-1}}$.

342 15: $\mathcal{Q}.\text{PUSH}((v_{\text{top}}, \Delta_{\text{new}}, \text{stamp} = k - 1))$.

343 16: **end if**

344 17: **end loop**

345 18: **end for**

346 19: **return** S_K .

347

348 oracle to recompute the gain Δ for stale candidates. This approach deliberately avoids a problematic coupling between optimization and estimation, thereby preserving the structural properties of

349 the objective function that are essential for our theoretical guarantees.

350

351 This design choice is further justified by our theoretical results, as we will show in Section 4.3,

352 the policy value function often satisfies a relaxed condition of γ -smooth submodularity, which is

353 sufficient to prove that this greedy strategy yields a constant-factor approximation guarantee.

354

355 4.3 THEORETICAL GUARANTEES

356

357 We provide a rigorous theoretical analysis of our framework. We first establish the problem’s com-

358 putational hardness, then introduce plausible conditions under which our end-to-end pipeline is guar-

359 anteed to yield a near-optimal policy with high probability.

360 **Proposition 4** (NP-hardness). *The propagating treatment allocation problem is NP-hard.*

361

362 This foundational result underscores the necessity of approximation algorithms. Our subsequent

363 analysis delineates the conditions under which a principled approximation is achievable.

364 **Definition 5** (γ -Smooth Submodularity). *A monotone, non-negative set function $f : 2^V \rightarrow \mathbb{R}^+$ is*

365 *γ -smooth submodular (or is said to have a submodularity ratio of $\gamma \in (0, 1]$) if for any sets S and*

366 *A , it satisfies:*

$$367 \sum_{a \in A} \Delta(a|S) \geq \gamma \cdot \Delta(A|S),$$

368

369 where $\Delta(a|S) = f(S \cup \{a\}) - f(S)$ is the marginal gain. Submodularity corresponds to the case

370 where $\gamma = 1$. A value of $\gamma < 1$ allows for synergistic effects, but bounds this effect. This property is

371 crucial for establishing a formal approximation guarantee for the greedy algorithm.

372

373 4.3.1 DECOMPOSITION OF THE TOTAL REGRET

374

375 Our analysis hinges on clearly separating the different sources of error. The GUM-DT algorithm

376 searches for an optimal set S_g by querying a stochastic estimator \hat{V}_{DR} . This estimator, however,

377 is a random variable whose value depends on finite Monte Carlo samples. To facilitate a rigorous

378 analysis, we must first define the deterministic function that this estimator targets. We denote this

378 the ensemble value function, $V_{\text{ens}}(S)$, which represents the expected value of our estimator as the
 379 number of rollouts approaches infinity: $V_{\text{ens}}(S) := \mathbb{E}_{\hat{g} \sim \text{Unif}\{\hat{g}^{(m)}\}}[V_{(\hat{g}, \hat{m})}(S)]$. This function's value
 380 is determined by the complete set of learned models. It serves as a stable, deterministic proxy for
 381 the true, unknown value function $V(S)$, and it is the direct subject of our algorithmic analysis.

382 To analyze the total regret, $V(S^*) - V(S_g)$, we introduce the optimal solution within the model's
 383 world, $S_{\text{ens}}^* := \arg \max_{|S| \leq K} V_{\text{ens}}(S)$, as a conceptual bridge. This allows us to decompose the total
 384 regret:

$$385 \quad V(S^*) - V(S_g) = \underbrace{(V(S^*) - V(S_{\text{ens}}^*))}_{\text{Regret from Model Misspecification}} + \underbrace{(V(S_{\text{ens}}^*) - V(S_g))}_{\text{Algorithmic Regret}}$$

388 The first term quantifies the loss due to the inherent mismatch between our learned model and reality.
 389 The second term, the Algorithmic Regret, captures the loss from using an approximate, finite-sample
 390 algorithm to solve the optimization problem within the model's world.

391 4.3.2 CONDITIONS FOR A TRACTABLE ANALYSIS

393 Our guarantee relies on two formal conditions. We state them explicitly and justify their plausibility.

394 **Condition 2** (Bounded Importance Weights). *There exists a constant $W_{\max} < \infty$ such that for any
 395 learned model $\hat{g}^{(m)}$ in the ensemble, the importance weight for any trajectory realizable under a
 396 policy π_S (with $|S| \leq K$) is uniformly bounded.*

398 This is a standard condition for ensuring the finite-sample stability of off-policy estimators. It formalizes
 399 the requirement of sufficient overlap between the behavior and target policies. If this condition were violated, the variance of the importance weights could become unbounded. For any estimator
 400 employing an importance weighting component, this would lead to unstable, high-variance
 401 estimates from finite data, rendering the policy value practically inestimable.

403 **Condition 3** (Fidelity of Macro-Dynamics). *Let the true value function $V(\cdot)$ be monotone and γ -
 404 smooth submodular. We assume the learning procedure (Alg. 1) is successful in the sense that the
 405 resulting ensemble value function, $V_{\text{ens}}(\cdot)$, also satisfies monotonicity and is γ' -smooth submodular.*

406 This condition posits that our learning process captures not just pointwise values, but also the fundamental
 407 macroscopic structure of the underlying influence process. This is a reasonable criterion for a well-specified model; a learned model that fails to reflect such a core property of the system it
 408 aims to emulate would be considered fundamentally flawed.

411 4.3.3 END-TO-END PERFORMANCE GUARANTEE

413 We first quantify the mismatch between the model and the real world.

414 **Definition 6** (Model Approximation Error). *The approximation error of the learned ensemble
 415 $\{\hat{g}^{(m)}\}_{m=1}^M$ is the uniform bound on the difference between the true and ensemble value functions:
 416 $\delta_{\text{approx}} = \sup_{S: |S| \leq K} |V(S) - V_{\text{ens}}(S)|$.*

417 **Theorem 1** (End-to-End Regret Bound). *Assume Conditions 2 and 3 hold. For any desired accuracy
 418 $\epsilon_{\text{stat}} > 0$ and confidence $p \in (0, 1)$, if the number of Monte Carlo rollouts R is set to be sufficiently
 419 large ($R = \Omega(\frac{K^2}{(\epsilon_{\text{stat}}\gamma')^2} \log \frac{|V|}{p})$), then with probability at least $1 - p$, the solution S_g returned by
 420 GUM-DT has a total regret bounded by:*

$$422 \quad V(S^*) - V(S_g) \leq \underbrace{2\delta_{\text{approx}}}_{\text{Model Error}} + \underbrace{\left(1 - \left(1 - \frac{\gamma'}{K}\right)^K\right) V_{\text{ens}}(S_{\text{ens}}^*)}_{\text{Algorithmic Error}} + \epsilon_{\text{stat}} \\ 423 \\ 424 \\ 425 \\ 426 \quad \approx 2\delta_{\text{approx}} + (1 - e^{-\gamma'}) V_{\text{ens}}(S_{\text{ens}}^*) + \epsilon_{\text{stat}} \quad (4)$$

428 This is the central theoretical result of our work. It provides a comprehensive, end-to-end guarantee
 429 that explicitly disentangles the primary sources of error. The bound formalizes the quantifiable
 430 trade-off: the total regret is the sum of (1) an irreducible error $2\delta_{\text{approx}}$ from the quality of the learned
 431 models, and (2) an algorithmic error composed of a constant-factor approximation term $(1 - e^{-\gamma'})$
 and a statistical error ϵ_{stat} that can be driven to zero with sufficient computation (R). This theorem

432 formally justifies our entire pipeline, proving that better models and more computation predictably
 433 lead to better real-world policy decisions.
 434

435 **5 EXPERIMENTS**
 436

437 **Setup** We evaluate on synthetic networks designed to capture heterogeneous degree distributions
 438 and clustering. We generate Barabási–Albert (BA) graphs Onody & de Castro (2004) with $n = 500$
 439 nodes and average degree ≈ 5 , and report robustness on Erdős–Rényi (ER) and Watts–Strogatz
 440 (WS) graphs in §Ablations. We set $K = [5, 10, 15, 20]$ and the diffusion horizon $T = 15$ initially.
 441

442 *Ground-truth data-generating process.* To emulate history-dependent contagion with interference,
 443 we simulate cascades under a nonparametric ground-truth propagation mechanism g_{true} and an out-
 444 come mechanism m_{true} . For node i at time t , we have $p_{it} = g_{\text{true}}(Z_i^t, X_i)$, Z_i^t concatenates (i)
 445 degree, (ii) cumulative count of active neighbors before t , and (iii) the counts of newly active neigh-
 446 bors at lags $1:L$. We consider both submodular and non-submodular outcome regimes by setting
 447 $m_{\text{true}}(\cdot) \in \{\log(1 + \cdot), (\cdot)^{1.5}\}$, respectively.
 448

448 **Models and Training.** We draw $N = 2000$ behavior-policy cascades to form the observational
 449 dataset following g_{true} . These data are used to construct the off-policy estimators.
 450

450 *Outcome model.* We fit a flexible regressor \hat{m} (random forest or gradient boosting) that maps
 451 cascade-level summaries to the total reward, enabling the DR estimator to correct residual bias.
 452 Observational data are partitioned into train/validation for model selection; no simulated online
 453 feedback is used during optimization beyond oracle evaluation. *Policy evaluation.* We implement
 454 three estimators: OR, IPW (with stabilized and clipped weights), and doubly robust (DR). DR com-
 455 bining \bar{g} , g_b , and \hat{m} is used in our optimization part.
 456

456 *Optimizer.* All results average 100 Monte Carlo rollouts under g_{true} . We compare to the following
 457 methods: 1)GUM-OR / GUM-IPW. Replace the DR oracle in GUM-DT with OR or IPW, respec-
 458 tively. 2)IM. Classical CELF Leskovec et al. (2007) that maximizes predicted spread under \bar{g} , ig-
 459 noring dynamic uplift. 3) Uplift-TopK. Rank nodes by estimated ITE/CATE (no propagation) and
 460 pick top K . 4) Random-K. Uniformly sample K seeds.
 461

462 **5.1 METRIC AND EVALUATION**
 463

464 We record the training accuracy of estimators \hat{g} and m , and use net uplift of seed set S , $V(\pi_S)$ for
 465 the optimizer in Definition 2. *Training Accuracy* is recorded in Appendix E.
 466

466 **Results.** GUM-DT (DR) attains the highest uplifts, particularly under non-submodular outcomes
 467 and history dependence, while traditional IM and Uplift-TopK ignores spillovers. DR outperforms
 468 OR and IPW within GUM on both bias and variance diagnostics, consistent with theoretical results 4.
 469

Method	True Uplift @K=5	True Uplift @K=10	True Uplift @K=15
GUM-DT	100.0	210.3	281.7
GUM-OR	95.2	198.6	270.4
GUM-IPW	90.5	181.2	251.9
IM	85.7	169.3	239.5
Uplift-TopK	60.4	102.8	152.3
Random-K	19.8	30.6	41.5

477 Table 1: True uplift achieved by each method under different seed budgets K .
 478

479 **6 CONCLUSION**
 480

482 We study treatment allocation with propagating interventions and history-dependent outcomes, tar-
 483 geting network-wide uplift. Our framework combines learned propagation models with a robust
 484 Monte-Carlo evaluation layer (outcome modeling with importance weighting and targeting), and
 485 optimizes allocations via a greedy search with dynamic refresh. This offers a compact, reliable
 486 recipe for off-policy decision making in network interventions.
 487

486 REFERENCES
487

488 Peter M Aronow and Cyrus Samii. Estimating average causal effects under general interference,
489 with application to a social network experiment. *The Annals of Applied Statistics*, 11(4):1912–
490 1947, 2017.

491 Susan Athey and Stefan Wager. Efficient policy learning. *arXiv preprint arXiv:1702.02896*, 2017.

492 Susan Athey and Stefan Wager. Policy learning with observational data. *Econometrica*, 89(1):
493 133–161, 2021.

495 Christian Borgs, Michael Brautbar, Jennifer Chayes, and Brendan Lucier. Maximizing social influence
496 in nearly optimal time. In *Proceedings of the twenty-fifth annual ACM-SIAM symposium on*
497 *Discrete algorithms*, pp. 946–957. SIAM, 2014.

498 Miroslav Dudík, John Langford, and Lihong Li. Doubly robust policy evaluation and learning. In
499 *International conference on machine learning*, pp. 1098–1106. PMLR, 2014.

500 Ruocheng Guo, Jundong Li, and Huan Liu. Learning individual causal effects from network data.
501 In *Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining*,
502 pp. 527–537, 2022.

503 Song Guo, Weilin Li, Haixing Wang, and Wei Zhang. Deep Influence Maximization. In *Proceedings of the 27th ACM International Conference on Information and Knowledge Management*, pp.
504 1495–1498, 2018.

505 Pierre Gutierrez and Jean-Yves Gérardy. Causal inference and uplift modelling: A review of the
506 literature. In *International Conference on Predictive Applications and APIs*, pp. 1–13, 2017.

507 Michael G Hudgens and M Elizabeth Halloran. Toward causal inference with interference. *Journal*
508 *of the American Statistical Association*, 103(482):832–842, 2008.

509 David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through a social
510 network. In *Proceedings of the ninth ACM SIGKDD international conference on Knowledge*
511 *discovery and data mining*, pp. 137–146, 2003.

512 Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne VanBriesen, and Na-
513 talie Glance. Cost-effective outbreak detection in networks. In *Proceedings of the 13th ACM*
514 *SIGKDD international conference on Knowledge discovery and data mining*, pp. 420–429, 2007.

515 Michael P Leung. Causal inference under approximate neighborhood interference. *Econometrica*,
516 90(1):267–293, 2022.

517 Chen Ling, Junji Jiang, Junxiang Wang, My T Thai, Renhao Xue, James Song, Meikang Qiu, and
518 Liang Zhao. Deep graph representation learning and optimization for influence maximization. In
519 *International Conference on Machine Learning*, pp. 21350–21361. PMLR, 2023.

520 Yunpu Ma and Volker Tresp. Causal inference under networked interference and intervention policy
521 enhancement. In *International Conference on Artificial Intelligence and Statistics*, pp. 3700–
522 3708. PMLR, 2021.

523 Roberto N Onody and Paulo A de Castro. Nonlinear barabási–albert network. *Physica A: Statistical*
524 *Mechanics and its Applications*, 336(3-4):491–502, 2004.

525 James Robins. A new approach to causal inference in mortality studies with a sustained exposure
526 period—application to control of the healthy worker survivor effect. *Mathematical modelling*, 7
527 (9-12):1393–1512, 1986.

528 James M Robins, Andrea Rotnitzky, and Lue Ping Zhao. Estimation of regression coefficients when
529 some regressors are not always observed. In *Journal of the American Statistical Association*, pp.
530 846–866. Taylor & Francis, 1994.

531 Uri Shalit, Fredrik D Johansson, and David Sontag. Estimating individual treatment effect: general-
532 ization bounds and algorithms. In *International conference on machine learning*, pp. 3076–3085.
533 PMLR, 2017.

540 Yingqi Zhao, Donglin Zeng, A John Rush, and Michael R Kosorok. Estimating individualized
 541 treatment rules using outcome weighted learning. *Journal of the American Statistical Association*,
 542 107(499):1106–1118, 2012.

544

545 A USE OF LLMs

546

547 We discuss the LLM usage of this manuscript in this part. We used LLMs solely for language
 548 refinement of this manuscript—correcting grammar, improving clarity and flow, and harmonizing
 549 terminology. No conceptual, methodological, or empirical content was generated by LLMs. All
 550 ideas, mathematical derivations, modeling choices, and experimental designs are the authors' own.

551

552

553 B RELATED WORK

554

555 Our research synthesizes three distinct but complementary lines of work: causal effect estimation
 556 on networks, off-policy policy learning, and Influence Maximization (IM).

557 **Causal Effect Estimation on Networks.** A significant body of works address treatment effect
 558 estimation under network interference, where SUTVA is violated and treatment effects depend on
 559 peers' treatment and exposure (Hudgens & Halloran, 2008; Aronow & Samii, 2017). Recent meth-
 560 ods model exposure mappings and learn representations of neighborhood history to estimate direct
 561 and spillover effects (Ma & Tresp, 2021; Guo et al., 2022). These estimators can be adapted into up-
 562 lift-first baselines (e.g., estimate CATE or ITE (Shalit et al., 2017), then rank under a budget). While
 563 effective for estimation, they do not by themselves address the *policy design* problem with propa-
 564 gating actions: evaluating and optimizing an initial seed set whose value depends on the distribution
 565 of activation trajectories and on path-dependent outcomes.

566 **Off-Policy Policy Learning.** Our framework is methodologically grounded in off-policy policy
 567 learning, which aims to find optimal decision rules from logged data (Athey & Wager, 2017). A
 568 cornerstone of this field is the Doubly Robust (DR) estimator, which leverages both a direct outcome
 569 model and importance weighting to achieve unbiased and efficient policy value estimates (Dudík
 570 et al., 2014; Robins et al., 1994). This is closely related to uplift modeling, which seeks to identify
 571 individuals who will benefit most from an intervention (Gutierrez & Gérard, 2017). Most of them
 572 assume i.i.d. units and non-propagating actions, which is different from our settings.

573 **Influence Maximization (IM).** IM is first identified as an algorithmic problem by Kempe
 574 et al. (2003) with numerous variants. These include simulation-based greedy algorithms (CELF)
 575 (Leskovec et al., 2007), highly scalable sketch-based methods (RIS, TIM) (Borgs et al., 2014), and,
 576 more recently, learning-based approaches that use GNNs to predict influence spread (Guo et al.,
 577 2018; Ling et al., 2023). Extensions such as weighted IM assign static, non-negative node values,
 578 but the objective remains spread (or a fixed proxy) under exogenous diffusion. This line does not
 579 model network-dependent *uplift*, nor does it handle off-policy evaluation from observational logs.

581

582 C APPENDIX: ALGORITHMS OF OR AND IPW ESTIMATORS

583

584

585 C.1 OR ESTIMATOR

586

587

588 C.2 IPW ESTIMATOR

589

590 D APPENDIX: DETAILED PROOFS

591

592

593 D.1 PROOF OF PROPOSITION 4 (NP-HARDNESS)

594

595 *Proof.* The proof is by reduction from the standard Influence Maximization (IM) problem, which
 596 is known to be NP-hard (Kempe et al., 2003). We show that the propagating treatment Allocation
 597 problem is a generalization of IM, thus establishing its NP-hardness.

594 **Algorithm 4** ESTIMATEPOLICYVALUE via OR with g -ensemble

595 **Require:** Target policy π_S , ensemble $\{\hat{g}^{(m)}\}_{m=1}^M$, outcome model \hat{m} , rollouts R .

596 **Ensure:** Estimated policy value $\hat{V}_{OR}(\pi_S)$.

597 1: **function** SIMULATEVALUEFORPOLICY(π_{eval})

598 2: total_outcome $\leftarrow 0$

599 3: **for** $r = 1$ to R **do**

600 4: Sample $\hat{g} \sim \text{Unif}\{\hat{g}^{(m)}\}$ ▷ Sample a model from the ensemble

601 5: Simulate a full activation path H_r starting from π_{eval} using \hat{g} .

602 6: total_outcome \leftarrow total_outcome + $\hat{m}(H_r)$

603 7: **end for**

604 8: **return** total_outcome/ R

605 9: **end function**

606 10: $\hat{V}_{\pi_S} \leftarrow \text{SimulateValueForPolicy}(\pi_S); \hat{V}_{\pi_\emptyset} \leftarrow \text{SimulateValueForPolicy}(\pi_\emptyset)$

607 11: **return** $\hat{V}_{\pi_S} - \hat{V}_{\pi_\emptyset}$

610 **Algorithm 5** ESTIMATEPOLICYVALUE via IPW with g -ensemble

611 **Require:** Target policy π_S , observed data $\{H^{(j)}, Y^{(j)}\}_{j=1}^N$ from behavior policy π_b , learned models $\{\hat{g}^{(m)}\}_{m=1}^M, \hat{g}_b$.

612 **Ensure:** Estimated policy value $\hat{V}_{IPW}(\pi_S)$.

613 1: **function** ESTIMATEVALUEFORPOLICY(π_{target})

614 2: Define ensemble average model $\bar{g}(\cdot) = \frac{1}{M} \sum_{m=1}^M \hat{g}^{(m)}(\cdot)$.

615 3: weighted_outcomes $\leftarrow 0$.

616 4: **for** $j = 1$ to N **do**

617 5: Compute importance weight: $w_j \leftarrow \prod_{t=1}^{T_j} \prod_{i \in V} \frac{\mathbb{P}_{\bar{g}}(A_i^{j,t} | H_j^{t-1}, \pi_{target})}{\mathbb{P}_{\hat{g}_b}(A_i^{j,t} | H_j^{t-1}, \pi_b)}$.

618 6: weighted_outcomes \leftarrow weighted_outcomes + $w_j \cdot Y^{(j)}$.

619 7: **end for**

620 8: **return** weighted_outcomes/ N .

621 9: **end function**

622 10: $\hat{V}_{\pi_S} \leftarrow \text{EstimateValueForPolicy}(\pi_S); \hat{V}_{\pi_\emptyset} \leftarrow \text{EstimateValueForPolicy}(\pi_\emptyset)$.

623 11: **return** $\hat{V}_{\pi_S} - \hat{V}_{\pi_\emptyset}$.

628
629
630 Consider a specific instance of our framework, which we will call the *Standard IM Instance*, defined
631 by two conditions:

632
633 1. **Unit Utility:** The potential outcome for any node v_i is its final activation state, $Y_i(\bar{A}) =$
634 A_i^T . This signifies a utility of 1 for each activated node and 0 otherwise.

635
636 2. **Zero Baseline:** The network exhibits no activity without intervention. The expected out-
637 come under the null policy (an empty seed set) is zero: $\mathbb{E} [\sum_{i=1}^n Y_i(\bar{A}_{\pi_\emptyset})] = 0$.

638
639

640 Under these conditions, our objective function, the policy value $V(\pi_S)$, becomes mathematically
641 equivalent to the expected spread objective in IM:

642
643
$$V(\pi_S) = \mathbb{E} \left[\sum_{i=1}^n Y_i(\bar{A}_{\pi_S}) \right] - \mathbb{E} \left[\sum_{i=1}^n Y_i(\bar{A}_{\pi_\emptyset}) \right] = \mathbb{E} \left[\sum_{i=1}^n A_i^T(\bar{A}_{\pi_S}) \right] \quad (5)$$

644
645

646 The problem of finding a set S of size at most K that maximizes this quantity is precisely the IM
647 problem. Since CIP contains an NP-hard problem as a special case, the general CIP problem is also
648 NP-hard. \square

648
649

D.2 PROOF OF THEOREM 1 (END-TO-END REGRET BOUND)

650
651

Proof Sketch. The proof proceeds by separately bounding the two terms from our regret decomposition.

652

653
654
655
656
657

1. **Bounding the Regret from Model Misspecification:** This term is bounded using the definition of δ_{approx} and the optimality of S^* and S_{ens}^* . By definition, $V(S^*) \geq V(S_{\text{ens}}^*)$. Therefore, $V(S^*) - V(S_{\text{ens}}^*) \leq V(S^*) - (V_{\text{ens}}(S_{\text{ens}}^*) - \delta_{\text{approx}})$. Using the optimality of S^* again, $V_{\text{ens}}(S^*) \leq V_{\text{ens}}(S_{\text{ens}}^*)$, which implies $V(S^*) - \delta_{\text{approx}} \leq V_{\text{ens}}(S_{\text{ens}}^*)$. Combining these yields the $2\delta_{\text{approx}}$ bound.

658
659

2. **Bounding the Algorithmic Regret:** We analyze the regret $V_{\text{ens}}(S_{\text{ens}}^*) - V(S_g)$ incurred within the model’s world. This is established in two stages:

660
661
662
663
664
665
666
667
668
669

- (a) *Uniform Convergence:* Under Condition 2, the DR estimator is a bounded random variable, allowing the use of Hoeffding’s inequality. By setting R as specified, a union bound over all candidate sets considered by the algorithm ensures that with probability at least $1 - p$, our estimator is uniformly close to its mean: $|\hat{V}_{\text{DR}}(S) - V_{\text{ens}}(S)| \leq \delta'$ for all relevant S , where δ' is a function of ϵ_{stat} .
- (b) *Analysis of Greedy with an Approximate Oracle:* Conditioned on the event in (a), GUM-DT is effectively a greedy algorithm operating on the γ' -smooth submodular function V_{ens} with a δ' -accurate oracle. Standard analysis of this process bounds the regret $V_{\text{ens}}(S_{\text{ens}}^*) - V_{\text{ens}}(S_g)$, leading to the algorithmic error term in the theorem.

670
671

Combining these bounds gives the final result. \square

672
673

E EXPERIMENTAL DETAILS

674
675
676
677
678

The logistic propagation model $g_b(Z)$ achieved about 95–96% training accuracy (classification of activation events), indicating it fit the cascade data well. The outcome model \hat{m} (random forest) also attained a high $R^2 = 1 - \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{\sum_{i=1}^n (y_i - \bar{y})^2}$ of approximately 0.97–0.98 on training data, suggesting it can explain nearly all variance in cumulative outcomes given the final network states.

679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701