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ABSTRACT

Uplift modeling and treatment allocation are classical tasks in promotion mar-
keting. Yet existing allocations ignore propagating treatments and network inter-
ference, where both outcomes and the propagation mechanism vary with peers’
treatment history, making policy value hard to estimate and optimize. We for-
malize a history-driven uplift objective with activation probability g(Zt

i ,Xi) and
outcomes that depend on neighbors’ treated states. Theoretically, we establish
conditions for identification and provide finite-sample guarantees for policy eval-
uation under interference and model misspecification. Methodologically, we pro-
pose GUM-DT via a Monte-Carlo policy search: learn an ensemble of lightweight
propagation models and an outcome model, and evaluate candidate allocations via
double-robust (DR) estimators with IPW corrections. On synthetic networks, ex-
periments demonstrate consistent gains over uplift allocations of GUM-DT, vali-
dating robustness and effectiveness.

1 INTRODUCTION

Treatments in modern marketplaces often propagate over social graphs—referral-driven member-
ships, friend-invite trials, community bundles—where both activation and revenue evolve with
neighbors’ treatment states. We study how to allocate an initial budget of seeds on a network
G = (V,E) to maximize network-wide uplift relative to a non-zero baseline policy π0, where activa-
tions and outcomes unfold over T periods under a history-dependent propagation mechanism g and
outcome mechanism m. This objective departs from independent-unit or non-propagating settings
by jointly modeling activation dynamics and the payoffs they induce through neighbors’ evolving
states. A representative case is a paid-membership program with peer referrals: “join-membership”
can spread over time, and a user’s incremental revenue depends on the contemporaneous and cu-
mulative membership of friends—exhibiting complementarities (co-purchases, retention) or crowd-
ing/fatigue.

To position our problem, we contrast it with three nearby paradigms. Individual Treatment Regime
(ITR) selects x 7→a per individual while abstracting from network exposure (Zhao et al., 2012; Athey
& Wager, 2021). Static uplift ranks one-shot ROI under a budget, assuming treatments do not spread
(non-propagating). Influence maximization (IM) optimizes expected spread rather than causal value
(proxy misalignment) (Kempe et al., 2003). In contrast, we optimize uplift relative to a non-zero
baseline when both activation and payoffs are history-dependent, which breaks submodularity and
invalidates classical spread-based greedy guarantees.

Our setting relates to approximate neighborhood interference (ANI)—exposure-mapping ap-
proaches under local interference (Leung, 2022). Both frameworks formalize how neighbors’
treatment states shape outcomes. The distinction is twofold. First, ANI focuses on estimation of
exposure-defined effects at a given time, whereas we address propagating treatments whose acti-
vation trajectories are endogenous to the seed set and target policy optimization for uplift over a
non-zero baseline. Second, ANI exposures are typically static or period-wise, while our objective
aggregates over history, inducing non-submodularity and non-stationary marginal gains for which
one-shot ranking and classical greedy are inadequate. In short, we leverage ANI-style locality to
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parameterize and learn exposure-sensitive mechanisms, but depart in targeting network-wide uplift
under propagation and in coupling estimation with an optimizer aligned to history dependence.

Two challenges arise naturally. On the estimation side, Value(π) integrates over an exponential fam-
ily of latent activation paths; g is unknown and history dependent; outcomes may be non-monotone
in neighborhood treatment. On the optimization side, each seed perturbs the environment seen by
the others, so marginal gains are non-stationary; heuristics that assume fixed gains or rely on spread
proxies lack guarantees. We address these issues with a two-layer framework. An evaluation layer
learns an ensemble of lightweight propagation models {ĝ} and an outcome model m̂, and scores
candidate allocations using a targeted doubly robust (DR) estimator that combines inverse propen-
sity weighting with TMLE-style targeting; the estimator is consistent if either ĝ or m̂ is correctly
specified and attains improved finite-sample stability via ensembling and targeting. An optimiza-
tion layer, GUM-DT, iteratively queries this targeted DR oracle under the current environment and
refreshes stale gains before selection, aligning the search procedure with the history-dependent ob-
jective rather than a spread proxy.

Our contributions are threefold. (i) Formulation. We formalize causal uplift maximization with
propagating treatments on networks, defining value as uplift relative to a non-zero baseline under
history-dependent interference and clarifying its relation to, and difference from, ANI-style expo-
sure models. (ii) Robust off-policy evaluation. We develop a targeted DR estimator tailored to
propagation settings that is doubly robust and more stable in finite samples through ensembling and
targeting. (iii) History-aligned optimization and theory. We design GUM-DT, a dynamic-greedy
allocator that refreshes marginal gains via the targeted DR oracle, and provide PAC-style analyses
that decompose policy regret into model misspecification, statistical estimation, and algorithmic ap-
proximation errors, accompanied by diagnostics for exposure non-monotonicity and misspecified
propagation. Together, these elements provide a principled bridge from causal objectives to practi-
cal, high-stakes allocation of propagating treatments in networked markets.

2 RELATED WORKS

Our research synthesizes three distinct but complementary lines of work: causal effect estimation
on networks, off-policy policy learning, and Influence Maximization (IM). Details of off-policy pol-
icy learning and IM part are in Appendix. A significant body of works address treatment effect
estimation under network interference, where SUTVA is violated and treatment effects depend on
peers’ treatment and exposure (Hudgens & Halloran, 2008; Aronow & Samii, 2017). Recent meth-
ods model exposure mappings and learn representations of neighborhood history to estimate direct
and spillover effects (Ma & Tresp, 2021; Guo et al., 2022). These estimators can be adapted into up-
lift–first baselines (e.g., estimate CATE or ITE (Shalit et al., 2017), then rank under a budget). While
effective for estimation, they do not by themselves address the policy design problem with propa-
gating actions: evaluating and optimizing an initial seed set whose value depends on the distribution
of activation trajectories and on path–dependent outcomes.

3 PROBLEM FORMULATION

We first define basic notations and objective, then detail the system dynamics that govern the inter-
vention process and state the assumptions for identification.

3.1 NOTAIONS AND OBJECTIVE

Let G(V,E) be a graph observed over a discrete time horizon t = 0, 1, . . . , T . An intervention
seeding policy, πS , selects an initial seed set S ⊆ V of size at most K. This policy initiates a
stochastic propagation process, resulting in a full activation path over the network, denoted AπS

=
(A0, . . . ,AT ), where At := (At

1, . . . , A
t
|V |) ∈ {0, 1}

|V | is the vector of binary activation states
of all nodes at time t. We write Ht = (A0, . . . ,At) for the global history up to t, and Ht

U for its
restriction to nodes U ⊆ V . Features of nodes are denoted as X = {Xi : i ∈ V }.
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Definition 1 (Path-dependent Potential Outcome). For any realized activation path A on graph G,
the potential outcome of node i is Yi(A) ∈ R, which may depend on on the entire path (e.g., fatigue
or timing effects), not only on terminal activation.
Definition 2 (Policy Value: Net Uplift). Given a seeding policy πS (choosing an initial seed set
S ⊆ V , |S| ≤ K) and the baseline policy π∅, define

V (πS) := EA∼P(· |πS ,X)

[ n∑
i=1

Yi(A)
]
− EA∼P(· |π∅,X)

[ n∑
i=1

Yi(A)
]
.

3.2 SYSTEM DYNAMICS AND IDENTIFICATION

Definition 3 (Propagation Mechanism). For t ≥ 1, the state of any inactive node vi evolves accord-
ing to a conditional probability function g depending on the node’s features Xi and an exposure
vector Zt

i , which summarizes the activation history of its neighbors N (i).

P(At
i = 1|Ht−1,X) = g(Zt

i ,Xi), where Zt
i = h(Xi,H

t−1
N (i)) (1)

We assume that an activated node remains active, At−1
i = 1 ⇒ At

i = 1. This allows his-
tory–dependent, possibly non–monotone peer effects, where, for instance, excessive neighbor ac-
tivity could decrease activation probability. Classic models like Independent Cascade (IC) or Linear
Threshold (LT) arise as special cases.
Definition 4 (Outcome Mechanism). The expected total utility is determined by node features and
nodes treated history

E

[∑
i∈V

Yi|A,X

]
= m(A,X) (2)

where m may be instantiated by a model that captures graph structure and temporal dependence.
Intuitively, g induces a distribution over paths, while m assigns value to each realized path.

To connect our causal objective to observational data, we rely on the following standard assumptions,
adapted to our dynamic, networked setting.

Assumption 1 (Consistency). For the realized path A under any intervention seeding, the observed
outcome for each node corresponds to the potential outcome under the specific realized activation
path that occurred: Yi = Yi(A).
Assumption 2 (Positivity). For any local history that occurs with positive probability, the condi-
tional probability of a node’s activation is bounded away from 0 and 1.
Assumption 3 (Sequential Ignorability). Conditional on the observed local history of a node and its
neighbors up to time t− 1, its activation at time t is independent of the set of all potential outcome
functions, {Y(·)}. Formally:

At
i ⊥⊥ {Y(·)} |Ht−1

{i}∪N (i),X (3)

This is the crucial no-unmeasured-confounders assumption, allowing us to treat the sequential prop-
agation as a series of conditionally randomized experiments.

Together, these assumptions ensure that our theoretical objective is empirically grounded.
Proposition 1 (Identifiability of Policy Value). Under Assumptions 1-3, V (πS) is identifiable from
observational data.

Proof sketch. By the g-computation formula (Robins, 1986),

E
[∑

i

Yi(A)
∣∣∣πS ,X

]
=
∑
a

(∑
i

E[Yi | A = a,X]
)
P(A = a | πS ,X).

By Consistency, the counterfactual expectation equals the observable conditional expectation. By
chain rule and Sequential Ignorability given local histories, each factor P(At

i | H
t−1
{i}∪N (i),X) is

identifiable; Positivity ensures they are well-defined. Thus both terms in Def. 2 are identifiable,
hence V (πS) is identifiable.
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Computational Implication. Although identifiable, direct evaluation of V (πS) is intractable due
to the exponential number of activation paths. This motivates estimating V (πS) from data and opti-
mizing allocations using this estimate, while controlling the resulting estimation and approximation
errors.

4 METHODOLOGY AND THEORETICAL GUARANTEES

Having established that our causal objective is identifiable but intractable to compute, our methodol-
ogy directly confronts this challenge with a two-stage framework: estimation and optimization. We
first develop robust methods to estimate the policy value from observational data, and then design
efficient algorithms to find the optimal seed set based on this estimate.

4.1 ESTIMATING POLICY VALUE FROM OBSERVATIONAL DATA

Estimating the policy value V (πS) from observational data situates our problem within the frame-
work of off-policy evaluation. We must use data generated under a historical behavior policy πb

to evaluate our new target policy πS . This requires learning two key components of the system’s
dynamics from the available data.

4.1.1 LEARNING THE SYSTEM DYNAMICS

Modeling Choices. Beyond the core identification assumptions that enable causal reasoning, our
estimation framework relies on two modeling choices to build concrete estimators and quantify un-
certainty. (M1) We assume that the point estimate for the activation probability p = ĝ(Zt

i ,Xi)
follows a Beta distribution. (M2) We assume that the total observed outcome for a given path,∑

i Yi, follows a Gaussian distribution. These distributional assumptions are choices for the model-
ing architecture and are not required for causal identification itself.
Propagation Model. The propagation probability g(Zt

i ,Xi) is dynamic, depending on the evolv-
ing history of network activations. We learn this function by training an ensemble of M lightweight
models {ĝ(m)}Mm=1. The history is encoded into a vector Zt

i using a Time-Channel GNN, which
captures spatio-temporal dependencies. Training an ensemble on bootstrap samples enhances ro-
bustness and quantifies model uncertainty. For estimators requiring importance weighting, we simi-
larly train a model of the behavior policy’s propagation dynamics, denoted ĝb. The detailed training
procedure is presented in Algorithm 1.

Outcome Model. The second component is the outcome model, m̂, which predicts the total network
utility given a full activation history, E[

∑
i Yi|A,X]. We implement m̂ as a Graph Neural Network

(GNN) to effectively capture how path-dependent dynamics on the underlying graph topology influ-
ence the final outcome. This frames the learning problem as a graph-level regression task, mapping
the entire history to a single utility score.

4.1.2 ESTIMATORS FOR POLICY VALUE

Based on the learned models, we can construct several estimators for V (πS).

Outcome Regression (OR) Estimator. The OR estimator (Algorithm 4) is a direct, simulation-
based approach. To account for model uncertainty, each simulation rollout uses a propagation model
randomly sampled from the trained ensemble. Its consistency, however, stringently requires that both
the propagation models and the outcome model are correctly specified.
Inverse Propensity Weighting (IPW) Estimator. The IPW estimator (Algorithm 5) re-weights
observed historical outcomes. To compute the importance weights, it requires a single propagation
model for the target policy. We use the average of the ensemble, ḡ = 1

M

∑
m ĝ(m). IPW’s consis-

tency depends only on the correct specification of the propagation models (ḡ, ĝb), but it can suffer
from high variance if the target policy evaluates trajectories that were rare under the behavior policy.
Doubly Robust (DR) Estimator. The DR estimator (Algorithm 2) synthesizes the OR and IPW
approaches to achieve superior statistical properties. It combines a direct simulation-based estimate
with an importance-weighted correction term based on the observed outcome residual. We adopt a
Monte-Carlo version of the DR estimator for evaluation.
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Algorithm 1 PROPAGATIONMODELLEARNING (Training an ensemble of M propagation model g)
Require: Cascades {Ab,0:Tb}Bb=1; node features X = {Xi}i∈V ; history encoder hϕ; model family
G; ensemble size M ; optional subsampling rates: time-step rate ρt ∈ (0, 1], negative-node rate
ρn ∈ (0, 1].

Ensure: Trained ensemble {ĝ(m)}Mm=1.

1: History encoder hϕ (Time-Channel GNN). For each node i and step t, compute the history
code Zt

i via:

Et−1
i =[Xi,H

t−1],Zt
i = MLP(σ

(
W1E

t−1
i + U1

∑
j∈N (i)

Et−1
j + b1

)
).

2: Build supervised dataset D.
3: D ← ∅
4: for b = 1 to B do ▷ iterate cascades
5: for t = 1 to Tb do
6: if Unif(0, 1) > ρt then continue ▷ optional time-step subsampling
7: end if
8: Ib,t ← { i ∈ V : Ab,t−1

i = 0 } ▷ inactive at t−1
9: if negative subsampling enabled then

10: Ib,t ← {i ∈ Ib,t : Ab,t
i = 1} ∪ {i ∈ Ib,t : Ab,t

i = 0 ∧ Unif(0, 1) ≤ ρn}
11: end if
12: for each i ∈ Ib,t do
13: Zt

i ← hϕ

(
X, H t−1,b

N (i)

)
▷ encode local neighbor history via hϕ in line 1

14: yti ← Ab,t
i ▷ label: activated at step t?

15: D ← D ∪ {(Zt
i ,Xi, y

t
i)}

16: end for
17: end for
18: end for
19: Train M models with bootstrap
20: for m = 1 to M do
21: Train ĝ(m) ∈ G on a bootstrap sample D(m) from D by minimizing the Bernoulli Negative

Log-Likelihood Loss (NLL):

min
θ(m)

∑
(Zt

i ,Xi,yt
i)∈D(m)

BCE
(
yti , ĝ

(m)(Zt
i ,Xi)

)
.

22: end for
23: return {ĝ(m)}Mm=1

4.1.3 THEORETICAL COMPARISON OF ESTIMATORS

Condition 1 (Model Specification). Let g and m be the true data-generating functions. A learned
model is correctly specified if it is a consistent estimator of the true function.

Proposition 2 (Robustness and Consistency). The DR estimator is consistent under weaker model-
ing assumptions than the OR and IPW estimators, a property known as double robustness.

Proof. Let V denote V (πS). OR: The expectation is E[V̂OR] = EH∼ĝ[m̂(H)]. For consistency,
this must equal V = EH∼g[m(H)], which holds only if both models are correctly specified: ĝ = g
(to sample from the correct path distribution) and m̂ = m (to evaluate paths correctly).
IPW: The expectation is E[V̂IPW ] = EH∼gb

[
Pĝ(H)
Pĝb

(H)Y
]
. If the propagation models are correct

(ĝ = g, ĝb = gb), this becomes EH∼gb

[
Pg(H)
Pgb

(H)Y
]
= EH∼g[Y ] = V . Consistency thus requires a

correct ĝ but is independent of m̂.
DR: The expectation is E[m̂(H) + w(Y − m̂(H))]. This estimator is consistent if either model is
correctly specified.
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Algorithm 2 ESTIMATEPOLICYVALUE via DR with g-ensemble

Require: Target policy πS , observed data {H(j), Y (j)}Nj=1 from behavior policy πb, learned models
{ĝ(m)}Mm=1, ĝb, m̂.

Ensure: Estimated policy value V̂DR(πS).
1: function ESTIMATEVALUEFORPOLICY(πtarget)
2: Define ensemble average model ḡ(·) = 1

M

∑M
m=1 ĝ

(m)(·).
3: total value← 0.
4: for j = 1 to N do
5: Compute importance weight: wj ←

∏Tj

t=1

∏
i∈V

Pḡ(A
(j),t
i |H(j),t−1,πtarget)

Pĝb
(A

(j),t
i |H(j),t−1,πb)

.

6: Get outcome model prediction (control variate): mj ← m̂(H(j)).
7: total value← total value + wj · (Y (j) −mj) +mj .
8: end for
9: return total value/N .

10: end function

11: V̂πS
← EstimateValueForPolicy(πS); V̂π∅ ← EstimateValueForPolicy(π∅).

12: return V̂πS
− V̂π∅ .

1. If m̂ = m: The correction term’s expectation is EH∼ĝ,Y∼gb [w(Y −m(H))] = EH∼g[Y −
m(H)] = 0. The total expectation collapses to EH∼g[m(H)] = V .

2. If ĝ = g: The expectation becomes EH∼g[m̂(H)+w(Y −m̂(H))]. This correctly evaluates
to V regardless of the function m̂.

Thus, DR requires only one of the two models to be correct, whereas OR requires both and IPW
requires the propagation model, demonstrating its superior robustness.

Proposition 3 (Asymptotic Efficiency). Under correct specification of both ĝ and m̂, DR is semi-
parametrically efficient. It achieves the lowest possible asymptotic variance among all regular,
asymptotically unbiased estimators, and thus more efficient than or equal to both OR and IPW.

Proof. We prove this by invoking the semiparametric efficiency theory.
General Optimality: The problem of estimating a policy’s value from observational data is a well-
studied semiparametric estimation problem. There exists a theoretical lower bound on the variance
for any regular, asymptotically unbiased estimator, known as the semiparametric efficiency bound.
It has been established that the DR estimator is semiparametrically efficient, meaning its asymptotic
variance achieves this theoretical lower bound (Robins et al., 1994; Dudı́k et al., 2014). Since the OR
and IPW estimators (when consistent) are also members of this class of estimators, their variances
must be greater than or equal to this bound. Therefore, we use the DR estimator, which is guaranteed
to be the most asymptotically efficient of the three.

4.2 POLICY OPTIMIZATION: FINDING THE OPTIMAL SEED SET

With a reliable estimator V̂DR for the policy value, our task becomes solving the combinatorial
optimization problem maxS:|S|≤K V̂DR(πS). The objective function V (πS) is generally non-
submodular due to complex synergistic or competitive interactions. However, we can reasonably
assume the objective is monotone, meaning adding a seed does not decrease the total expected
uplift. This structure makes a greedy approach a principled and viable strategy.

To address this non-submodular optimization challenge, we propose GUM-DT (Greedy Uplift Max-
imization with Dynamic Tuning). As detailed in Algorithm 3, its key feature is the Dynamic Tuning
mechanism, which is designed to refresh greedy marginal gains under a history-dependent objective.
Crucially, this dynamic refresh uses a fixed evaluation oracle (the DR estimator). To absorb model
uncertainty, this oracle relies on a pre-trained ensemble of propagation models, {ĝ(m)}Mm=1, and an
outcome model, m̂. The optimizer does not fine-tune these models online; instead, it reuses the fixed

6
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Algorithm 3 GUM-DT: Greedy Uplift Maximization with Dynamic Tuning

Require: Graph G(V,E), budget K, observed data {H(j), Y (j)}Nj=1, learned models: ensemble
{ĝ(m)}Mm=1, outcome model m̂, behavior model ĝb.

Ensure: Seed set SK with |SK | = K.
1: S0 ← ∅; create a max-priority queue Q.
2: V̂∅ ← EstimatePolicyV alue(S0).
3: for each v ∈ V do
4: ∆v ← EstimatePolicyV alue({v})− V̂∅.
5: Q.PUSH((v,∆v, stamp = 0)).
6: end for
7: for k = 1 to K do ▷ dynamic refresh
8: V̂Sk−1

← ESTIMATEPOLICYVALUE(Sk−1) of Alg. 2.
9: loop

10: (vtop,∆top, stamp)← Q.POP MAX().
11: if stamp == k − 1 then ▷ fresh and valid
12: Sk ← Sk−1 ∪ {vtop}; break.
13: else
14: ∆new ← ESTIMATEPOLICYVALUE(Sk−1 ∪ {vtop})− V̂Sk−1

.
15: Q.PUSH((vtop,∆new, stamp = k − 1)).
16: end if
17: end loop
18: end for
19: return SK .

oracle to recompute the gain ∆ for stale candidates. This approach deliberately avoids a problem-
atic coupling between optimization and estimation, thereby preserving the structural properties of
the objective function that are essential for our theoretical guarantees.

This design choice is further justified by our theoretical results, as we will show in Section 4.3,
the policy value function often satisfies a relaxed condition of γ-smooth submodularity, which is
sufficient to prove that this greedy strategy yields a constant-factor approximation guarantee.

4.3 THEORETICAL GUARANTEES

We provide a rigorous theoretical analysis of our framework. We first establish the problem’s com-
putational hardness, then introduce plausible conditions under which our end-to-end pipeline is guar-
anteed to yield a near-optimal policy with high probability.
Proposition 4 (NP-hardness). The propagating treatment allocation problem is NP-hard.

This foundational result underscores the necessity of approximation algorithms. Our subsequent
analysis delineates the conditions under which a principled approximation is achievable.
Definition 5 (γ-Smooth Submodularity). A monotone, non-negative set function f : 2V → R+ is
γ-smooth submodular (or is said to have a submodularity ratio of γ ∈ (0, 1]) if for any sets S and
A, it satisfies: ∑

a∈A

∆(a|S) ≥ γ ·∆(A|S),

where ∆(a|S) = f(S ∪ {a})− f(S) is the marginal gain. Submodularity corresponds to the case
where γ = 1. A value of γ < 1 allows for synergistic effects, but bounds this effect. This property is
crucial for establishing a formal approximation guarantee for the greedy algorithm.

4.3.1 DECOMPOSITION OF THE TOTAL REGRET

Our analysis hinges on clearly separating the different sources of error. The GUM-DT algorithm
searches for an optimal set Sg by querying a stochastic estimator V̂DR. This estimator, however,
is a random variable whose value depends on finite Monte Carlo samples. To facilitate a rigorous
analysis, we must first define the deterministic function that this estimator targets. We denote this

7
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the ensemble value function, Vens(S), which represents the expected value of our estimator as the
number of rollouts approaches infinity: Vens(S) := Eĝ∼Unif{ĝ(m)}[V(ĝ,m̂)(S)]. This function’s value
is determined by the complete set of learned models. It serves as a stable, deterministic proxy for
the true, unknown value function V (S), and it is the direct subject of our algorithmic analysis.

To analyze the total regret, V (S∗) − V (Sg), we introduce the optimal solution within the model’s
world, S∗

ens := argmax|S|≤K Vens(S), as a conceptual bridge. This allows us to decompose the total
regret:

V (S∗)− V (Sg) = (V (S∗)− V (S∗
ens))︸ ︷︷ ︸

Regret from Model Misspecification

+(V (S∗
ens)− V (Sg))︸ ︷︷ ︸

Algorithmic Regret

The first term quantifies the loss due to the inherent mismatch between our learned model and reality.
The second term, the Algorithmic Regret, captures the loss from using an approximate, finite-sample
algorithm to solve the optimization problem within the model’s world.

4.3.2 CONDITIONS FOR A TRACTABLE ANALYSIS

Our guarantee relies on two formal conditions. We state them explicitly and justify their plausibility.
Condition 2 (Bounded Importance Weights). There exists a constant Wmax <∞ such that for any
learned model ĝ(m) in the ensemble, the importance weight for any trajectory realizable under a
policy πS (with |S| ≤ K) is uniformly bounded.

This is a standard condition for ensuring the finite-sample stability of off-policy estimators. It for-
malizes the requirement of sufficient overlap between the behavior and target policies. If this con-
dition were violated, the variance of the importance weights could become unbounded. For any es-
timator employing an importance weighting component, this would lead to unstable, high-variance
estimates from finite data, rendering the policy value practically inestimable.
Condition 3 (Fidelity of Macro-Dynamics). Let the true value function V (·) be monotone and γ-
smooth submodular. We assume the learning procedure (Alg. 1) is successful in the sense that the
resulting ensemble value function, Vens(·), also satisfies monotonicity and is γ′-smooth submodular.

This condition posits that our learning process captures not just pointwise values, but also the fun-
damental macroscopic structure of the underlying influence process. This is a reasonable criterion
for a well-specified model; a learned model that fails to reflect such a core property of the system it
aims to emulate would be considered fundamentally flawed.

4.3.3 END-TO-END PERFORMANCE GUARANTEE

We first quantify the mismatch between the model and the real world.
Definition 6 (Model Approximation Error). The approximation error of the learned ensemble
{ĝ(m)}Mm=1 is the uniform bound on the difference between the true and ensemble value functions:
δapprox = supS:|S|≤K |V (S)− Vens(S)|.
Theorem 1 (End-to-End Regret Bound). Assume Conditions 2 and 3 hold. For any desired accuracy
ϵstat > 0 and confidence p ∈ (0, 1), if the number of Monte Carlo rollouts R is set to be sufficiently
large (R = Ω( K2

(ϵstatγ′)2 log
|V |
p )), then with probability at least 1 − p, the solution Sg returned by

GUM-DT has a total regret bounded by:

V (S∗)− V (Sg) ≤ 2δapprox︸ ︷︷ ︸
Model Error

+

(
1−

(
1− γ′

K

)K
)
Vens(S

∗
ens) + ϵstat︸ ︷︷ ︸

Algorithmic Error

≈ 2δapprox + (1− e−γ′
)Vens(S

∗
ens) + ϵstat (4)

This is the central theoretical result of our work. It provides a comprehensive, end-to-end guarantee
that explicitly disentangles the primary sources of error. The bound formalizes the quantifiable
trade-off: the total regret is the sum of (1) an irreducible error 2δapprox from the quality of the learned
models, and (2) an algorithmic error composed of a constant-factor approximation term (1− e−γ′

)
and a statistical error ϵstat that can be driven to zero with sufficient computation (R). This theorem

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

formally justifies our entire pipeline, proving that better models and more computation predictably
lead to better real-world policy decisions.

5 EXPERIMENTS

Setup We evaluate on synthetic networks designed to capture heterogeneous degree distributions
and clustering. We generate Barabási–Albert (BA) graphs Onody & de Castro (2004) with n = 500
nodes and average degree ≈ 5, and report robustness on Erdős–Rényi (ER) and Watts–Strogatz
(WS) graphs in §Ablations. We set K = [5, 10, 15, 20] and the diffusion horizon T = 15 initially.

Ground-truth data-generating process. To emulate history-dependent contagion with interference,
we simulate cascades under a nonparametric ground-truth propagation mechanism gtrue and an out-
come mechanism mtrue. For node i at time t, we have pit = gtrue

(
Zt
i , Xi

)
,, Zt

i concatenates (i)
degree, (ii) cumulative count of active neighbors before t, and (iii) the counts of newly active neigh-
bors at lags 1:L. We consider both submodular and non-submodular outcome regimes by setting
mtrue(·) ∈ {log(1 + ·), (·)1.5}, respectively.

Models and Training. We draw N = 2000 behavior-policy cascades to form the observational
dataset following gtrue. These data are used to construct the off-policy estimators.

Outcome model. We fit a flexible regressor m̂ (random forest or gradient boosting) that maps
cascade-level summaries to the total reward, enabling the DR estimator to correct residual bias.
Observational data are partitioned into train/validation for model selection; no simulated online
feedback is used during optimization beyond oracle evaluation. Policy evaluation. We implement
three estimators: OR, IPW (with stabilized and clipped weights), and doubly robust (DR). DR com-
bining ḡ, gb, and m̂ is used in our optimization part.

Optimizer. All results average 100 Monte Carlo rollouts under gtrue . We compare to the following
methods: 1)GUM-OR / GUM-IPW. Replace the DR oracle in GUM-DT with OR or IPW, respec-
tively. 2)IM. Classical CELF Leskovec et al. (2007) that maximizes predicted spread under ḡ, ig-
noring dynamic uplift. 3) Uplift-TopK. Rank nodes by estimated ITE/CATE (no propagation) and
pick top K. 4) Random-K. Uniformly sample K seeds.

5.1 METRIC AND EVALUATION

We record the training accuracy of estimators ĝ and m, and use net uplift of seed set S, V (πS) for
the optimizer in Definition 2. Training Accuracy is recorded in Appendix E.

Results. GUM-DT (DR) attains the highest uplifts, particularly under non-submodular outcomes
and history dependence, while traditional IM and Uplift-TopK ignores spillovers. DR outperforms
OR and IPW within GUM on both bias and variance diagnostics, consistent with theoretical results 4.

Method True Uplift @K=5 True Uplift @K=10 True Uplift @K=15
GUM-DT 100.0 210.3 281.7
GUM-OR 95.2 198.6 270.4
GUM-IPW 90.5 181.2 251.9
IM 85.7 169.3 239.5
Uplift-TopK 60.4 102.8 152.3
Random-K 19.8 30.6 41.5

Table 1: True uplift achieved by each method under different seed budgets K.

6 CONCLUSION

We study treatment allocation with propagating interventions and history-dependent outcomes, tar-
geting network-wide uplift. Our framework combines learned propagation models with a robust
Monte-Carlo evaluation layer (outcome modeling with importance weighting and targeting), and
optimizes allocations via a greedy search with dynamic refresh. This offers a compact, reliable
recipe for off-policy decision making in network interventions.

9
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A USE OF LLMS

We discuss the LLM usage of this manuscript in this part. We used LLMs solely for language
refinement of this manuscript—correcting grammar, improving clarity and flow, and harmonizing
terminology. No conceptual, methodological, or empirical content was generated by LLMs. All
ideas, mathematical derivations, modeling choices, and experimental designs are the authors’ own.

B RELATED WORK

Our research synthesizes three distinct but complementary lines of work: causal effect estimation
on networks, off-policy policy learning, and Influence Maximization (IM).

Causal Effect Estimation on Networks. A significant body of works address treatment effect
estimation under network interference, where SUTVA is violated and treatment effects depend on
peers’ treatment and exposure (Hudgens & Halloran, 2008; Aronow & Samii, 2017). Recent meth-
ods model exposure mappings and learn representations of neighborhood history to estimate direct
and spillover effects (Ma & Tresp, 2021; Guo et al., 2022). These estimators can be adapted into up-
lift–first baselines (e.g., estimate CATE or ITE (Shalit et al., 2017), then rank under a budget). While
effective for estimation, they do not by themselves address the policy design problem with propa-
gating actions: evaluating and optimizing an initial seed set whose value depends on the distribution
of activation trajectories and on path–dependent outcomes.

Off-Policy Policy Learning. Our framework is methodologically grounded in off-policy policy
learning, which aims to find optimal decision rules from logged data (Athey & Wager, 2017). A
cornerstone of this field is the Doubly Robust (DR) estimator, which leverages both a direct outcome
model and importance weighting to achieve unbiased and efficient policy value estimates (Dudı́k
et al., 2014; Robins et al., 1994). This is closely related to uplift modeling, which seeks to identify
individuals who will benefit most from an intervention (Gutierrez & Gérardy, 2017). Most of them
assume i.i.d. units and non–propagating actions, which is different from our settings.

Influence Maximization (IM). IM is first identified as an algorithmic problem by Kempe
et al. (2003) with numerous variants. These include simulation-based greedy algorithms (CELF)
(Leskovec et al., 2007), highly scalable sketch-based methods (RIS, TIM) (Borgs et al., 2014), and,
more recently, learning-based approaches that use GNNs to predict influence spread (Guo et al.,
2018; Ling et al., 2023). Extensions such as weighted IM assign static, non–negative node values,
but the objective remains spread (or a fixed proxy) under exogenous diffusion. This line does not
model network–dependent uplift, nor does it handle off–policy evaluation from observational logs.

C APPENDIX: ALGORITHMS OF OR AND IPW ESTIMATORS

C.1 OR ESTIMATOR

C.2 IPW ESTIMATOR

D APPENDIX: DETAILED PROOFS

D.1 PROOF OF PROPOSITION 4 (NP-HARDNESS)

Proof. The proof is by reduction from the standard Influence Maximization (IM) problem, which
is known to be NP-hard (Kempe et al., 2003). We show that the propagating treatment Allocation
problem is a generalization of IM, thus establishing its NP-hardness.
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Algorithm 4 ESTIMATEPOLICYVALUE via OR with g-ensemble

Require: Target policy πS , ensemble {ĝ(m)}Mm=1, outcome model m̂, rollouts R.
Ensure: Estimated policy value V̂OR(πS).

1: function SIMULATEVALUEFORPOLICY(πeval)
2: total outcome← 0
3: for r = 1 to R do
4: Sample ĝ ∼ Unif{ĝ(m)} ▷ Sample a model from the ensemble
5: Simulate a full activation path Hr starting from πeval using ĝ.
6: total outcome← total outcome + m̂(Hr)
7: end for
8: return total outcome/R
9: end function

10: V̂πS
← SimulateValueForPolicy(πS); V̂π∅ ← SimulateValueForPolicy(π∅)

11: return V̂πS
− V̂π∅

Algorithm 5 ESTIMATEPOLICYVALUE via IPW with g-ensemble

Require: Target policy πS , observed data {H(j), Y (j)}Nj=1 from behavior policy πb, learned models
{ĝ(m)}Mm=1, ĝb.

Ensure: Estimated policy value V̂IPW (πS).
1: function ESTIMATEVALUEFORPOLICY(πtarget)
2: Define ensemble average model ḡ(·) = 1

M

∑M
m=1 ĝ

(m)(·).
3: weighted outcomes← 0.
4: for j = 1 to N do
5: Compute importance weight: wj ←

∏Tj

t=1

∏
i∈V

Pḡ(A
j,t
i |Ht−1

j ,πtarget)

Pĝb
(Aj,t

i |Ht−1
j ,πb)

.

6: weighted outcomes← weighted outcomes + wj · Y (j).
7: end for
8: return weighted outcomes/N .
9: end function

10: V̂πS
← EstimateValueForPolicy(πS); V̂π∅ ← EstimateValueForPolicy(π∅).

11: return V̂πS
− V̂π∅ .

Consider a specific instance of our framework, which we will call the Standard IM Instance, defined
by two conditions:

1. Unit Utility: The potential outcome for any node vi is its final activation state, Yi(A) =
AT

i . This signifies a utility of 1 for each activated node and 0 otherwise.

2. Zero Baseline: The network exhibits no activity without intervention. The expected out-
come under the null policy (an empty seed set) is zero: E

[∑n
i=1 Yi(Aπ∅)

]
= 0.

Under these conditions, our objective function, the policy value V (πS), becomes mathematically
equivalent to the expected spread objective in IM:

V (πS) = E

[
n∑

i=1

Yi(AπS
)

]
− E

[
n∑

i=1

Yi(Aπ∅)

]
= E

[
n∑

i=1

AT
i (AπS

)

]
(5)

The problem of finding a set S of size at most K that maximizes this quantity is precisely the IM
problem. Since CIP contains an NP-hard problem as a special case, the general CIP problem is also
NP-hard.
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D.2 PROOF OF THEOREM 1 (END-TO-END REGRET BOUND)

Proof Sketch. The proof proceeds by separately bounding the two terms from our regret decompo-
sition.

1. Bounding the Regret from Model Misspecification: This term is bounded using the def-
inition of δapprox and the optimality of S∗ and S∗

ens. By definition, V (S∗) ≥ V (S∗
ens).

Therefore, V (S∗) − V (S∗
ens) ≤ V (S∗) − (Vens(S

∗
ens) − δapprox). Using the optimality of

S∗ again, Vens(S
∗) ≤ Vens(S

∗
ens), which implies V (S∗)− δapprox ≤ Vens(S

∗
ens). Combining

these yields the 2δapprox bound.

2. Bounding the Algorithmic Regret: We analyze the regret Vens(S
∗
ens) − V (Sg) incurred

within the model’s world. This is established in two stages:

(a) Uniform Convergence: Under Condition 2, the DR estimator is a bounded random
variable, allowing the use of Hoeffding’s inequality. By setting R as specified, a union
bound over all candidate sets considered by the algorithm ensures that with probability
at least 1− p, our estimator is uniformly close to its mean: |V̂DR(S)− Vens(S)| ≤ δ′

for all relevant S, where δ′ is a function of ϵstat.
(b) Analysis of Greedy with an Approximate Oracle: Conditioned on the event in (a),

GUM-DT is effectively a greedy algorithm operating on the γ′-smooth submodular
function Vens with a δ′-accurate oracle. Standard analysis of this process bounds the
regret Vens(S

∗
ens)− Vens(Sg), leading to the algorithmic error term in the theorem.

Combining these bounds gives the final result.

E EXPRIMENTAL DETAILS

The logistic propagation model gb̂(Z) achieved about 95–96% training accuracy (classification of
activation events), indicating it fit the cascade data well. The outcome model m̂ (random forest) also
attained a high R2 = 1 −

∑n
i=1(yi−ŷi)

2∑n
i=1(yi−ȳ)2 of approximately 0.97–0.98 on training data, suggesting it

can explain nearly all variance in cumulative outcomes given the final network states.
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