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Abstract—Nonprehensile manipulation, such as pushing and
pulling, enables robots to move, align, or reposition objects
that may be difficult to grasp due to their geometry, size,
or relationship to the robot or the environment. Much of the
existing work in nonprehensile manipulation relies on parallel-
jaw grippers or tools such as rods and spatulas. Multi-fingered
dexterous hands offer richer contact modes and versatility for
handling diverse objects to provide stable support over the
objects, which compensates for the difficulty of modeling the
dynamics of nonprehensile manipulation. We propose Dexterous
Nonprehensile Manipulation (DexNoMa), a method for nonpre-
hensile manipulation which frames the problem as synthesizing
and learning pre-contact dexterous hand poses that lead to
effective pushing and pulling. We generate diverse hand poses
via contact-guided sampling, filter them using physics simulation,
and train a diffusion model conditioned on object geometry to
predict viable poses. At test time, we sample hand poses and use
standard motion planning tools to select and execute pushing
and pulling actions. We perform 840 real-world experiments
with an Allegro Hand, comparing our method to baselines. The
results indicate that DexNoMa offers a scalable route for training
dexterous nonprehensile manipulation policies. Our pre-trained
models and dataset, including 1.3 million hand poses across
2.3k objects, will be open-source to facilitate further research.
Supplementary material is available here: dexnoma.github.io.

I. INTRODUCTION

Nonprehensile actions are fundamental to how humans and
robots interact with the physical world [35, 31, 36, 32]. These
actions permit the manipulation of objects that may be too
large, heavy, or geometrically complex to grasp directly. While
there has been tremendous progress in nonprehensile robot
manipulation [72, 73, 13, 8, 33], most work uses simple
end-effectors such as parallel-jaw grippers, rods [70, 7], or
spatulas [57]. In contrast, multi-fingered hands with high
degrees-of-freedom (DOF) such as the Allegro Hand or LEAP
Hand [48] enable contact patterns that can be especially useful
for stabilizing complex, awkward, or top-heavy objects, or for
coordinating contact across multiple objects. However, despite
their promise and recent progress [58], leveraging high-DOF
hands for nonprehensile manipulation remains relatively un-
derexplored due to the challenges of modeling hand-object
relationships and planning feasible contact-rich motions.

In this paper, we study pushing and pulling objects using the
4-finger, 16-DOF Allegro Hand. Our insight is to recast this
problem into one of synthesizing effective pre-contact hand
poses, an approach inspired by recent success in generating
large-scale datasets for dexterous grasping [29, 56, 69, 62, 54,
22]. We propose a scalable pipeline for generating hand poses
for pushing and pulling objects. This involves contact-guided
optimization and validation via GPU-accelerated physics sim-

ulation with IsaacGym [34]. These filtered hand poses are
then used to train a generative diffusion policy conditioned
on object geometry, represented using basis point sets [42].

At test time, we use visual data to reconstruct an object
mesh in physics simulation. The trained diffusion policy
uses this mesh to generate diverse hand poses for pushing
or pulling. We then validate the resulting hand poses in
simulation, and execute the best-performing action in the
real world. We call this pipeline Dexterous Nonprehensile
Manipulation (DexNoMa). Figure 1 shows several real-world
examples where the hand pose differs depending on object
geometry. Overall, our experimental results across diverse
common and 3D-printed objects demonstrate that DexNoMa
is a promising approach for generalizable object pushing and
pulling. It outperforms alternative methods such as querying
the nearest hand pose in our data or using a fixed spatula-
like hand pose, highlighting the need for a diffusion model to
generate diverse hand poses.

To summarize, the contributions of this paper include:
• A scalable pipeline for generating and filtering dexterous

hand poses for pushing and pulling.
• A diffusion model for geometry-conditioned hand pose

prediction for nonprehensile manipulation.
• A motion planning framework to execute these poses for

nonprehensile manipulation in the real world, with results
across 840 trials showing that DexNoMa outperforms alter-
native methods.

• A dataset of 1.3 million hand poses for pushing and pulling
across 2.3k objects with corresponding canonical point
cloud observations.

II. PROBLEM STATEMENT AND ASSUMPTIONS

We study nonprehensile object manipulation on a flat sur-
face using a single-arm robot with a high-DOF multi-finger
dexterous hand (e.g., the Allegro Hand). By “nonprehensile,”
we specifically refer to pushing or pulling in this paper. We
assume that there exists one object O on the surface with
configuration Sobj ∈ SE(3), and that the surface’s friction
properties facilitate object pushing. We use P to indicate the
object’s point cloud sampled from its surface. Let H be the
space of possible nonprehensile hand poses, where H ∈ H is
defined as H = (θ, T ). Here, θ ∈ Rd is the joint configuration
of the d-DOF robot hand, and T ∈ SE(3) is the end-
effector pose of the robot’s wrist consisting of translation and
orientation. A trial is an instance of nonprehensile pushing
or pulling, defined by a given direction udir ∈ R3 (with z-
component of 0) resulting in the target object position as
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Fig. 1: Three examples (one per column) of nonprehensile manipulation using DexNoMa with a 4-finger, 16-DOF Allegro Hand. The top
row shows the starting object configuration with its goal rendered as a transparent overlay, while the bottom row shows the result after the
robot’s motion. DexNoMa synthesizes diverse hand poses conditioned on object geometry, handling flat (left), volumetric (middle), and tall
(right) objects.

utarg ∈ R3. The objective is to generate a hand pose H
such that, if a motion planner moves the hand to H and then
translates it along udir, the object moves closer to the target
utarg. The object’s distance to utarg must be below a threshold
for a trial to be considered a success.

III. METHOD

DexNoMa consists of the following steps. First, we generate
a large dataset of hand poses for nonprehensile pushing and
pulling (Sec. III-A). Second, we use this data to train a
diffusion model to synthesize hand poses conditioned on
object geometry (Sec. III-B). Third, during deployment, we
generate hand poses and perform motion planning to do the
pushing or pulling (Sec. III-C).

A. Dataset Generation for Nonprehensile Pushing and Pulling

We first generate hand poses for pushing and pulling various
objects in simulation. To do this, we take inspiration from
prior work on generating diverse hand poses for grasping [29,
56, 69, 62, 22, 10] by casting the hand synthesis problem as
minimizing an energy function via optimization [27]. Unlike
those works, our focus is on pushing and pulling actions
instead of grasping. To enable optimization, we first define
a set of candidate contact points sampled across the hand
surface. Different regions of the hand have different candidate
points to encourage broad contact across the palm and fingers.
For the palm and finger (excluding fingertips) regions, we
sample points uniformly over the rigid body surface. For the
fingertips, we sample from a denser set of points uniformly on
the unit hemisphere for each tip. See the Appendix for details
of the distribution of candidate contact points (Figure 10 and
Table II).

With the sampled contact point candidates, we run an opti-
mization algorithm following the sampling strategy from [29,
56] that iteratively minimizes an energy function E to generate
hand poses. We adapt the energy function from [29] to better
suit our nonprehensile manipulation tasks, resulting in:

E = Efc+wdisEdis+wjointsEjoints+wpenEpen+wdirEdir+warmEarm,
(1)

where Efc is a force closure estimator [27], Edis penalizes
hand-to-object distance (thus encouraging proximity), Ejoints

penalizes joint violations, and Epen penalizes penetration be-
tween hand-object, hand-table and hand self-collision contacts.
See [29, 56] for further details. The w terms are all scalar
coefficients; we adopt the values from prior work and tune the
weights for the following two new terms. To adapt the energy
from Eq. 1 to pushing or pulling in a particular direction
udir ∈ R3, we introduce Edir and Earm, which use the normal
vector of the palm vpalm ∈ R3. The Edir term encourages
vpalm to align with udir, and Earm encourages hand poses
that are kinematically feasible when attached to the robot arm.
Formally, we define Edir and Earm as:

Edir = − uT
dirvpalm

∥udir∥2∥vpalm∥2
and Earm = max

(
0, (vpalm)z

)
(2)

where (vpalm)z is the z-component of the palm’s normal
vector (in the world frame). Intuitively, aligning udir and
vpalm promotes more stable object-palm directional contact.
Furthermore, if the palm faces upwards, then the rest of
the arm must be below it. Thus, it is likely to lead to an
infeasible robot configuration due to robot-table intersections,
so Earm is nonzero (i.e., worse). To inject randomness (and
thus diversity) in the sampling process, we randomly resample
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Fig. 2: Overview of DexNoMa. We present a large-scale dataset of hand poses specifically for pushing or pulling, and leverage it to train a
diffusion model. During execution time, given an object, we obtain its basis point set representation [42] and pass that to our trained diffusion
model, which uses the architecture from [59]. This model synthesizes diverse floating pre-contact hand poses formed from our large-scale
data generation pipeline (Sec. III-A). Given these hand poses, we then check their feasibility in a physics simulator by adding the arm back
in and performing motion planning [49]. We rank the feasible hand poses (e.g., “3” is infeasible in the example here) and select the best
performing one (e.g., “4” in our example) and execute it in the real world.

a subset of the contact point indices from the set of valid
candidates (Figure 10) when generating a new hand pose. We
use RMSProp [51] to update translation, rotation and joint
angles with step size decay, then minimize the energy function
with Simulated Annealing [20] to adjust parameters.

Hand Pose Validation in Simulation. After optimizing
contact points to generate candidate hand poses, we must val-
idate whether they can lead to successful pushing or pulling.
To do this, we use IsaacGym [34], a GPU-accelerated physics
simulator that has been used in prior work for filtering grasp
poses [29, 56]. We define a push or a pull as successful if, after
executing a 20 cm translation, the object’s center is within 3 cm
of the target position and the object’s orientation changes by
no more than 45 degrees relative to its original configuration.
The optimization process has a low success rate because it
does not account for the full dynamics of pushing and pulling.
Thus, we augment successful hand poses by adding slight
noise to the pose parameters. We get 10X more augmented
hand poses. From extensive parallel experiments, we generate
a dataset containing 2,391 objects with 1,387,632 successful
hand poses.

B. Training a Diffusion Model to Predict Hand Poses

To generate hand poses, we adapt a conditional U-Net [46]
from the diffusion policy architecture [7], and train it with
the Denoising Diffusion Probabilistic Models (DDPM) objec-
tive [11]. Diffusion models are well-suited for this task as
they can learn complex, high-dimensional distributions. The
forward process gradually adds Gaussian noise to the hand
configuration H , while the reverse process reconstructs the
original pose H by iteratively denoising conditioned on the
object’s geometry. The model is trained to minimize denoising
error. To represent the observation, we use a 4096-dimensional
Basis Point Set (BPS) [42] representation B ∈ R4096 based
on the object’s point cloud P . This representation, which is
also used in [29, 59], encodes each object as a fixed-length
vector of shortest distances between canonical basis points

and the points in P . BPS captures geometric properties in
a compact manner and simplifies the design of the diffusion
model. Given this trained diffusion model, at test time it can
be used to generate diverse hand poses which we can select
for motion planning. See Figure 2 and Appendix VII-B for
more information.

C. Arm-Hand Motion Planning and Evaluation

During deployment, the diffusion model generates candidate
hand poses. We then integrate the Franka arm into full arm-
hand motion planning to select hand poses which are kinemat-
ically feasible and avoid environment collisions, such as arm-
table intersections (which are not considered in Sec. III-A).
See Figure 2 (right half) for an overview. Each hand pose
H = (θ, T ) is initially expressed in the object frame. We use
the object’s initial configuration Sobj and intended direction
udir to transform H to the world frame, and supply that to
the cuRobo planner [49] to generate a complete motion plan
for the Franka arm. In this process, we discard infeasible
trajectories (and thus, the associated hand poses) to only
keep the feasible arm-hand trajectories. To select which of
the feasible trajectories to execute, we associate each with a
custom analytical score V , defined as:

V (H = (θ, T )) = αLgoal + βLcoll + γLdir, (3)

where Lgoal measures the Euclidean distance between the
object’s final position and the target position, Lcoll indicates
whether a collision occurred during execution (1 if a collision
occurs, 0 otherwise), and Ldir encourages the palm’s orien-
tation to align with the pushing direction. For Ldir, we set it
equal to the Edir term from the energy function (Eq. 1). The
α, β, and γ are hyperparameters.

Multi-step Planning. While we mainly study DexNoMa for
single open-loop pushes (or pulls) to targets, our framework
naturally extends to multi-step planning. In scenarios with
obstacles, we first compute a collision-free global path using
RRT* [17]. Then, we sequentially plan hand poses to reach
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Fig. 3: Examples of nonprehensile hand pushing poses from optimizing our energy function (Eq. 1). These have all been validated in
IsaacGym simulation. In all examples, the intended object pushing direction is to the right. These data points are used to train our diffusion
model (see Sec. III-B).

each intermediate waypoint. Given an object, the same hand
pose may be feasible only in certain pushing or pulling
directions due to robot and hand kinematics. The waypoints
from RRT* may require planning pushes across challenging
directions, which highlights the importance of generating
diverse hand poses for varying object positions and directions.

IV. EXPERIMENTS

A. Real-World Experiments

We evaluate DexNoMa on a real robot to check if our
nonprehensile hand poses successfully transfer to reality. Our
hardware setup consists of a Franka Panda arm equipped
with a four-finger, 16-DOF Allegro Hand. It operates over
a tabletop cutting board with dimensions 60 cm×60 cm. We
use a mix of objects, including 3D-printed and common
items (shown in Figure 4). All evaluation objects are unseen
during training. For 3D-printed objects, we use their known
meshes to directly compute their BPS representation. For the
other objects, we follow the pipeline proposed in [28] to
obtain real-world object point clouds (and thus, the BPS).
We reconstruct object meshes by using Nerfstudio [50] to
compute COLMAP reconstructions [47]. We also use Stable
Normal [65] to generate normal maps. Then, we employ 2D
Gaussian Splatting [12] to obtain the point clouds. While this
reconstruction pipeline introduces some noise, it is sufficient
for DexNoMa to predict effective hand poses. In contrast,
we empirically observed that optimization-based methods are
more sensitive to mesh quality and often fail under these
conditions.

Baselines and Ablations. We compare DexNoMa with the
following methods: Pre-trained Grasp Pose, Nearest Neighbor,
DexNoMa w/o Ranking. Please refer to the Appendix for
detailed explanations on baseline methods and the experiment
protocol.

B. Real-World Results

We summarize quantitative results in Figure 6, which shows
that DexNoMa outperforms or matches alternative methods for
both object categories. As shown in Figure 7, the Pre-Trained
Grasp Pose baseline suffers from two major issues. First, the

hand pose is not conditioned on the pushing direction, which
means during the push, the object is likely to slide off the
hand due to limited support (Figure 7, second row). Second,
some objects are unsuitable for grasping due to their geometry
or awkward aspect ratios. Additionally, the similarity-based
Nearest Neighbor baseline struggles due to limited granularity
in object geometry matching, motivating the need for our
geometry-conditioned generative model. For DexNoMa w/o
ranking, we observe that its hand poses are more likely to
collide with the table or objects. To further investigate this
ablation, Figure 5 shows three different hand poses. The first
one has a low collision score because it is easy to collide
with the table, while the third collides with the objects and
scores low on the palm direction. The second hand pose leads
to a successful push in real-world experiments. This suggests
the importance of our ranking system via Eq. 3. DexNoMa
outperforms baselines in all directions tested in Figure 6,
demonstrating the robustness of its generated hand poses for
nonprehensile manipulation. Figure 7 (first row) demonstrates
using the palm and thumb to provide strong support moving
the object forward, and the third row shows using the thumb
and index finger to form a circular shape support for the
thinner upper parts of the object while providing force at the
bottom, aiding stable movement. For more rollouts, see the
Appendix and the website.

Fixed Hand Pose: Inspired by prior pushing work [57], we
manually define a “spatula” hand pose with the fingers spread
flat (see Figure 8) to assess whether simple flat-hand strategies
suffice for diverse objects. We perform a case study on the 6
objects in Figure 4 that are taller than 20 cm. We push each
object 10 times, with 5 pushes for each of 2 directions, (the
third direction results in kinematic errors). We get a relatively
low 18/60 success rate, suggesting insufficient object support.

V. CONCLUSION

In this work, we propose DexNoMa, a dataset and method
for nonprehensile object pushing and pulling using a high-
DOF Allegro Hand. We hope that this inspires future work on
dexterous nonprehensile robotic manipulation.
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VI. APPENDIX

A. Related Work

Nonprehensile Robot Manipulation. Classical nonprehen-
sile manipulation includes pushing, sliding, rolling, and tilting,
and has a long history in robotics [35, 31, 36, 32]. Planning
methods for nonprehensile manipulation often assume access
to object models or priors [39, 3, 63]. Another recent planning-
based method explores nonprehensile interaction with high-
DOF hands in simulation by analyzing contact reasoning
and wrench closure [5]. In contrast, our work targets real-
world pushing and pulling using a high-DOF hand applied to
diverse and geometrically complex objects. Recent learning-
based methods have extended nonprehensile manipulation
beyond classical planning, including extrinsic dexterity sys-
tems [72, 60] and those based on predicting object dynamics
such as HACMan [73, 13], CORN [8], and DyWA [33].
Other works approach pushing as a precursor to grasping,
often in planar settings with simple parallel-jaw grippers for
multi-object manipulation [1, 66], or use bimanual systems for
nonprehensile tasks using multi-link tools [24]. None of these
works study learning for single-hand pushing and pulling with
dexterous hands. Furthermore, many prior benchmarks focus
on pushing single flat objects on a surface, such as a T-shape
object [7], or use spatulas to move small cubes and granular
media [57, 70]. Our work directly targets larger and more
complex objects, including those that might topple or require
coordinated multi-surface contact.

Dexterous Grasping Synthesis and Datasets. A substan-
tial body of research focuses on generating and evaluating
grasp poses for multi-fingered hands. Pioneering efforts such
as Liu et al. [25] create a dataset of 6.9K grasps using the
GraspIt! [38] software tool, while Jiang et al. [14] synthesize
human hand poses by using a conditional Variational Au-
toencoder [18]. More recent efforts significantly scale grasp
generation with tools such as differentiable contact simula-
tion [52, 53] or optimization over an energy function based
on Differentiable Force Closure (DFC) [27]. Our work falls
in the latter category, which has facilitated the generation
of diverse grasping datasets such as DexGraspNet [56] with
1.32M grasps followed by DexGraspNet 2.0 [69] with 427M
grasps. These pipelines generate hand poses by optimization
over an energy function, filter them using physics simulators,
train generative diffusion models for grasp synthesis, and typi-
cally include some fine-tuning or evaluation modules [59, 29].
While our pipeline also uses energy-based pose optimization
and filtering, our focus is on generating hand poses for
nonprehensile manipulation.

Learning-Based Dexterous Manipulation. Learning-based
approaches for robotic grasping and manipulation have rapidly
expanded in recent years [2, 21]. While some recent work
emphasizes fine-grained bimanual manipulation using parallel-
jaw grippers [71, 9], our focus is on learning single-arm
manipulation with high-DOF dexterous hands such as the
LEAP [48], Allegro, and Shadow hands. These hands have
been applied to a variety of tasks, such as in-hand object

rotation [43, 55, 40, 41, 67], object singulation [15, 61],
multi-object manipulation [10, 22, 64, 66], and bimanual
systems [6, 23]. While showing the versatility of dexterous
hardware, these works focus on largely prehensile interactions.
Prior learning-based systems with high-DOF hands for non-
prehensile behaviors demonstrate tasks such as rolling objects
or picking up plates as examples of learning from 3D data [68]
or human videos [30]. Recently, Chen et al. [4] synthesize
task-oriented dexterous hand poses for certain nonprehensile
tasks such as pulling drawers. However, none of these methods
directly study pushing or pulling as their primary manipulation
mode.

B. Supplementary Experiments

Data Size # of Objects

2% 41.67 ± 10.21
20% 102.67 ± 5.85
50% 110.33 ± 29.67
100% 169.33 ± 15.18

TABLE I: Number of objects with at least
one feasible pushing hand pose out of
300.

1) Simulation
Experiments and
Results: We evaluate
the quality of the
hand pose generation
pipeline using
IsaacGym [34].
To quantify the
effectiveness of our trained model and dataset, we report
the number of successfully pushed objects as a function of
training data size. We train our diffusion model on varying
subsets of the full dataset (of 1.3M hand poses) and evaluate
on 300 unseen objects from the test set. For each test object,
we sample 200 candidate hand poses. An object is considered
“successful” if at least one feasible hand pose results in
success. Table I reports results over 3 different seeds, which
shows that our model generates feasible pushing poses more
reliably with larger training sets, which validates large-scale
supervision. The growth is not strictly linear, suggesting
room for improvement via better model tuning or data
strategies. Qualitatively, our generated hand poses are diverse
across object geometries and exhibit pushing intent (see the
Appendix for more discussion). A common failure mode is
that some poses still collide with the object, which motivates
the inclusion of the collision term in Eq. 3.

2) Real-World Experiments: Baselines and Ablations. We
compare DexNoMa with the following methods.

• Pre-Trained Grasp Pose: We use a pre-trained grasp
synthesis model from Lum et al. [29] using NeRF [37].
For each object, we train a NeRF representation, then query
their pre-trained model for a grasp. This evaluates how well
a grasping-centric model generalizes to nonprehensile tasks.

• Nearest Neighbor (NN): Given a test object, we find the
training object with the most similar BPS representation (in
terms of Euclidean distance) and retrieve its associated hand
poses. We then do the same motion planning pipeline as
in DexNoMa. This tests out-of-distribution generalization
with a retrieval-only approach compared to our proposed
generative model.

• DexNoMa w/o Ranking: An ablation that excludes analyt-
ical ranking of hand poses (ignores Eq. 3) and executes a
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3D-Printed Objects                 Daily Objects

Fig. 4: The objects we use in our real-world nonprehensile manipulation ex-
periments, including 3D printed and common (“Daily”) objects. See Sec. IV-A
for more details.

Fig. 5: Visualization of Lgoal, Lcoll, and Ldir values in V (H)
from Eq. 3 on three simulated hand poses. See Sec. IV-B for
more details.
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Fig. 6: Nonprehensile manipulation success rates from DexNoMa and baselines, across different 3D printed (left) and daily objects (right),
and with three directions evaluated. Each bar aggregates success rates from 40 trials (left bar plot) and 30 trials (right bar plot). See Sec. IV-A
and IV-B for more details.

random feasible pose. This tests the usefulness of Eq. 3 in
selecting poses.

Experiment Protocol and Evaluation. For each object,
we test three pushing directions uniformly distributed around
a circle. Along each direction, the robot executes the hand
pose and planned motion five times, all with a fixed push
length of 20 cm. A human manually places the object in a
relatively consistent pose between trials. A trial is successful
if the object’s center is within 3 cm of the target position, the
hand maintains contact throughout, and it does not lead to
task failure modes such as toppling or loss of control. For NN
and DexNoMa w/o Ranking, we randomly sample hand poses
among the feasible planned actions. For Pre-trained Grasp
Pose, we execute the best actions from its output. For our
method, we execute the one with the highest analytical score
from Eq. 3.

Multi-step Planning. Selecting a kinematically feasible
hand pose for a given object state Sobj and direction udir

is challenging in multi-step planning, as different waypoints
may require different hand poses. Our method resolves this by
identifying valid poses across object configurations and cou-
pling pose selection with kinematic feasibility (see Sec. III-C).
By doing so, DexNoMa can be used to perform multiple
pushes. Figure 9 shows a multi-step pushing sequence using
DexNoMa. The robot uses two different hand poses to push

the 3D-printed vase, as the first hand pose may not be ideal for
the second hand pose, which shows the benefit of re-planning.

VII. ADDITIONAL DETAILS OF DEXNOMA

A. Dataset Generation and Statistical Analysis

Parameter Value

wfc 0.5
wdis 500
wpen 300.0
wspen 100.0
wjoints 1.0
wff 3.0
wfp 0.0
wtpen 100.0
wdirection 200.0
wkinematics 100.0

TABLE III: Weight parameters.
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Fig. 7: Comparison between DexNoMa and baselines. The first two rows show DexNoMa (success) and Pre-Trained Grasp (failure) while
pushing a 3D-printed vase forward (i.e., away from the robot). The last two rows show DexNoMa (success) and NN (failure) while pushing
a ranch bottle to the right.

Fig. 8: Example of a typical failure case using the Fixed Hand Pose
strategy, which topples the spray.

Fig. 9: Example of multi-step pushes using DexNoMa, which avoids
the central obstacle.

Parameter Value

Switch Possibility 0.5
µ 0.98
Step Size 0.005
Stepsize Period 50
Starting Temp. 18
Annealing Period 30
Temp. Decay 0.95

TABLE IV: Optimization hyperparameters.
During dataset generation, we specify the contact candidates
according to Figure 10 and Table II, and we set the weight
parameters (from Eq. 1) according to values listed in Table III.
For the optimization we discussed in Sec. III-A, the detailed
hyperparameters are in Table IV.

In the original hand pose generation procedure, we mainly
consider the object geometry and encourage contact between
selected contact candidates all over the hand and the object
surface. However, it is crucial to test pushing to validate the
quality of the nonprehensile hand poses. Initially, we obtain a
low success rate of all generated hand poses, so we augment
each successful hand pose 10 times. These perturbations
involve small changes in rotation (max 2.5 deg), translation
(max 0.005 m) and joint pose (0.05 rad) using a Halton
sequence. Figure 11 shows an example of a random original
hand pose (lightblue color) and 4 different perturbed hand
poses (lightyellow color). By doing so, we get a large dataset
of only successful hand poses, which we use for training the
diffusion model.

10



Embodiment Part Finger Tip Finger Link Palm

Link No. tip_1, tip_2, tip_3, tip_4 1,2,3,5,6,7,9,10,11,14,15 palm_link

Number of Contact Candidates / each 96 16 128

TABLE II: Number of contact candidates on different parts of the Allegro hand. We specify potential contacts all over the hand to encourage
whole-hand (especially palm) nonprehensile manipulation on the object.

link 1-3

tip_1tip_2tip_3

tip_4

link 14,15

Fig. 10: Contact candidates on the Allegro hand. Refer to
Table II for the number of contacts on each link.

Fig. 11: A visualization of an example of augmentations. Lightyellow
indicates the hand pose with the perturbation, and lightblue is the
original one.

Figure 12 shows the distribution of joint angle values across
our dataset. Most joints span the full range between their lower
and upper bounds, and tend to have one or several modes.
Those modes may lead to “general” stable hand poses for
pushing motions. Other joint values may vary depending on
particular object geometries. Figure 13 shows a breakdown of
object categories and the frequency of the top 20 objects in
our dataset.
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Fig. 12: Visualization of the distribution of joint angle values in our
proposed dataset, demonstrating the diversity of our generated hand
poses. The number on the top right corner of each subfigure indicates
the joint index. The green dashed lines on the edge of x-axis indicate
the lower/upper bounds of each joint angle values.
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Fig. 13: Visualization of the top 20 objects in terms of pushing hand
poses frequency in our proposed dataset.

B. Training Details

We train our model with one NVIDIA 4090 GPU on a
desktop. Detailed training and model parameters are shown
in Table V. We also show the training curves with training
loss and validation loss on different scales of the dataset in
Figure 14, which is relevant to our experiments in Sec. VI-B1.

Validation LossTraining Loss

— 2%    — 20%    — 50%    — 100%

Fig. 14: Training curves on different scales of the dataset. See
Sec.VI-B1 for more discussion.

VIII. ADDITIONAL DETAILS OF EXPERIMENTS

A. Experiment Details

Our physical experiment setup consists of a Franka Panda
manipulator equipped with an Allegro Hand, as shown in
Figure 15. We also place an L515 RealSense camera above
the table, which is only used for path planning in multi-
step planning experiments in Sec. IV-B and Sec. VIII-D. The
surface we use for all experiments is a commercially available
product purchased from Amazon (product_link). Since our
focus is on nonprehensile hand pose generation, we assume
that the surface’s friction properties are sufficient to support
pushing interactions. We leave a more detailed investigation
of how physical properties influence dexterous nonprehensile
manipulation as future work.

Fig. 15: Our physical experiment setup including a Frank Panda robot
with an attached Allegro Hand. The camera is only used for high-
level path planning.

We select 8 3D-printed objects and 6 real-world objects,
covering flat, volumetric, and tall objects, as shown in Fig-
ure 16. Each object presents unique challenges for pushing.
For example, when the robot hand approaches flat objects
(e.g., Cake, Cookie Box) it may risk colliding with the table.
In addition, tall objects (e.g., Lamp, Spray) frequently topple
during pushing due to a high center of mass. While our
method also suffers from these failure modes (particularly
object toppling), it outperforms baselines, which topple objects
more frequently. This motivates our case study on using a fixed
hand pose to push objects taller than 20 cm. While fixed hand
poses can reliably work for objects with simple geometries,
they frequently fail on these taller objects. As discussed in
Sec. IV-B, our results highlight the need for hand poses that
provide more stable object support for transporting.

Cookie Box
214g

18cm*16cm*9cm

Black Box
261g

8cm*10cm*9cm

Ranch
520g

5cm*10cm*21cm

Blender
108g

11cm*10cm*14cm

Bottle
59g

7cm*7cm*24cm

Cake
149g

17cm*17cm*7cm

Cow
89g

7cm*20cm*12cm

Coconut Water
46g

7cm*8cm*24cm

Toy Avocado
165g

17cm*21cm*23cm

Spray
61g

7cm*10cm*26cm

Vase
128g

11cm*11cm*17cm

Bowl
190g

19cm*19cm*11cm

Lamp
57g

6cm*6cm*21cm

Camera
148g

7cm*16cm*11cm

Fig. 16: 3D meshes, mass and physical dimensions of all objects
tested in real-world experiments. Dimensions are listed as (x, y, z).

We list the number of successful trials out of 5 for each
method and direction in Table VI. A blank entry (-) indicates
that the robot could not execute the motion due to kinematic
infeasibility. While DexNoMa has marginally more infeasible
trials than the baselines, this is expected because DexNoMa
generates diverse hand orientations beyond top-down poses.
All methods execute pushes for 20 cm, which is relatively
long within the robot’s workspace, and this can be infeasible
for many hand poses. In contrast, the Pre-Trained Grasp Pose
baseline tends to result in consistently top-down hand poses,
which are generally easier to execute due to reachability
and kinematic constraints. Despite counting all kinematically
infeasible trials as failures, DexNoMa outperforms the baseline
methods, demonstrating its robustness on pushing or pulling
tasks.

B. More Successful Rollouts

We provide additional example visualizations of successful
rollouts of DexNoMa in Figure 17. For videos, please refer to
our website: dexnoma.github.io.
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Component Parameter Default / value

Data Config
observation_dim 4096
pushingpose_dim 25

Model Config
name ConditionalUnet1D
input_dim 25
global_cond_dim 4096

DDPM Scheduler

beta_schedule squaredcos_cap_v2
clip_sample True
num_diffusion_timesteps 100
prediction_type epsilon

Training Config

batch_size 16
n_epochs 200
print_freq 10
snapshot_freq 25

Optim Config

optimizer Adam
lr 1× 10−4

weight_decay 1× 10−6

beta1 0.9
amsgrad False
eps 1× 10−8

grad_clip 1.0

lr Scheduler
name cosine
num_warmup_steps 500

EMAModel power 0.75

TABLE V: Configuration and training hyperparameters of the diffusion model.

DexNoMa DexNoMa w/o Ranking Nearest Neighbor Pre-Trained Grasp Pose

Dir.1 Dir.2 Dir.3 Dir.1 Dir.2 Dir.3 Dir.1 Dir.2 Dir.3 Dir.1 Dir.2 Dir.3

Blender 5/5 4/5 4/5 3/5 3/5 5/5 2/5 2/5 2/5 1/5 1/5 1/5
Vase 5/5 3/5 4/5 2/5 4/5 4/5 4/5 4/5 3/5 2/5 3/5 2/5
Bottle 4/5 4/5 5/5 3/5 3/5 3/5 0/5 4/5 3/5 3/5 2/5 2/5
Bowl 4/5 1/5 - 4/5 1/5 - 2/5 2/5 1/5 3/5 2/5 2/5
Cake 4/5 3/5 4/5 4/5 4/5 3/5 3/5 1/5 1/5 1/5 0/5 1/5
Lamp 1/5 1/5 1/5 2/5 2/5 2/5 1/5 0/5 0/5 0/5 1/5 1/5
Cow 5/5 3/5 3/5 3/5 2/5 3/5 1/5 1/5 1/5 0/5 3/5 2/5
Camera 2/5 2/5 4/5 2/5 3/5 3/5 1/5 1/5 3/5 1/5 4/5 2/5

3D Avg./ % 67.5 52.5 62.5 57.5 55.0 57.5 35.0 37.5 35.0 27.5 40.0 32.5

Black Box 4/5 4/5 3/5 3/5 1/5 2/5 1/5 1/5 2/5 3/5 3/5 2/5
Toy Avocado 4/5 - 1/5 3/5 - 2/5 - - 1/5 3/5 0/5 4/5
Ranch 3/5 2/5 3/5 4/5 1/5 2/5 3/5 1/5 4/5 1/5 - 2/5
Spray 3/5 - 1/5 0/5 - 1/5 2/5 - 2/5 0/5 0/5 2/5
Coconut Water 2/5 3/5 4/5 2/5 2/5 1/5 2/5 1/5 2/5 0/5 0/5 0/5
Cookie Box - 5/5 3/5 - 2/5 5/5 - 3/5 2/5 2/5 2/5 1/5

DO Avg./ % 53.3 40.0 50.0 40.0 20.0 43.3 30.0 16.7 30.0 26.7 20.0 43.3

All Avg./ % 61.4 47.1 57.1 50.0 40.0 51.4 32.9 28.6 32.9 27.1 31.4 37.1

TABLE VI: Detailed experiment results for each object and direction combination. “3D Avg.” refers to the average success rate over all
3D-printed objects, “DO Avg.” is that of daily objects and “All Avg.” is that of all 14 test objects. These results correspond to the bar charts
in Figure 6.

Fig. 17: Successful rollouts of DexNoMa, one per row.

C. Results and Analysis of Baseline Methods

We visualize 3 examples of the nearest neighbor (NN)
retrieval results and the trained NeRF representation in Fig-
ure 18. The retrieved NN objects are similar in shape and scale
of the query object (left 3 columns in Figure 18). However,
their coarse geometry granularity is insufficient to generate
robust hand poses. For example, with the Toy Avocado, our
method selects a hand pose that pushes from the bottom
to avoid sliding or toppling. In contrast, the NN method
retrieves a vase-like object, where pushes from the middle
make more sense. The irregular geometric shape at the bottom
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of the vase-like object could potentially cause more collisions
and may increase the difficulty of solving the kinematics.
The right 3 columns in Figure 18 visualize the NeRF input
to the Pre-Trained Grasp Pose method, since we use their
pre-trained model taking in NeRF representations. Though a
common failure mode of the pre-trained grasp pose is that
the object slips from the hand because the palm is oriented
at an improper angle, we observe notable visual noise in the
NeRF representation, which may also deteriorate performance
of this baseline. For more discussions of baseline performance,
see Sec. IV-B.

 

Fig. 18: Nearest Neighbor retrieval results of three test objects
(left three columns) and visualization of trained NeRF (right three
columns).

D. Multi-step Planning

Fig. 19: Path planning using RRT* for multi-step planning. The first
column shows the visualization of path planning results. The second
and third columns show two consecutive hand poses for pushing the
object along the path. The first example is the same as the one shown
in Fig. 9.

Here, we provide more information and context on top of
the Multi-step Planning section in Sec. IV-B. These exper-
iments explore the potential for DexNoMa’s hand poses to
support long-horizon planning. As shown in Figure 15, an
Intel RealSense L515 camera captures a top-down view of the
scene (see Figure 19). A toy placed in the scene serves as an
obstacle. We extract its segmentation mask using Grounded
SAM 2 [26, 44, 45, 19, 16], define the toy’s position at
its (estimated) center, and set a fixed 20 cm radius for path
planning. The start and goal positions are manually assigned.
We use RRT* as a high-level planner to compute a collision-
free path in the 2D image space. Through camera calibration,
we convert the 2D waypoints into 3D coordinates in the
robot frame. For each edge along the planned path, DexNoMa
generates a corresponding hand pose, and the robot pushes the
object towards the next waypoint.

We test with two episodes that cover more pushing direc-
tions. The key insight in these experiments is that hand poses
should be considered and evaluated while considering the
kinematics of the arm as the motion becomes more complex.
In the second row of Figure 19, a similar hand pose is able to
finish the two-step pushing tasks while avoiding the obstacle.
However, the first row of Figure 19 shows the need to change
hand poses to better fit the object pose and the intended
pushing direction. This motivates our use of motion planning
and pose ranking to facilitate stable and smooth multi-step
pushing motions.
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