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ABSTRACT

Large Language Models (LLMs) exhibit blind spots that impair their ability to re-
trieve and process relevant contextual data effectively. We demonstrate that LLM
performance in graph tasks with complexities beyond the “needle-in-a-haystack”
scenario—where solving the problem requires cross-referencing and reasoning
across multiple subproblems jointly—is influenced by the proximity of relevant
information within the context, a phenomenon we term “lost-in-distance”. We
examine two fundamental graph tasks: identifying common connections between
two nodes and assessing similarity among three nodes, and show that the model’s
performance in these tasks significantly depends on the relative positioning of
common edges. We evaluate three publicly available LLMs using various graph
encoding techniques that represent graph structures for LLM input. Results indi-
cate that model accuracy can decline by up to 6x as the distance between node
connections increases, independent of graph encoding and model size.

1 INTRODUCTION

Large Language Models (LLMs) have achieved remarkable versatility by leveraging scale and
attention-based architectures (Kaplan et al., 2020; Vaswani, 2017). They exhibit superhuman ca-
pabilities across diverse tasks such as language translation, reading comprehension, and question
answering (Costa-jussà et al., 2022; Sanh et al., 2021), and serve as critical building blocks for ap-
plications beyond traditional language processing, including recommendation systems (Geng et al.,
2022), graph-related tasks (Wang et al., 2024), and knowledge bases (AlKhamissi et al., 2022;
Petroni et al., 2019). In particular, LLMs have shown potential in handling graph-based problems
by encoding graph structures into textual formats, enabling general pre-trained models to address
out-of-domain tasks (Sanford et al., 2024; Perozzi et al., 2024; Agarwal et al., 2020). Fine-tuned
models like GraphWiz and GraphLM have demonstrated improved performance in graph reasoning
tasks (Chen et al., 2024; Luo et al., 2024), emphasizing the promise of LLMs in this domain.

However, significant challenges remain in how LLMs process information in prompts, particularly
for graph-related tasks. Research highlights issues such as the lost-in-the-middle phenomenon,
where information placed in the middle of prompts is less effectively utilized (Liu et al., 2023),
and performance degradation when contextual information is dispersed (Kaddour et al., 2023; Ge
et al., 2024). In this work, we show that for graph tasks—particularly identifying common connec-
tions and measuring similarity—performance declines not only due to the absolute positioning of
information but also because of the relative distance between relevant pieces, a limitation we term
lost-in-distance. This phenomenon affects tasks requiring cross-subgraph reasoning, which is criti-
cal in applications such as molecular design, social network analysis, and recommendation systems
(Tan et al., 2023; Xia et al., 2023; Gao et al., 2024).

Our analysis demonstrates that these limitations are universal across various LLMs, including
Llama-3-8B, Llama-3-70B (Dubey et al., 2024), and GPT-4 (Achiam et al., 2023), and are com-
pounded when “lost-in-the-middle” and “lost-in-distance” effects coexist. These findings under-
score the need to address both the absolute and relative positioning of information to enhance LLM
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performance in graph-related tasks, which has profound implications for applying these models in
domains requiring complex reasoning over structured data.

1.1 NOTATIONS AND DEFINITIONS

We define a graph G = (V, E), where V and E represent the sets of nodes and edges, respectively. If
nodes vi and vj are directly connected, we denote the edge between them as eij ∈ E . The neighbors
of node vi are defined as N (vi) = {vk ∈ V | eik ∈ E}. A subgraph associated with node vi is
defined as Gvi = ({vi} ∪ N (vi), Evi), where Evi = {eij | eij ∈ E , vj ∈ N (vi)}.

We use accuracy as the proportion of correct predictions to the total number of predictions made.
More detail about notations can be found in Appendix A.

2 GRAPH ENCODING AND GRAPH TASKS

Representing graph-structured data as text is crucial for enabling LLMs to understand and an-
swer questions about graphs, as different encodings can affect performance (Agarwal et al., 2020;
Fatemi et al., 2024; Zhang et al., 2024a). In this work, we encode nodes as unique integers
vi ∈ 0, 1, . . . , n− 1 and experiment with three edge encoding functions from Fatemi et al. (2024):
Incident (natural language adjacency lists), Adjacency (encoded as (vi, vj)), and Expert (encoded
as vi → vj). Since our graph tasks only require the subgraph and its structure, we include edge
information only for the nodes of interest, a common practice in subgraph extraction (Shao et al.,
2013). Figure 6 illustrates an example of these three encoding approaches in the prompt, where node
0 and node 1 are the nodes of interest.

We aim to analyze the performance of LLMs in two fundamental graph problems:

1. Common Connection: For this task, we ask LLMs to find the number of common connec-
tions between node vi and node vj , denoted as |N (vi) ∩N (vj)|.

2. Similarity: Given three nodes vi, vj and vk sampled from a graph G, we let vj be the source
node and vi and vk be the target nodes. The task for LLMs is to compare the number of
common connections |N (vi) ∩N (vj)| and |N (vj) ∩N (vk)|.

3 EXPERIMENTATION

3.1 EXPERIMENTAL SETUP

In this paper, we build upon previous studies (Huang et al., 2022; Fatemi et al., 2024; Zhang et al.,
2024b) by conducting experiments on randomly generated graphs. We utilize the Erdős–Rényi (ER)
graph generator (Erdős & Rényi, 1959) to create undirected graphs. We experiment with relatively
large graphs comprising n = 1000 nodes. The undirected edge eij between nodes vi and vj is
generated with probability P (eij ∈ E). We set P (eij ∈ E) = 0.1 throughout the main manuscript,
and results for other values of P (eij ∈ E) are presented in the Appendix for brevity.

Leveraging in-context learning (Dong et al., 2022; Wei et al., 2023), we conducted experiments
using both closed-source models (GPT-4) and open-source models (Llama-3-8B-Instruct and Llama-
3-70B-Instruct). For all models, we set the decoding temperature to zero to ensure the generation
of deterministic answers. In each sample, we randomly selected two or three nodes as the nodes of
interest for the common connection and similarity tasks, respectively. We conducted experiments
on one hundred thousand randomly generated graphs to derive statistically significant insights into
LLM behavior. The experimental results were then averaged across multiple samples.

3.2 COMMON CONNECTION TASK

In this section, we demonstrate the effect of increased distance on solving the common connection
task. To create an input prompt for this task and to control the relative distance of relevant informa-
tion (common neighbors), we use the following structured methodology: we sample two nodes from
a graph, extract their subgraphs, group the common connections within each subgraph, and position
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these connections at the beginning, middle, or end of their textual encoding. This recipe, specifically
the grouping of relevant information into three positions—beginning, middle, and end (as illustrated
in Figure 1 for adjacency encoding)—enables us to control the relative distance between common
connections within the prompt. This allows us to investigate the effects on the model’s performance
when the relative distance is small, medium, or large. We denote the positions of relevant infor-
mation within the first and second subgraphs as (p1, p2), where p1 ∈ {0, 1, 2} and p2 ∈ {3, 4, 5},
respectively, for the sake of brevity.

0 1 2

Edge information 
node 257

Prompt
You are given a graph. In the graph, (i, j) means that 
node i and node j are connected with an undirected 
edge. 
Your task is to find the number of common connections 
between two given nodes.

The edges in this graph are: 
(257, 172) (257, 717) (257, 818) (257, 659) (257, 214) 
(257, 760) (257, 891) (257, 740) (257, 741) … (462, 
797) (462, 801) (462, 172) (462, 717) (462, 818) (462, 
659) (462, 214) (462, 760) (462, 891).

Question: How many common connections are there 
between node 257 and node 462?
Respond in JSON format with keys ‘answer’ and your 
answer must be a number only.

3 4 5

Edge information 
node 462

0 1 2

Edge information 
node 257

Prompt
You are given a graph. In the graph, (i, j) means that 
node i and node j are connected with an undirected 
edge. 
Your task is to find the number of common connections 
between two given nodes.

The edges in this graph are: 
(257, 740) (257, 741) …(257, 172) (257, 717) (257, 
818) (257, 659) (257, 214) (257, 760) (257, 891) (462, 
172) (462, 717) (462, 818) (462, 659) (462, 214) (462, 
760) (462, 891) …(462, 797) (462, 801).

Question: How many common connections are there 
between node 257 and node 462?
Respond in JSON format with keys ‘answer’ and your 
answer must be a number only.

3 4 5

Edge information 
node 462

Figure 1: An example illustrating the placement of relevant information, highlighted in blue and red,
at different positions using the adjacency encoding function for the common connection task.

The results in Figure 2 demonstrate that the model’s performance in the common connection task is
influenced by both the lost-in-the-middle phenomenon and the relative distance between common
connections. When the position of relevant information is fixed in one subgraph, performance de-
grades as the other subgraph is positioned closer to the middle of the prompt, as seen in adjacency
encodings where performance drops from 40% to 20% when shifting the second node’s common
connection from position 5 (end) to 3 (middle). However, across all three graph encodings, the
model achieves optimal performance when relevant information is centrally located with minimal
distance between components, particularly at positions (2, 3), highlighting the interplay between
lost-in-the-middle and lost-in-distance effects.

3.3 SIMILARITY TASK

Solving the similarity task for three nodes vi, vj , and vk requires two common connection compu-
tations, |N (vi)∩N (vj)| and |N (vj)∩N (vk)|, followed by a comparison, which inherently suffers
from the lost-in-distance phenomenon. To measure this effect, we randomly shuffle edges within
the subgraphs of the three nodes, position the source node vj’s subgraph (Gvj ) at the center of the
prompt, and place the other two subgraphs before and after it, mitigating the lost-in-the-middle ef-
fect. The median token distance between the common connections of the subgraphs quantifies the
lost-in-distance effect. For more detail about the prompt please see appendix.

For brevity, we present the results of one encoding for each model in Figure 3, with all re-
sults summarized in Appendix G.2. Our findings indicate that when both distances are minimal,
(small, small) distance, GPT-4 and Llama-3-70B-Instruct exhibit the best performance. Llama-3-
8B-Instruct, which has a high failure rate in following instructions as described in Appendix E.2,
demonstrates the second-best performance, though it is not significantly different from the top per-
formers.
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Figure 2: The effect of lost-in-distance on the common connection task. The number in each block
is accuracy ± standard deviation.
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Figure 3: The effect of lost-in-distance on the similarity task is illustrated. As the distance between
target node 1 and target node 2 increases, the model’s accuracy degrades accordingly.

Specifically, performance at the largest distances is significantly worse compared to that at the small-
est distances. As the distances increase (i.e., along the diagonal elements), the performance of all
models deteriorates. In Llama-3-70B, we observe a 12% drop in model accuracy when the distance
between common connections for both |N (vi) ∩ N (vj)| and |N (vj) ∩ N (vk)| increases, shifting
from the (Small,Small) index to the (Large,Large) index in the heatmap plot. These results high-
light that the lost-in-distance phenomenon adversely affects model performance in similarity tasks.

4 CONCLUSION

This study introduces the “lost-in-distance” phenomenon, demonstrating how the performance of
LLMs in graph-related tasks is impacted by the relative positioning of relevant information in the
input context. Our experiments reveal that as the distance between crucial data points increases,
the accuracy of publicly available open and proprietary LLMs significantly deteriorates in solving
graph tasks that require cross-referencing. This phenomenon compounds with the known “lost-in-
the-middle” effect, leading to notable declines in task performance when multiple subgraphs must
be cross-referenced, such as in common connection and similarity tasks.

Our findings, which we coin “lost-in-distance”, highlight a key limitation of current LLMs in solving
graph tasks, particularly those requiring complex reasoning over dispersed data. This study paves
the way for future research focused on mitigating these issues, such as developing advanced graph
encoding techniques. Addressing the challenges posed by lost-in-distance will be critical for enhanc-
ing LLM applications in domains like recommendation systems, molecular design, and multi-hop
question answering, and will contribute to the broader field of LLMs in graph problem-solving.

4



I Can’t Believe It’s Not Better Workshop @ ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Oshin Agarwal, Heming Ge, Siamak Shakeri, and Rami Al-Rfou. Knowledge graph based syn-
thetic corpus generation for knowledge-enhanced language model pre-training. arXiv preprint
arXiv:2010.12688, 2020.

Badr AlKhamissi, Millicent Li, Asli Celikyilmaz, Mona Diab, and Marjan Ghazvininejad. A review
on language models as knowledge bases. arXiv preprint arXiv:2204.06031, 2022.

Nuo Chen, Yuhan Li, Jianheng Tang, and Jia Li. Graphwiz: An instruction-following language
model for graph computational problems. In Proceedings of the 30th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pp. 353–364, 2024.
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A NOTATION

We define the distance between a common node v within two subgraphs Gu and Gz as the number of
tokens separating the two occurrences of node v in the context (i.e., the textual representation of the
subgraphs). The overall distance between relevant information for common connections between
the two subgraphs is defined as the median of all such distances computed for each common node.
Throughout the paper, we use p to indicate position and d to indicate distance.

We use accuracy, as defined below, to measure the performance of an LLM model in solving a given
task:

Accuracy =
1

N

N∑
i=1

1{yi=ŷi} × 100%, (1)

where N is the total number of samples in the task, and yi and ŷi denote the true answer and the
model’s answer for the ith sample, respectively. If the output of the LLM for sample i is degener-
ate—such as not following instructions or hallucinating—we consider it an incorrect answer, i.e.,
yi ̸= ŷi.

B LOST-IN-THE-MIDDLE FOR EDGE TASK EXISTENCE TASK

The edge existence task is analogous to the needle-in-a-haystack problem (Ivgi et al., 2023) and the
document question-answering task (Liu et al., 2023), as it requires the LLM to retrieve the answer
from the prompt without performing any computation. Building upon prior work in the literature
by Liu et al. (2023), this study demonstrates the impact of the position of relevant information on
the performance of LLMs. Specifically, it is shown that the accuracy in the edge existence task
decreases when the information about the edge in question is placed in the middle of the prompt.

The prompt structure is constructed using the following procedure, which enables controlling the
location of information within the prompt:

1. Randomly sample two nodes from a graph along with their corresponding connections.

2. Randomly select nine additional subgraphs and incorporate their textual encodings into the
prompt. This step is necessary to examine the impact of the position of relevant informa-
tion.

3. Group the subgraph structures of the two nodes of interest and position them at the begin-
ning, middle, or end of the input context.

4. Query the model to determine whether an edge exists between the two nodes of interest.

An example of a prompt with different positions for the two nodes of interest is illustrated in Fig-
ure 4.

B.1 EXPERIMENTAL RESULTS

Lost-in-the-middle can happen in the edge existence task. To demonstrate the lost-in-the-middle
phenomena in edge existence task, we experiment with one of the state of the art model as of writing
this paper GPT-4 that does not use function calling. Since the lost-in-the-middle phenomenon has
been extensively studied in the literature, particularly in the context of language tasks, we limit our
experimentation only to GPT-4 and use its result later to study the ”lost-in-distance” phenomenon.

Figure 5 shows that all encodings can cause the LLM to lose the information in the middle of
the prompt. The experiment results are averaged over twenty randomly generated graph where
from each graph we randomly select two nodes and form the edge existence prompt as described in
previous section.

The best performance occurs when the relevant information is either at the beginning or the end of
the entire subgraph structure. Even for the incident encoding which has the best performance among
all encodings, the LLM still has the worst performance when the answer is located in the middle of
the prompt.
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(c)(b)(a)

You are given a graph structure in an 
adjacency list format. 
Your task is to determine whether two given 
nodes are directly connected.

In this graph:
Node 208 is connected to nodes ...
Node 358 is connected to nodes ...
...
Node 425 is connected to nodes ...
Node 400 is connected to nodes ...
...
Node 714 is connected to nodes ...
Node 368 is connected to nodes ...

Question: Is node 208 directly connected to 
node 358?
Respond in JSON format with keys ‘answer’.

You are given a graph structure in an 
adjacency list format. 
Your task is to determine whether two given 
nodes are directly connected.

In this graph:
Node 425 is connected to nodes ...
Node 400 is connected to nodes ...
...
Node 208 is connected to nodes ...
Node 358 is connected to nodes ...
...
Node 714 is connected to nodes ...
Node 368 is connected to nodes ...

Question: Is node 208 directly connected to 
node 358?
Respond in JSON format with keys ‘answer’.

You are given a graph structure in an 
adjacency list format. 
Your task is to determine whether two given 
nodes are directly connected.

In this graph:
Node 425 is connected to nodes ...
Node 400 is connected to nodes ...
...
Node 714 is connected to nodes ...
Node 368 is connected to nodes ...
…
Node 208 is connected to nodes ...
Node 358 is connected to nodes ...

Question: Is node 208 directly connected to 
node 358?
Respond in JSON format with keys ‘answer’.

Figure 4: Example of the edge existence task, illustrating the placement of the nodes of interest
subgraph (nodes 208 and 358) at (a) the beginning, (b) the middle, and (c) the end of the graph
structure.
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Figure 5: The effect of the position of the relevant information on the edge existence task.

C GRAPH ENCODING

Figure 6 illustrates different techniques for the graph encoding verbalization.

D LOST-IN-DISTANCE FORMULATION

Tasks such as the edge existence require LLMs to perform needle-in-a-haystack retrieval, which, as
previously shown, suffers from the lost-in-the-middle phenomenon in long contexts. However, in
many tasks, the model not only needs to look up relevant information in the context but also requires
to perform cross-referencing between retrieved information. For example, tasks like the common
connection require the model to retrieve connections that jointly appear in both subgraphs.

We hypothesize that for tasks requiring cross-referenced retrieval, the model’s performance is also
impacted by the distance between relevant pieces of information, a phenomenon we term lost-in-
distance. Specifically, for these tasks, the model’s performance is influenced by two compounding
phenomena: lost-in-the-middle when retrieving relevant information and lost-in-distance when per-
forming a join between retrieved information.
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Incident:
In this undirected graph:

Node 0 is connected to nodes 1, 2, 4. 
Node 1 is connected to nodes 0, 3, 4.

Adjacency:
The edges in this undirected graph are 

(0, 1) (0, 2) (0, 4) (1, 3) (1, 4).

Expert:
The edges in this undirected graph are 
0  -> 1, 0 -> 2, 0 -> 4, 1 -> 3, 1 -> 4.

Figure 6: Three graph encoding functions, with node 0 and node 1 serving as the nodes of interest.
The figure is inspired by Fatemi et al. (2024).

To explore this, we define G(p) as the model’s performance when the relevant information is at
position p. Similarly, we define F (p1, p2) as the model’s performance when the relevant information
is at positions (p1, p2). The value of F (p1, p2) is estimated based on the accuracy of model in
a complex task that requires cross-referencing. We hypothesize that F and G have the following
relationship:

F (p1, p2) = γ G(p1)G(p2)H(d), (2)

where d = |p2 − p1| represents the distance between relevant information in the prompt and H(d)
represents the effect of lost-in-distance.

In the experimental section, by studying LLM performance on common connection and similarity
tasks, we first demonstrate that lost-in-the-middle alone cannot explain the model’s performance
degradation in solving tasks that require joint reasoning across multiple subgraphs, and that it is
affected by another factor, lost-in-distance.

E ANALYSIS

E.1 CONTEXT LENGTH

Table 1 summarizes the average context length (i.e., the number of tokens) for each task and each
graph encoding. We use the tokenizer of Llama-3 to calculate the context length for Llama-3-8B-
Instruct and Llama-3-70B-Instruct and use the tiktoken library (OpenAI, 2023b) to calculate the
context length for GPT-4 and GPT-4o. The incident encoding produces the shortest context length,
while the adjacency encoding results in the longest context length.

Table 1: Input and output context length in each encoding and each task.

Graph Task Graph Encoding Average Input Length Average Output Length
GPT-4/4o Llama-3-8B-Instruct Llama-3-70B-Instruct

Edge Existence
Incident 3409.50 13 8 7

Adjacency 6598.10 13 8 7
Expert 5514.75 13 8 7

Common Connection
Incident 662.55 13 8 7

Adjacency 1261.10 13 8 7
Expert 1068.25 13 8 7

Similarity
Incident 1263.37 153.46 695.31 91.76

Adjacency 2164.75 142.32 1126.30 106.86
Expert 1869.29 140.34 1453.97 97.73
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Table 2: Percentage of samples where each model generates degenerated answer.

Graph Encoding Percentage of not generating the answer
GPT-4o Llama-3-8B-Instruct Llama-3-70B-Instruct

Incident 0.78% 18.78% 0.11%
Adjacency 4.11% 61.11% 0.22%

Expert 4.44% 69.00% 0.22%

E.2 ANSWER DEGENERATION

LLMs sometimes fail to follow instructions and generate responses that do not adhere to the ex-
pected output template. We classify these degenerate responses as incorrect answers, i.e., yi ̸= ŷi
for accuracy calculation in Equation 1. Llama-3-8B-Instruct is less likely to generate a final answer
compared to GPT-4o and Llama-3-70B-Instruct, which explains why it has lowest accuracy in Fig-
ure 3. Table E.2 summarizes the percentage of samples in which models fail to follow instructions.
Generally, the most common patterns of degenerate answers are as follows:

• Repetition: LLMs sometimes repeat the same context until they reach the maximum num-
ber of output tokens, thereby failing to generate a final answer.

• Self-contradiction: In zero-shot step-by-step reasoning prompting (Kojima et al., 2022),
LLMs are asked to answer the main question based on their responses to subquestions.
However, we find that LLMs sometimes provide an incorrect final conclusion. For exam-
ple, as shown in Figure 7 where we ask the LLM “is the number of common connections
between node 658 and node 535 greater than the number of common connections between
node 535 and node 807?”, the LLM determines that the number of common connections
between node 658 and node 535 is 6, and between node 535 and node 807 is 4, but the final
answer is “no” when it should be “yes”.

Model Answer
<sub a>The unique common connections between node 658 and node 535 are 30, 346, 575, 605, 910,
and 642.</sub a>
<sub a>6</sub a>
<sub a>The unique common connections between node 535 and node 807 are 303, 633, 642, and
92.</sub a>
<sub a>4</sub a>
<final a>No</final a>

Figure 7: Example where the answer is self-contradictory. The question in this example is that “is
the number of common connections between node 658 and node 535 greater than the number of
common connections between node 535 and node 807?”.

F COMMON CONNECTION: MORE RESULT

Figure 8 illustrates the impact of the lost-in-distance phenomenon on the GPT-4o model (OpenAI,
2023a) in solving the common connection task. Although the accuracy metrics slightly differ from
those in Figure 2 for GPT-4, the pattern of the lost-in-distance effect remains consistent.

G SIMILARITY TASK

The distance distribution is illustrated in Figure 9 for three different graph encodings. We utilize
the thresholds presented in Table 3 to categorize the distances into small, medium, and large groups.
Furthermore, in order to make sure more uniform coverage, we employ rejection sampling to ensure
that each distance group contains one hundred samples with balanced responses.
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Figure 8: The effect of the position of the relevant information on the GPT-4o model solving the
common connection task.

Table 3: Thresholds of each distance group for three graph encoding functions where distance is
measured in number of tokens.

Graph Encoding Small Distance Medium Distance Large Distance
Incident ≤ 219 219 ∼ 399 > 399

Adjacency ≤ 425 425 ∼ 785 > 785
Expert ≤ 354 354 ∼ 654 > 654

To eliminate potential biases, for the three subgraphs Gvi , Gvj , and Gvk , where vj is the source node
for similarity, we generate questions randomly chosen from the following two templates:

• Is the number of common connections between node vj and node vk greater than the
number of common connections between node vi and node vj?

• Is the number of common connections between node vi and node vj greater than the
number of common connections between node vj and node vk?

G.1 PROMPT EXAMPLE

Using zero-shot step-by-step reasoning prompting (Kojima et al., 2022), we guide models in solving
this multi-step task. Figure 10 illustrates an example of the similarity task prompt, as described
in Section 3.3, along with GPT-4o’s answer for solving the similarity task using incident graph
encoding.

G.2 ALL RESULTS

Figure 11 presents the results of the similarity task at a density of 0.1 across three models (GPT-
4, Llama-8B, Llama-70B) and three different graph encodings. For all models using the graph
encoding functions, we observe the typical lost-in-distance pattern, where performance at the
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Figure 9: The distribution of median distance, in number of tokens, for three graph encoding func-
tions.

11



I Can’t Believe It’s Not Better Workshop @ ICLR 2025

Prompt
You are given an undirected graph structure in an adjacency list format. 
Given three nodes i, j, and k, your task is to determine if the number of common connections between node i and 
node j is greater than the number of common connections between node j and node k.
You MUST first answer several subquestions in '<sub q></sub q>' tags in order and put your answers in '<sub 
a></sub a>' tags in order. Finally, answer the question in the '<final q></final q>' tag based on the given graph and 
your answers to the subquestions. Put your final answer in the '<final a></final a>' tag. 

In this graph:
Node 963 is connected to nodes {neighbors of node 963}.
Node 452 is connected to nodes {neighbors of node 452}.
Node 423 is connected to nodes {neighbors of node 423}.

<sub q>What are the unique common connections between node 963 and node 452? Your answer MUST start with 
'The unique common connections between node 963 and node 452 are'.</sub q>
<sub q>How many common connections are there between node 963 and node 452? Your answer MUST be a 
number only.</sub q>
<sub q>What are the unique common connections between node 452 and node 423? Your answer MUST start with 
'The unique common connections between node 452 and node 423 are'.</sub q>
<sub q>How many common connections are there between node 452 and node 423? Your answer MUST be a 
number only.</sub q>
<final q>Based on the given graph and previous answers, is the number of common connections between node 963 
and node 452 greater than the number of common connections between node 452 and node 423? Your answer 
MUST be 'Yes' or 'No' only.</final q>

Model Answer
<sub a>The unique common connections between node 963 and node 452 are 704, 799, 972, 430, 827, 531, 628, 
496, 551, 908, 104.</sub a>
<sub a>11</sub a>
<sub a>The unique common connections between node 452 and node 423 are 104, 832, 496, 906, 824, 470, 550, 
766, 634, 740.</sub a>
<sub a>10</sub a>
<final a>Yes</final a>

Figure 10: Example of the zero-shot step-by-step reasoning prompting for the similarity task.

(Large,Large) index—indicating a large distance between relevant information within two sub-
graphs in the prompt—is worse than at the (Small,Small) index, which indicates a smaller distance
between relevant information for the similarity task in the prompt.

H EFFECT OF GRAPH DENSITY

The lost-in-distance effect remains consistent across different graph densities, i.e., different values
of P (eij ∈ E) in Erdős–Rényi (ER) randomly generated graphs. Graph density affects the input
sequence length in a linear manner; higher densities result in proportionally longer input sequences,
as demonstrated in Table 4.

Figure 12 illustrates that increasing the context length by raising graph density follows the same
pattern of the lost-in-distance effect in similarity tasks. Specifically, accuracy declines progressively
from top to bottom and left to right as the distances between common edges within each subgraph
increase. Additionally, the figure demonstrates that for smaller context lengths, corresponding to
graphs with low density, the results are noisier and the effect of lost-in-distance diminishes.

Table 4: Average Token Length from different Graph Density, P (eij ∈ E), for ER graphs using
expert encoding

Graph Density Average Token Length
0.05 1145
0.10 1869
0.15 2633
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Figure 11: All results in the similarity task with density = 0.1.
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Figure 12: Results from similarity tasks with three different density values, P (eij ∈ E), (left) 0.05 ,
(middle) 0.1, and (right) 0.15.
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