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ABSTRACT

Graph representation learning methods have mostly been limited to the modelling
of node-wise interactions. Recently, there has been an increased interest in un-
derstanding how higher-order structures can be utilised to further enhance the
learning abilities of graph neural networks (GNNs) in combinatorial spaces. Sim-
plicial Neural Networks (SNNs) naturally model these interactions by perform-
ing message passing on simplicial complexes, higher-dimensional generalisations
of graphs. Nonetheless, the computations performed by most existent SNNs are
strictly tied to the combinatorial structure of the complex. Leveraging the success
of attention mechanisms in structured domains, we propose Simplicial Attention
Networks (SAT), a new type of simplicial network that dynamically weighs the in-
teractions between neighbouring simplicies and can readily adapt to novel struc-
tures. Additionally, we propose a signed attention mechanism that makes SAT
orientation equivariant, a desirable property for models operating on (co)chain
complexes. We demonstrate that SAT outperforms existent convolutional SNNs
and GNNs in two image and trajectory classification tasks.

1 INTRODUCTION & RELATED WORK

Figure 1: Pictorial diagram of attention
coefficients being calculated for node
v4, edge e1 and triangle t2

Graph Neural Networks (GNNs) (Sperduti, 1994; Goller
& Kuchler, 1996; Gori et al., 2005; Scarselli et al.,
2008; Bruna et al., 2014; Defferrard et al., 2016; Kipf &
Welling, 2017; Gilmer et al., 2017) have become a suc-
cessful model for statistical problems characterised by an
underlying structure. Nonetheless, the simple combina-
torial structure of graphs, relying exclusively on dyadic
interactions, has recently driven towards extending these
approaches to higher-dimensional generalisations such as
simplicial (Ebli et al., 2020; Bunch et al., 2020; Bod-
nar et al., 2021b) and cellular complexes (Bodnar et al.,
2021a; Hajij et al., 2020)

Simplicial Nerual Networks (SNNs) have recently been
successfully applied to various problems such as missing
data imputation (Ebli et al., 2020), graph classification
(Bunch et al., 2020; Bodnar et al., 2021b), molecular property prediction (Bodnar et al., 2021a), edge
prediction Chen et al. (2021), trajectory classification (Bodnar et al., 2021b) and prediction (Glaze
et al., 2021) as well as homology localisation (Keros et al., 2021). All these approaches can be seen
as particular instances of the message passing framework (Bodnar et al., 2021b;a).

Nonetheless, the computations performed by convolutional approaches are tightly coupled to the
combinatorial structure of the complex, which could hinder generalisation to unseen simplicial struc-
tures. Therefore, motivated by the recent success of attention-mechanisms in graph representation
learning (Veličković et al., 2018) and structured domains more generally (Vaswani et al., 2017),
we propose Simplicial Attention Networks (SAT). Generalising GAT (Veličković et al., 2018), SAT
dynamically learns to attend over different neighbouring simplices based on their features. Addi-
tionally, we show how SAT can be made orientation equivariant (Glaze et al., 2021; Bodnar et al.,
2021b) via signed attention coefficients, thus making it suitable for oriented simplicial complexes.
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In practice, we consider an image classification task based on superpixel graphs and a tra-
jectory classification benchmark involving oriented simplicial complexes. We evaluate SAT
in both settings against several GNN and SNN baselines and demonstrate it outperforms
them. Code for model and experiments can be found at https://github.com/ggoh29/
Simplicial-neural-network-benchmark.

2 BACKGROUND

Simplicial Complexes Simplicial complexes are a class of topological spaces that are made of
nicely glued simplices of various dimensions. Given a set of vertices V , a k-simplex is an un-
ordered subset {v0, v1, . . . , vk} where vi ∈ V and vi ̸= vj for all i ̸= j. For a k-simplex σ =
{v0, v1, . . . , vk}, we say its faces are all the (k-1)-simplices that are also subsets of σ, while its co-
faces are all (k+1)-simplices that have σ as a face. A simplex can also have an orientation, denoted
by [v0, v1, . . . , vk], where there is a chosen orientation for its vertices. Two orientations are con-
sidered equivalent if they differ by an even permutation, or can be expressed by an even number of
transpositions. The choice of orientation is arbitrary and it is used only for bookkeeping purposes.

Adjacencies Similarly to how we consider two nodes to be adjacent if there exists an edge that
connects the two of them together, there is a notion of adjacency for simplicial complexes. However,
adjacency can exist in two forms. Two k-simplices σi and σj are upper adjacent if both are faces of
some (k + 1)-simplex τ . If the complex is oriented, we further say σi and σj are similarly oriented
with respect to τ if the orientations of σi and σj agree with the ones induced by τ . If not, they are
dissimilarly oriented. Similarly, two k-simplices σi and σj are lower adjacent if both have a common
face. We denote the upper adjacent simplices of σ by N ↑

σ and the down adjacent simplices by N ↓
σ .

For the purposes of this paper, we also assume that σ ∈ N ↑
σ and σ ∈ N ↓

σ . Given two adjacent d-dim
simplices σ, τ , denote by oσ,τ ∈ {±1} the relative orientation between them with oσ,σ = 1 for all
σ. If the complex is not oriented, we assume oσ,τ = 1 for all adjacent simplices σ, τ .

Hodge Laplacian Consider a simplicial complex K. Denote by Ck the vector space with coeffi-
cients in R having the oriented k-simplices of K as its basis. Elements of this vector space are called
k-chains. Then we can define a boundary operator ∂k : Ck(X) → Ck−1(X) acting on the basis
elements via ∂k[v0, . . . , vk] :=

∑
i(−1)i[v0, . . . , v̂i, . . . , vk], where v̂i denotes the face obtained by

excluding vi. This can be represented as a matrix Bk where the rows are indexed by (k-1)-simplices
and the columns are indexed by k-simplices.

Based on the boundary matrix and their transpose, we can define the Hodge Laplacian, a linear
operator Lk : Ck(X) → Ck(X), which is a higher order generalisation of the graph Lapacian (Lim,
2019). In matrix form, the k-th Hodge Laplacian is defined as:

Lk = B⊤
k Bk +Bk+1B

⊤
k+1 (1)

One point to note is that B⊤
k Bk correspond to the lower adjacencies, whereas Bk+1B

⊤
k+1 corre-

spond to the upper adjacencies. We can refer to them as Ldown
k and Lup

k respectively. The existent
simplicial convolutional networks rely on this Laplacian (and its normalised versions) to weigh the
different adjacencies between simplices. Instead, we propose using a learned attention matrix that
can easily be used both for signals that are k-chains and arbitrary signals on unoriented simplicial
complexes.

3 SIMPLICIAL ATTENTION NETWORKS

Let K be a simplicial complex. We will describe our model for an arbitrary dimension of the
complex d ≤ dim(K). We compute attention coefficients for the up α↑

σ,τ and down α↓
σ,τ adjacencies

via the following equations:

α↑
σ,τ = oσ,τ · softmaxτ∈N↑

σ
(a(W1h

k
σ,W1h

k
τ )), (2)

α↓
σ,τ = oσ,τ · softmaxτ∈N↓

σ
(a(W2h

k
σ,W2h

k
τ )), (3)

where a is a function for computing attention coefficients. In an oriented simplicial complex, this
effectively becomes a form of signed attention. Note that when working at the node-level, where
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the relative orientation between nodes is trivial and only upper adjacencies are present, one recovers
GAT Veličković et al. (2018).

Denote by Hd the features associated to the d-dimensional simplices of K. SAT layers are described
by the following message passing equation weighting the neighbours by the attention coefficients:

hk+1
σ = ϕ

( ∑
τ∈N↑

σ

α↑
σ,τW

k
1 h

k
τ ,

∑
τ∈N↓

σ

α↓
σ,τW

k
2 h

k
τ

)
(4)

Here, ϕ is an update function that aggregates the two incoming messages from the lower and up-
per adjacencies and updates the representation of σ. More generally, each of these arguments can
effectively be augmented with Z attention heads:

hk+1
σ =

∥∥
z≤Z

ϕ
( ∑

τ∈N↑
σ

α↑,z
σ,τW

k
1 h

k
τ ,

∑
τ∈N↓

σ

α↓,z
σ,τW

k
2 h

k
τ

)
(5)

In oriented simplicial complexes, the choice of orientation is arbitrary and we would like the model
to be aware of this symmetry. Mathematically, we would like SAT to be orientation equivari-
ant (Bodnar et al., 2021b; Glaze et al., 2021).

Definition 1 (Bodnar et al. (2021b)). Let K be a simplicial complex described by boundary matrices
{Bi}. A function f : Ck → Ck is orientation equivariant if for any diagonal matrix T with ±1 on
the diagonal, f(THk,BkT ,TBk+1) = T f(Hk,Bk,Bk+1).

We will now show that under certain constraints on the functions a and ϕ the model is orientation
equivariant.

Proposition 2. If the function a is even in both of its arguments and ϕ is odd in both of its arguments,
SAT is orientation equivariant.

Proof Sketch. At the message passing level, the equivariance equation is respected if and only if
for any simplex σ the local aggregation is invariant to the changes in orientation of the neighbour
simplices and if σ changes its orientation, the output features hk+1

σ pick up a minus sign (see Bodnar
et al. (2021b) for details).

Because a is an even function, the product ασ,τhτ is invariant with respect to changes in the orien-
tation of τ because the change in sign for ασ,τ and hτ cancel each other. Therefore, the aggregation
is invariant with respect to changes in the orientations of the neighbours. Furthermore, since the
function ϕ is odd and ασ,σ ≥ 0 for any orientation of σ, it follows that the local aggregation picks
up a minus sign when the orientation of σ is flipped.

4 RESULTS

4.1 SUPERPIXEL GRAPHS

Dataset We use the classification of superpixel graphs as our first benchmark to demonstrate the
capabilities of SAT. A superpixel graph is the graph representation of an image in which pixels
are grouped into nodes representing perceptually meaningful regions, such as a region of similar
intensity (Achanta et al., 2012). By representing the image as a graph, it is possible to change the
task of image classification to graph classification. This application of using graph neural networks
on superpixel graphs for the task of image classification was first done by Monti et al. (2016) and
has since been a popular framework for testing graph neural networks. Here, we use images from
the Modified National Institute of Standards and Technology database (MNIST) (LeCun & Cortes,
2010) containing handwritten digits from 0 to 9.

To construct a superpixel dataset from MNIST, we use the Simple Linear Iterative Clustering (SLIC)
(Achanta et al., 2012) algorithm. The superpixel nodes are then connected to directly adjacent nodes
by means of a region adjacency graph to get the final graph. The simplicial complex we consider
is the two-dimensional clique complex of this graph. Triangles are of particular importance as they
tend to encode tightly connected regions constituting a form of higher-order interaction between the
superpixels.
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Figure 2: The stages from image to graph for two different MNIST images

We follow the work of Long et al. (2021) in setting up the node features and how the GNN layers
are used. The node features of node cluster j are hj = [1/n

∑nj

i (ai, bi, gi)] where the ai and bi are
the x and y coordinate of pixel i respectively, and gi is the greyscale value of pixel i. The features
for the 1-simplices and 2-simplices will be the concatenation of the node features that make up the
simplex in the order given by pixel values.

Architecture Our layers are arranged in the same architecture proposed by Long et al. (2021)
known as a hierarchical GNN architecture. This was used to avoid the over-smoothing problem
(Cai & Wang, 2020; Oono & Suzuki, 2019). This architecture comprises of three GNN/SNN layers.
The resulting node features from each layer, also known as the residual, are concatenated, resulting
in the penultimate feature vector comprising of features vectors from previous layers. This is then
passed through a mean pooling function, before being fed to a multi-layer perceptron with 10 outputs
followed by a softmax activation.

Experimental setup For the experiment, we set the superpixel algorithm SLIC to generate ap-
proximately 75 nodes. For all experiments we set a budget of 100 epochs for training, with a batch
size of 32 images, using a split of 55k images for training and 5k images for validation. The model
corresponding to the epoch with the best validation performance on the validation set is saved and
tested against the MNIST test set of 10k images. For the optimisation, we use the Adam optimiser,
a weight decay of 0.0005, and a learning rate of 0.001 for all models tested.

We compare SAT against (GCN) (Kipf & Welling, 2017), GAT (Veličković et al., 2018), SC-
CONV (Bunch et al., 2020), and SCN (Ebli et al., 2020). All models were used in a hierarchical
GNN setup explained above with 3 layers each. We set the number of feature channels for each
model such that the total number of parameters across all models was roughly 10k. All models use
a ReLU activation function except SCN which uses Leaky ReLU as in the original paper. Both GAT
and SAT use two attention heads.

Results We repeat the training procedure described above across five seeds and report the mean
accuracy and standard deviation. Additionally, we report the exact number of parameters of each
model. As the table shows, SAT outperforms its GNN counterpart (GAT), as well as other simplicial
convolutional networks that have been recently proposed.

Model Parameters Test Accuracy

GCN 10634 63.65 ± 1.82
GAT 9862 88.95 ± 0.99
SCN 10612 84.16 ± 1.23
SCCONV 10315 89.06 ± 0.47
SAT (Ours) 10186 92.99 ± 0.71

Table 1: Image classification accuracy. SAT outperforms its GNN counterpart (GAT) as well as
other recently proposed SNNs.
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4.2 TRAJECTORY CLASSIFICATION

To demonstrate the superior performance of SAT when operating on k-chains as well as to display
the benefits of orientation equivariance in this setting, we now consider a trajectory classification
task (Schaub et al., 2020; Bodnar et al., 2021b) involving oriented simplicial complexes.

Figure 3: Example of the two different
types of trajectories from the trajectory
classification dataset.

Dataset The trajectory classification dataset is a syn-
thetic dataset constructed by sampling 1000 points within
a unit square followed by a Delauney triangulation. Two
holes within the graph are created by removing certain
nodes and the edges connected to these nodes. Trajecto-
ries are generated by randomly sampling a starting point
from the top-left corner and an endpoint from the bot-
tom right corner. Two different types of such trajectories
are generated. One class of trajectories traverses via the
top-right corner, while the second class traverses via the
bottom-left corner. We randomly generate 1000 train and
200 test trajectories in this manner. In order for the test
to be challenging for non-orientation invariant models, all
trajectories from the training dataset use the same orientation for the edges, while trajectories from
the test dataset use random orientations. Two trajectories from this dataset, belonging to two differ-
ent classes, can be seen in Figure 3.

Experimental setup All models use the same hyperparameters. We use 4 layers, with the residual
size set to 32 for all layers. Following the 4 layers, we take the absolute of the output and do a
mean-pooling to make it orientation invariant. We then pass this through two multi-layer perceptron
layers before finally taking the softmax of the output. For all experiments, we set a budget of 100
epochs for training, with a batch size of 4. Since there is no validation set, the model corresponding
to the epoch with the best performance on the training set is saved and used for testing. For the
optimisation, we once again use the Adam optimiser, a weight decay of 0.0005, and a learning rate
of 0.001 for all models tested.

Results We repeat the training procedure described above across five seeds and three different
activation functions and report the mean accuracy and standard deviation. Models that use odd
activation functions (i.e. the identity of tanh), which makes them orientation equivariant, perform
better on the test set. Furthermore, the orientation equivariant SAT outperforms other orientation
equivariant SNNs.

activation function

Model Id ReLU Tanh

SCN 53.10 ± 2.27 49.70 ± 2.77 52.80 ± 3.11
SCCONV 62.80 ± 3.11 50.80 ± 1.63 62.30 ± 3.97
SAT (Ours) 92.90 ± 2.22 49.70 ± 0.60 93.80 ± 1.33

Table 2: Trajectory classification accuracy. SAT outperforms other recently proposed SNNs.

5 CONCLUSION

In this paper, we introduced Simplicial Attention Networks (SAT)1, a novel SNN that is able to
incorporate attention-mechanisms in order to assign different importance weights to neighbouring
simplices as well generalise to unseen simplicial structures. For applications involving orientated
simplices, we also illustrated how SAT can be made orientation equivariant via signed attention
coefficients. Empirically, we showed SAT outperforms other GNNs and SNNs at the tasks of classi-
fying superpixel images generated from the MNIST dataset and classifying trajectories represented
as 1-chains on a simplicial complex.

1We note that a similar model was proposed concurrently by Giusti et al. (2022)
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Stefania Ebli, Michaël Defferrard, and Gard Spreemann. Simplicial neural networks. In
NeurIPS 2020 Workshop on Topological Data Analysis and Beyond, 2020. URL https:
//openreview.net/forum?id=nPCt39DVIfk.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In ICML, 2017.

L. Giusti, C. Battiloro, P. Di Lorenzo, S. Sardellitti, and S. Barbarossa. Simplicial attention neural
networks, 2022. URL https://arxiv.org/abs/2203.07485.

Nicholas Glaze, T. Mitchell Roddenberry, and Santiago Segarra. Principled simplicial neural net-
works for trajectory prediction. In ICML, 2021.

Christoph Goller and Andreas Kuchler. Learning task-dependent distributed representations by
backpropagation through structure. In ICNN, 1996.

Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph domains.
In IJCNN, 2005.

Mustafa Hajij, Kyle Istvan, and Ghada Zamzmi. Cell complex neural networks. In NeurIPS Work-
shop on Topological Data Analysis and Beyond, 2020.

Alexandros Dimitrios Keros, Vidit Nanda, and Kartic Subr. Dist2cycle: A simplicial neural network
for homology localization, 2021.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In ICLR, 2017.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http://yann.
lecun.com/exdb/mnist/.

Lek-Heng Lim. Hodge laplacians on graphs, 2019.

Jianwu Long, Zeran yan, and Hongfa chen. A graph neural network for superpixel image classifica-
tion. Journal of Physics: Conference Series, 1871(1):012071, apr 2021. doi: 10.1088/1742-6596/
1871/1/012071. URL https://doi.org/10.1088/1742-6596/1871/1/012071.

6

https://openreview.net/forum?id=TLbnsKrt6J-
https://openreview.net/forum?id=nPCt39DVIfk
https://openreview.net/forum?id=nPCt39DVIfk
https://arxiv.org/abs/2203.07485
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1088/1742-6596/1871/1/012071


Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Jan Svoboda, and Michael M.
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