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Abstract

Training and evaluating large language models (LLMs) for use in the design of
antigen specific T-cell receptor (TCR) sequences is challenging due to the complex
many-to-many mapping between TCRs and their targets, a struggle exacerbated by
a severe lack of ground truth data. Traditional NLP metrics can be artificially poor
indicators of model performance since labels are concentrated on a few examples,
and functional in-vitro assessment of generated TCRs is time-consuming and costly.
Here, we introduce TCR-BART and TCR-T5, adapted from the prominent BART
and T5 models, to explore the use of these LLMs for conditional TCR sequence
generation given a specific target epitope. To fairly evaluate such models with
limited labeled examples, we propose novel evaluation metrics tailored to the
sparsely sampled many-to-many nature of TCR-epitope data and investigate the
interplay between accuracy and diversity of generated TCR sequences.

1 Introduction

T-cells are specialized immune cells responsible for clearing infections, suppressing cancer, and
preventing autoimmunity through the specific recognition of peptide-MHC (pMHC) complexes by
cognate T-cell receptors (TCRs). Paradoxically, individual TCRs can recognize on the order of 106
unique peptides, with pMHCs recognized by a similar number of unique TCRs [1, 2]. However, this
many-to-many mapping is sparsely sampled with many experimentally validated TCRs studied in
the context of a few pMHCs [3]. Computational models capable of designing antigen specific TCRs,
while accounting for epitope cross-reactivity, have the potential to not only drastically accelerate the
development of targeted cellular therapies both for cytotoxic [4–7] and tolerogenic uses [8], but also
provide foundational insights into the broader mechanisms governing immunogenicity.

Current approaches in modeling antigen specificity of TCRs have predominantly relied on framing
TCR-pMHC cross reactivity as a binary classification task [9–21], with limited utility in TCR design
[22]. Prior work exploring generative models of TCRs leveraged auto-encoders to generate realistic
de-novo TCRs that recapitulated repertoire level phenomena when aggregated [23, 24]. However,
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their use in generating epitope-specific TCR sequences is constrained to cases of known epitopes
having associated paired cognate TCR data.

This work explores the formulation of the TCR design problem as a sequence-to-sequence (seq2seq)
task for the conditional generation of antigen-specific TCRs (Figure 1). Encoder:Decoder models
have proven highly successful in various seq2seq tasks, including those with complex mappings
between source and target sequences, such as machine translation, question answering, and text
summarization. The transformer architecture introduced in 2017 [25] currently sets the state-of-the-
art across these tasks [26–28]. Building upon the demonstrated robustness of this framework, we
investigate this model class’s capacity to learn a meaningful mapping between pMHC sequences and
their potential cognate TCR sequences, while addressing the limitations in current seq2seq metrics.
In this paper, we demonstrate the transformer’s robustness to the challenges of this task and measure
performance in a holistic manner, focusing on accuracy, generalization, and diversity in sequence
outputs. Our results provide a first step towards characterizing the performance of generative models
in the high multiplicity and low data regime of generating high-fidelity TCRs for target antigens.

Figure 1: Casting the TCR:pMHC problem as a sequence-to-sequence task.

2 Methodology

2.1 Problem Formulation

We present the TCR:pMHC interaction as a seq2seq given pairs of interacting “source” pMHCs
and “target” TCR amino acid sequences. Currently, we represent the TCR by the specific loop
that makes the most contact with the epitope known as the complementarity determining region
3 (CDR3b). The pMHC is represented as the concatenation of the peptide sequence and MHC
pseudo-sequence defined in [29]. For tokenization, we use a character-level single amino acid
tokenization scheme with special tokens to denote sequence start/end and padding. Furthermore, we
introduced a separator token to distinguish between the concatenated peptide and MHC sequences:
<SOS>PEPTIDE<SEP>PSEUDO<EOS> → <SOS>CDR3B<EOS>.

2.2 Data

Our source of ground truth sequences consisted of experimentally validated immunogenic
TCR:pMHC pairs, sourced from publicly available datasets: McPAS [30], VDJdb [31], and IEDB
[32]. We pre-processed these datasets and collated them, removing duplicates and inferring missing
fields where applicable to maximize data retention and completeness. Specifically, CD4/CD8 type
was imputed based on MHC class and HLA subgroup was imputed using the canonical subgroup
’*01’ where unavailable. All HLA nomenclature was normalized using the mhcgnomes python
package. After, we applied some post-processing steps to filter for only human TCRs, CD8 T-cells,
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and entries that included the minimal paired information: (epitope, MHC allele, CDR3b, Vb, Jb).The
resulting dataset of over 100,000 paired sequences was partitioned into distinct training (N=1005
unique pMHCs) and test data (N=245 unique pMHCs). This partitioning was designed to balance
MHC allele fractions across the two sets and to ensure that validation pMHCs were not exposed
during the training phase. In addition to the paired experimental data, we used unlabeled pMHC
(N≈400K)[32] and CDR3b sequences (N≈13M) from TCRdb [33] for pre-training.

2.3 Models

For this exploration, we adapted the BART [34] and T5 [28] models, chosen for their demonstrated
performance on robust benchmarks spanning various seq2seq tasks in the broad NLP setting [35, 36].
Both TCR-BART and TCR-T5 are specific implementations of denoising autoencoders coupled with
autoregressive decoders, whose architectures do not diverge from their inspirations (See Table S1.
Additional details may be found in the original papers). TCR-BART was pre-trained via masked
amino-acid modeling on a corpus containing both pMHCs and TCRs (30/70 split) whereas TCR-T5
was pre-trained on masked span reconstruction, similar to the original T5 paper. Interestingly, we
found that a larger finetuning learning rate and batch sizes yielded better performance, deviating
from the relative hyper-parameters used in the original BART and T5 papers (See Table S2). Both
models use the same character-level tokenization scheme with minimal adaptations. To assess
their performance within the broader encoder:decoder landscape, we established baselines with a
bidirectional-RNN, bi-RNN with a cross attention mechanism, and 1-D CNN with cross attention and
positional encoding. TCR-BART architecture used 6 encoder and decoder layers and dmodel = 768,
totaling around 120 million parameters. In order to maintain equal scales for a fair comparison,
we adjusted the embedding dimensions and layer counts in the baseline models to achieve 120M
parameters ± 10M. Here, TCR-T5 (120M) did not converge in the same number of iterations as the
other models and thus a smaller TCR-T5 (66M) with the same dmodel and number of encoder and
decoder layers as TCR-BART was used. All models were trained using the cross entropy loss.

2.4 Evaluation

Given the shortage of experimental data and the high cost of performing additional in-vitro validation,
evaluating generations of TCR sequences poses a unique challenge, especially in the case of de novo
sequences. A recent study used an existing binary predictor of TCR and pMHC reactivity to measure
their generative model’s capacity to produce realistic and antigen-specific TCRs [37]. While this
approach has the ability of evaluating de novo TCRs, given that these discriminator models generalize
poorly on out of distribution TCRs [38], we opt for metrics with a less variable error profile at the
cost of potentially underrepresenting performance. However, traditional recall-based metrics prove
inadequate and their results, in some instances, can be misleading. When evaluating generated TCRs
against a set of a few reference sequences (n < 10), recall based metrics test recapitulation of an
arbitrary sample of validated examples among the vast space of all cognate TCRs. Additionally, when
evaluating against a set of many TCRs (n > 1000), a model that adequately learns a particular TCR
motif [2] may be penalized for lack of diversity. To address this, we employ a combination of tailored
metrics to evaluate both generation accuracy and diversity:

• Char-BLEU: Calculated using the standard BLEU-4 [39], the character-level BLEU cal-
culates the weighted n-gram precision against the k closest reference sequences to abate
unintended penalization of accurate predictions under a large reference set. We set k = 20.

• Precision, Recall, and F1@K: Borrowed from information retrieval, these metrics gauge
precision, recall, and F1 by exact sequence recovery after sampling K times, without rank,
given uncertain calibration of model scores and lack of a robust relevance function.

• Mean Edit Distance: For each model prediction, the closest match is found and the
Levenshtein edit distance is computed and averaged for all predictions.

• Perplexity: We report perplexity as a standard measure of language model performance,
using the cross entropy loss calculated over the validation corpus.

• Biological Likelihood: As an orthogonal measure of model performance, independent of
antigen-specificity or labeled data, we compute generation probability of predictions using
OLGA, a domain specific generative model that infers TCR sequence likelihood [40].
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3 Results

In this section we evaluate the models’ generations against known reactive TCRs. We first benchmark
across the various architectures, controlling for number of parameters and training steps. All values
represent averages across different held out pMHCs. In addition, we curated a “target-rich dataset”
comprising the top 10 held-out validation pMHCs with the highest number of cognate TCRs, to
observe the effects of evaluating performance with adequately sampled target sequences.

Our results demonstrate the clear effect that evaluating on the target-rich dataset holds with increased
performance reported on all metrics (Table 1). However, the relative performance of various models
under certain metrics and the discordance between them were less monolithic. While all of the models
produced plausible generations that bear semblance to the ground truth sequences (Figure S1), in
terms of exact sequence recovery, we found that the best performing model was the TCR-BART
model. Between the full validation set and the target-rich set, the TCR-T5 model demonstrated
a significant increase in Char-Bleu. Interestingly, the model achieving the lowest perplexity was
the vanilla bi-RNN. We suspect that given the high target multiplicity, the use of perplexity as a
performance indicator is limited since model convergence towards a sequence "mode" may appear
indistinguishable from a poorly trained model altogether. Notably, the TCR-BART model with no
pre-training generated more CDR3b sequences unseen during training than the pre-trained version.

Table 1: Generation Accuracy by Model via Greedy Decoding
Evaluation Metrics

Model (120M) Pre-training? BLEU P@1 DEdit PPL

BiRNN - .377 .016 6.58 4.49
BiRNN+Attn - .407 .057 6.63 5.44
Conv1D+Attn - .410 .049 6.56 6.82

Full Validation Set TCR-BART - .452 .122 6.09 8.73
(NpMHC=245) TCR-BART + .452 .139 6.16 8.22

TCR-T5 (66M) - .382 .025 6.71 —
TCR-T5 (66M) + .392 .029 6.72 —

BiRNN - .786 0.0 3.1 4.40
BiRNN+Attn - .803 0.1 3.1 5.31
Conv1D+Attn - .731 0.0 3.6 6.30

Target-Rich Set TCR-BART - .802 0.3 2.6 7.42
(NpMHC=10) TCR-BART + .801 0.2 2.4 6.98

TCR-T5 (66M) - .815 0.2 2.5 —
TCR-T5 (66M) + .826 0.2 2.7 —

Given the importance of decoding strategies in constructing plausible target sequences [41], we
benchmark various decoding methods, with parameters optimized using a grid search method, unless
specified in their respective papers (Figure S2). We evaluated precision, recall, and F1@K with
K=1000 on multinomial, top-k, top-p, beam, diverse-beam [42], typical [43], and contrastive [44]
decoding. For this analysis, we retrained the model with the highest Precision@1, TCR-BART
(with pre-training), and finetuned it on three different data splits, each excluding one of the three
pMHCs with the highest number of cognate TCRs. We find that across the three different epitopes,
beam search decoding outperformed the other methods by sizeable margin, including diverse beam-
search (Table 2). We further show that beam search sequence probabilities calculated using token
probabilities correlate highly with OLGA generation probabilities, supporting its use as a potential
scoring function (Figure S3). However, beam search appeared brittle when recapitulating distributions
of target TCR generation probabilities, highlighting a paradox that is currently being investigated
(Figure S4).
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Table 2: Measuring Generation Diversity by Decoding Method
Evaluation Metrics

Method Stochastic? P@1000 R@1000 F1@1000

Multinomial + .015 .007 .010
Top-K + .005 .005 .005

KLGGALQAK Top-P + .008 .008 .008
(NCDR3b =12660) Beam - .034 .034 .034

Diverse Beam - 0.0 0.0 0.0
Typical + .018 .008 .011

Contrastive + .007 .007 .007

Multinomial + .005 .004 .004
Top-K + .004 .003 .003

YVLDHLIVV Top-P + .003 .003 .003
(NCDR3b =8290) Beam - .009 .009 .009

Diverse Beam - .003 .001 .002
Typical + .005 .005 .005

Contrastive + 0.0 0.0 0.0

Multinomial + .004 .003 .003
Top-K + .008 .006 .007

GLCTLVAML Top-P + .007 .006 .006
(NCDR3b =7339) Beam - .016 .016 .016

Diverse Beam - 0.0 0.0 0.0
Typical + .006 .004 .005

Contrastive + .009 .007 .008

4 Discussion

In this preliminary work, we demonstrate the viability of using sequence-to-sequence transformer
models like TCR-BART and TCR-T5 to generate antigen-specific TCR sequences conditional on
input peptide-MHC, focusing on the need to define meaningful evaluation metrics that capture an
unbiased snapshot of model performance. We introduce evaluation metrics tailored to the task
that measure accuracy, generalization, and diversity to account for the many-to-many mapping
and data sparsity inherent to this problem. However, these metrics are heavily impacted by the
availability of experimentally validated data. Even in the cases of epitopes with the largest number
of validated TCRs, roughly 1% of the theoretical space is captured, and for the majority of epitopes
there is roughly an order of magnitude less. In this setting, evaluating model performance by exact
sequence reconstruction against a sparsely sampled label space gives low performance, matching our
expectation. However, without in-silico methods that can generalize TCR-pMHC binary predictions
well or dramatic cost reduction for in-vitro methods, we use the aforementioned metrics to characterize
model performance in a more holistic manner, acknowledging that many model generations may
be true binders in-vitro. Our results provide an initial benchmark characterizing the performance
trade-offs between these metrics. We note that like many of the binary classification models trained
on this data, strong model performance is tied to similarity with training sequences, making out-
of-distribution generalization an active work in progress. The capacity to generate large, high-
fidelity repertoires of antigen-specific TCRs has immense biological and therapeutic potential. For
emerging cellular therapies, it enables rapid, targeted generation of potentially active TCRs that
can be tested for cross-reactivity against self-epitopes before being administered to patients. This
contrasts current approaches of TCR discovery which require in-vitro identification of reactive T-
cell clones from starting biological sample material or the use of discriminatory models against a
database of receptor:epitope pairs. As more data becomes available, both model training as well
as the metrics used for evaluation stand to improve drastically. Future directions for this work,
including implementing diverse pre-training techniques, training and testing on the full TCR and
MHC sequences, and utilizing principled data augmentation techniques to address long tail examples
all stand to further unlock the promise of this approach across basic immunology and translational
medicine.
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A Supplementary Information

A.1 Hyperparameters

TCR-BART TCR-T5

Parameters 120M 66M
dmodel 768 768
Vocab Size 28 128
Encoder Layers 6 6
Decoder Layers 6 6
Positional Encoding 512 512
Cross Attention ✓ ✓

Supplementary Table 1: Model Architecture Hyperparameters

TCR-BART TCR-T5

Epochs 1 1
Batch Size 512 512

Pre-Training Learning Rate 5e-05 1e-04
(MLM Objective) Weight Decay .01 .01

Optimizer AdamW AdamW
pMLM 0.15 0.15

Epochs 100 100
Batch Size 512 512

Fine-Tuning Learning Rate 5e-05 1e-04
(Cross Entropy Loss) Weight Decay 0.0 0.0

Optimizer AdamW AdamW

Epochs 100 100
Batch Size 512 512

Direct Training Learning Rate 5e-05 1e-04
(Cross Entropy Loss) Weight Decay 0.0 0.0

Optimizer AdamW AdamW

Supplementary Table 2: Model Training Parameters
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Supplementary Figure 1: CDR3b sequence logo plots for the Hepatitis B virus epitope
(STLPETAVVRR) on HLA-A*11:01, held out from training data. Figure shows the empirical
logo plot given known ground truth sequences compared to logo plots generated by sampling at a
depth of K=1000 using top-k sampling (k=8). Special tokens were removed for clarity.
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Supplementary Figure 2: Heatmap of bivariate parameter sweeps for top-k,top-p, and beam search
decoding methods colored by F1@100 score. Evaluated on target rich set using the TCR-BART
model without pre-training to inform parameters in Table 2 with minimal data leakage in a low-data
setting.
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Supplementary Figure 3: Scatter-plot of model predicted sequence log-probabilities vs. OLGA
generation log-probabilities (Pgen) for the target-rich pMHCs. Red line represents best fit line.
Pearson Correlation Coefficient is reported as Pearson’s R.
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Supplementary Figure 4: Density plot of OLGA predicted generation probabilities for real and
conditionally sampled TCRs from target-rich pMHCs using top-k and beam search decoding. Zero
probability real sequences are the result of OLGA error whereas sampled sequences with zero
probability may indicate error or poor CDR3b sequences (sequences that do not start with a C or end
with an F). These sequences were set to 1 for transformation by log scale.
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