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ABSTRACT
Interactive machine learning systems that can incorporate human
feedback for automatic model updating have great potential use in
critical areas such as health care, as they can combine the strength
of data-driven modeling and prior knowledge from domain experts.
Designing such a system is a challenging task because it must enable
mutual understanding between humans and computers, relying on
interpretable and comprehensible models. Specifically, we consider
the problem of incorporating human feedback for model updating
in rule set learning for the task of predicting readmission risks for
ICU patients. Building upon the recently proposed Truly Unordered
Rule Sets (TURS) model, we propose a certain format for feedback
for rules, together with an automatic model updating scheme. We
conduct a pilot study and demonstrate that the rules obtained by
updating the TURS model learned from ICU patients’ data can em-
pirically incorporate human feedback without sacrificing predictive
performance. Notably, the updated model can exclude conditions
of rules that ICU physicians consider clinically irrelevant, and thus
enhance the trust of physicians.
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1 INTRODUCTION
In critical areas such as health care, developing machine learning
models that domain experts can comprehend and trust potentially
has great societal impact. Specifically, in intensive care units (ICU)
where patients are monitored intensively, patients conditions are
to a large extent recorded digitally, which provides the foundations
for building decision support systems with data-driven models [4].
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We consider the problem of predicting the probability of read-
mission to the ICU within a short period (7 days) after a patient is
discharged from the ICU and moved to a normal ward. Such read-
mission risk for patients is clinically relevant, as it is observed that
patients who are readmitted often become much worse in compari-
son to their condition when they were in the ICU previously [9, 19].
Thus, the readmission itself is a key factor that is highly correlated
with the patient’s condition; as a result, predicting the readmission
risk can both facilitate efficient ICU resource management and pre-
vent discharging patients improperly. In practice, beds in the ICU
are a very scarce and costly resource; thus, discharging patients
from the ICU smartly can help distribute the resource to patients
who need it more.

As physicians are responsible for estimating the risk of discharg-
ing a patient from the ICU, data-driven models only brings benefits
if physicians trust the model and are willing to use it in practice.
To build trust, the data-driven model needs to have interpretability
for domain experts to comprehend what is going on [11]. Further,
beyond interpretability, the situation when physicians and machine
learning models disagree must be properly handled [7, 13, 15]. That
is, when the model gives a probabilistic prediction together with
explanations, what if the physician disagrees with the prediction
and/or the explanation? For instance, the model could identify a
factor that is known to be irrelevant clinically as important for
predicting readmission risk for a single patient. In this situation,
it would be ideal if the physician would give this feedback to the
machine learning model; further, if the model can be automatically
updated when receiving the feedback from human, the physician
could trust the model next time when the model gives the same
explanation and prediction for a similar patient in the future.

Thus, interaction between humans (i.e., physicians in the ICU
in this case) and the machine learning model is crucial in such a
scenario, which requires the human to understand the machine,
and at the same time, the machine to understand the human.

As probabilistic rules [6] are directly readable by humans, rule-
based models are in principle comprehensible to humans [12]. How-
ever, traditional probabilistic rules raise the challenge for human-
guided rule learning, in the sense that rules cannot be modified (in
a data-driven way) without affecting other "overlapping" rules, in
which two rules being overlapped is defined as the situation when
some instances satisfy the conditions of both rules. This motivates
us to adopt the recently proposed Truly Unordered Rule Set (TURS)
models [21]. In Section 3, we will briefly review probabilistic rules,
discuss further the issue caused by overlaps, and describe the TURS
model as preliminaries.

Building upon TURS, the challenges remain unresolved that 1)
how and in what formats the feedback from domain experts can be
incorporated, and 2) how rule-based models can be updated accord-
ing to human feedback. To tackle these challenges, we introduce
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a human-guided rule updating scheme based on the TURS model.
Specifically, we present a rule set model to a human user, and ask
which rules they dislike and why. While it seems tempting to allow
the user to specify their reasons in natural languages, this cannot
guarantee the transparency of the model updating process. Note
that automatically updating the model based on human feedback
has now become part of the machine learning system, which we
aim to make interpretable altogether.

Thus, we constrain the feedback in certain formats, propose a
transparent human-guided model updating scheme, and conduct an
empirical pilot study by applying our method to a dataset collected
at the ICU of Leiden University Medical Center (LUMC) in the year
2020. To this end, we ask a domain expert from LUMC to identify
rules with clinically irrelevant variables. Our results demonstrate
that with human-guided rule learning, probabilistic rules can be
updated to meet users’ preferences without sacrificing the predic-
tive performance of the model. To the best of our knowledge, we
are the first to develop a human-guided machine learning system
based on probabilistic rules.

2 RELATEDWORK.
Involving humans in the loop in machine learning systems has
been studied extensively in computer visions and natural language
process [5]. However, for text and image datasets, data point makes
more sense to humans by themselves than those in tabular datasets—
the data type for our task—unless the tabular data has a very low
dimensionality. Further, their goals are often to incorporate humans’
prior knowledge to increase the accuracy, while our goal is to make
the model more trustworthy to domain experts. On the other hand,
several methods exist that allow user to influence the learned model.
For instance, Ware et al. [18] proposed to directly build classifiers
(decision trees) with the help of visualizations. Kapoor et al. [8]
allow users to update the model by refining the confusion matrix.
Finally, other works include involving humans in the loop for fea-
ture engineering [2] and data labelling [1]. Although these methods
provide a certain degree of control to humans, our work is different
in the following aspects: 1) we let users specifying the disliked
variables and eliminating such variables via local model updating
instead of re-training the whole model, 2) we build the model on a
rule set that summarizes the original data as comprehensible pat-
terns, resolving the issue that each single data point may be hard
to perceive for humans, and 3) we specifically focus on the critical
and sensitive application task in the healthcare domain, with the
main goal as enhancing the trust between humans and machine
learning systems.

3 TRULY UNORDERED RULE SETS
We first review the definition of probabilistic rules, and then discuss
the truly unordered rule set (TURS) model.

3.1 Probabilistic rules
Denoting the feature as 𝑋 = (𝑋1, ..., 𝑋𝑚) and the target variable as
𝑌 , a probabilistic rule is in the form of "IF𝑋 meets certain conditions,
THEN 𝑃 (𝑌 ) = 𝑃 (𝑌 )", where the condition of the rule is a conjunction
of literals (i.e., connected by the logical AND). Each literal takes the
form of "𝑋 𝑗 ≥ (or <) 𝑣 𝑗 " for some value 𝑣 𝑗 if 𝑋 𝑗 is continuous, or

𝑋 𝑗 = 𝑣 𝑗 if 𝑋 𝑗 is categorical. Further, 𝑃 denotes the class probability
estimator for this rule. When a instance satisfies the condition of a
rule, we refer to the instance as being covered by this rule.

3.2 Rule-based models
While a single rule describes a subset of data only, a global model
can be formed by putting a set of rules together, as a rule list [3, 20]
or an unordered rule set [10, 22]. In a rule list, rules are connected
by the "IF" and (multiple) "ELSE IF" statements (e.g., IF condition A,
Probability of readmission is 0.1; ELSE IF condition B, Probability
of readmission is 0.4). Rule lists are hard to comprehend as the
condition of a single rule depends on all its preceding rules.

Further, in unordered rule sets, rules are claimed to be unordered
whereas implicit orders are usually imposed, as pointed out by Yang
and van Leeuwen [21]. When an instance satisfies the conditions
of multiple rules, these rules are often ranked based on their ac-
curacy [22] or F1-score [10]. Then, the higher-ranked rule is used
for predicting that single instance covered by multiple rules, while
the lower-ranked rule is disregarded. However, these implicit ranks
among rules cause issues when humans want to intervene by pro-
viding feedback to the rules (e.g., they like/dislike certain variables),
and let the rules be automatically updated. This is because rules
become entangled due to the existence of ranks; as a result, single
rules cannot be re-trained without affecting other rules. Further,
with implicit orders, the condition of a single rule also depends on
other higher-ranked rules; thus, similar to rule lists, comprehending
a single rule requires checking all higher-ranked rules.

3.3 The TURS model
The TURS model eliminates both implicit and explicit orders among
rules by formalizing a set of rules as a global probabilistic model in
a novel way. Specifically, when two rules overlap, the instances that
satisfy the conditions of both rules are modelled to express "uncer-
tainty", in the sense that the TURS model is uncertain which rule
can "better" describe these instances. Intuitively, this can happen
when 1) the overlap contains very few data points, and/or 2) the
(empirical) class probabilities for instances contained in the overlap
is "similar" to either rule. According to the Occam’s razor principle,
creating a separate rule to cover exactly these instances contained
in the overlap is not preferred, as the gain for the model’s goodness-
of-fit is little in comparison to the increase of model complexity,
which in practice may lead to overfitting [21].

Particularly, learning a TURS model from data has been formal-
ized as a task of model selection based on the minimum description
length (MDL) principle [14], in which the MDL principle is a for-
malization of Occam’s razor.

The TURS model paves the way towards an interactive rule
learning process with the following two advantages over existing
methods for learning rule lists and rule sets, in which rules are
respectively explicitly and implicitly ordered.

The first advantage is that rules in the TURS model can be em-
pirically regarded as truly unordered and hence independent from
each other. Thus, deleting and/or editing one rule (that a domain
expert dislikes) has little influence on other, potentially overlapping
rules. In contrast, for rules with (implicit) orders obtained by other
existing methods, editing or deleting one rule may cause “a chain

2
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of effects" on how instances covered by other rules are modeled.
Secondly, the TURSmodel reduces the workload for domain experts
to find out which rules need to be edited, because comprehending a
single rule in TURS does not require going over all other (explicitly
or implicitly) higher-ranked rules.

4 UPDATING RULE SETS WITH HUMAN
FEEDBACK

We now describe in what format we allow ICU physicians to give
feedback, and how the TURS model can be updated based on it.

4.1 Human feedback format
Although it seems tempting to allow feedback in flexible formats
(like in natural language), we argue that it is desirable to constrain
human feedback to have certain formats, in order to transform
the feedback into transparent human guidance to the algorithm for
updating the model. In other words, we aim to propose certain
human feedback formats so that the consequence of such human
feedback can be easily explained to domain experts.

However, such feedback format should also allow domain experts
to express clearly and sufficiently why they dislike the current
model. This requires a deep understanding about what might cause
dissatisfaction from domain experts. Hence, how to design such
feedback formats may depend on the application task at hand, and
often require interdisciplinary collaborations.

Focusing on the task of ICU readmission risk analysis, we con-
strain ourselves to a simple yet fundamental feedback format and
leave as future work incorporating other feedback formats. For-
mally, given a truly unordered rule set model with 𝐾 rules denoted
as 𝑀 = {𝑆1, ..., 𝑆𝐾 }, we consider feedback from domain experts
in the following form: remove rule 𝑆 𝑗 due to irrelevant variables
{𝑋𝑖 }𝑖∈𝐼 , in which 𝑆 𝑗 denotes a single rule and 𝐼 an index set. No-
tably, feedback in this format contains both the information of
whether a rule is disliked and the reason why it is disliked.

4.2 Updating a rule set
We now present how we can equip the TURS model with an “self-
updating" scheme after receiving feedback from a domain expert.

Removing a rule. Given the rule set 𝑀 = {𝑆1, ..., 𝑆𝐾 }, assume
that a domain expert gives the feedback that rule 𝑆𝑖 does not make
sense as it contains irrelevant variable 𝑋 𝑗 . Then, removing 𝑆𝑖 from
𝑀 is straightforward as there exist no implicit or explicit orders
among rules. That is, by following the procedure of formalizing a
rule set as a probabilistic model [21], we can define a new rule set
𝑀′ = 𝑀 \ {𝑆𝑖 }, for which the likelihood can be calculated.

Learn a new rule with constraint. Building upon the new TURS
model𝑀′, we can learn a new rule by treating𝑀′ by searching for
the next "best" rule that optimizes the model selection criterion of
TURS, with the constraint that the feature variable marked as "dis-
like" by domain experts will be skipped. The algorithm for searching
the next rule is the same as in the original TURS algorithm, which
adopts a beam-search approach [21].

5 AN EMPIRICAL PILOT STUDY
We conduct a pilot study in collaboration with Leiden University
Medical Center (LUMC) using the real-world ICU patient dataset to
showcase how the TURS model together with our proposed model
updating scheme can be used for interactive rule learning with
humans in the loop. We next describe the experiment setup and
present our results.

5.1 Experiment setup
Dataset description.We specifically considered the dataset col-
lected at the ICU of LUMC in the year 2020, in which the patients
who are readmitted within 7 days are labelled as “positive".

The original dataset is multi-modal and contains information in
different forms, including time seriesmeasurements (e.g., cardiology
monitor records), lab results over time (e.g., blood tests), medication
use records, as well as static information for each patient (e.g., age,
gender, etc). This dataset was described and pre-processed into
a tabular dataset by an external expert in previous research [16].
The resulting processed dataset was further split randomly for
training and test, which contains 9737 and 2435 patients respectively
(approximately 80%/20% splitting), with 550 feature variables. The
dataset is very imbalanced, as the overall probability of readmission
is roughly 0.07.

Human feedback collection. We ask one domain expert from
LUMC to give feedback to the rules, with the procedure as follows.
First, a TURS model is learned on the training set. Second, the rule
set is shown to the domain expert; specifically, the condition of
each rule together with the class probability estimates (obtained
using the training set) are shown to the domain expert. Moreover,
the algorithm is briefly described to the domain expert as well.

Next, we ask the domain expert to go through each of all rules,
and to give feedback to the rule set in the format as we described in
Section 4. Subsequently, the feedback is used to update the TURS
model, and we use the test set of the ICU dataset for assessing the
predictive performance of the TURS model before and after the
human feedback. We refer to the latter as the human-guided model.
Lastly, note that the test set of the whole dataset is only used for
this final assessment step, and therefore the domain expert has no
access to it during the procedure of giving feedback to rules.

5.2 Rule set for the ICU dataset
Learning a TURS model using the ICU dataset, we obtain a sur-
prisingly simple rule set with 5 rules only, which has average rule
length of 2. The obtained rule set is shown in Table 1.

The literals contain feature names that are mostly consisting
of three parts, with the first part indicating the basic meaning of
this feature variable. The second part of feature names indicates
how the results are aggregated, among which “count", “mean", “me-
dian", and “max" are commonly used. Last, the third part of feature
names indicates the time window for which the aggregated values
are obtained, in which “first" represents the first 24 hours, “last"
represents the last 24 hours, and “all" represents the whole period
in ICU. A detailed explanation of the feature names can be found
in a previous research [16].
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Table 1: Rule sets describing the probability of readmission
for LUMC ICU patients.

Rule Conditions Prob. of Readmission # Patients
Urea-max-all ≥ 12.1 0.223 494RespiratoryRate-median-value-last24h ≥ 23.5
APTT-max-all ≥ 43.1 0.199 548Urea-mean-all ≥ 16.338
Leukocytes-mean-last ≥ 20.81 0.162 464
Potassium-count-first ≥ 6.0 0.131 1979specialty-Organization-value-sub-ICCTC = FALSE
Platelets-count-first ≥ 2.0

0.019 3922Urea-last-last < 9.2
specialty-Organization-value-sub-ICCTC = TRUE
None of the above 0.059 3220

5.3 Rule-based competitor methods
As a sanity check, we benchmark the performance of the TURS
model induced from the training dataset against several commonly
used probabilistic rule-basedmodels. Themotivation for such bench-
mark is to show that the TURS model has competitive predictive
performance and thus implicitly describes the data relatively well,
which is the foundation for involving humans in the loop.

The predictive performance is summarized in Table 2. Notably,
the TURS model shows advantages over competitor methods in
several aspects. First, the results with respect to ROC-AUC and PR-
AUC show that the ICU dataset is difficult to model using widely
used rule-based models (as listed in the table), since the ROC-AUC
of C4.5 and RIPPER are roughly equal to 0.5. Further, the TURS
model shows its robustness in achieving the best ROC-AUC and
PR-AUC, and notably with significantly simpler rules (except when
compared to RIPPER, which seriously “underfits" the data).

Moreover, rules in the TURS model generalize best to the unseen
instances in the test set (excluding RIPPER for its low ROC-AUC
scores). Specifically, we calculate the difference between the class
probability estimates obtained using the training and test dataset,
as also reported in the table. We hence conclude that the probability
estimate for each single rule of the TURSmodel shown to physicians
are most reliable and trustworthy.

Table 2: Rule-based model results on ICU dataset.

Algorithm CN2 CART RIPPER C4.5 TURS
ROC-AUC 0.641 0.690 0.514 0.539 0.705
PR-AUC 0.114 0.137 0.084 0.076 0.164

Train/test prob. diff. 0.041 0.031 0.001 0.054 0.006
# rules 851 25 1 249 5

Avg. rule length 2.5 4.2 5.0 16.8 2.0

5.4 Human-AI collaboration
We now showcase that our TURS model can be equipped with
the model updating scheme to generate human-guided rule sets.
Notably, our approach is very different than existing model editing
approaches [17], as the end user is not allowed to directly edit the
model in our model updating scheme; instead, we only allow user
to provide feedback, and the updated model is still learned in a
data-driven manner. That is, we let the data always take the leading
role, in order to avoid arbitrary (or adversarial) model editing.

We consider the rule set obtained in Section 5.2, and we collected
two pieces of feedback from the domain expert: 1) the domain expert
dislikes the 5th rule due to the first variable, and 2) the domain
expert dislikes the 3rd rule which contains only one literal.

We thus discard the 5th rule from the rule set, and we next
search for a new rule to be added to the rule set, with the constraint
that the first variable in the 5th rule must not be included. We
present the new human-guided rule together with the original
rule in Table 3. We show that our TURS model indeed makes such
an interactive process possible, and specifically that it can handle
feedback that can be transformed into constraints with respect to
excluding certain variables. Further, we demonstrate that for the
rule set induced from ICU patients’ dataset, editing a rule based
on the human feedback (without the necessity to modify other
‘overlapping’ rules), can indeed discard certain variables but at the
same time keep the predictive performance at the same level.

Note that the updated rule and the original rule are coincidentally
very similar; that is, the feedback to the TURS model is only about
discarding the first literal of the 5th rule, without asking it to keep
the other literals and/or variables in the original rule.

Table 3: Comparison between the rule before and after a
domain expert feedback, together with the ROC-AUC and
PR-AUC of the resulting new rule set. Changes in rules con-
ditions before and after human feedback are shown in red
and blue respectively.

Whether
human-guided

No Yes

Rule If Platelets-
count-first ≥
2.0; Urea-last-last
< 9.2; specialty-
Organization-
value-sub-ICCTC =
TRUE → Probabil-
ity of Readmission:
0.019; number of
patients 3922

If Leukocytes-
count-first ≥ 2.0;
Urea-last-last <

9.2; specialty-
Organization-
value-sub-ICCTC =
TRUE → Probabil-
ity of Readmission:
0.019; number of
patients 3958

ROC-AUC 0.705 0.706
PR-AUC 0.164 0.164

Next, for examining the effect of the second feedback, we remove
the 3rd rule from the original purely data-driven rule set, and search
for another rule by excluding the variable “Leukocytes-mean-last"
from the search space. We present the results in Table 4, which
shows that the new rule covers 375 more patients than the original
rule. Again, without the need for further modifying other rules,
editing the 3rd rule in the original rule set with the updated rule
keeps the ROC-AUC and PR-AUC at the same level.

6 CONCLUSION AND DISCUSSION
We studied the problem of estimating readmission risk for patients
in ICU as an applied machine learning task. To resolve the difficult
situation when domain experts (physicians) dislike certain rules,
which can result in the lack of trust for such data-driven models,

4
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Table 4: Another comparison between the rule before and
after a domain expert feedback.

Whether
human-guided

No Yes

Rule Leukocytes-mean-
last ≥ 20.8 →
Probability of
Readmission: 0.162;
number of patients
464

CRP-mean-last-
missing = 1 →
Probability of
Readmission: 0.030;
number of patients
839

ROC-AUC (rule set) 0.705 0.704
PR-AUC (rule set) 0.164 0.172

we developed a human-guided rule learning scheme based on our
method for learning truly unordered rule set (TURS) models.

We presented a pilot empirical study using the patients data
collected at Leiden University Medical Center (LUMC) in the year
2020. Specifically, we firstly presented the learned rule set from the
ICU dataset, and compared the predictive performance against other
widely used rule-based competitor models, which demonstrated
the superiority of the TURS model in terms of both predictive
performance and model complexity. This result set the foundation
for using the TURS model as a basis for interactive rule learning.

Next, we asked a domain expert from LUMC to give feedback
to the purely data-driven rules, and we proposed a simple model
updating scheme to incorporate the feedback to induce human-
guided rules. We showcased that such a process can lead to new
rules as replacements for rules that the domain expert disliked,
without sacrificing the predictive performance of the whole model.
Notably, the properties of the TURS model enables straightforward,
transparent, and efficient model editing, without the need for re-
training other rules in the model. We next discuss potential future
research directions.

6.1 Discussion for future work
We next discuss the following potential research directions.

User feedback formats. One natural question is in what formats
we allow domain experts to give feedback to the data-driven model,
and further how to inspire and elicit feedback with tools that allow
an end user to investigate the data and the rule-based models.

For instance, it may be beneficial to allow domain experts to
examine values of other features that are not included in the condi-
tions of rules. While all instances in each rule share the same class
probability estimate, domain experts may find one single “typical"
patient who should have a different probability estimate than the
rest. This may induce feedback in the form of “modifying a given
rule by excluding a certain instance from the subset of instances
covered by that rule".

Further, we could allow the domain experts to suggest informa-
tive feature to be included in a single rule. Thus, we may allow
feedback in the form of “for all patients covered by this rule, those
patients whose feature value for variable 𝑋𝑖 is larger than a certain
threshold may have a higher risk of readmission". Such feedback is
useful for 1) obtaining single rules with variables that are congruent

with the domain knowledge, and 2) more interestingly, understand-
ing the limits of the data (since the “best" rule with the suggested
variables may result in a “worse" score according to the model
selection criterion).
Transparent model updating. Introducing the human in the loop
extends the meaning of transparency of a machine learning method.
Previously, transparency roughly referred to whether the process
of obtaining a model based on a given dataset is comprehensible to
humans; in contrast, we argue that transparency is also applicable
to describing whether the process of model updating based on
human feedback is comprehensible to humans. Thus, it is a natural
question to ask whether the trust between domain experts and
data-driven models depends not only on the transparency of the
model but also on that of the model updating scheme.

Further, while it is very transparent to incorporate human feed-
back as constraints like those we proposed, other ways of process-
ing human feedback are to be explored, e.g., translating human
feedback to "prior" preferences.
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