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Abstract

Unsupervised domain adaptation (UDA) aims to
transfer knowledge from a model trained on a la-
beled source domain to an unlabeled target domain.
To this end, we propose in this paper a novel cy-
cle class-consistent model based on optimal trans-
port (OT) and knowledge distillation. The model
consists of two agents, a teacher and a student
cooperatively working in a cycle process under
the guidance of the distributional optimal trans-
port and distillation manner. The OT distance is
designed to bridge the gap between the distribu-
tion of the target data and a distribution over the
source class-conditional distributions. The optimal
probability matrix then provides pseudo labels to
learn a teacher that achieves a good classification
performance on the target domain. Knowledge dis-
tillation is performed in the next step in which
the teacher distills and transfers its knowledge to
the student. And finally, the student produces its
prediction for the optimal transport step. This pro-
cess forms a closed cycle in which the teacher
and student networks are simultaneously trained
to conduct transfer learning from the source to the
target domain. Extensive experiments show that
our proposed method outperforms existing meth-
ods, especially the class-aware and OT-based ones
on benchmark datasets including Office-31, Office-
Home, and ImageCLEF-DA.

1 INTRODUCTION

Unsupervised domain adaptation (UDA) allows us to trans-
fer knowledge from a model trained on a source domain
with labels to a target domain without any labels. To cope
with structural data more efficiently and effectively, deep
domain adaptation (DDA) [Ganin and Lempitsky, 2015]

has been proposed and widely studied [Nguyen et al., 2019,
2020, Phung et al., 2021]. To tackle the data shift issue and
learn domain-invariant features, DDA aims to bridge the
distribution gap between the source and target domains in a
latent space using a feature extractor. Guided by this princi-
ple, most of the existing works in DDA propose minimizing
a divergence between the source and target distributions
in the latent space. Popular choices of divergence include
the Jensen-Shannon (JS) divergence [Ganin and Lempitsky,
2015, Tzeng et al., 2015, Shu et al., 2018], the maximum
mean discrepancy (MMD) distance [Gretton et al., 2007,
Long et al., 2015], and the Wasserstein (WS) distance [Shen
et al., 2018, Lee et al., 2019, Le et al., 2021a].

Recently, Optimal transport (OT) [Villani, 2008, Santam-
brogio, 2015], a powerful tool in mathematics with rich and
rigorous theories, has been widely applied in deep domain
adaptation [Courty et al., 2017b,a, Damodaran et al., 2018,
Redko et al., 2019, Lee et al., 2019, Xie et al., 2019, Xu
et al., 2020, Nguyen et al., 2021a,b, Le et al., 2021b, Nguyen
et al., 2021c]. From the conceptual perspective, OT-based
methods encourage the target samples to move towards the
source samples by minimizing a transportation cost. How-
ever, since the transportation cost usually engages the pairs
of target and source samples without considering label in-
formation of the source samples, the movement of the target
samples to the source domain seems to be unaware of the
class regions in that domain, hence cannot resolve the la-
bel shift issue [Tachet des Combes et al., 2020]. Although
OT has been initially used for solving this problem [Courty
et al., 2017b, Damodaran et al., 2018], the performance of
the existing methods is still less satisfactory compared with
the state-of-the-art ones.

In this paper, we propose a novel distributional OT that
enables the incorporation of the source label information
when engaging and matching target and source samples.
Specifically, in the source domain we consider that one
label is associated with a conditional distribution over all
the samples conditioned on that label. Next, we define a
distribution over these conditional distributions of all the
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labels in the source domain. In the target domain where
there are no labels, we also consider a distribution over
all the target samples. With the two distributions for the
source and target domains respectively, we formulate the
DA problem as the computation of the OT distance between
the two distributions. The OT transport plan gives us the
information of how a target sample related to the source sam-
ples by taking into account the source domain labels. The
challenge here is how to define the cost function, which in-
dicates the transport cost of OT between a target sample and
a source class-conditional distribution. To tackle this chal-
lenge, we propose a cycle class consistency framework in
which we leverage the advantages of knowledge distillation
(KD) which has recently obtained outstanding achievements
[Tian et al., 2020, Zhao et al., 2020, Tejankar et al., 2021,
Feng et al., 2021]. We name our proposed approach Cycle
Class COnsistency with Optimal Transport and Knowledge
Distillation for Unsupervised Domain Adaptation (COOK).
In summary, our contributions in this paper include:

• We propose a novel distributional OT which seeks the
optimal matching between the target and source exam-
ples taking into account the source label information
for reducing the label and data shift, two challenging
problems of UDA.

• We connect KD and OT to further improve the perfor-
mance of class-aware UDA methods via proposing a cy-
cle class consistency framework where the teacher and
student networks cooperatively work in a distillation
process and support to reduce the mismatch between
the target distribution and the source class-conditional
distributions.

• We conduct experiments to compare our proposed
COOK with the existing standard UDA methods, espe-
cially class-aware UDA methods (e.g., RADA [Wang
et al., 2019b] and CAN [Kang et al., 2019]), and OT-
based UDA methods (e.g., DeepJDOT [Damodaran
et al., 2018], ETD [Li et al., 2020], and RWOT [Xu
et al., 2020]). The experimental results show that our
proposed method surpasses the baselines on the bench-
mark datasets including Office-31, Office-Home, and
ImageCLEF-DA.

2 RELATED WORK

2.1 STANDARD DA

Deep domain adaptation has been intensively studied and
shown appealing performance in various tasks and applica-
tions, notably in Ganin and Lempitsky [2015], Long et al.
[2015], et al. [2017, 2018]. The core idea of DDA is to
bridge the gap between source and target distributions in
a joint space by minimizing a divergence between distri-
butions induced from the source and target domains in

this space. Popular choices of divergence include Jensen-
Shannon divergence [Ganin and Lempitsky, 2015, Tzeng
et al., 2015, Shu et al., 2018]; maximum mean discrepancy
distance [Gretton et al., 2007, Long et al., 2015]; and WS
distance [Shen et al., 2018, Lee et al., 2019, Le et al., 2021a].
Some recent works have exploited different aspects of UDA
for improving the performance [Kurmi et al., 2019, Wang
et al., 2019a, Chen et al., 2019, Hu et al., 2020]. Typically,
CADA [Kurmi et al., 2019] considered the probabilistic cer-
tainty estimate of various regions and used these certainty
estimate weights for improving the classifier performance
on the target dataset. GSDA [Hu et al., 2020] introduced a
novel method named Hierarchical Gradient Synchronization
to model the synchronization relationship among the local
distribution pieces and global distribution, aiming for more
precise domain-invariant features.

2.2 OPTIMAL TRANSPORT BASED DA

Optimal transport theory has been applied to domain adap-
tation in Courty et al. [2017b,a], Damodaran et al. [2018],
Redko et al. [2019], Lee et al. [2019], Xie et al. [2019], Xu
et al. [2020]. Particularly, Lee et al. [2019] proposed using
sliced Wasserstein distance for domain adaption, whereas
Xie et al. [2019] proposed SPOT in which the optimal trans-
port plan is approximated by a pushforward of a reference
distribution, and cast the optimal transport problem into
a minimax problem. Recent OT-based DA work (RWOT)
[Xu et al., 2020] leveraged spatial prototypical informa-
tion and intra-domain structures of image data to reduce
the negative transfer caused by target samples near deci-
sion boundaries. Moreover, Courty et al. [2017b] proposed
an idea to connect the theory of optimal transport and do-
main adaptation, which later inspired an OT-based deep DA
method (DeepJDOT) [Damodaran et al., 2018]. Another
recent work (ETD) [Li et al., 2020] tackled the bottlenecks
of OT in UDA by developing an attention-aware OT dis-
tance to measure the domain discrepancy under the guidance
of the prediction-feedback. Our proposed approach is to-
tally different from existing OT based DA approaches in
which we examine an OT distance discrete distribution over
source class-conditional distributions and the target data
distribution. By investigating this specific OT distance and
minimizing it, we can guide target examples moving to an
appropriate source class on the latent space for mitigating
both data and label shifts.

2.3 CLASS-AWARE DA

Some recent approaches [Wang et al., 2019b, Kang et al.,
2019] leverage the useful information from the label space
to improve the quality of the alignment between the source
and target domains. Wang et al. [2019b] proposed a novel
relationship-aware adversarial domain adaptation (RADA)
algorithm. It first uses a single multi-class domain discrimi-



nator to enforce the learning of inter-class dependency struc-
ture during domain-adversarial training. After that, it aligns
this structure with the inter-class dependencies that are char-
acterized from training the label predictor on source domain.
Furthermore, the authors imposed a regularization term in
order to penalize the structure discrepancy between the inter-
class dependencies estimated from domain discriminator
and label predictor. With this alignment, RADA makes the
adversarial domain adaptation aware of the class relation-
ships. Kang et al. [2019] proposed a contrastive adaptation
network (CAN) which optimizes a new metric modeling
the intra-class domain discrepancy and the inter-class do-
main discrepancy. In particular, the authors introduced a
new contrastive domain discrepancy (CDD) objective to en-
able class-aware UDA. CAN aims to faciliate the optimiza-
tion with CDD (established on maximum mean discrepancy
(MMD) [Long et al., 2015]).

3 BACKGROUND

In what follows, we present the background of OT for two
discrete distributions, which is used in our work. Consider
two discrete distributions: P1 =

∑M
i=1 π

1
i δx1

i
and P2 =∑N

j=1 π
2
j δx2

j
where π1 =

[
π1
i

]M
i=1

and π2 =
[
π2
j

]N
j=1

are

probability masses,
{
x1
i

}M
i=1

and
{
x2
j

}N
j=1

are the sets of
atoms, and δx is the Dirac delta distribution concentrated
at the atom x. Let c

(
x1
i ,x

2
j

)
be a cost function. The OT

distance between P1 and P2 w.r.t. the cost function c is
defined as

min
A∈RM×N+

M∑
i=1

N∑
j=1

aijc
(
x1
i ,x

2
j

)
, (1)

where A = [aij ] ∈ RM×N+ of non-negative elements sat-
isfying

∑N
j=1 aij = π1

i ,∀i ∈ {1, ...,M} and
∑M
i=1 aij =

π2
j ,∀j ∈ {1, ..., N}.

In addition, aij ∈ [0; 1] is interpreted as the proba-
bility to match x1

i and x2
j or to transport x1

i to x2
j ,

which suffers the cost c
(
x1
i ,x

2
j

)
. Therefore, the sum∑M

i=1

∑N
j=1 aijc

(
x1
i ,x

2
j

)
can be viewed as the total cost

to match P1 and P2 or to transport P1 to P2. By solving the
optimization problem in Eq. (1), we aim to find the optimal
transportation matrix A∗ which minimizes the total cost.

4 DISTRIBUTIONAL OPTIMAL
TRANSPORT APPROACH FOR
CLASS-AWARE UDA

4.1 PROBLEM FORMULATION

We consider the standard setting of unsupervised domain
adaptation in which we have a labeled dataset DS =

{(
xSi , y

S
i

)}NS
i=1

from a source domain and an unlabeled

dataset DT =
{
xTi
}NT
i=1

from a target domain. We assume
that data examples xSi ,x

T
i ∈ Rd and the categorical labels

ySi ∈ {1, 2, ...,M} where M is the number of classes. For
the sake of notion simplification, we overload DS and DT
to represent the empirical joint distributions of the source
and target domains. We denote PS and PT as the data dis-
tributions of the source and target domains respectively.
Moreover, given a class m, we further denote PSm as the m-
th class-conditional distribution of the source domain (i.e.,
the distribution with the density function pS (x | y = m)).

4.2 MOTIVATION

For our proposed approach, we consider an OT distance
of two discrete distributions. The first one is the dis-
crete distribution whose atoms are the target examples
xT (i.e., x1

i = xTi in Eq. (1)), while the second one is
the discrete distribution whose atoms are the source class-
conditional distributions PSm (i.e., x2

j = PSm in Eq. (1)).
The cost c

(
xTi ,PSm

)
is defined as the negative log likeli-

hood − log pSm
(
xTi
)

= − log pS
(
xTi | y = m

)
. Hence, if

a target sample xTi is more likely to be a sample from PSm,
the log likelihood log pSm

(
xTi
)

is higher, meaning that the
cost c

(
xTi ,PSm

)
= − log pSm

(
xTi
)

becomes smaller. As
shown in Figure 1, by examining the OT distance between
two aforementioned distributions, we aim to find the best
match between a given target sample xTi and a source class-
conditional distribution PSm.

Figure 1: We consider the OT distance between two distribu-
tions: the first one has atoms as the target examples xT and
the second one has atoms as the class-conditional distribu-
tions PSm. The cost function c(xTi ,PSm) = − log pSm

(
xTi
)

=

− log pS
(
xTi | y = m

)
.

4.3 DISTRIBUTIONAL OPTIMAL TRANSPORT

We define PS =
∑M
m=1 πmδPSm , where δ is the Dirac

delta distribution and the mixing proportion π ∈ ∆M :={
α ∈ RM : α ≥ 0 and ‖α‖1 = 1

}
with the number of



classes M . Obviously, PS is a discrete distribution of dis-
tributions wherein PS takes PSm with the probability πm.
As mentioned in the motivation section, we now examine
an OT distance between PT and PS , we aim at matching
target examples to the source class-conditional distributions
in which a target example is absolutely guided to match the
source class-conditional distribution corresponding to its
ground-truth label.

In the sequel, we inspect an OT distance between PT and
PS in which we define the cost c

(
xi,PSm

)
to match a

target sample xi to PSm as − log pSm (xi). Let us denote
A = [aim] ∈ RNT×M as the transportation matrix wherein
aim represents the probability to match or transport xi to
PSm. The OT distance between PT and PS w.r.t. the cost
function c and the mixing proportion π is defined as:

Wc,π

(
PT ,PS

)
= min

A

{NT∑
i=1

M∑
m=1

aimc
(
xi,PSm

)
:

M∑
m=1

aim =
1

NT
,

NT∑
i=1

aim = πm

}
.

(2)

Similar to other DA works [Pan et al., 2008, Tzeng et al.,
2015, Long et al., 2017], we employ a feature extractor G
to map both source and target examples to a latent space.
We denote QS ,QT ,QSm, and QS as the corresponding dis-
tributions over the latent space induced by PS ,PT ,PSm, and
PS via the feature extractor G. The OT distance in Eq. (2)
is rewritten as:

Wc,π

(
QT ,QS

)
= min

A

{NT∑
i=1

M∑
m=1

aimc
(
G (xi) ,QSm

)
:

M∑
m=1

aim =
1

NT
,

NT∑
i=1

aim = πm

}
.

(3)

To encourage the target examples G (xi) to move towards
proper class regions of the source domain, we propose solv-
ing the following optimization problem (OP):

min
G,π
Wc,π

(
QT ,QS

)
. (4)

With c
(
G (xi) ,QSm

)
= − log pSm (xi), minimizing the OT

distance in Eq. (4) encourages the target example G (xi) to
move towards a QSk (1 ≤ k ≤ M) with a high likelihood
and ai = [aim]m inspired to be close to the corresponding
scaled one-hot vector 1

NT
1k. Here we denote 1k as the

one-hot vector with the k-th element being one.

5 CYCLE CLASS CONSISTENCY
FRAMEWORK

5.1 COST FUNCTION AND KNOWLEDGE
DISTILLATION

To define the cost function c
(
G (xi) ,QSm

)
in Eq. (4), we

build a classifier hS over the latent space, and rely on its out-
put to compute the cost values. This classifier is first trained
using the labeled source dataset DS =

{(
xSi , y

S
i

)}NS
i=1

by
minimizing the empirical loss:

Lsrc =
1

NS

NS∑
i=1

CE
(
σ
(
hS (G (xi))

)
, ySi
)
, (5)

where σ denotes a softmax function and CE represents a
cross-entropy loss. Recap that given a target example xi,
c
(
G (xi) ,QSm

)
captures the matching extent of G (xi) and

the class-conditional distribution QSm. Therefore, we can rea-
sonably define c

(
G (xi) ,QSm

)
= − log σm

(
hS (G (xi))

)
(i.e., σm

(
hS (G (xi))

)
is the predicted probability of xi

belonging to class m by classifier hS).

However, we find that hS is a well-trained classifier on
the source domain, and can generalize poorly on the tar-
get domain due to the data and label shifts. Therefore, in-
stead of using only one classifier trained to work well on
both domains, we leverage knowledge distillation [Hinton
et al., 2015, Tian et al., 2020, Tejankar et al., 2021] which
includes the two-network architecture, a teacher hT and a
student hS . The teacher hT aims to be an expert on the
target domain, while the student hS , which classifies accu-
rately on the source domain, is also able to generalize on
the target domain via distilling knowledge from its teacher.
When the generalization ability of hS is improved, the cost
c
(
G (xi) ,QSm

)
is computed more accurately to solve the

OP in Eq. (3). Inspired by the work of Hinton et al. [2015],
we perform knowledge distillation from the teacher hT to
the student hS in the target domain by minimizing a distilla-
tion loss Ldl w.r.t. a temperature softmax function:

Ldl =
1

NT

NT∑
i=1

CE

(
σ

(
hS (G (xi))

τ

)
, σ

(
hT (G (xi))

τ

))
,

(6)

where τ is a temperature parameter. When setting τ > 1, the
teacher and student’s predictions become softer, from which
the student can capture “dark knowledge” [Hinton et al.,
2015] from the teacher and effectively mimic the teacher’s
behaviour.

The student hS is now trained well in the source domain via
Eq. (5), and is possible to generalize on the target domain
via Eq. (6). To achieve this good generalization capability,



Figure 2: The proposed cycle class consistency framework.

we need to produce a teacher hT that is with good clas-
sification performance on the target domain. To this end,
we propose minimizing a cross-entropy loss between the
teacher’s prediction and pseudo labels computed via the
optimal transportation matrix A∗ after solving Eq. (3):

Lpl =
1

nT

nT∑
i=1

CE
(
σ
(
hT (G (xi))

)
, ŷTi

)
, (7)

where ŷT are pseudo labels for unlabeled target samples.
It is worth noting that only a subset of target samples with
high-confidence pseudo labels is selected (i.e., nT < NT ).
In the next section, we discuss on how to compute these
pseudo labels and our framework.

5.2 PSEUDO-LABEL SELECTION AND OUR
FRAMEWORK

We now introduce the strategy to produce pseudo labels
for unlabeled target samples. Let us return to the Eq. (3)
where directly solving this OP is computationally expensive.
Hence, we instead use an entropic regularized version to
minimize:

Wε
c,π

(
QT ,QS

)
= min

A

{NT∑
i=1

M∑
m=1

aimc
(
G (xi) ,QSm

)
−εH(A) :

M∑
m=1

aim =
1

NT
,

NT∑
i=1

aim = πm

}
, (8)

where H(A) := −
∑NT
i=1

∑M
m=1 aim log aim denotes an

entropy of the transportation matrix A, and ε is the reg-
ularization rate. During the training, we use Sinkhorn al-
gorithm [Cuturi, 2013] to solve this OP and achieve A∗

at every mini-batch. Interestingly, the solution of Eq. (8)
also provides us

∑M
m=1 a

∗
im = 1

NT
or in other words,

NT
∑M
m=1 a

∗
im = 1. Hence, we can define the pseudo label

ŷTi := NTa
∗
i for a given target sample xi and it satisfies∑M

m=1 ŷ
T
im = NT

∑M
m=1 a

∗
im = 1. The definition of ŷTi is

then used for minimizing Lpl in Eq. (7).

One problem when choosing ŷTi := NTa
∗
i is that the per-

formance of the teacher hT can be reduced if some pseudo

labels are incorrect, especially at the beginning of the train-
ing due to the data and label shifts between the source and
target domains. This issue also influences the distillation
process since we aim to build a well-classified teacher hT

on the target domain to transfer some of its aspects (e.g, its
“dark knowledge”) to the student hS . To avoid this problem,
inspired by Yang et al. [2021], we propose only selecting
highly confident pseudo labels (i.e., pseudo labels whose
entropies are less than a threshold) using an entropy-based
selection method. The OP in Eq. (7) is now minimized w.r.t.
the weights wi:

Lplw =
1

nT

nT∑
i=1

wiCE
(
σ
(
hT (G (xi))

)
, ŷTi

)
, (9)

where wi = I{H(ŷTi )<Hρ} with IC representing the indi-
cator function for a statement C (i.e., IC returns 1 iff C is
true), H

(
ŷTi
)

:= −
∑M
m=1 aim log aim is the entropy of a

pseudo label ŷTi w.r.t. a target example xi, and the threshold
Hρ denotes the ρ-th percentile of H

(
ŷTi
)
.

Additionally, when training our COOK, at each iteration,
we sample a mini-batch of target examples and consider QT
as the distribution of latent representations corresponding to
this mini-batch. Therefore, NT in Eq. (8) is replaced by the
batch size and the threshold Hρ denotes the ρ-th percentile
of H

(
ŷTi
)

in the mini-batch.

Finally, we present our framework in Figure 2 which in-
cludes three main steps: (i) the teacher is encouraged to
be an expert on the target domain using the pseudo label-
ing technique; (ii) the teacher transfers its knowledge to
the student via a distillation process to support the student
to generalize well on the target domain; and (iii) the pre-
dicted probabilities of the student classifier are utilized for
minimizingWε

c,π

(
QT ,QS

)
using Sinkhorn algorithm, and

offering the optimal transportation matrix A∗ to compute
pseudo labels. The pseudo labels with low entropies are
selected to train the teacher at the first step. This process
forms a closed cycle in which target samples are confidently
moved towards corresponding source class-conditional dis-
tributions QSm under the consistently cyclic guidance of the
key factors including the distributional optimal transport
and knowledge distillation, which motivates us to propose
our COOK.

5.3 TRAINING PROCEDURE OF COOK

To strengthen hS for providing better predictions and ac-
celerating matching target samples xT to source class-
conditional distributions QSm, we enforce the clustering
assumption to hS . Inspired by applying clustering assump-
tion in domain adaptation works [Shu et al., 2018, Kumar
et al., 2018], we employ Virtual Adversarial Training (VAT)
[Miyato et al., 2019] in conjunction with minimizing en-
tropy [Grandvalet and Bengio, 2005] of the prediction of



Figure 3: The overall architecture of our proposed method where G is a weight-sharing generator for mapping the source
and target data into the latent space. The teacher hT and the student hS act in a cyclic process as described in Figure 2
where we apply pseudo labelling, knowledge distillation and enforce clustering assumption: (a) when minimizing pseudo
labelling loss Lplw , target samples are encouraged to move towards the corresponding source class-conditional distributions;
(b) minimizing distillation loss Ldl pushes the target samples closer to the source samples due to the distillation process
between predictions of the teacher and student classifiers. While minimizing Lclus accelerates transporting target samples,
achieves a strong clustering, improves local smoothness and achieves the good generalization ability of hS on the target
domain, from which the pseudo labels are selected with the high confidence.

hS
(
G
(
xT
))

. VAT is an effective technique to improve the
local distribution robustness [Nguyen-Duc et al., 2022, Phan
et al., 2022]. At first, given a target sample x, a perturbation
of x, which is x′ that makes the student classifier hS give
a different prediction from x is chosen. And then hS is en-
forced to predict the same label for x and x′. As a result,
the decision boundary of hS is pushed away from the target
sample x, which achieves a better generalization ability for
hS on the target domain.

Lclus = Lent + Lvat, (10)

where with H to be the entropy, we have defined:

Lent = EPT
[
H
(
σ
(
hS (G (x))

))]
,

Lvat = EPT

[
max x′:‖x′−x‖<θDKL

(
σ
(
hS (G (x))

)
,

σ
(
hS (G (x′))

))]
, where DKL denotes the Kullback-

Leibler divergence and θ is a hyperparameter set to a very
small positive number.

The final optimization problem of our COOK for finding
hS , hT and G is as follows:

min
hS ,hT ,G

{
Lsrc + αLdl + βLplw + γLclus

}
, (11)

where α, β, γ > 0 are trade-off parameters. Conveniently,
the cyclic process in Figure 2 is operated synchronously by
simultaneously updating hS , hT and G during the training.
Finally, we present the key steps of our COOK in Algorithm

1 and the overall architecture and motivation of component
losses are depicted in Figure 3.

Algorithm 1 Pseudocode for training our proposed COOK.

Input: A source batch BS =
{(

xSi , y
S
i

)}b
i=1

, a target

batch BT =
{
xTj
}b
j=1

(b denotes the batch size).

Output: Classifiers hS∗, hT∗, generator G∗.
1: for number of training iterations do
2: Solve the OP in Eq. (8) using Sinkhorn algorithm to

find A∗.
3: Compute ŷiT in Eq. (9) based on A∗.
4: Compute wi in Eq. (9) based on Hρ.
5: Update hS , hT and G according to Eq. (11).
6: end for

6 EXPERIMENTS

In this section, we conduct experiments on benchmark
datasets including Office-31, Office-Home, and ImageCLEF-
DA to compare with existing baselines, especially OT-based
and class-aware UDA methods.

6.1 DATASETS

Office-31 [Saenko et al., 2010] is a well-known public
dataset used for UDA. It consists of three domains including
Amazon (A), Webcam (W) and Dslr (D) with 31 common
classes and 4,110 images in total.

Office-Home [Venkateswara et al., 2017] is another and



more challenging dataset for UDA which contains images
from four different domains, namely Artistic (Ar), Clip
Art (Cl), Product (Pr) and Real-world images (Re). This
dataset consists of around 15,588 images in total with 65
object categories in office and home scenes.

ImageCLEF-DA [Caputo et al., 2014] includes three do-
mains including Caltech-256 (C), ImageNet ILSVRC 2012
(I), and Pascal VOC 2012 (P), each of which has 12 classes
with 50 images per class.

6.2 IMPLEMENTATION DETAILS

In the experiments on the Office-31, Office-Home and
ImageCLEF-DA datasets, we use the extracted features
(2048 dimensions) from ResNet-50 [He et al., 2016]. The
generator includes a fully connected layer that outputs 256
dimensions. We use the same architecture for the student
and teacher networks which consists of a fully connected
layer for each network.

Some hyperparameters substantially contributes to model
performance, namely the temperature τ in Eq. (6), and the
percentile ρ in Eq. (9). As suggested in the ablation study,
we choose τ = 10.0 to effectively activate the knowledge
distillation process from the teacher to the student. The
percentile ρ is important to measure how well the student
hS can generalize on the target domain. We empirically find
that ρ = 20 or in other words, choosing the 20-th percentile
of H

(
ŷTi
)

is appropriate to select high-confidence pseudo
labels. Additionally, setting ε less than or equal to 0.1 can
achieve better performance and we set ε to 0.1. We also
select the trade-off parameters α = β = 1.0 and γ = 0.1 in
our experiments as suggested in the ablation studies.

We apply Adam optimizer [Kingma and Ba, 2015] (β1 =
0.5, β2 = 0.999) with Polyak averaging [Polyak and Judit-
sky, 1992], and the learning rate is set to 10−4 for Office-31
and Office-Home, and 5 × 10−5 for ImageCLEF-DA. For
the baselines, we report the experimental results mentioned
in the original papers. It is noticeable that in all experiments,
we only train the feature extractor, and the performance
of COOK can be further improved when fine-tuning the
backbone ResNet-50 is conducted.

6.3 RESULT AND DISCUSSION

We compare our COOK with the standard baseline ResNet-
50 [He et al., 2016] and existing works including DAN
[Long et al., 2015], DANN [Ganin and Lempitsky, 2015],
RTN [Long et al., 2016], iCAN [Zhang et al., 2018], CDAN-
E [Long et al., 2018], CDAN-BSP [Chen et al., 2019],
CDAN-T [Wang et al., 2019a], TPN [Pan et al., 2019],
rRevGrad+CAT [Deng et al., 2019], CADA-P [Kurmi et al.,
2019], SymNets [Zhang et al., 2019], especially class-aware
DA and OT-based methods, namely RADA [Wang et al.,

Table 1: Mean accuracy (%) on Office-31 for unsupervised
domain adaptation (ResNet-50).

Method A→W A→D D→W W→D D→A W→A Avg
ResNet-50 68.4 68.9 96.7 99.3 62.5 60.7 76.1

DAN 80.5 78.6 97.1 99.6 63.6 62.8 80.4
DANN 82.0 79.7 96.9 99.1 68.2 67.4 82.2
RTN 84.5 77.5 96.8 99.4 66.2 64.8 81.6
iCAN 92.5 90.1 98.8 100.0 72.1 69.9 87.2

CDAN-E 94.1 92.9 98.6 100.0 71.0 69.3 87.7
CDAN-BSP 93.3 93.0 98.2 100.0 73.6 72.6 88.5

CDAN-T 95.7 94.0 98.7 100.0 73.4 74.2 89.3
TPN 91.2 89.9 97.7 99.5 70.5 73.5 87.1

rRevGrad+CAT 94.4 90.8 98.0 100.0 72.2 70.2 87.6
SymNets 90.8 93.9 98.8 100.0 74.6 72.5 88.4

DeepJDOT 88.9 88.2 98.5 99.6 72.1 70.1 86.2
ETD 92.1 88.0 100.0 100.0 71.0 69.3 86.2

RWOT 95.1 94.5 99.5 100.0 77.5 77.9 90.8
RADA 91.5 90.7 98.9 100.0 71.5 71.3 87.3
CAN 94.5 95.0 99.1 99.8 78.0 77.0 90.6

COOK 95.1 96.2 98.3 99.9 88.7 86.2 94.1

2019b], CAN [Kang et al., 2019], DeepJDOT [Damodaran
et al., 2018], ETD [Li et al., 2020], and RWOT [Xu et al.,
2020].

The results trained on Office-31 are reported in Table 1. In
general, our proposed method achieves high results with four
transfer tasks greater than 95%. Except for the transfer tasks
D→W and W→D, our model significantly outperforms oth-
ers on almost adaptation tasks, and obtain 94.1% on average,
which is a 3.5% increase compared to the runner-up result.
It is worth noting that our COOK outperforms the baselines
by a large margin on challenging tasks, e.g., a 10.7% in-
crease on D→A and W→A with a 9.2% improvement, in
which the background of the training images between the
two domains are totally dissimilar.

We present the results trained on Office-Home in Table 2.
In this dataset, our COOK surpasses 7 over 12 transfer
tasks compared with the baselines and achieves the best per-
formance, making a 2.8% improvement on average. More
specifically, our model sees a remarkable improvement on
more challenging adaptation tasks, namely Ar→Pr (3.6%),
Cl→Pr (7.6%), Cl→Re (4.1%).

We further evaluate our COOK on ImageCLEF-DA and
report the classification accuracy in Table 3. Our COOK
outperforms 4 over 6 transfer tasks with an average accuracy
of 90.7%, compared to ETD and RWOT with 89.7% and
90.3%, respectively.

6.4 ANALYSIS

6.4.1 Hyperparameter Sensitivity and Quantitative
Evaluation

We conduct experiments to evaluate hyperparameter sen-
sitivity and quantitative result for our proposed COOK in
Figure 4. Figure 4a experiences a decrease of the model per-



Table 2: Mean accuracy (%) on Office-Home for unsupervised domain adaptation (ResNet-50).

Method Ar→Cl Ar→Pr Ar→Re Cl→Ar Cl→Pr Cl→Re Pr→Ar Pr→Cl Pr→Re Re→Ar Re→Cl Re→Pr Avg
ResNet-50 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DAN 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
DANN 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6

SymNets 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6
CDAN-E 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8

CDAN-BSP 52.0 68.6 76.1 58.0 70.3 70.2 58.6 50.2 77.6 72.2 59.3 81.9 66.3
CDAN-T 50.2 71.4 77.4 59.3 72.7 73.1 61.0 53.1 79.5 71.9 59.0 82.9 67.6

DeepJDOT 48.2 69.2 74.5 58.5 69.1 71.1 56.3 46.0 76.5 68.0 52.7 80.9 64.3
ETD 51.3 71.9 85.7 57.6 69.2 73.7 57.8 51.2 79.3 70.2 57.5 82.1 67.3

RWOT 55.2 72.5 78.0 63.5 72.5 75.1 60.2 48.5 78.9 69.8 54.8 82.5 67.6
COOK 53.0 76.5 81.8 65.5 80.3 79.2 64.5 51.8 82.4 71.3 54.2 83.9 70.4

(a) The changes of ρ-percentile. (b) Study of twisting τ . (c) Values of Wε
c,π

(
QT ,QS

)
.

Figure 4: Ablation studies of our proposed method on the transfer task A�W.

Table 3: Mean accuracy (%) on ImageCLEF-DA for unsu-
pervised domain adaptation (ResNet-50).

Method I→P P→I I→C C→I C→P P→C Avg
RTN 75.6 86.8 95.3 86.9 72.7 92.2 84.9
iCAN 79.5 89.7 94.7 89.9 78.5 92.0 87.4

CDAN-E 77.7 90.7 97.7 91.3 74.2 94.3 87.7
CDAN-T 78.3 90.8 96.7 92.3 78.0 94.8 88.5
SymNets 80.2 93.6 97.0 93.4 78.7 96.4 89.9
CADA-P 78.0 90.5 96.7 92.0 77.2 95.5 88.3

DeepJDOT 77.7 90.6 95.1 88.5 75.3 94.3 86.9
ETD 81.0 91.7 97.9 93.3 79.5 95.0 89.7

RWOT 81.5 93.1 98.0 92.8 79.3 96.8 90.3
RADA 79.2 92.4 97.5 91.1 76.6 95.3 88.7
COOK 80.1 95.5 97.0 95.9 79.1 96.3 90.7

Table 4: Accuracy (%) of ablation study on ImageCLEF-
DA.

Lsrc Lplw Ldl Lclus I→P P→I I→C C→I C→P P→C Avg
X X 75.9 86.1 93.9 89.0 74.4 87.4 84.5
X X X 76.4 86.6 93.9 89.9 76.0 91.2 85.7
X X X 78.6 91.0 95.9 92.9 77.9 95.9 88.7
X X X 78.5 90.9 96.7 93.3 79.6 95.0 89.0
X X X X 80.1 95.5 97.0 95.9 79.1 96.3 90.7

Table 5: Results (%) on different training strategies.

Methods A→W A→D D→W W→D D→A W→A Avg
Without KD 93.8 94.6 97.8 99.2 86.4 86.1 93.0

With KD 95.1 96.2 98.3 99.9 88.7 86.2 94.1

formance when twisting ρ in Eq. (9). Our proposed COOK
works well with ρ from 10 to 40. Relying on this investiga-
tion, we pick ρ = 20 in our experiments. Similarly, Figure
4a shows results with the changes of τ . We search τ in the
grid of {1.0, 10.0, 25.0, 50.0, 100.0} and find that setting
τ = 10.0 achieves the best performance to perform knowl-
edge distillation. Furthermore, we investigate the Wasser-
stein distanceWε

c,π

(
QT ,QS

)
in Figure 4c, which sees a

reduction during the training. This result shows the success
of transporting target samples to their corresponding source
class-conditional distributions.

We further evaluate the effects of the trade-off parameters
α, β, γ on model performance by twisting their values. Fig-
ure 5 shows results when we search α, β and γ in the grid
of {0.001, 0.01, 0.1, 1.0, 5.0, 10.0} and report the test ac-
curacy on two transfer tasks P→ I (ImageCLEF-DA) and
A→D (Office-31). The results show that the model yields
the stable performance when α, β, γ from 0.001 to 1.0. We
find that our COOK can achieve high performance when
α = β = 1.0 and γ = 0.1, hence we suggest picking these
values on most of our experiments.

6.4.2 Effect of Losses

We investigate the effectiveness of the pseudo labelling loss
Lplw , the distillation loss Ldl, and the clustering assump-
tion loss Lclus in Eq. (11). The experimental results are
described in Table 4, which shows that all component losses
contribute to the model performance since they participate



(a) α (b) β (c) γ

Figure 5: Analysis of hyperparameter sensitivity of α, β and γ on transfer tasks P→ I and A→D.

(a) ResNet (b) COOK (c) ResNet (d) COOK

Figure 6: The t-SNE visualization of A�W (Figure a, b) and P�C (Figure c, d) tasks with label and domain information.
Each color denotes a class while the circle and cross markers represent the source and target data respectively.

in the cyclic process and support to match target samples to
the corresponding source regions. It is noticeable that the
model performance is the best when all component losses
are activated and participate in the training process.

6.4.3 Effect of Knowledge Distillation

We further testify the contribution of KD to our proposed
method in two different scenarios: Without KD and With KD.
For Without KD setting, we deploy a model where hS and
hT are weight-sharing networks and train this model using
the final optimization problem where Ldl = 0. We compare
the Without KD setting with our architecture COOK (a.k.a.
With KD) and report the accuracy score in Table 5. The
results show that our COOK with KD outperforms that with-
out KD by nearly 1%, which demonstrates the effectiveness
of KD for our framework.

6.4.4 Feature Visualization

We select transfer tasks A�W (Office-31) and P�C
(ImageCLEF-DA) tasks to visualize their representation in
the latent space using t-SNE [van der Maaten and Hinton,
2008]. The visualizations in Figure 6a and 6c show that after
going through the backbone model ResNet-50, there is still
a mismatch between the source and target distributions due
to the data and label shifts. However, our proposed COOK

(see Figure 6b and 6d) is trained to transport target samples
to source samples, which closes this gap and achieves better
alignment between the target and the source samples.

7 CONCLUSION

In this paper, we develop a novel framework for class-aware
unsupervised domain adaptation. In particular, our proposed
method is based on the proposed distributional OT which
quantifies an OT distance between a distribution of target
data and the source class-conditional distributions. To effi-
ciently train our model with the proposed distributional OT,
we develop a novel model operating in a cyclic process. By
incorporating knowledge distillation and pseudo labelling
technique into this process, our proposed COOK effectively
tackles the data and label shifts problem by transporting the
target samples to the corresponding source class-conditional
distributions in a class-aware manner. The experimental
results show that COOK outperforms existing UDA meth-
ods, especially the class-aware and OT-based ones on the
benchmark datasets.
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