
When Does Self-supervision Improve Few-shot Learning? - A
Reproducibility Report

Anonymous Author(s)
Affiliation
Address
email

Reproducibility Summary1

Scope of Reproducibility2

The paper investigates applying self-supervised learning (SSL) as a regularizer to meta-learning based few-shot learners.3

The authors claim that SSL tasks reduce the relative error of few-shot learners by 4% - 27% even when the datasets4

are small, and the improvements are greater when the amount of supervision is lesser or the task is more challenging.5

Further, they observe that incorporating unlabelled images from other domains for SSL can hurt the performance, and6

propose a simple algorithm to select images for SSL from other domains to provide further improvements.7

Methodology8

We reimplement the algorithms in PyTorch, starting with the author’s codebase as a reference. We had to correct several9

bugs in the author’s codebase, and reimplement the domain selection algorithm from scratch since the codebase did not10

contain it. We conduct experiments involving combinations of supervised and self-supervised learning on multiple11

datasets, on 2 different architectures and perform extensive hyperparameter sweeps to test the claim. We used 4 GTX12

1080Ti GPUs throughout, and all our experiments including the sweeps took a total compute time of 980 GPU hours.13

Results14

On the ResNet-18 architecture and an image size of 224 that the paper uses throughout, our results on 6 datasets overall15

verify the claim that SSL regularizes few-shot learners and provide higher gains with difficult tasks. Further, our16

results also verify that out-of-distribution images for SSL hurt the accuracy, and the domain selection algorithm that17

we implement from scratch also verifies the paper’s claim that the algorithm can choose images from a large pool of18

unlabelled images from other domains, and improve the performance.19

Going beyond the original paper, we also conduct SSL experiments on 5 datasets with the Conv-4-64 architecture with20

an image size of 84, and find that self-supervision does not help boost the accuracy of few-shot learners in this setup.21

Further, we also show results on a practical real-world benchmark on cross-domain few-shot learning, and show that22

using self-supervision when training the base models degrades performance when evaluated on these tasks.23

What was easy24

The paper was well written and easy to follow, and provided a clear description of the experiment. The author’s code25

implementations were relatively easy to understand and mostly reflected the experiments described in the paper.26

What was difficult27

Since the codebase was not fully complete, it took us a lot of time to identify and solve bugs, and reimplement the28

algorithms not present in the code. Further, multiple datasets needed a lot of preprocessing to be used. The number29

of hyperparameters being too many but each proving to be important, and evaluating all the claims of the paper30

on 5 datasets and 2 architectures was difficult to the number of experiment configurations, resulting in a very high31

computational cost of 980 GPU hours.32

Communication with original authors33

We maintained contact with the authors throughout the challenge to clarify several implementation details and questions34

regarding the domain selection algorithm. The authors were responsive and replied promptly with detailed explanations.35

Submitted to ML Reproducibility Challenge 2021. Do not distribute.



1 Introduction36

Deep learning has made major advances, however this has been possible only due to the availablity of large annotated37

datasets for each task. Methods such as data augmentation and regularization alleviate overfitting in low-data regimes,38

but not completely. This motivated research in few-shot learning, in which we aim to build a classifier that should be39

adapted to learn new classes not seen in training, with very few samples in each class. In this work, we reproduce the40

paper "When Does Self-supervision Improve Few-shot Learning?" by Su et al. (13) (henceforth referred to as "the41

original paper" or "the paper") which investigates using self-supervised learning (SSL) in such low-data regimes to42

improve the performance of meta-learning based few-shot learners.43

2 Scope of reproducibility44

The paper claims that45

• With no additional training data, adding self-supervised tasks such as jigsaw and rotation as an auxiliary task46

improves the performance of existing few-shot techniques on benchmarks across several different domains47

• The benefits of self-supervision increase with the difficulty of the task, for example when training with a base48

dataset with less labelled data, or with images of lesser quality/resolution49

• Additional unlabelled data from dissimilar domains, when used for self-supervision, negatively impacts the50

performance of few-shot learners51

• The proposed domain selection algorithm can alleviate this issue by learning to pick images from a large and52

generic pool of images53

We thoroughly reproduce all the experiments, and investigate whether the claims hold true, with the model and the six54

benchmark datasets used by the authors. Beyond the paper, we find that the results are biased towards the architecture55

used, and demonstrate that the gains do not hold when the input image size and architecture differ from those reported56

in the paper. We also report results on the more practical cross-domain few-shot learning setup, where we find that57

self-supervision does not help ImageNet-trained few-shot learners generalize to new domains better.58

3 Methodology59

The goal of a few-shot learner is to generalize is to learn representations of base classes that lead to good generalization60

on novel classes. To this end, the proposed framework combines meta learning approaches for few-shot learning61

with self-supervised learning. In general, learning consists of estimating functions f , the feature extractor and g, the62

classifier that minimize the empirical loss ` over the training data from base class Ds = {(xi, yi)}ni=1 consisting of63

images xi ∈ X and labels yi ∈ Y , along with suitable regularizationR. This can be written as:64

Ls =
∑

(xi,yi)∈Ds

`(g ◦ f(xi), yi) +R(f, g)

In the original paper, the meta-learning based prototypical networks (ProtoNet) are used as part of the supervised loss.65

During meta-training, the ProtoNet computes the mean of the embeddings of all samples in a class. Then, a distance66

metric such as Euclidean distance or cosine distance is used to classify every query sample into one of the classes, using67

the distance from the class-prototypes. The loss over the query samples is backpropagated to the network, and this68

procedure is repeated for multiple episodes with n randomly sampled classes in each episode, with k examples in each69

class, hence referred to as the n-way k-shot setup. Hence the network meta-learns to provide useful class-prototypes70

from very few examples. At meta-test time, class prototypes are recomputed for classification and query examples are71

classified based on the distances to the class prototypes.72

Apart from the supervised losses, the paper uses self-supervised losses `ss that are based on data (x̂, ŷ) whose labels73

can be derived automatically without any human labelling:74

Lss =
∑

(xi)∈Dss

`(h ◦ f(x̂i), ŷi)

The jigsaw task splits an image into 9 regions (3x3) and permutes the parts to obtain the input x̂. The target label ŷ is75

the index of the permuatation. The total number of indices are 9! which is reduced to 35 indices [cite - 41] by grouping76

the possible permutations to control the difficulty of the task.77

2



The rotation task rotates the image by an angle θ ∈ 0◦, 90◦, 180◦, 270◦ to obtain x̂, with ŷ being the index of the angle.78

The paper uses a weighted combination of the two losses L = (1−α)∗Ls+(α)∗Lss. The paper studies self-supervised79

learning as a regularizer for representation learning, in the context of few-shot learning tasks.80

The author also propose an algorithm to select images from a large-dataset for self-supervision when Ds and Dss are81

different. Here, a classifier is trained to distinguish the ResNet-101 features of images from Ds and images from Dss,82

and the top-k images according to the ratio p(x ∈ Ds)/p(x ∈ Dp) are selected for self-supervision.83

4 Experimental settings84

4.1 Details regarding the code85

The authors provide a public implementation of the code1, which is built upon a popular codebase 2 from Chen et al (1).86

We find that there are a lot of errors and bugs in the code, which took a lot of time to debug. This took up a considerable87

part of our time. Further, the code for the domain selection algorithm was not present, and hence we had to reimplement88

it from scratch. Our code 3 reuses multiple files from the original codebase, corrects several errors, provides easier89

interfaces to train and test models, and also provides an implementation of the domain selection algorithm. We also90

provide interfaces to train models with a different architecture, and to evaluate models in a cross-domain setup.91

4.2 Model descriptions92

The authors use a well-known architecture ResNet-18 for their experiments. The ResNet18 gives a 512-dimensional93

feature for each input. For the jigsaw task, a single fully-connected (fc) layer with 512-units is added on top. Nine94

patches of an image give nine 512-dimensional feature vectors, which are concatenated, and projected to 409695

dimensions using an fc layer, and then to a 35-dimensional output using another fc layer, corresponding to the 3596

permutations for the jigsaw task.97

For rotation prediction task, the 512-dimensional output of ResNet-18 is passed through three fc layers consecutively98

with 128, 128, 4 units. The 4 predictions of the last layer correspond to the four rotation angles. Between each fc layer,99

a ReLU activation and a dropout layer with a dropout probability of 0.5 are added. We leave this dropout probability as100

is, as it would result in too many hyperparameters that we would not have been able to optimize for every experimental101

setup.102

Apart from the ResNet-18 architecture used in the paper, we use another architecture that is equally adapted in many103

few-shot learning papers (1) (12) (14) (3), the Conv-4-64 architecture, which is a simpler architecture with 3x3 kernel104

size and 64 filters at each layer. A similar extension is made for the jigsaw and rotation tasks. In multiple works in105

the literature, this architecture has been used to process 84 x 84 images, while the ResNet variants have been used to106

process 224 x 224 images. We follow the works and report results with the respective image sizes for each architecture.107

Both the architectures are represented diagrammatically in table 16 and table 15 respectively in the appendix.108

4.3 Datasets109

Following the few-shot setup, each dataset is split into three disjoint sets, each having a different set of classes. A110

model is trained on the base set, validated on the validation set, and tested on the test set. Following the paper, we111

experiment with multiple datasets across diverse domains and denote the number of classes in the base, val, test splits112

inside brackets: CUB-200-2011 (2)(64, 12, 20) , Stanford Cars (6) (98, 49, 49), FGVC-aircraft (9) (50, 25, 25), Stanford113

dogs (5) (60, 30, 30), Oxford flowers (10) (51, 26, 26). These 5 datasets are henceforth referred to as "the smaller114

datasets". Apart from these, we also experiment with a benchmark dataset for few-shot learning, the miniImageNet115

dataset (16) (64, 16, 20). The original paper also reports results on Tiered-ImageNet, but we could only work with116

miniImageNet due to compute and time constraints.117

We use the same base-validation-novel class split as the paper, which they provide in their official repository. Each class118

contains 3 files, one for each in base,val and novel, and lists the classes to be used, along with all the image paths for119

each class. These files follow from the repository of Chen et al (1) whose codebase they borrow.120

1https://github.com/cvl-umass/fsl_ssl
2https://github.com/wyharveychen/CloserLookFewShot
3https://github.com/ashok-arjun/fsl_ssl_working/

3

https://github.com/cvl-umass/fsl_ssl
https://github.com/wyharveychen/CloserLookFewShot
https://github.com/ashok-arjun/fsl_ssl_working/


Among the small datasets, we found that there were no versions of flowers and cars dataset that could be used directly.121

Hence we had to preprocess the two datasets and contribute them to Kaggle for public use 4 5. With the miniImageNet122

dataset, we found that all the directly-downloadable versions (11) (8) contained images resized to 84x84, however we123

needed a dataset that could be resized to either 84x84 or 224x224 adaptively. Hence, we had to download the ImageNet124

dataset (155 GB) and process the dataset from scratch, which caused storage issues and also took up a significant part125

of our time. To this end, we also open-source the miniImageNet dataset with image sizes same as that in ImageNet, to126

save other researchers’ time in preprocessing the dataset from scratch 6. To the best of our knowledge, we are the first127

to release such a version.128

For the domain selection algorithm, the authors use the training sets of two large datasets - Open Images v5 (7) and129

iNaturalist (15), which are 500 GB and 200 GB in size respectively. These sizes far exceeded our storage capacity, and130

we instead could only use the validation sets of each of the datasets as unlabelled images for self-supervision.131

4.4 Hyperparameters132

We perform hyperparameter sweeps each having 10 runs, amounting to 130 runs in total. The hyperparameter sweeps133

were conducted using Weights and Biases. Each sweep uses random search to search over two hyperparameters:134

• Learning Rate: uniform(0.0001, 0.03)135

• Batch normalization mode:136

1. Use batch normalization, accumulate statistics throughout training, and use the statistics during testing137

2. Use batch normalization, but do not track the running mean and variance during training; estimate them138

from batches during training and test139

3. No batch normalization140

• α, the weightage of the SSL term in the loss (only where self-supervision is applied)141

We use these modes for batch-norm, as the paper (Page 21, Appendix A.5) states that especially for jigsaw tasks, the142

authors found batch-norm mode 2 to be optimal, as in jigsaw, the inputs contain both full-sized images and small143

patches, which might have different statistics. To verify this and for completeness, we conducted the search over the144

batch normalization modes also. All models are trained with the Adam optimizer with β1 = 0.9 and β2 = 0.999.145

We then use the configuration which gives the best validation accuracy computed for 100 epochs, computed over 600146

randomly sampled episodes. We search hyperparameters for certain datasets only, and reuse the hyperparameters found147

for similar datasets due to computational constraints. The selected experiment configurations are given in the appendix148

due to space constraints.149

Across 100% of our sweeps, we notice that α stays below 0.6, and does not go below 0.3 in our runs. Hence, we infer150

that an adequate amount of supervision is also needed for good performance, and too much self-supervision hurts151

accuracy. For the miniImageNet datset, we find the values close 0.3 work the best, which the paper reiterates. The paper152

reports that they use 0.5 for all the SSL experiments on the small datasets, which we confirm as our α term converges to153

values 0.4 and 0.6 for the small datasets. All of our reported results are with the best hyperparameters found. We report154

more details on the hyperparameter searches in Appendix.155

4.5 Computational requirements156

We used 4 Nvidia 1080Ti GPUs for all experiments. The run-times differ for each experiment configuration when157

incorporating self-supervision. We report the average epoch time for each experimental setup (1 epoch = 100 episodes)158

in table 6 in the appendix.159

In general, among experiments involving self-supervised learning, rotation took the maximum amount of time. This160

is because 4 rotations of the same image are needed at every instance, which is more expensive than loading a single161

image. The jigsaw task took lesser time than rotation, and the combination of jigsaw and rotation took the highest162

amount of time per epoch. Since the paper reports results on the combination only for the first set of experiments (claim163

1), we also do the same. Further, the computational time restricted us from performing more experiments combining the164

two.165

4https://www.kaggle.com/arjun2000ashok/vggflowers/
5https://www.kaggle.com/hassiahk/stanford-cars-dataset-full
6https://www.kaggle.com/arjunashok33/miniimagenet

4

https://www.kaggle.com/arjun2000ashok/vggflowers/
https://www.kaggle.com/hassiahk/stanford-cars-dataset-full
https://www.kaggle.com/arjunashok33/miniimagenet


In total, apart from the hyper-parameter sweeps, we perform 250 experiments, across different experimental setups166

and multiple datasets. All of these experiments took approximately 700 GPU hours. Along with the hyperparameter167

sweeps which were lesser in duration, the experiments took approximately 980 hours of compute time.168

4.6 Experimental setup and code169

Following the authors, we train, evaluate and report results on the 5-way 5-shot setting; we also explore 20-way 5-shot170

setting but we could not continue after a few runs, restricted by the large training and testing time of 20-way 5-shot171

models. Following the paper, we use 16 query examples to evaluate the models.172

On verifying that the core claim of the paper (claim 1) for all the 5 small datasets, we choose 2 to 3 representative173

datasets for other experiments - CUB, dogs (representing natural images) and cars (representing the other group). We174

could not perform all the experiments on all the 5 datasets due to computational constraints. For the domain selection,175

we evaluate on all the 5 datasets to verify our implementation of the algorithm.176

The batch size cannot be set in episodic few-shot learners, and are by default n_way ∗ (n_support+ n_query). We177

use 16 query images following the paper, and as a result, our batch sizes are 105 in 5-way 5-shot experiments, and 420178

in 20-way 5-shot experiments. Following all previous work in few-shot learning, we sample 100 episodes (batches) per179

epoch, and conduct experiments on about 600 - 800 epochs. Following the paper, we use only 5 query images when180

training models for experiments that use lesser labelled data since the {20, 40, 60, 80}% splits of dataset do not contain181

16 query images in all classes.182

In every iteration, an equal number of unlabelled images are sampled at random from the respective dataset(s) for183

self-supervised learning. Following our paper and the baseline from previous work (1) in few-shot learning and our184

original paper, we use the following data augmentation: For label and rotation predictions, images are first resized to185

224 pixels for the shorter edge while maintaining aspect ratio, from which a central crop of 224 is obtained. For jigsaw186

puzzles, a random crop of 255 is done from the original image with random scaling between [0.5, 1.0], then split into187

3×3 regions, from which a random crop of size 64×64 is picked.188

We implement the domain selection algorithm following the paper: For each dataset among the small datasets, we select189

negative images uniformly at random with 10 times the size of the positive images. The loss for the positive class is190

scaled by the inverse of its frequency to account for the significantly larger number of negative examples. We then191

train a binary logistic regression classifier using LBFGS for 10000 iterations and use the logits to compute the ratio192

p(x ∈ Ds)/p(x ∈ Dp). We then choose k as 80% of the total dataset size, and sample k negative images to use as193

unlabelled samples.194

For evaluation at meta-test time, we use 600 randomly sampled episodes, and report the mean accuracy and 95%195

confidence intervals. Due to the large number of experiments and the datasets across which the claims had to be verified,196

we could only perform one set of experiments in all sections, with the seed is set to 42.197

5 Results198

5.1 Results reproducing original paper199

Here, we consider the same architecture that the paper uses - ResNet-18, with an input image size of 224.200

5.1.1 Self-supervision improves few-shot learning201

Here, we successfully verify claim 1 of the paper that with no additional unlabelled data, SSL improves few-shot202

learning when applied as an auxiliary task. We conduct experiments across all the 5 small datasets as well as the203

large-scale miniImageNet dataset. We also reproduce results on the baseline from (1), and MAML and MAML+Jigsaw.204

We could not reproduce results on MAML due to computational constraints. We present results in Figure 1, Table 1 and205

Table 2. All results are on 5-way 5-shot classification. We find that the jigsaw task leads to the best results on 3 out of 6206

datasets.207

5.1.2 The benefits of self-supervision increase with the difficulty of the task208

We successfully verify claim 2 of the authors that the relative gains of using SSL are more when the difficulty of the209

task is higher. The authors experiment with two types of difficult tasks: one with low-resolution/greyscale images as210

input, and another with less labelled data from the base training set. We experiment with 3 selected datasets and were211

successful in reproducing the results. We report the results on figures 2 and 4. The exact numbers are given on tables 12212

5



CUB Dogs Cars Aircrafts Flowers
80

82

84

86

88

90

92

94

Ac
cu

ra
cy

Results on ResNet-18

ProtoNet ProtoNet + Rotation ProtoNet + Jigsaw ProtoNet + Jigsaw + Rotation

Figure 1: Results on applying SSL tasks to Prototypi-
cal networks, across 6 datasets

Method Accuracy
ProtoNet 74.07 ± 0.71

ProtoNet + Jigsaw 77.29 ± 0.73
ProtoNet + Rotation 74.93 ± 0.9

ProtoNet + Jigsaw + Rotation 76.23 ± 0.9
Table 1: miniImageNet Results with ResNet-18

Method CUB Cars Aircrafts Dogs Flowers
Softmax 81.92 ± 0.54 88.16 ± 0.47 89.57 ± 0.38 78.18 ± 0.56 90.44 ± 0.47

Softmax + Jigsaw 83.96 ± 0.52 91.2 ± 0.49 89.93 ± 0.39 78.3 ± 0.57 90.85 ± 0.49
ProtoNet 87.09 ± 0.48 91.0 ± 0.41 91.90 ± 0.35 83.52 ± 0.54 89.92 ± 0.51

ProtoNet + Jigsaw 89.57 ± 0.43 92.67 ± 0.39 91.72 ± 0.39 86.1 ± 0.51 90.98 ± 0.47
ProtoNet + Rotation 88.9 ± 0.55 91.61 ± 0.40 91.69 ± 0.40 83.94 ± 0.58 90.12 ± 0.5

ProtoNet + Jigsaw + Rotation 88.98 ± 0.45 93.27 ± 0.38 91.26 ± 0.4 85.29 ± 0.54 90.01 ± 0.51

Table 2: ResNet-18’s performance on the 5 small datasets.

and 10 respectively in the appendix. We find that the claims of the paper hold true, and that self-supervision has higher213

gains in harder tasks.214

5.1.3 Unlabelled data for SSL from dissimilar domains negatively impacts the few-shot learner215

Verifying claim 3 of the paper, we replace a portion of the labelled data, starting from 20% of the data to 80% of the216

data, with data from other domains. Here, we combine the data from all other datasets together, and sample images at217

random. We present results on 3 chosen datasets, again, to save computation and time for other results. Results are218

given in figure 3 and table 11 (appendix). The claim that using data from dissimilar domains for self-supervision is219

detrimental to few-shot classification holds true.220

5.1.4 The proposed domain selection algorithm can alleviate this issue by learning to pick images from a221

large and generic pool of images222

To verify claim 4, we implement the domain selection algorithm from scratch, and verify it across all 5 small datasets as223

given in the paper, to make sure that we have got the implementation right. Results are presented in 5 and table 13 in224

the appendix. Results are shown on using only 20% of the labelled data for learning, only selecting images from other225

domains at random, and on using the proposed domain selection algorithm. We successfully verify and demonstrate226

that the algorithm proposed by the authors for selecting images from multiple dissimilar domains.227

5.2 Results beyond original paper228

5.2.1 Results on a different architecture - Conv4229

Here, we aim to investigate whether the claims of the paper hold when a small architecture that needs a smaller image230

size (84x84) is used. In particular, we investigate claim 1 of the paper extensively. Note that the authors do not report231

results with this architecture. Results are given in figure 6 and table 7 and table 9 (appendix). We find that the results do232

6



0 20 40 60 80

68

70

72

74

76

78

80

82

84

A
cc

ur
ac

y

% of images used for SSL

CUB Cars Dogs

Figure 2: Results of applying SSL
when the amount of labelled data
for supervision is lesser. The gains
obtained by SSL grow with
the amount of labelled data

0 20 40 60 80
68

70

72

74

76

78

80

82

A
cc

ur
ac

y

% of images from other domains used for SSL

CUB Cars Dogs

Figure 3: Performance on tasks
where a portion of the labelled data
is replaced with data from
other domains

CUB Greyscale Cars Low-res. Dogs Greyscale
60

65

70

75

80

85

90

Ac
cu

ra
cy

Results on ResNet-18

ProtoNet ProtoNet + Jigsaw ProtoNet + Rotation

Figure 4: Results of applying self-
supervised learning on artificially con-
structed harder tasks.

CUB Dogs Cars Aircrafts Flowers
60

65

70

75

80

Ac
cu

ra
cy

Domain selection results

No SSL SSL with random selection SSL with importance weights

Figure 5: Results of the domain selection algorithm

CUB Dogs Cars Aircrafts Flowers
40

50

60

70

80

90
Ac

cu
ra

cy

Results on Conv-4

ProtoNet ProtoNet + Rotation ProtoNet + Jigsaw ProtoNet + Jigsaw + Rotation

Figure 6: Results of using SSL with the Conv4 architecture

not hold true when a smaller architecture and image size is used, and that claim depends heavily on the architecture233

and image size. We present results across all the 5 small datasets for completeness, across both SSL tasks. To confirm234

our claims, we also rerun results with another seed, but get similar results (Table 8 in appendix). Apart from the reported235

results with the optimal α found by hyperparameter search, we study the effect of α on the results, with the CUB and236

cars datasets in tables 3 and 4. Here we find that the value of α plays an important role in the performance, and that237

high values cause too much supervision when the model is small. Even across training and testing with multiple α238

values, we find that the self-supervision provides only a marginal boost in 1 out of 4 cases, invalidating claim 1 of the239

paper that self-supervision provides a stable boost to few-shot learners.240

Rotation CUB Cars
α = 0 (no SSL) 77.72 ± 0.71 67.6 ± 0.84

α = 0.1 77.6 ± 0.73 66.83 ± 0.75
α = 0.3 77.22 ± 0.9 65.53 ± 0.73
α = 0.5 75.04 ± 0.81 60.74 ± 0.73

Table 3: Conv-4’s performance on Rotation

Jigsaw CUB Cars
α = 0 (no SSL) 77.72 ± 0.71 67.6 ± 0.84

α = 0.1 75.57 ± 0.73 62.548 ± 0.75
α = 0.3 64.91 ± 0.9 51.83 ± 0.73
α = 0.5 75.04 ± 0.81 60.74 ± 0.73
Table 4: Conv-4’s performance on Jigsaw

7



5.2.2 Results on cross-domain few-shot learning241

In another effort to extend the paper’s results, we test the results of our trained models on the BSCD-FSL benchmark for242

cross-domain few-shot learning, introduced by (4) with their code 7. The benchmark requires ImageNet-based trained243

few-shot models to evaluated on four cross-domain datasets: CropDiseases, EuroSAT, ISIC2018, and ChestX datasets,244

which covers plant disease images, satellite images, dermoscopic images of skin lesions, and X-ray images, respectively.245

The selected datasets reflect real-world use cases for few-shot learning since collecting enough examples from above246

domains is often difficult, expensive, or in some cases not possible. We use this benchmark to find out if models trained247

with self-supervision provide gains over normal supervised models when tested on real-world datasets. We test our248

mini-ImageNet trained models on this benchmark, to find out if self-supervision improves results on cross-domain249

datasets. Results on the ResNet-18 models are reported in table 5. Results on the Conv-4 models are deferred to the250

appendix table 14. We find that self-supervision results in learning heavily domain-specific representations, and that the251

results of the fully-supervised learner are much better than those with auxiliary tasks as self-supervision.252

Method ChestX Crop Disease EuroSAT ISIC
ProtoNet 24.32 ± 0.41 83.36 ± 0.63 76.09 ± 0.74 41.60 ± 0.58

ProtoNet + Jigsaw 23.97 ± 0.39 77.86 ± 0.69 72.72 ± 0.68 41.22 ± 0.56
ProtoNet + Rotation 23.84 ± 0.39 79.11 ± 0.68 72.47 ± 0.69 43.79 ± 0.61

ProtoNet + Jigsaw + Rotation 23.73 ± 0.38 77.39 ± 0.68 71.91 ± 0.7 40.05 ± 0.55

Table 5: CDFSL Benchmark for ResNet-18

6 Discussion253

We find that the central claims of the author as given in Section 2 hold true, when the same architecture is used.254

Considering the ResNet-18 model used in the paper with an input image size of 224, we find that self-supervision255

- in particular the jigsaw task, provides a boost in the case of small datasets. Experimentally, we verify claim 1 of256

the paper on all small datasets and miniImageNet. However, going beyond the paper’s architecture, we find that the257

results depend heavily on the image size and architecture and do not give the same gains with Conv-4-64, another258

architecture common in the few-shot learning literature, with an input image size of 84. Further ablation reveals that the259

jigsaw task in particular has a strong influence in this setup, and the rotation task requires tuning the α parameter to260

even reach the accuracy of the fully-supervised model. Future work may investigate ways to boost the performance of261

few-shot classifiers when the input sizes are small, and may also find out better architectures to use when the input size262

is small. Future work may also experiment with other available architectures, and find out if self-supervision increases263

performances across all configurations.264

Regarding claims 2 and 3 such as on harder tasks and scenarios with lesser labelled data in the base dataset, our265

experiments on selected datasets verify that the claims hold true, with the ResNet-18 backbone. Further, we verify266

claim 4 of the paper by implementing the domain selection algorithm from scratch and our experiments on all the 5267

datasets show that relative gains are achieved. Future work may also investigate if the same claims hold true when268

different architectures were used.269

Finally, we evaluate the miniImageNet-trained models on a more practical setting of cross-domain few-shot learning270

and find that SSL during the training time does not help few-shot learners generalize across domains better. Future271

work may investigate why applying SSL results in domain-specific features, and propose methods to apply SSL in a272

more domain-agnostic manner. We recommend future works in few-shot learning to train and evaluate in multiple273

architectures with different image sizes and verify their work more thoroughly.274

6.1 Communication with original authors275

We maintained communication with the authors throughout our implementation and training phase, spanning two276

months. We were able to clarify many implementation details in the original codebase, and the authors also re-ran an277

experiment on their side to test if the numbers match. Further, we recieved a lot of help regarding implementation of the278

domain selection algorithm, and could also confirm the implementation with them. We acknowledge and thank the279

authors for their help with the reproducibility of their paper.280

7https://github.com/IBM/cdfsl-benchmark

8

https://github.com/IBM/cdfsl-benchmark


References281

[1] W.-Y. Chen, Y.-C. Liu, Z. Kira, Y.-C. F. Wang, and J.-B. Huang. A closer look at few-shot classification. In282

International Conference on Learning Representations, 2019.283

[2] L. et al. 2015. Caltech-ucsd birds-200-2011.284

[3] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep networks. In285

International Conference on Machine Learning, pages 1126–1135. PMLR, 2017.286

[4] Y. Guo, N. C. Codella, L. Karlinsky, J. V. Codella, J. R. Smith, K. Saenko, T. Rosing, and R. Feris. A broader287

study of cross-domain few-shot learning. ECCV, 2020.288

[5] A. Khosla, N. Jayadevaprakash, B. Yao, and L. Fei-Fei. Novel dataset for fine-grained image categorization.289

In First Workshop on Fine-Grained Visual Categorization, IEEE Conference on Computer Vision and Pattern290

Recognition, Colorado Springs, CO, June 2011.291

[6] J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3d object representations for fine-grained categorization. In 4th292

International IEEE Workshop on 3D Representation and Recognition (3dRR-13), Sydney, Australia, 2013.293

[7] A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset, S. Kamali, S. Popov, M. Malloci,294

A. Kolesnikov, et al. The open images dataset v4: Unified image classification, object detection, and visual295

relationship detection at scale. arXiv preprint arXiv:1811.00982, 2018.296

[8] Y. Liu. Tools for mini-imagenet dataset. https://github.com/yaoyao-liu/mini-imagenet-tools.297

[9] S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi. Fine-grained visual classification of aircraft. Technical298

report, 2013.299

[10] M.-E. Nilsback and A. Zisserman. Automated flower classification over a large number of classes. In 2008 Sixth300

Indian Conference on Computer Vision, Graphics Image Processing, pages 722–729, 2008.301

[11] M. Ren. few-shot-ssl-public. https://github.com/renmengye/few-shot-ssl-public.302

[12] J. Snell, K. Swersky, and R. Zemel. Prototypical networks for few-shot learning. In I. Guyon, U. V. Luxburg,303

S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information304

Processing Systems, volume 30. Curran Associates, Inc., 2017.305

[13] J.-C. Su, S. Maji, and B. Hariharan. When does self-supervision improve few-shot learning? In European306

Conference on Computer Vision, pages 645–666. Springer, 2020.307

[14] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales. Learning to compare: Relation network308

for few-shot learning. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages309

1199–1208, 2018.310

[15] G. Van Horn, O. Mac Aodha, Y. Song, Y. Cui, C. Sun, A. Shepard, H. Adam, P. Perona, and S. Belongie. The311

inaturalist species classification and detection dataset. In Proceedings of the IEEE conference on computer vision312

and pattern recognition, pages 8769–8778, 2018.313

[16] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra. Matching networks for one shot learning.314

In Proceedings of the 30th International Conference on Neural Information Processing Systems, NIPS’16, page315

3637–3645, Red Hook, NY, USA, 2016. Curran Associates Inc.316

9

https://github.com/yaoyao-liu/mini-imagenet-tools
https://github.com/renmengye/few-shot-ssl-public


7 Appendix317

7.1 Seconds per epoch318

Continuing section 4.5, we report the exact values per epoch across experiment configurations. We do so, since different319

architectures and datasets may require training for different number of epochs, however the epoch time remains the320

same across experiments.321

Experiment Setup (way,shot) Seconds per epoch (Conv4 / ProtoNet
ProtoNet (5,5) 20/25
ProtoNet (20,5) 45/50

ProtoNet+Jigsaw (5,5) 25/35
ProtoNet+Jigsaw (20,5) 60/66

ProtoNet+Rotation (5,5) 18/60
ProtoNet+Rotation (20,5) 65/81

ProtoNet+Jigsaw+Rotation (5,5) 42/70
ProtoNet+Jigsaw+Rotation (20,5) 83/95

Table 6: Average seconds per epoch across experimental setups and ways

7.2 Hyperparameter sweeps322

The selected experiment configs are as follows:323

Each of the below experimental configurations are done for ProtoNet, ProtoNet+Jigsaw, ProtoNet+Rotation and324

ProtoNet+Jigsaw+Rotation (4 configurations) in the 5-way 5-shot setup. The sweeps optimize the learning rate and325

the mode of batch normalization, and α.326

The last two parameters are optimized only when self-supervision is applied. This is because α = 0 for fully supervised327

learners and we find that using batch norm modes 2,3 is highly detrimental to fully supervised learners.328

• miniImageNet Conv4: 4 sweeps329

• miniImageNet ResNet-18: 4 sweeps330

• CUB Conv4: 4 sweeps, reused for flowers and dogs datasets331

• Cars Conv4: 4 sweeps, reused for aircrafs dataset332

• CUB ResNet-18: 4 sweeps, reused for flowers and dogs datasets333

• Cars ResNet-18: 4 sweeps, reused for aircrafs dataset334

Hence we do a total of 24 sweeps.335

The sweeps and the exact hyperparameters obtained can be visualized at https://wandb.ai/meta-learners/336

FSL-SSL/sweeps. All the runs in the paper can be seen at https://wandb.ai/meta-learners.337

10

https://wandb.ai/meta-learners/FSL-SSL/sweeps
https://wandb.ai/meta-learners/FSL-SSL/sweeps
https://wandb.ai/meta-learners/FSL-SSL/sweeps
https://wandb.ai/meta-learners


7.3 Tables338

7.3.1 Results on the applying self-supervision to few-shot learners339

Method CUB Cars Aircrafts Dogs Flowers
ProtoNet 77.72 ± 0.48 67.99 ± 0.41 76.16 ± 0.69 63.88 ± 0.54 85.29 ± 0.51

ProtoNet + Jigsaw 75.57 ± 0.7 62.54 ± 0.39 74.53 ± 0.68 54.27 ± 0.51 84.4 ± 0.47
ProtoNet + Rotation 77.5 ± 0.55 66.8 ± 0.40 74.16 ± 0.40 60.74 ± 0.58 84.55 ± 0.5

ProtoNet + Jigsaw + Rotation 69.66 ± 0.45 59.76 ± 0.77 74.79 ± 0.4 49.48 ± 0.54 81.43 ± 0.51

Table 7: Conv-4’s performance on few-shot learning tasks (α = 0.5)

Method CUB Cars
ProtoNet 76.43 ± 0.3 67.45 ± 0.85

ProtoNet + Jigsaw 65.09 ± 0.42 60.39 ± 0.76
ProtoNet + Rotation 75.05 ± 0.35 66.61 ± 0.6

Table 8: Conv4 results on CUB and cars with a different seed

Method Conv-4
ProtoNet 66.78 ± 0.84

ProtoNet + Jigsaw 64.94 ± 0.75
ProtoNet + Rotation 66.41 ± 0.73

ProtoNet + Jigsaw + Rotation 65.21 ± 0.73

Table 9: miniImageNet Results on Conv4

7.3.2 Results on harder tasks340

Method 20% CUB 20% Cars 20% Dogs
No SSL 73.61 ± 0.71 75.16 ± 0.84 68.4 ± 0.64

20% SSL 70.84 ± 0.73 83.72 ± 0.75 68.13 ± 0.9
40% SSL 71.48 ± 0.9 83.87 ± 0.73 68.26 ± 0.87
60% SSL 70.71 ± 0.81 84.12 ± 0.73 74.21 ± 0.89
80% SSL 71.99 ± 0.65 84.04 ± 0.78 71.86 ± 0.81

Table 10: Performance on tasks with lesser labelled data

Method 20% CUB 20% Cars 20% Dogs
No SSL 73.61 ± 0.82 75.16 ± 0.84 68.4 ± 0.64

20% SSL 69.83 ± 0.79 81.53 ± 0.79 71.99 ± 0.88
40% SSL 71.08 ± 0.83 75.27 ± 0.89 72.24 ± 0.85
60% SSL 71.12 ± 0.91 76.39 ± 0.89 73.11 ± 0.83
80% SSL 68.48 ± 0.87 73.85 ± 0.89 72.03 ± 0.91

Table 11: Performance when a portion of data replaced with data from other domains

Method CUB Greyscale Cars Low-resolution Dogs Greyscale
ProtoNet 82.88 ± 0.56 86.00 ± 0.51 79.97 ± 0.54

ProtoNet + Jigsaw 85.44 ± 0.52 86.34 ± 0.56 82.82 ± 0.50
ProtoNet + Rotation 83.51 ± 0.55 85.53 ± 0.53 81.74 ± 0.59

Table 12: Performance on artificially constructed harder tasks

11



7.3.3 Results on domain selection341

Method CUB Cars Aircrafts Dogs Flowers
No SSL 69.05 ± 0.48 75.15 ± 0.41 74.8 ± 0.35 68.4 ± 0.54 76.34 ± 0.51

SSL Pool (Random) 71.11 ± 0.43 75.27 ± 0.39 75.81 ± 0.39 68.38 ± 0.51 79.71 ± 0.47
SSL Pool (Weight) 71.25 ± 0.55 75.65 ± 0.40 80.13 ± 0.40 70.66 ± 0.58 82.16 ± 0.5

Table 13: Domain selection results

7.3.4 Results on cross-domain few-shot learning342

Method ChestX Crop Disease EuroSAT ISIC
ProtoNet 24.46 ± 0.39 80.45 ± 0.66 67.03 ± 0.7 41.0 ± 0.6

ProtoNet + Jigsaw 24.07 ± 0.4 78.51 ± 0.66 64.69 ± 0.7 39.81 ± 0.54
ProtoNet + Rotation 24.46 ± 0.39 79.30 ± 0.7 66.50 ± 0.71 39.54 ± 0.54

ProtoNet + Jigsaw + Rotation 24.16 ± 0.37 78.67 ± 0.66 67.60 ± 0.66 40.22 ± 0.54

Table 14: CDFSL Benchmark for Conv-4.

7.4 Architectures343

Layer Name Output Size Conv-4-64
conv1 82 x 82 x 64 3 x 3, 64

conv2 41 x 41 x 64 2 x 2, max pool, stride 2
3 x 3, 64

conv3 18 x 18 x 64 2 x 2, max pool, stride 2
3 x 3, 64

conv4 7 x 7 x 64 2 x 2, max pool, stride 2
3 x 3, 64

average pool 1 x 1 x 64 7 x 7 average pool
fully connected 1024 64 x 1024 linear
fully connected X 1024 x X linear

softmax X

Table 15: Conv-4 Architecture (X denotes the way)

Layer Name Output Size Conv-4-64
conv1 112 x 112 x 64 7 x 7, 64, stride 2

conv2_x 56 x 56 x 64 3 x 3 max pool, stride 2
[3 x 3, 64; 3 x 3, 64] x 2

conv3_x 28 x 28 x 128 [3 x 3, 128; 3 x 3, 128] x 2
conv4_x 14 x 14 x 256 [3 x 3, 256; 3 x 3, 256] x 2
conv5_x 7 x 7 x 512 [3 x 3, 512; 3 x 3, 512] x 2

average pool 1 x 1 x 512 7 x 7 average pool
fully connected X 512 x X fully connections

softmax X

Table 16: ResNet-18 Architecture

12


	Introduction
	Scope of reproducibility
	Methodology
	Experimental settings
	Details regarding the code
	Model descriptions
	Datasets
	Hyperparameters
	Computational requirements
	Experimental setup and code

	Results
	Results reproducing original paper
	Self-supervision improves few-shot learning
	The benefits of self-supervision increase with the difficulty of the task
	Unlabelled data for SSL from dissimilar domains negatively impacts the few-shot learner
	The proposed domain selection algorithm can alleviate this issue by learning to pick images from a large and generic pool of images

	Results beyond original paper
	Results on a different architecture - Conv4
	Results on cross-domain few-shot learning


	Discussion
	Communication with original authors

	Appendix
	Seconds per epoch
	Hyperparameter sweeps
	Tables
	Results on the applying self-supervision to few-shot learners
	Results on harder tasks
	Results on domain selection
	Results on cross-domain few-shot learning

	Architectures


