
DisC-GS: Discontinuity-aware Gaussian Splatting

Haoxuan Qu ∗

Lancaster University
U.K.

h.qu5@lancaster.ac.uk

Zhuoling Li *

Lancaster University
U.K.

z.li81@lancaster.ac.uk

Hossein Rahmani
Lancaster University

U.K.
h.rahmani@lancaster.ac.uk

Yujun Cai
University of Queensland

Australia
vanora.caiyj@gmail.com

Jun Liu †

Lancaster University
U.K.

j.liu81@lancaster.ac.uk

Abstract

Recently, Gaussian Splatting, a method that represents a 3D scene as a collection
of Gaussian distributions, has gained significant attention in addressing the task
of novel view synthesis. In this paper, we highlight a fundamental limitation of
Gaussian Splatting: its inability to accurately render discontinuities and boundaries
in images due to the continuous nature of Gaussian distributions. To address
this issue, we propose a novel framework enabling Gaussian Splatting to perform
discontinuity-aware image rendering. Additionally, we introduce a Bézier-boundary
gradient approximation strategy within our framework to keep the “differentiability”
of the proposed discontinuity-aware rendering process. Extensive experiments
demonstrate the efficacy of our framework.

1 Introduction

Novel view synthesis aims to generate images accurately from novel viewpoints in a captured 3D
scene. Its significance spans across diverse applications, such as autonomous driving [45], virtual
reality [14], and 3D content generation [42]. Recently, for better tackling novel view synthesis,
Neural Radiance Field (NeRF) [36] and a variety of NeRF-based methods [3, 4] have been proposed,
which represent 3D scenes in an implicit manner as neural radiance fields. However, their general
reliance on a heavy volume rendering mechanism often results in slow rendering speeds [30, 13],
limiting their practicality across real-world applications. While some methods [18, 19] have proposed
to accelerate the rendering process of NeRF from different perspectives, they often achieve this at
the expense of noticeably compromising the quality of the generated images [49], which is evidently
undesirable.

More recently, Gaussian Splatting [30], which explicitly represents the 3D scene as a collection
of Gaussian distributions, has been proposed as an appealing alternative to NeRF. Specifically,
rather than generating novel-view images through the time-consuming process of volume rendering,
Gaussian Splatting enables images from novel viewpoints to be generated by simply splatting
(projecting) [53, 54] these Gaussian distributions onto the image plane. By doing so, Gaussian
Splatting achieves real-time rendering of novel-view images, while maintaining its rendered images
to be of competitively high visual quality compared to NeRF-rendered ones. Due to its compelling
capability, Gaussian Splatting has received lots of research attention [26, 13, 42, 49, 12, 21, 25].

∗Both authors contributed equally to the work.
†Corresponding Author

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



Figure 1: (a) Illustration of a ground truth image, containing numerous discontinuities and boundaries,
that is expected to be rendered from a certain viewpoint of a 3D scene. We generate the boundary
map in (a) utilizing the Canny algorithm [9]. (b) Illustration of Gaussian distributions projected onto
the image plane. As shown, since Gaussian distributions are continuous, they can inevitably “pass
over” the (hard) boundary represented by the curve. (c) Illustration of images rendered with and
without applying DisC-GS. As shown, without DisC-GS, Gaussian Splatting can fail to accurately
render boundaries. In contrast, applying DisC-GS ensures that boundaries and discontinuities in the
image are properly rendered. More qualitative results are in Appendix B. (Best viewed in color.)

However, in this paper, we argue that Gaussian Splatting may still be sub-optimal in accurately
synthesizing novel views, due to its inherent weakness in representing (rendering) discontinuities and
boundaries with its collection of continuous Gaussian distributions. Specifically, due to the general
complexity of 3D scenes, the expected image to be rendered often contains numerous discontinuities
and boundaries (as shown in Fig. 1(a)). However, Gaussian Splatting represents each of its generated
images using only continuous Gaussians projected onto the image plane. Considering this, as
illustrated in Fig. 1(b), the inherent continuity of Gaussian distributions can result in some parts of the
distribution inevitably “passing over”(“spilling over”) the boundaries of sharp features in the image.
This can lead to Gaussian Splatting rendering the sharp boundaries in the image with blurriness (as
shown in Fig. 1(c)), which can significantly reduce the quality of the rendered image.

Based on the above argument, in this paper, we aim to enable Gaussian Splatting to bypass its
original intrinsic weakness, and render discontinuities and boundaries properly. However, this can
be non-trivial owing to the following challenges: (1) Since 3D scenes generally can be complex,
as illustrated in Fig. 1(a), various different kinds of boundaries with diverse shapes can all exist in
the image rendered from a certain 3D scene. Thus, it can be difficult to represent and render these
diverse boundaries properly and seamlessly in a Gaussian-Splatting-based framework. (2) Meanwhile,
recall that continuity serves as the prerequisite for a function to be differentiable. Thus, during
the process of learning the 3D scene representation using Gaussian Splatting, how to maintain the
“differentiability” of the process in existence of discontinuities, i.e., enabling the loss calculated over
the rendered images that contain “discontinuous” (sharp) boundaries to properly guide the learning
of the 3D scene representation, is also challenging. To handle the above challenges, in this work, we
propose DisContinuity-aware Gaussian Splatting (DisC-GS), a novel framework that can for the
first time, enable Gaussian Splatting to represent and render discontinuities properly in its image
rendering process, which handles a key limitation of the original Gaussian Splatting technique. We
illustrate the rendering process of our framework in Fig. 2, and outline our framework as follows.

Overall, to enable Gaussian Splatting to properly render discontinuities and boundaries, our framework
introduces a “pre-scissoring” step. Specifically, for each Gaussian distribution representing the 3D
scene, rather than directly rendering its entire 2D projection on the image plane, we first segment
(“pre-scissor”) the projected Gaussian distribution along the specified boundaries. However, achieving
this requires representing boundaries with various shapes accurately. Here, we get inspiration from
that, the cubic Bézier curve, conveniently represented by a group of four control points, has shown
capable of efficiently parameterizing curves of various shapes with low computational complexity
[16, 34]. Considering this, in our framework, we aim to use the cubic Bézier curves to represent
boundaries. Specifically, we first introduce each Gaussian distribution representing the 3D scene with
an additional attribute, which when projected onto the image plane, can serve as the control points of

2



the cubic Bézier curves. After that, given a viewpoint, based on the control points projected onto the
image plane corresponding to the viewpoint, we use the cubic Bézier curves formulated from these
control points to represent the desired boundaries w.r.t. each projected Gaussian distribution. Finally,
leveraging the derived boundaries, we can achieve discontinuity-aware image rendering through a
modified α-blending function (as discussed in Sec. 4.1).

Through the above process, we can render discontinuities and boundaries successfully (in the forward
direction). However, the above process alone cannot be seamlessly integrated into the Gaussian
Splatting pipeline. This is because, owing to the incorporation of the boundary information, the
modified α-blending function now is no longer continuous everywhere. This can cause Gaussian
Splatting, naively integrated with the above process, to become non-differentiable, and thus results
in difficulties during the learning process of the 3D scene representation. To tackle this problem, in
our framework, we further introduce a Bézier-boundary gradient approximation strategy, by which
during backpropagation, we can enable gradients to properly pass through the modified α-blending
function, and thus keep our framework to be still “differentiable”. With the above designs properly
involved, our DisC-GS framework can finally enable Gaussian Splatting to render discontinuities and
boundaries properly, seamlessly addressing its original key intrinsic limitation.

The contributions of our work are summarized as follows. 1) We proposed DisC-GS, an innovative
framework for the novel view synthesis task. To the best of our knowledge, this is the first effort
that enables Gaussian Splatting to represent and render boundaries and discontinuities properly in
its image rendering pipeline, which tackles a key intrinsic limitation of Gaussian Splatting. 2) We
introduce several designs in our framework to enable it to render images in a discontinuity-aware
manner, while also to keep its “differentiability” in the presence of discontinuities. 3) DisC-GS
achieves superior performance on the evaluated benchmarks.

2 Related Work

Novel View Synthesis. Owing to the wide range of applications, the task of novel view synthesis has
received lots of research attention [23, 40, 39, 43, 24, 36, 3, 4, 5, 44, 50, 7, 11, 18, 19, 37, 30, 26, 13,
49, 20, 46, 22, 35, 33, 32, 48, 52, 17]. In the early days, with the emergence of CNN, different works
have been proposed to leverage CNN in this task from different perspectives. Among them, Hedman
et al. [23] proposed to use CNN to predict blending weights, and Sitzmann et al. [40] proposed to
seek help from CNN in performing volumetric ray-marching. As time passed, NeRF tends to become
a popular way in representing 3D scenes. Specifically, the original version of NeRF is first proposed
by Mildenhall et al. in [36] and after it comes out, a variety of different NeRF-based methods have
been further proposed, such as Mip-NeRF [3], NeRF++ [50], and Point-NeRF [44]. Despite the
increased efforts, a weakness of NeRF-based methods can be that, to render novel-view images in
high visual quality, they often still require a slow rendering process [30, 13]. This can negatively
affect the usage of these methods in many real-world scenarios.

Considering this, more recently, the Gaussian Splatting technique, which can render novel-view
images in good quality while at the same time in real-time speed, as an attractive alternative to NeRF,
has gained plenty of research attention. Specifically, Kerbl et al. [30] proposed to represent a 3D scene
as a collection of 3D Gaussian distributions and made the first attempt to perform novel view synthesis
using the Gaussian Splatting technique. After that, Huang et al. [26] pointed out that representing
the 3D scene utilizing 3D Gaussian distributions can lead to a viewpoint inconsistency problem. To
tackle this problem, they proposed to represent the 3D scene with 2D Gaussian distributions instead.
Moreover, Cheng et al. [13] proposed to seek help from the classical patch matching technique to
better guide the densification of Gaussian distributions, and Zhang et al. [49] formulated a new loss
function in the frequency space to better regularize the learning process of Gaussian Splatting.

Different from these existing Gaussian-Splatting-based methods that typically render complete
Gaussian distributions during the image rendering process, we here argue that a key limitation of
the original Gaussian Splatting technique lies in that, directly rendering the complete Gaussian
distributions can lead boundaries and discontinuities in the image to be inaccurately rendered.
Considering this, in this work, we propose to enable Gaussian distributions to be “pre-scissored”
along desired boundaries before rendered. This for the first time, enables Gaussian Splatting to
represent and render discontinuities and boundaries properly.

3



Curve Representation. The idea of representing a curve in a parametric way has been studied in
various tasks [34, 27, 38, 16, 28, 8], such as lane detection [16], trajectory prediction [27], and text
spotting [34]. Here in this work, we design a novel framework, which enables Gaussian Splatting to
perform discontinuity-aware novel-view image rendering, via utilizing the cubic Bézier curves to
parametrically contour the boundaries in the image plane.

3 Preliminary

Gaussian Splatting. Gaussian Splatting represents the 3D scene explicitly as a collection of
anisotropic Gaussian distributions. In specific, in the collection, each Gaussian is defined with
the following attributes: (1) its center µ ∈ R3, (2) its covariance matrix Σ ∈ R3×3, (3) its spherical
harmonic (SH) coefficients cSH ∈ R3×(k+1)2 representing its color from different viewpoints (where
k denotes the order of SH), and (4) its opacity α ∈ R1. Regarding the covariance matrix Σ, it is
important to ensure Σ remains positive semi-definite during the learning process of the 3D scene
representation. To achieve this, Σ is expressed as Σ = RSSTRT , where R ∈ R3×3 is the orthogonal
rotation matrix of the Gaussian, and S ∈ R3×3 denotes the diagonal scale matrix of the Gaussian.

With the 3D scene represented as the collection of Gaussians defined in the above way, to render an
image given a target viewpoint, inspired by [53], each Gaussian in the collection is first projected
onto the image plane corresponding to the viewpoint as:

µ2D = PWµ, Σ2D = JWΣWTJT (1)

where µ2D and Σ2D respectively represent the center and the covariance matrix of the projected
Gaussian distribution, W represents the viewing transformation matrix, P represents the projective
transformation matrix, and J represents the Jacobian of the affine approximation of the projective
transformation. After that, to perform image rendering on the image plane, for each pixel p of the
image, its color C(p) is derived through an α-blending function as:

C(p) =

N∑
i=1

ciβi

i−1∏
j=1

(1− βj), where βi = αie
− 1

2 (p−µ2D
i )T (Σ2D

i )−1(p−µ2D
i )) (2)

where N represents the number of projected Gaussians that overlap p, ci represents the color of
the i-th Gaussian calculated from its corresponding SH coefficients, αi represents the opacity of
the i-th Gaussian, µ2D

i represents the center of the i-th projected Gaussian, and Σ2D
i represents the

covariance matrix of the i-th projected Gaussian. Note that, no matter whether Gaussian Splatting
represents the 3D scene using 3D or 2D Gaussian distributions, the above equations can describe its
rendering process consistently. In fact, as also mentioned in [26], the difference between rendering
images from 3D or 2D Gaussians can be reduced to that, when the scene is represented through 2D
Gaussians, the scale matrix S of each of the 2D Gaussians should contain a zero column vector. In
this work, we apply our framework to both 2D and 3D Gaussian Splattings, achieving performance
improvements as shown in Tab. 2. Yet, as pointed out by [26], using 3D Gaussians instead of 2D
Gaussians to represent the scene can result in a viewpoint inconsistency problem. Thus, in Sec. 4, we
first focus on explaining how our framework is applied to 2D Gaussian Splatting, in which we fix
the last column of the scale matrix S of all the Gaussians to be a zero vector. We then discuss the
application of our framework on 3D Gaussian Splatting in Sec. 4.3.

Cubic Bézier curve. A cubic Bézier curve is a parametric curve that can be formulated by leveraging
a list of four ordered control points [ω0, ω1, ω2, ω3] as:

B(t) = (1− t)3ω0 + 3(1− t)2tω1 + 3(1− t)t2ω2 + t3ω3 (3)
In the above equation, we can set t ∈ [0, 1] for B(t) to represent a segment of the curve that starts
from ω0 and ends at ω3. Alternatively, we can set t ∈ R to represent the entire curve. In this work,
we set t ∈ R for B(t), as any segment of the curve may not be enough to represent the desired
boundaries in the whole image plane. Note that when the four control points lie on the same straight
line, the Bézier curve formulated by them would also be reduced to that straight line. Thus, besides
representing smooth boundaries, the cubic Bézier curves, at their cross-interacting points, can also be
used to represent the sharp corners (of human-made items) in the rendered image.

4



Figure 2: Illustration of the discontinuity-aware rendering process over a single Gaussian distribution.
Specifically, over each 2D Gaussian distribution representing the 3D scene, we first introduce it
with a new attribute ccurve ∈ R4M×2 (represented by the red and purple points in (a)). Here we set
M = 2. After that, given a viewpoint, as shown in (b), we project both the Gaussian distribution and
the points stored in ccurve onto the image plane corresponding to the viewpoint. Finally, leveraging
the modified α-blending function in Eq. 6, we can perform discontinuity-aware rendering and render
only the part of the Gaussian distribution masked with the dotted lines in (c). (Best viewed in color.)

4 Proposed Method: DisC-GS

Given a batch of source images of a 3D scene with their corresponding viewpoints, the goal of novel
view synthesis is to generate novel-view images accurately. To handle this task, a common way is to
first learn a 3D scene representation from the given source images. After that, the novel-view images
can be rendered from the learned 3D scene. Recently, via representing the 3D scene through Gaussian
distributions, Gaussian Splatting has enabled novel-view images to be generated both in real-time
and with high rendering quality. It has thus attracted lots of research attention [30, 26, 13, 49].

Yet, we here argue that Gaussian Splatting has a key intrinsic limitation: it may fail to render
discontinuities and boundaries accurately. To tackle this problem, in this work, inspired by [54, 28],
we propose a novel framework named DisC-GS, which can seamlessly equip Gaussian Spatting with
the discontinuity rendering ability. Specifically, during rendering images from the 3D scene, to render
discontinuities properly, DisC-GS enables each Gaussian distribution projected onto the image plane
to be first “pre-scissored” along certain desired boundaries before being rendered. However, such
a “pre-scissoring” operation by itself can break the differentiability of the framework. Considering
this, we further incorporate our framework with a Bézier-boundary gradient approximation strategy.
Leveraging this strategy, during the learning process of the 3D scene, we can enable the gradient to
properly backpropagate through the “pre-scissoring” operation. Below, we first describe the (forward)
image rendering process of DisC-GS, and then explain the Bézier-boundary gradient approximation
strategy.

4.1 Discontinuity-aware Image Rendering

In the proposed DisC-GS, to perform discontinuity-aware rendering, we aim to preprocess Gaussian
distributions projected onto the image plane by “scissoring” them along boundaries represented by
cubic Bézier curves before rendering. To achieve this, we modify the conventional Gaussian Splatting
technique through the following three steps.

Introduction of an additional attribute. To facilitate the representation of cubic Bézier curves
corresponding to the boundaries of each Gaussian distribution projected on the image plane, we
introduce an additional attribute. We denote this attribute ccurve ∈ R4M×2, where M is a user-defined
hyperparameter representing the number of Bézier curves. This attribute augments the original four
attributes (discussed in Sec. 3) of each Gaussian distribution. Below, we introduce the physical
interpretation of ccurve. Specifically, for a certain 2D Gaussian distribution representing the 3D
scene, denote the first column of its rotation matrix R to be r1 and the second column of R to be r2.
Over the 3D space, the 2D subspace that this Gaussian distribution lies in can be then described by a
2D coordinate system, which takes the center µ of the Gaussian as its origin, the direction of r1 as
the direction of its x-axis, and the direction of r2 as the direction of its y-axis. Then for ccurve of
this Gaussian distribution, it can be understood as storing a total of 4M points in the above-defined
coordinate system. Note that when these 4M points are projected onto the image plane (as discussed

5



below), they can then serve as the control points of M cubic Bézier curves, which represent the
desired boundary w.r.t. the current Gaussian distribution.

Image plane projection of points in ccurve. After introducing ccurve to each Gaussian distribution
that represents the 3D scene, given a viewpoint, we project points in ccurve onto the image plane.
Specifically, this is achieved in two steps: (1) We first transform each point (stored in ccurve) in the
above-defined subspace coordinate system to the coordinate system of the 3D space as:

c3Dcurve[i] = µ+ ccurve[i, 0]× rT1 + ccurve[i, 1]× rT2 , where i ∈ {0, ..., 4M − 1} (4)
where µ is the center of the Gaussian distribution. Note that here, since a column of a rotation matrix
is already a unit vector, we can omit the normalization of r1 and r2 and directly transpose them. (2)
After deriving c3Dcurve ∈ R4M×3 storing the 4M points in the 3D space coordinate system, we can
project each point in c3Dcurve onto the image plane similar to what we have done in Eq. 1 as:

c2Dcurve[i] = PWc3Dcurve[i], where i ∈ {0, ..., 4M − 1} (5)
where P represents the projective transformation matrix, and W represents the viewing transformation
matrix. At this point, for each Gaussian projected onto the image plane via Eq. 1, we have gotten the
control points of its desired cubic-Bézier-curves-represented boundary, stored in c2Dcurve ∈ R4M×2.

Discontinuity-aware rendering. Finally, to perform discontinuity-aware image rendering, for each
Gaussian distribution projected onto the image plane, we aim to first “scissor” the distribution along
the M cubic Bézier curves formulated based on the 4M control points stored in c2Dcurve. After that,
we would like to only render the remaining parts of the distribution that are not “scissored out”. To
achieve this, assume that for each projected Gaussian distribution, we have built a binary indicator
function g(·), which when passed with a pixel p on the image plane, can output 0 if the pixel is
in the “scissored out” area of the distribution, and can output 1 otherwise. We can then perform
discontinuity-aware rendering simply via modifying the α-blending function in Eq. 2 as:

C(p) =

N∑
i=1

ciβi

i−1∏
j=1

(1− βj), where βi = αigi(p)e
− 1

2 (p−µ2D
i )T (Σ2D

i )−1(p−µ2D
i )) (6)

where gi(·) represents the indicator function w.r.t. the i-th projected Gaussian. Besides, same as
in Eq. 2, N represents the number of projected Gaussians that overlap p, ci represents the color
of the i-th Gaussian calculated from its corresponding SH coefficients, αi represents the opacity
of the i-th Gaussian, µ2D

i represents the center of the i-th projected Gaussian, and Σ2D
i represents

the covariance matrix of the i-th projected Gaussian. Note that via the above modified α-blending
function, for Gaussians that no longer overlap with the pixel p due to the “scissoring” operation, we
can zero out their contributions during calculating the color of p.

Considering the above, the problem of enabling Gaussian Splatting to perform discontinuity-aware
image rendering has now been reduced to building the indicator function g(·) for each projected
Gaussian distribution based on its corresponding c2Dcurve. Below, we discuss how we build g(·).
For simplicity, we first consider the case where only one cubic Bézier curve exists per Gaussian
distribution. In this case, denote the four control points of the curve ω0 = (x0, y0), ω1 = (x1, y1),
ω2 = (x2, y2), and ω3 = (x3, y3). Then to build g(·), given a pixel p = (xp, yp), we just need to
determine (judge) whether p is on the inner side or the outer side of the curve. To achieve this, instead
of directly leveraging the parametric representation of the cubic Bézier curve presented in Eq. 3,
which may lead the judgment to be non-intuitive, we first leverage the implicitization technique in
algebra [1] to represent the cubic Bézier curve in its implicit representation form as:
Bimp(x, y) = γxxxx

3 + γxxyx
2y + γxyyxy

2 + γyyyy
3 + γxxx

2 + γxyxy + γyyy
2 + γxx+ γyy + γ0 = 0

(7)
where coefficients including γxxx, γxxy , γxyy , γyyy , γxx, γxy , γyy , γx, γy , and γ0 can all be obtained
through basic arithmetic operations over the coordinates of the four control points of the curve in
O(1) time complexity (more details are provided in Appendix C). Based on Bimp(x, y), in the case
where only one curve exists per Gaussian distribution, we can then build the single-curve indicator
function gsc(·) intuitively and with O(1) time complexity as:

gsc(ω0, ω1, ω2, ω3; p) =

{
1, if Bimp(xp, yp) > 0,

0, otherwise
(8)

Above we introduce how we can build the indicator function g(·) as gsc(·) assuming that each
projected Gaussian distribution is only “scissored” along one cubic Bézier curve. Here, in the case
where M curves exist per Gaussian, for each Gaussian, we notice that a pixel can be regarded as in

6



its “scissored out” area as long as the pixel is “scissored out” by at least one out of the M curves
corresponding to the Gaussian. With this in mind, leveraging the gsc(·) function above, we can then
define g(·) in cases where M > 1 as:

g(p) =

M−1∏
i=0

gsc(c
2D
curve[4i], c

2D
curve[4i+ 1], c2Dcurve[4i+ 2], c2Dcurve[4i+ 3]; p) (9)

Leveraging the indicator function g(·) defined in Eq. 9, along with the modified α-blending function
in Eq. 6, we can then enable Gaussian Splatting to perform discontinuity-aware rendering.

4.2 Bézier-boundary Gradient Approximation Strategy

Above we discussed, how, in our framework, we perform discontinuity-aware rendering in the forward
direction from the 3D scene representation to the 2D rendered image.

Problems remain. Yet, this forward rendering process by itself cannot be seamlessly incorporated
into the Gaussian Splatting pipeline. This is because of two reasons. Firstly, to enable the 3D scene
representation to be properly learned from the source images of the 3D scene, Gaussian Splatting
needs its rendering process to be (backward) differentiable. However, performing discontinuity-aware
rendering leveraging the modified α-blending function in Eq. 6, with the discontinuous function g(·)
in Eq. 9 incorporated, is no longer differentiable. Moreover, according to Eq. 8 and 9, g(·) is actually
a piecewise constant function. Thus, even in its differentiable segments, the gradients of g(·) w.r.t. its
inputs are always zero. In other words, even in segments of g(·) where its gradients are computable,
these consistently zero gradients would fail to guide the update of the function g(·)’s inputs stored in
c2Dcurve, and consequently fail to guide the learning process of ccurve introduced in Sec. 4.1.

The big picture of our proposed strategy. To tackle the above problems and thus enable Gaus-
sian Splatting to seamlessly render discontinuities, in our framework, we aim to further keep the
“differentiability” of the whole discontinuity-aware rendering process. In other words, w.r.t. the
discontinuous indicator function g(·) that is newly incorporated into the rendering process, we aim
to approximate its gradients (partial derivatives) over the control point coordinates stored in c2Dcurve,
in a way that enables the approximated gradients to effectively guide the learning process of the
3D scene representation. To achieve this, inspired by [29], we propose a Bézier-boundary gradient
approximation strategy. Below, to ease our explanation of the strategy, we focus on discussing how we
approximate ∂g

∂c2Dcurve[0,0]
, i.e., the partial derivative of the indicator function g(·) over the x coordinate

of the first control point stored in c2Dcurve. Note that the application of the strategy to the remaining
coordinates stored in c2Dcurve follows a similar process (more details are provided in Appendix D).
Specifically, to approximate ∂g

∂c2Dcurve[0,0]
, based on the chain rule and according to Eq. 9, denoting

gsc(c
2D
curve[0], c

2D
curve[1], c

2D
curve[2], c

2D
curve[3]; p) to be g0sc(p), we first have:
∂g

∂c2Dcurve[0, 0]
=

∂g

∂g0sc(p)
× ∂g0sc(p)

∂c2Dcurve[0, 0]
(10)

Then since g(·) is clearly differentiable over g0sc(·) based on its definition in Eq. 9, we can reduce our
problem to approximate ∂g0

sc(p)
∂c2Dcurve[0,0]

, which is achieved through the following two steps.

Determining if g0sc(p) is desired to be modified. Specifically, to approximate ∂g0
sc(p)

∂c2Dcurve[0,0]
, we first

would like to determine, if the function g0sc(·) is desired to be modified at p or not. This is because, if
g0sc(·) already outputs a satisfied value at p, we don’t need to change c2Dcurve[0, 0] to correspondingly
modify g0sc(p). In other words, in such a case, we can simply set ∂g0

sc(p)
∂c2Dcurve[0,0]

to be zero.

Denote the loss function used during the learning process to be L. Leveraging both ∂L
∂g0

sc(p)
and the

current value of g0sc(p) as the conditions, below, we list the three situations in which g0sc(p) doesn’t
need to be further modified: (1) The first situation happens when ∂L

∂g0
sc(p)

= 0, which indicates that
g0sc(·) given input p is already in an optimal state. (2) Besides, the second situation happens when

∂L
∂g0

sc(p)
> 0 and g0sc(p) = 0. Based on the gradient descent algorithm, this implies that, while we still

hope the function g0sc(·) to output a smaller value at p, the function g0sc(·) already outputs its smallest
allowed value. (3) Following the opposite logic of situation (2), the third situation happens when

7



∂L
∂g0

sc(p)
< 0 and g0sc(p) = 1. In this case, though we still want g0sc(p) to be larger, g0sc(·) at p already

outputs its largest allowed value. In the above three situations, we can directly set ∂g0
sc(p)

∂c2Dcurve[0,0]
= 0

and omit the approximation performed in the next step.

Approximating ∂g0
sc(p)

∂c2Dcurve[0,0]
. Besides the above three situations, in the rest cases, for the value of

function g0sc(·) at p to be properly modified based on the modification of the value of c2Dcurve[0, 0],
we aim to properly approximate the partial derivative ∂g0

sc(p)
∂c2Dcurve[0,0]

. To achieve this, recall that as a
binary indicator function, g0sc(·) switches (modifies) its value at p between 0 and 1 only when its
corresponding cubic Bézier curve passes through p. Considering this, below, we first identify: which
value we should set (change) c2Dcurve[0, 0] to be, so that the value switch of g0sc(·) at p can happen.

To achieve this identification in an intuitive and analytical way, denoting p = (xp, yp) and the desired
value of c2Dcurve[0, 0] to be ϕ, based on Eq. 3, we can first derive the following system of equations:{
xp = (1− t)3ϕ+ 3(1− t)2t(c2Dcurve[1, 0]) + 3(1− t)t2(c2Dcurve[2, 0]) + t3(c2Dcurve[3, 0])

yp = (1− t)3(c2Dcurve[0, 1]) + 3(1− t)2t(c2Dcurve[1, 1]) + 3(1− t)t2(c2Dcurve[2, 1]) + t3(c2Dcurve[3, 1])
(11)

In this system of equations, since xp, yp, and the coordinates in c2Dcurve all have known values, we
initially regard the second equation in the system as a cubic equation w.r.t. t, as t is now the only
unknown variable in this equation. After solving this cubic equation and with t also known, we
can then regard the first equation in the system as a cubic equation w.r.t. ϕ and solve it. Finally, by
solving the above two equations (both in just O(1) time complexity), we obtain Sϕ as the set of all
possible real number solutions for ϕ. Based on the solutions’ scenarios within Sϕ, we approximate

∂g0
sc(p)

∂c2Dcurve[0,0]
in three different ways below.

(1) The “no side” situation. The first situation happens when Sϕ = ∅. In this case, we simply set
∂g0

sc(p)
∂c2Dcurve[0,0]

= 0. This is because, the empty nature of Sϕ implies that, there exists no proper real-
number value that we can change c2Dcurve[0, 0] to be, such that g0sc(p) can be desirably modified (i.e.,
either from 0 to 1 or from 1 to 0). We thus simply do not encourage c2Dcurve[0, 0] to change.

(2) The “single side” situation. The second situation occurs when all solutions in Sϕ lie on the same
side of c2Dcurve[0, 0] (i.e., all larger or all smaller than c2Dcurve[0, 0]). In this situation, let ϕ̃ denote
the solution in Sϕ that is nearest to c2Dcurve[0, 0]. Adjusting c2Dcurve[0, 0] towards ϕ̃ then implies the
least-cost plan, facilitating the modification of g0sc(p) in a desired manner. With this in mind, to
encourage c2Dcurve[0, 0] to approach ϕ̃, inspired by previous studies [6, 10, 47, 29], we approximate

∂g0
sc(p)

∂c2Dcurve[0,0]
via performing linear interpolation between c2Dcurve[0, 0] and ϕ̃ as:

∂g0sc(p)

∂c2Dcurve[0, 0]
=

g̃0sc(p)− g0sc(p)(
ϕ̃− (c2Dcurve[0, 0])

)
+ ϵ

, where g̃0sc(p) =

{
1, if g0sc(p) = 0,

0, otherwise
(12)

In the above equation, we set ϵ = 10−5 if
(
ϕ̃− (c2Dcurve[0, 0])

)
> 0 and we otherwise set ϵ = −10−5.

ϵ here is a small number that is used to avoid the gradient exploding problem to happen when the
distance between ϕ̃ and c2Dcurve[0, 0] is too short.

(3) The “both sides” situation. The third situation happens when some solutions in Sϕ are on the left
side of c2Dcurve[0, 0], while other solutions are on the right side of c2Dcurve[0, 0]. In this situation, we
can achieve the desired modification of g0sc(p) via either moving c2Dcurve[0, 0] to its left or right side.
Thus, unlike the scenario described in the above situation (2) where we only consider ϕ̃ from a single
side of c2Dcurve[0, 0], here, denoting ϕ̃1 as the value that is nearest to c2Dcurve[0, 0] from its left side, and
ϕ̃2 as the value that is nearest to c2Dcurve[0, 0] from its right side, we approximate ∂g0

sc(p)
∂c2Dcurve[0,0]

as:

∂g0sc(p)

∂c2Dcurve[0, 0]
=

g̃0sc(p)− g0sc(p)(
ϕ̃1 − (c2Dcurve[0, 0])

)
+ ϵ1

+
g̃0sc(p)− g0sc(p)(

ϕ̃2 − (c2Dcurve[0, 0])
)
+ ϵ2

(13)

8



In the above equation, we define g̃0sc(p) in the same way as in Eq. 12. Besides, both ϵ1 and ϵ2 are
defined in the similar way as ϵ in Eq. 12.

In summary, taking ∂g
∂c2Dcurve[0,0]

as an example, the above discussion explains how our proposed
strategy approximates the gradient of g(·) with respect to the point coordinates stored in c2Dcurve. With
the incorporation of this strategy into our framework, we keep the “differentiability” of the whole
rendering process, allowing Gaussian Splatting to seamlessly perform discontinuity-aware rendering.

4.3 DisC-GS on 3D Gaussian Splatting

Above, we focus on describing how we use 2D Bézier curves in our DisC-GS framework and
correspondingly apply DisC-GS on 2D Gaussian Splatting. Here in this subsection, we further
describe how we use 3D Bézier curves in our DisC-GS framework and apply DisC-GS on 3D
Gaussian Splatting. Specifically, the transition from 2D to 3D Bézier curves in DisC-GS requires
only two minimal modifications. (1) Firstly, for each Gaussian representing the 3D scene, the
control points of its Bézier curves are stored directly in the 3D spatial coordinate system rather
than in a 2D subspace. Note that, this modification can be very simply made. Specifically, for each
Gaussian in the 3D space in our DisC-GS framework, we only need to use c3Dcurve ∈ R4M×3 instead
of ccurve ∈ R4M×2 to represent the control point coordinates of its 3D Bézier curves. In other words,
for each 3D Gaussian, we only need to introduce it with c3Dcurve instead of ccurve as its new attribute.
(2) Moreover, since we already directly introduce c3Dcurve as the new attribute for each 3D Gaussian in
our framework, during rendering, we omit Eq. 4 above in Sec. 4.1, which originally is used to acquire
c3Dcurve from ccurve. Overall, the above two modifications are sufficient to incorporate DisC-GS with
3D instead of 2D Bézier curves.

4.4 Overall Training and Testing

In DisC-GS, during training (i.e., learning the 3D scene representation from the source images), we
follow a similar process as the typical Gaussian Splatting technique [30]. The involvement of the
strategy introduced in Sec. 4.2 keeps the “differentiability” of our framework. During testing (i.e.,
image rendering), we use the discontinuity-aware image rendering process introduced in Sec. 4.1.

5 Experiments

Datasets. To evaluate the efficacy of our proposed framework DisC-GS, following previous Gaussian
Splatting works [30, 49], we evaluate our framework on a total of 13 3D scenes, which include
both outdoor scenes and indoor scenes. Specifically, among these 13 scenes, 9 of them are from the
Mip-NeRF360 dataset [4], 2 of them are from the Tanks&Temples dataset [31], and 2 of them are
from the Deep Blending dataset [23]. We also follow previous works [30, 49] in their train-test-split.

Evaluation metrics. Following [30, 49], we use the following three metrics for evaluation: Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), and Learned Perceptual
Image Patch Similarity (LPIPS) [51].

Implementation details. We conduct our experiments on an RTX 3090 GPU and develop our code
mainly based on the GitHub repository [2] provided by Kerbl et al [30]. Moreover, we also get
inspired by [35, 52, 46] during our code implementation, and make use of the LPIPS loss during our
training process. Furthermore, for the newly introduced attribute ccurve ∈ R4M×2, we set its initial
learning rate to 2e-4, and set the hyperparameter M to 3. Besides, in the densification procedure of
our framework, when a Gaussian is cloned/splitted into two new Gaussians, we assign both the new
Gaussians with the same attribute ccurve as the original one.

5.1 Experimental Results

In Tab. 1, we compare our approach (applied on 2D Gaussian Splatting) with existing novel view
synthesis methods evaluated on the same 13 3D scenes and report the PSNR, SSIM, and LPIPS
results. Our framework consistently outperforms other methods on all three metrics and across
various datasets, showing its effectiveness. We also show qualitative results in both Fig. 1(c) and
Appendix B. As shown, whether representing the 3D scene through 3D or 2D Gaussian distributions,

9



Table 1: Performance comparison on the Tanks&Temples, Mip-NeRF360, and Deep Blending
datasets.

Method Tanks&Temples Mip-NeRF360 Dataset Deep Blending
SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓

Plenoxels [18] 0.719 21.08 0.379 0.626 23.08 0.463 0.795 23.06 0.510
INGP-Base [37] 0.723 21.72 0.330 0.671 25.30 0.371 0.797 23.62 0.423
INGP-Big [37] 0.745 21.92 0.305 0.699 25.59 0.331 0.817 24.96 0.390
Mip-NeRF360 [4] 0.759 22.22 0.257 0.792 27.69 0.237 0.901 29.40 0.245
3D-GS [30] 0.841 23.14 0.183 0.815 27.21 0.214 0.903 29.41 0.243
Surfsplatting [26] 0.837 23.42 0.202 0.804 27.03 0.239 0.895 28.89 0.261
FreGS [49] 0.849 23.96 0.178 0.826 27.85 0.209 0.904 29.93 0.240
GES [22] 0.836 23.35 0.198 0.794 26.91 0.250 0.901 29.68 0.252
Mip-Splatting [48] 0.851 23.78 0.178 0.827 27.79 0.203 0.904 29.69 0.248
Ours 0.866 24.96 0.120 0.833 28.01 0.189 0.907 30.42 0.199

the conventional Gaussian Splatting technique often struggles to render boundaries and discontinuities
clearly and with high quality. In contrast, our framework can achieve good rendering quality, even in
regions of the image containing numerous boundaries and discontinuities. This further underscores
the efficacy of our approach.

5.2 Ablation Studies

We conduct extensive ablation experiments on the Tanks&Temples dataset. More ablation studies
w.r.t. the image areas with rich boundaries, the Bézier-boundary gradient approximation
strategy, the hyperparameters, and the rendering speed of our framework are in Appendix A.

Table 2: Evaluation of our framework on both 2D
and 3D Gaussian Splattings.

Method SSIM↑ PSNR↑ LPIPS↓
2D Gaussian Splatting 0.836 23.30 0.205
2D Gaussian Splatting + Ours 0.866 24.96 0.120
3D Gaussian Splatting 0.841 23.14 0.183
3D Gaussian Splatting + Ours 0.863 24.67 0.123

Impact of representing the scene with 2D or
3D Gaussians in DisC-GS. In Sec. 4.1 and
Sec. 3, we focus on introducing how we apply
DisC-GS on 2D Gaussian Splatting. After that,
in Sec. 4.3, we introduce how DisC-GS can be
applied on 3D Gaussian Splatting in a similar
way. Here to verify the generality of our frame-
work, we test applying our framework on both 2D and 3D Gaussian Splatting. As shown in Tab. 2,
our framework, when applied on both 2D and 3D Gaussian Splattings, can consistently achieve
performance improvements, demonstrating the generality of our framework.

Table 3: Evaluation on the number of control
points per Bézier curve.

Method SSIM↑ PSNR↑ LPIPS↓
2 control points per curve 0.853 24.14 0.138
3 control points per curve 0.861 24.58 0.127
4 control points per curve 0.866 24.96 0.120
5 control points per curve 0.863 24.68 0.126

Impact of the number of control points per
Bézier curve. In our framework, inspired by
[16, 34], we represent boundaries in the image
with the cubic Bézier curve, each of which is
formulated by leveraging 4 control points. Here
we evaluate formulating each Bézier curve by
other numbers of control points, and report the
results in Tab. 3. As shown, our framework gets optimal performance when the number of control
points per Bézier curve is set to 4, and we thus formulate each Bézier curve by utilizing 4 control
points in our experiments. Besides, with different choices of the number of control points per Bézier
curve from 2 to 5, our framework outperforms the previous state-of-the-art method consistently. This
shows the robustness of our framework to the number of control points per Bézier curve.

6 Conclusion

In this paper, we have proposed an innovative novel view synthesis framework DisC-GS, which
for the first time, enables Gaussian Splatting to properly represent and render discontinuities and
boundaries in its image rendering process. Moreover, to keep the “differentiability” of our framework,
we further introduce our framework with a Bézier-boundary gradient approximation strategy. Our
framework consistently achieves superior performance across different evaluation benchmarks.

Limitations. While our framework enables Gaussian Splatting to perform discontinuity-aware
rendering, we acknowledge that same as existing Gaussian Splatting approaches, our framework still
holds certain limitations, such as challenges in rendering large scenes.

10



References
[1] 2d graphics primitives. http://www.mare.ee/indrek/misc/2d.pdf.

[2] Diff-gaussian-rasterization. https://github.com/graphdeco-inria/
diff-gaussian-rasterization.

[3] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla,
and Pratul P Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance
fields. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
5855–5864, 2021.

[4] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-
nerf 360: Unbounded anti-aliased neural radiance fields. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 5470–5479, 2022.

[5] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman.
Zip-nerf: Anti-aliased grid-based neural radiance fields. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 19697–19705, 2023.

[6] Albert S Berahas, Liyuan Cao, Krzysztof Choromanski, and Katya Scheinberg. Linear inter-
polation gives better gradients than gaussian smoothing in derivative-free optimization. arXiv
preprint arXiv:1905.13043, 2019.

[7] Wenjing Bian, Zirui Wang, Kejie Li, Jia-Wang Bian, and Victor Adrian Prisacariu. Nope-
nerf: Optimising neural radiance field with no pose prior. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 4160–4169, 2023.

[8] Yigit Baran Can, Alexander Liniger, Danda Pani Paudel, and Luc Van Gool. Structured bird’s-
eye-view traffic scene understanding from onboard images. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 15661–15670, 2021.

[9] John Canny. A computational approach to edge detection. IEEE Transactions on pattern
analysis and machine intelligence, (6):679–698, 1986.

[10] Liyuan Cao, Zaiwen Wen, and Ya-xiang Yuan. Some sharp error bounds for multivariate linear
interpolation and extrapolation. arXiv preprint arXiv:2209.12606, 2022.

[11] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial radiance
fields. In European Conference on Computer Vision, pages 333–350. Springer, 2022.

[12] Hanlin Chen, Chen Li, and Gim Hee Lee. Neusg: Neural implicit surface reconstruction with
3d gaussian splatting guidance. arXiv preprint arXiv:2312.00846, 2023.

[13] Kai Cheng, Xiaoxiao Long, Kaizhi Yang, Yao Yao, Wei Yin, Yuexin Ma, Wenping Wang, and
Xuejin Chen. Gaussianpro: 3d gaussian splatting with progressive propagation. arXiv preprint
arXiv:2402.14650, 2024.

[14] Nianchen Deng, Zhenyi He, Jiannan Ye, Budmonde Duinkharjav, Praneeth Chakravarthula,
Xubo Yang, and Qi Sun. Fov-nerf: Foveated neural radiance fields for virtual reality. IEEE
Transactions on Visualization and Computer Graphics, 28(11):3854–3864, 2022.

[15] Wei Dong, Hanwei Sun, Ruixue Zhou, and Hongmeng Chen. Autofocus method for sar image
with multi-blocks. The Journal of Engineering, 2019(19):5519–5523, 2019.

[16] Zhengyang Feng, Shaohua Guo, Xin Tan, Ke Xu, Min Wang, and Lizhuang Ma. Rethinking
efficient lane detection via curve modeling. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 17062–17070, 2022.

[17] Lin Geng Foo, Hossein Rahmani, and Jun Liu. Ai-generated content (aigc) for various data
modalities: A survey. arXiv preprint arXiv:2308.14177, 2:2, 2023.

[18] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo
Kanazawa. Plenoxels: Radiance fields without neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 5501–5510, 2022.

11

http://www.mare.ee/indrek/misc/2d.pdf
https://github.com/graphdeco-inria/diff-gaussian-rasterization
https://github.com/graphdeco-inria/diff-gaussian-rasterization


[19] Stephan J Garbin, Marek Kowalski, Matthew Johnson, Jamie Shotton, and Julien Valentin.
Fastnerf: High-fidelity neural rendering at 200fps. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 14346–14355, 2021.

[20] Yuanhao Gong. Eggs: Edge guided gaussian splatting for radiance fields. arXiv preprint
arXiv:2404.09105, 2024.

[21] Antoine Guédon and Vincent Lepetit. Sugar: Surface-aligned gaussian splatting for efficient 3d
mesh reconstruction and high-quality mesh rendering. arXiv preprint arXiv:2311.12775, 2023.

[22] Abdullah Hamdi, Luke Melas-Kyriazi, Guocheng Qian, Jinjie Mai, Ruoshi Liu, Carl Vondrick,
Bernard Ghanem, and Andrea Vedaldi. Ges: Generalized exponential splatting for efficient
radiance field rendering. arXiv preprint arXiv:2402.10128, 2024.

[23] Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Drettakis, and Gabriel
Brostow. Deep blending for free-viewpoint image-based rendering. ACM Transactions on
Graphics (ToG), 37(6):1–15, 2018.

[24] Philipp Henzler, Niloy J Mitra, and Tobias Ritschel. Escaping plato’s cave: 3d shape from
adversarial rendering. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 9984–9993, 2019.

[25] Xu Hu, Yuxi Wang, Lue Fan, Junsong Fan, Junran Peng, Zhen Lei, Qing Li, and Zhaoxiang
Zhang. Semantic anything in 3d gaussians. arXiv preprint arXiv:2401.17857, 2024.

[26] Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and Shenghua Gao. 2d gaussian
splatting for geometrically accurate radiance fields. arXiv preprint arXiv:2403.17888, 2024.

[27] Ronny Hug, Wolfgang Hübner, and Michael Arens. Introducing probabilistic bézier curves for
n-step sequence prediction. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 10162–10169, 2020.

[28] Rafael Ivo, Fabio Ganovelli, Creto Vidal, Joaquim Bento Cavalcante-Neto, and Roberto
Scopigno. Adapting splat-based models to curved sharp features. Journal of Graphics Tools,
17(4):139–150, 2013.

[29] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neural 3d mesh renderer. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 3907–3916, 2018.

[30] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian
splatting for real-time radiance field rendering. ACM Transactions on Graphics, 42(4):1–14,
2023.

[31] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and temples: Bench-
marking large-scale scene reconstruction. ACM Transactions on Graphics (ToG), 36(4):1–13,
2017.

[32] Joo Chan Lee, Daniel Rho, Xiangyu Sun, Jong Hwan Ko, and Eunbyung Park. Compact 3d
gaussian representation for radiance field. arXiv preprint arXiv:2311.13681, 2023.

[33] Zhihao Liang, Qi Zhang, Ying Feng, Ying Shan, and Kui Jia. Gs-ir: 3d gaussian splatting for
inverse rendering. arXiv preprint arXiv:2311.16473, 2023.

[34] Yuliang Liu, Hao Chen, Chunhua Shen, Tong He, Lianwen Jin, and Liangwei Wang. Abcnet:
Real-time scene text spotting with adaptive bezier-curve network. In proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 9809–9818, 2020.

[35] Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin Wang, Dahua Lin, and Bo Dai. Scaffold-
gs: Structured 3d gaussians for view-adaptive rendering. arXiv preprint arXiv:2312.00109,
2023.

[36] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoor-
thi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis.
Communications of the ACM, 65(1):99–106, 2021.

12



[37] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics
primitives with a multiresolution hash encoding. ACM transactions on graphics (TOG), 41(4):1–
15, 2022.

[38] Zhiyu Qu, Tao Xiang, and Yi-Zhe Song. Sketchdreamer: Interactive text-augmented creative
sketch ideation. arXiv preprint arXiv:2308.14191, 2023.

[39] Gernot Riegler and Vladlen Koltun. Free view synthesis. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XIX 16, pages
623–640. Springer, 2020.

[40] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias Nießner, Gordon Wetzstein, and Michael
Zollhofer. Deepvoxels: Learning persistent 3d feature embeddings. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2437–2446, 2019.

[41] Nagabhushan Somraj and Rajiv Soundararajan. Vip-nerf: Visibility prior for sparse input neural
radiance fields. In ACM SIGGRAPH 2023 Conference Proceedings, pages 1–11, 2023.

[42] Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang Zeng. Dreamgaussian: Generative
gaussian splatting for efficient 3d content creation. arXiv preprint arXiv:2309.16653, 2023.

[43] Justus Thies, Michael Zollhöfer, and Matthias Nießner. Deferred neural rendering: Image
synthesis using neural textures. Acm Transactions on Graphics (TOG), 38(4):1–12, 2019.

[44] Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin Shu, Kalyan Sunkavalli, and Ulrich
Neumann. Point-nerf: Point-based neural radiance fields. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 5438–5448, 2022.

[45] Ze Yang, Yun Chen, Jingkang Wang, Sivabalan Manivasagam, Wei-Chiu Ma, Anqi Joyce Yang,
and Raquel Urtasun. Unisim: A neural closed-loop sensor simulator. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1389–1399, 2023.

[46] Ziyi Yang, Xinyu Gao, Yangtian Sun, Yihua Huang, Xiaoyang Lyu, Wen Zhou, Shaohui Jiao,
Xiaojuan Qi, and Xiaogang Jin. Spec-gaussian: Anisotropic view-dependent appearance for 3d
gaussian splatting. arXiv preprint arXiv:2402.15870, 2024.

[47] Wang Yifan, Felice Serena, Shihao Wu, Cengiz Öztireli, and Olga Sorkine-Hornung. Differen-
tiable surface splatting for point-based geometry processing. ACM Transactions on Graphics
(TOG), 38(6):1–14, 2019.

[48] Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, and Andreas Geiger. Mip-splatting:
Alias-free 3d gaussian splatting. arXiv preprint arXiv:2311.16493, 2023.

[49] Jiahui Zhang, Fangneng Zhan, Muyu Xu, Shijian Lu, and Eric Xing. Fregs: 3d gaussian
splatting with progressive frequency regularization. arXiv preprint arXiv:2403.06908, 2024.

[50] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen Koltun. Nerf++: Analyzing and
improving neural radiance fields. arXiv preprint arXiv:2010.07492, 2020.

[51] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unrea-
sonable effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 586–595, 2018.

[52] Zheng Zhang, Wenbo Hu, Yixing Lao, Tong He, and Hengshuang Zhao. Pixel-gs: Density
control with pixel-aware gradient for 3d gaussian splatting. arXiv preprint arXiv:2403.15530,
2024.

[53] Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar, and Markus Gross. Ewa splatting. IEEE
Transactions on Visualization and Computer Graphics, 8(3):223–238, 2002.

[54] Matthias Zwicker, Jussi Rasanen, Mario Botsch, Carsten Dachsbacher, and Mark Pauly. Per-
spective accurate splatting. In Proceedings-Graphics Interface, pages 247–254, 2004.

13



A Additional Ablation Studies

In this section, we conduct more ablation experiments on the Tanks&Temples dataset.

Table 4: Evaluation especially over areas with rich boundaries in the testing
images.

Method MaskedSSIM↑
Boundary-rich areas Boundary-sparse areas

Baseline(2D Gaussian Splatting) 0.819 0.922
Ours 0.855 0.934

Evaluation especially
over areas with rich
boundaries in the
testing images. In
this work, we point
out that Gaussian
Splatting holds an
inherent weakness in rendering discontinuities and boundaries, and we propose a DisC-GS framework
for Gaussian Splatting to render boundaries in the image more accurately. Here, we aim to test our
framework, particularly over image areas with rich boundaries. To achieve this, we evaluate our
framework respectively over two parts of areas in each testing image. Specifically, for each testing
image, we first pass the image over the Canny algorithm [9] followed by the dilation operation to
highlight the areas with rich boundaries in the image (i.e., the areas that involve or surround the
Canny-detected boundaries). After that, we let the first part (boundary-rich areas) include all the
highlighted areas in each testing image, and let the second part (boundary-sparse areas) include
all the rest areas in each testing image. To perform evaluation effectively over a part rather than
the whole of each testing image, following [41], we use MaskedSSIM as the evaluation metric. As
shown in Tab. 4, compared to 2D Gaussian Splatting as a baseline, especially in the boundary-rich
areas, our framework can achieve a significant performance improvement. This demonstrates the
effectiveness of our method especially over image areas with rich boundaries.

Table 5: Evaluation on introducing different Gaussians with different num-
bers of Bézier curves.

Method SSIM↑ PSNR↑ LPIPS↓
Different numbers of curves for different Gaussians 0.863 24.79 0.122
M curves for each Gaussian 0.866 24.96 0.120

Impact of introduc-
ing different Gaus-
sians with different
numbers of Bézier
curves. In our frame-
work, for each Gaus-
sian distribution representing the 3D scene, we introduce it with M cubic Bézier curves (M curves
for each Gaussian). Here, to investigate whether introducing different Gaussians with different
numbers of curves can further benefit our framework, we test another variant (different numbers of
curves for different Gaussians). Specifically, in this variant, before the start of the training process
w.r.t. a certain 3D scene, for each of the source images, we first identify its boundary-rich areas
similarly as in the above ablation study. After that, during training, when a Gaussian distribution
is newly created through the adaptive control process of Gaussian Splatting, instead of directly
introducing it with M curves, we introduce the Gaussian with M + 1 Bézier curves if the center µ2D

of its corresponding projected Gaussian lies in the highlighted boundary-rich areas. Otherwise, we
introduce the newly created Gaussian with M − 1 Bézier curves. As shown in Tab. 5, this variant
does not result in better performance compared to our framework. This might be because, during
training, for each Gaussian representing the 3D scene, its center is learnable, and the Gaussian is thus
movable. In other words, for Gaussians that are initialized with more curves and thus may be able
to represent boundaries more accurately, they can move to areas with fewer (or no) boundaries in
the 3D scene. At the same time, for Gaussians that are initialized with fewer curves, they can also
move to areas with rich boundaries in the 3D scene. With the above in mind, in our experiments, we
introduce each Gaussian representing the 3D scene consistently with the same number of M Bézier
curves, equipping each Gaussian with the same level of power in boundary representation.

Table 6: Evaluation on the sharpness of the ren-
dered images.

Method Image sharpness
Baseline(2D Gaussian Splatting) 51.50 %
Ours 57.72 %

Image sharpness evaluation. In this work,
we propose DisC-GS, which enables Gaussian
Splatting to render the sharp boundaries in the
image more accurately. Considering this, to per-
form further evaluation of our framework, we
here also evaluate our framework from the im-
age sharpness perspective. Specifically, following [15], we measure image sharpness leveraging the
energy gradient function. As shown in Tab. 6, with our framework applied, we can render images
more sharply. This further shows the efficacy of our proposed framework.

14



Table 7: Evaluation on the “both sides” situation.
Method SSIM↑ PSNR↑ LPIPS↓
w/o the “both sides” situation 0.854 24.38 0.135
with the “both sides” situation 0.866 24.96 0.120

Impact of the “both sides” situation.
To keep the “differentiability” of our
framework, in this work, we propose
a Bézier-boundary gradient approxi-
mation strategy. Specifically, in this
strategy, when some solutions in Sϕ lie on the left side of c2Dcurve[0, 0] while other solutions lie on its

right side, we approximate ∂g0
sc(p)

∂c2Dcurve[0,0]
through Eq. 13 under the “both sides” situation, considering

both the left and right sides of c2Dcurve[0, 0] (with the “both sides” situation). To valid this design,
we test a variant. In this variant (w/o the “both sides” situation), even when solutions in Sϕ exist
on both the left and right sides of c2Dcurve[0, 0], we still consider only the solution that is nearest to
c2Dcurve[0, 0], and approximate ∂g0

sc(p)
∂c2Dcurve[0,0]

through Eq. 12 under the “single side” situation. As shown
in Tab. 7, our framework outperforms this variant. This shows the advantage of considering “both
sides” when solutions in Sϕ lie on both the left and right sides of c2Dcurve[0, 0].

Table 8: Evaluation on the small numbers ϵ,
ϵ1, and ϵ2.

Method SSIM↑ PSNR↑ LPIPS↓
w/o small numbers 0.858 24.37 0.130
with small numbers 0.866 24.96 0.120

Impact of the small numbers ϵ, ϵ1, and ϵ2. In our
framework, during gradient approximation, to avoid
the gradient exploding problem to happen, we add ϵ
as a small number to the denominator part of Eq. 12,
and we also add ϵ1 and ϵ2 to Eq. 13 in a similar way
(with small numbers). To valid the efficacy of this
design, we test a variant (w/o small numbers) in which we remove ϵ, ϵ1, and ϵ2 from our gradient
approximation process. As shown in Tab. 8, our framework involving these small numbers performs
better than this variant, showing the efficacy of these small numbers.

Table 9: Evaluation on the number of
Bézier curves per Gaussian M .

Method SSIM↑ PSNR↑ LPIPS↓
M = 1 0.853 24.36 0.139
M = 2 0.863 24.76 0.124
M = 3 0.866 24.96 0.120
M = 4 0.862 24.81 0.125

Impact of the number of Bézier curves per Gaussian
M . In our framework, for each Gaussian distribution rep-
resenting the 3D scene, we set the number of cubic Bézier
curves M associate with the Gaussian to 3. As shown
in Tab. 9, our framework achieves optimal performance
when M is set to 3, and M = 3 is used in our experiments.
Moreover, with different choices of M from 1 to 4, our
framework consistently achieves good performance. This
demonstrates the robustness of our proposed framework to this hyperparameter.

Table 10: Evaluation on the initial learning
rate (lrcurve) set to ccurve.

Method SSIM↑ PSNR↑ LPIPS↓
lrcurve = 1e-4 0.861 24.60 0.126
lrcurve = 2e-4 0.866 24.96 0.120
lrcurve = 5e-4 0.861 24.64 0.125
lrcurve = 1e-3 0.857 24.30 0.132

Impact of the initial learning rate set to ccurve. In
our framework, we introduce a new attribute ccurve,
for which in our experiments, we set its initial learn-
ing rate (lrcurve) to 2e-4. Here we also assess the
other choices of lrcurve from 1e-4 to 1e-3 and re-
port the results in Tab. 10. As shown, with different
choices of lrcurve, the performance of our frame-
work is consistent, which shows the robustness of our
framework to lrcurve.

Table 11: Analysis of rendering time in terms of seconds
per image. Our framework can run efficiently and sat-
isfy most real-time requirements, yet achieves superior
performance.

Method PSNR↑ Rendering time
Mip-NeRF360 [4] 22.22 7.143s
2D Gaussian Splatting 23.30 0.007s
3D Gaussian Splatting 23.14 0.007s
Ours (on 2D Gaussian Splatting) 24.96 0.008s
Ours (on 3D Gaussian Splatting) 24.67 0.008s

Rendering time. In Tab. 11, we com-
pare the rendering time of our framework
with the existing NeRF-based method Mip-
NeRF360 [4], as well as two Gaussian
Splatting baselines (i.e., 2D Gaussian Splat-
ting and 3D Gaussian Splatting), on an
RTX 3090 GPU in terms of seconds per im-
age. As shown, our DisC-GS can achieve
a competitive rendering time (speed) com-
pared to the existing methods leveraging
the conventional Gaussian Splatting technique, while obtaining much better performance.

15



Figure 3: Qualitative results of 2D Gaussian Splatting with and without DisC-GS.

B Additional Qualitative Results

In this section, we present more qualitative results. Specifically, in Fig. 3, we present images rendered
by 2D Gaussian Splatting with and without applying our proposed framework DisC-GS; in Fig. 4, we
present images rendered by 3D Gaussian Splatting with and without DisC-GS. As shown, no matter
representing the 3D scene through 2D or 3D Gaussian distributions, the typical Gaussian Splatting
technique can fail to render boundaries and discontinuities clearly and with high quality. Yet, our
DisC-GS framework, when applied, can achieve good rendering quality, even in regions of the image
containing numerous boundaries and discontinuities. This further shows the efficacy of our approach.

C Additional Details about Eq. 7 in the Main Paper

In Eq. 7 in the main paper, via leveraging the implicitization technique in algebra [1], we enable the
cubic Bézier curve to be represented in its implicit representation form as:
Bimp(x, y) = γxxxx

3 + γxxyx
2y + γxyyxy

2 + γyyyy
3 + γxxx

2 + γxyxy + γyyy
2 + γxx+ γyy + γ0 = 0

(14)
Here in this section, we discuss how we derive coefficients including γxxx, γxxy, γxyy, γyyy, γxx,
γxy , γyy, γx, γy , and γ0 in Eq. 7 in the main paper (re-shown in Eq. 14 above).

16



Figure 4: Qualitative results of 3D Gaussian Splatting with and without DisC-GS.

Specifically, denote the four control points of the cubic Bézier curve ω0 = (x0, y0), ω1 = (x1, y1),
ω2 = (x2, y2), and ω3 = (x3, y3). To derive the coefficients in Eq. 14, following [1], we first define
a set of intermediate coefficients as:

ζ0 = x0;

ζ1 = −3× x0 + 3× x1;

ζ2 = −6× x1 + 3× x0 + 3× x2;

ζ3 = x3 − x0 − 3× x2 + 3× x1;

ζ4 = y0;

ζ5 = −3× y0 + 3× y1;

ζ6 = −6× y1 + 3× y0 + 3× y2;

ζ7 = y3 − y0 − 3× y2 + 3× y1;

After that, utilizing these intermediate coefficients, following [1], we can then compute coefficients in Eq. 14 as:

γxxx = ζ7 × ζ7 × ζ7;

γxxy = −3× ζ3 × ζ7 × ζ7;

γxyy = 3× ζ7 × ζ3 × ζ3;

γyyy = −ζ3 × ζ3 × ζ3;

17



γxx = −3× ζ3 × ζ5 × ζ6 × ζ7 + ζ1 × ζ6 × ζ7 × ζ7 − ζ2 × ζ7 × ζ6 × ζ6 + 2× ζ2 × ζ5 × ζ7 × ζ7

+ 3× ζ3 × ζ4 × ζ7 × ζ7 + ζ3 × ζ6 × ζ6 × ζ6 − 3× ζ0 × ζ7 × ζ7 × ζ7;

γxy = ζ1 × ζ3 × ζ6 × ζ7 − ζ2 × ζ3 × ζ5 × ζ7 − 6× ζ4 × ζ7 × ζ3 × ζ3 − 3× ζ1 × ζ2 × ζ7 × ζ7

− 2× ζ2 × ζ3 × ζ6 × ζ6 + 2× ζ6 × ζ7 × ζ2 × ζ2 + 3× ζ5 × ζ6 × ζ3 × ζ3

+ 6× ζ0 × ζ3 × ζ7 × ζ7;

γyy = 3× ζ1 × ζ2 × ζ3 × ζ7 + ζ3 × ζ6 × ζ2 × ζ2 − ζ2 × ζ5 × ζ3 × ζ3 − 3× ζ0 × ζ7 × ζ3 × ζ3

− 2× ζ1 × ζ6 × ζ3 × ζ3 − ζ7 × ζ2 × ζ2 × ζ2 + 3× ζ4 × ζ3 × ζ3 × ζ3;

γx = ζ2 × ζ3 × ζ4 × ζ5 × ζ7 − ζ1 × ζ2 × ζ5 × ζ6 × ζ7 − ζ1 × ζ3 × ζ4 × ζ6 × ζ7

+ 6× ζ0 × ζ3 × ζ5 × ζ6 × ζ7 + ζ5 × ζ1 × ζ1 × ζ7 × ζ7 + ζ7 × ζ2 × ζ2 × ζ5 × ζ5

+ 3× ζ7 × ζ3 × ζ3 × ζ4 × ζ4 + ζ1 × ζ3 × ζ5 × ζ6 × ζ6 − ζ2 × ζ3 × ζ6 × ζ5 × ζ5

− 6× ζ0 × ζ3 × ζ4 × ζ7 × ζ7 − 4× ζ0 × ζ2 × ζ5 × ζ7 × ζ7 − 3× ζ4 × ζ5 × ζ6 × ζ3 × ζ3

− 2× ζ0 × ζ1 × ζ6 × ζ7 × ζ7 − 2× ζ1 × ζ3 × ζ7 × ζ5 × ζ5 − 2× ζ4 × ζ6 × ζ7 × ζ2 × ζ2

+ 2× ζ0 × ζ2 × ζ7 × ζ6 × ζ6 + 2× ζ2 × ζ3 × ζ4 × ζ6 × ζ6 + 3× ζ1 × ζ2 × ζ4 × ζ7 × ζ7

+ ζ3 × ζ3 × ζ5 × ζ5 × ζ5 + 3× ζ0 × ζ0 × ζ7 × ζ7 × ζ7 − 2× ζ0 × ζ3 × ζ6 × ζ6 × ζ6;

γy = ζ0 × ζ2 × ζ3 × ζ5 × ζ7 + ζ1 × ζ2 × ζ3 × ζ5 × ζ6 − ζ0 × ζ1 × ζ3 × ζ6 × ζ7

− 6× ζ1 × ζ2 × ζ3 × ζ4 × ζ7 − ζ1 × ζ1 × ζ1 × ζ7 × ζ7 − 3× ζ3 × ζ3 × ζ3 × ζ4 × ζ4

− ζ1 × ζ3 × ζ3 × ζ5 × ζ5 − ζ3 × ζ1 × ζ1 × ζ6 × ζ6 − 3× ζ3 × ζ0 × ζ0 × ζ7 × ζ7

+ ζ2 × ζ6 × ζ7 × ζ1 × ζ1 − ζ1 × ζ5 × ζ7 × ζ2 × ζ2 − 3× ζ0 × ζ5 × ζ6 × ζ3 × ζ3

− 2× ζ0 × ζ6 × ζ7 × ζ2 × ζ2 − 2× ζ3 × ζ4 × ζ6 × ζ2 × ζ2 + 2× ζ0 × ζ2 × ζ3 × ζ6 × ζ6

+ 2× ζ2 × ζ4 × ζ5 × ζ3 × ζ3 + 2× ζ3 × ζ5 × ζ7 × ζ1 × ζ1 + 3× ζ0 × ζ1 × ζ2 × ζ7 × ζ7

+ 4× ζ1 × ζ4 × ζ6 × ζ3 × ζ3 + 6× ζ0 × ζ4 × ζ7 × ζ3 × ζ3 + 2× ζ4 × ζ7 × ζ2 × ζ2 × ζ2;

γ0 = ζ0 × ζ1 × ζ2 × ζ5 × ζ6 × ζ7 + ζ0 × ζ1 × ζ3 × ζ4 × ζ6 × ζ7 − ζ0 × ζ2 × ζ3 × ζ4 × ζ5 × ζ7

− ζ1 × ζ2 × ζ3 × ζ4 × ζ5 × ζ6 + ζ4 × ζ1 × ζ1 × ζ1 × ζ7 × ζ7 − ζ7 × ζ2 × ζ2 × ζ2 × ζ4 × ζ4

+ ζ1 × ζ4 × ζ3 × ζ3 × ζ5 × ζ5 + ζ1 × ζ6 × ζ0 × ζ0 × ζ7 × ζ7 + ζ3 × ζ4 × ζ1 × ζ1 × ζ6 × ζ6

+ ζ3 × ζ6 × ζ2 × ζ2 × ζ4 × ζ4 − ζ0 × ζ5 × ζ1 × ζ1 × ζ7 × ζ7 − ζ0 × ζ7 × ζ2 × ζ2 × ζ5 × ζ5

− ζ2 × ζ5 × ζ3 × ζ3 × ζ4 × ζ4 − ζ2 × ζ7 × ζ0 × ζ0 × ζ6 × ζ6 − 3× ζ0 × ζ7 × ζ3 × ζ3 × ζ4 × ζ4

− 2× ζ1 × ζ6 × ζ3 × ζ3 × ζ4 × ζ4 + 2× ζ2 × ζ5 × ζ0 × ζ0 × ζ7 × ζ7

+ 3× ζ3 × ζ4 × ζ0 × ζ0 × ζ7 × ζ7 + ζ0 × ζ2 × ζ3 × ζ6 × ζ5 × ζ5 + ζ1 × ζ4 × ζ5 × ζ7 × ζ2 × ζ2

− ζ0 × ζ1 × ζ3 × ζ5 × ζ6 × ζ6 − ζ2 × ζ4 × ζ6 × ζ7 × ζ1 × ζ1 − 3× ζ0 × ζ1 × ζ2 × ζ4 × ζ7 × ζ7

− 3× ζ3 × ζ5 × ζ6 × ζ7 × ζ0 × ζ0 − 2× ζ0 × ζ2 × ζ3 × ζ4 × ζ6 × ζ6

− 2× ζ3 × ζ4 × ζ5 × ζ7 × ζ1 × ζ1 + 2× ζ0 × ζ1 × ζ3 × ζ7 × ζ5 × ζ5

+ 2× ζ0 × ζ4 × ζ6 × ζ7 × ζ2 × ζ2 + 3× ζ0 × ζ4 × ζ5 × ζ6 × ζ3 × ζ3

+ 3× ζ1 × ζ2 × ζ3 × ζ7 × ζ4 × ζ4 + ζ3 × ζ3 × ζ3 × ζ4 × ζ4 × ζ4 − ζ0 × ζ0 × ζ0 × ζ7 × ζ7 × ζ7

+ ζ3 × ζ0 × ζ0 × ζ6 × ζ6 × ζ6 − ζ0 × ζ3 × ζ3 × ζ5 × ζ5 × ζ5;

Note that, while the above calculation may look complicated, essentially, through the above, each of
the coefficients in Eq. 14 is computed over the coordinates of the four control points of the curve (i.e.
{x0, y0, x1, y1, x2, y2, x3, y3}) just through a group of basic arithmetic operations. In other words,
the computation of the coefficients in Eq. 14 is just a task with O(1) time complexity.

D Additional Details about the Bézier-boundary Gradient Approximation
Strategy

In our framework, we propose a Bézier-boundary gradient approximation strategy to keep the
“differentiability” of the rendering process. In Sec. 4.2 in the main paper, we explain this strategy
taking the approximation of ∂g

∂c2Dcurve[0,0]
as an example. Here in this section, with ccurve ∈ R4M×2,

we further describe how we approximate ∂g
∂c2Dcurve[i,j]

, where i ∈ {0, ..., 4M − 1} and j ∈ {0, 1}.

Specifically, in our framework, ∂g
∂c2Dcurve[i,j]

is approximated in a similar manner as ∂g
∂c2Dcurve[0,0]

except
in the following two places.

18



(1) Definition change of g0sc(p). To approximate ∂g
∂c2Dcurve[i,j]

, we first need to redefine g0sc(p) as
gsc(c

2D
curve[4m], c2Dcurve[4m+1], c2Dcurve[4m+2], c2Dcurve[4m+3]; p), where m = i% 4. This is done

for g0sc(p) to accurately represent the Bézier curve w.r.t. c2Dcurve[i, j].

(2) Reformulation of Eq. 11. Moreover, during approximating ∂g
∂c2Dcurve[i,j]

, for Sϕ to be corrected
derived, we also need to reformulate Eq. 11 according to the Bézier curve w.r.t. c2Dcurve[i, j]. Note that
in the reformulated equation, ϕ should be used in place of c2Dcurve[i, j].

With the above two changes made, we can seamlessly use the strategy introduced in Sec. 4.2 in the
main paper to approximate ∂g

∂c2Dcurve[i,j]
.

E Experiments on 11 3D Scenes.

In Tab. 1 in the main paper, following [30, 49, 22], we evaluate our method on a total of 13 3D scenes
from the Mip-NeRF360 [4], Tanks&Temples [31], and Deep Blending [23] datasets. Here, following
[35], we also evaluate our method on another benchmark with 11 3D scenes from the above three
datasets. As shown in Tab. 12, on this evaluation benchmark, our method can also achieve superior
performance consistently, further demonstrating the efficacy of our proposed method.

Table 12: Performance comparison following the evaluation benchmark of [35].
Method Mip-NeRF360 Dataset Tanks&Temples Deep Blending

SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓
Scaffold-GS [35] 0.848 28.84 0.220 0.853 23.96 0.177 0.906 30.21 0.254
Ours 0.885 29.58 0.158 0.866 24.96 0.120 0.907 30.42 0.199

F Licenses

We use the Tanks&Temples dataset [31] by following the license of here. We use the Mip-NeRF360
dataset [4] by following the Apache-2.0 license. Moreover, we use the Deep Blending dataset [23]
by following the license of here. Besides, we use part of the code owned by Kerbl et al. [30] by
following the license of here.

19

https://www.tanksandtemples.org/license/
https://github.com/google-research/multinerf/blob/main/LICENSE
https://gitlab.inria.fr/sibr/projects/inside_out_deep_blending/-/blob/master/LICENSE.md
https://github.com/graphdeco-inria/gaussian-splatting?tab=License-1-ov-file#readme


NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In both the abstract and the introduction, we have clearly mentioned the task
(scope) and the contributions of this paper (e.g., in the last paragraph of the introduction).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Following the reviewer’s suggestion, we discuss the limitations at the end of
the main paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

20



Answer: [NA]
Justification: This paper does not include theoretical assumptions or proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: This paper builds its code based on the existing Gaussian Splatting technique.
We have clearly mentioned (via descriptions and equations) how to reproduce our framework
upon the off-the-shelf Gaussian Splatting technique.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

21



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: At this submission stage, we are sorry that we do not get enough approval to
open-source our code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: This paper has specified its data splits, its introduced hyperparameters, and
other details in the Experiments section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: To make a fair comparison with the existing works, we follow their experimen-
tal settings which do not including any error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

22

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We introduce the type of GPU we use in the Experiments section, and further
report the rendering speed in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have read through the NeurIPS Code of Ethics and carefully
conform with it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: This paper focuses on addressing a key limitation of the Gaussian Splat-
ting technique. To the best of our knowledge, it is not particularly tied to any particular
deployments.

23

https://neurips.cc/public/EthicsGuidelines


Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: To the best of our knowledge, this paper does not newly bring any risk for
misuse and is thus not applicable to this question.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have discussed the licenses in our Appendix.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

24



• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

25

paperswithcode.com/datasets


• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

26


	Introduction
	Related Work
	Preliminary
	Proposed Method: DisC-GS
	Discontinuity-aware Image Rendering
	Bézier-boundary Gradient Approximation Strategy
	DisC-GS on 3D Gaussian Splatting
	Overall Training and Testing

	Experiments
	Experimental Results
	Ablation Studies

	Conclusion
	Additional Ablation Studies
	Additional Qualitative Results
	Additional Details about Eq. 7 in the Main Paper
	Additional Details about the Bézier-boundary Gradient Approximation Strategy
	Experiments on 11 3D Scenes.
	Licenses

