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Abstract

Semantically meaningful sentence embeddings001
are important for numerous tasks in natural lan-002
guage processing. To obtain such embeddings,003
recent studies explored the idea of utilizing004
synthetically generated data from pretrained005
language models (PLMs) as a training corpus.006
However, PLMs often generate unrealistic sen-007
tences (i.e., sentences different from human-008
written sentences). We hypothesize that train-009
ing a model with these unrealistic sentences010
can have an adverse effect on learning semanti-011
cally meaningful embeddings. To analyze this,012
we first train a classification model that identi-013
fies unrealistic sentences and observe that the014
linguistic features of the sentences predicted as015
unrealistic are significantly different from those016
of human-written sentences. Based on this, we017
propose a novel approach that first trains the018
classifier to measure the importance of each019
sentence. The distilled information from the020
classifier is then used to train a reliable sentence021
embedding model. Through extensive evalua-022
tion on four real-world datasets, we demon-023
strate that our model trained on synthetic data024
generalizes well and outperforms the baselines.025

1 Introduction026

High-quality sentence embeddings are essential to027

diverse applications in natural language process-028

ing (Cer et al., 2018; Reimers and Gurevych, 2019).029

However, obtaining a large amount of human-030

annotated datasets to train a sentence embedding031

model is difficult and expensive. To address this,032

Schick and Schütze (2021) recently introduced a033

method to train a sentence embedding model on034

synthetic data generated from pretrained language035

models (PLMs). However, PLMs sometimes pro-036

duce unrealistic sentences different from human-037

written ones (Solaiman et al., 2019; Holtzman et al.,038

2019; Fagni et al., 2020). Therefore, training a039

model on synthetic data from PLMs may lead to040

performance degradation in various natural lan-041

Unrealistic
Sentences

Realistic 
Sentences

Human-written
Sentences

Synthetic Data

Figure 1: Sentences generated from the PLMs can be
either realistic or unrealistic. Unrealistic sentences are
distinct from human-written ones, whereas realistic sen-
tences can be considered a subset of human-written
sentences. We explore the effect of reducing the adverse
effects of unrealistic sentences when training a model.

guage processing tasks, but the study on the impact 042

of such unrealistic data remains under-explored. 043

To this end, we first provide an in-depth analy- 044

sis to demonstrate the shift of synthetic samples 045

(both realistic and unrealistic) from the human- 046

written sentences. In particular, we train a classifier 047

(i.e., Synthetic Data Identification (SDI) model) 048

that identifies synthetic data from human-written 049

sentences and observes that the linguistic features 050

of the sentences predicted as unrealistic are much 051

different from the human-written sentences com- 052

pared to the linguistic features of the sentences 053

predicted as realistic. Figure 1 presents an illus- 054

tration to demonstrate different sentence distribu- 055

tions. Based on this analysis, we propose a simple 056

method, Reweighting Loss based on Importance 057

of Machine-written SEntence (RISE), which first 058

utilizes the trained SDI model to measure the im- 059

portance of each sentence in learning semantically 060

meaningful sentence embeddings. Then, we utilize 061

this distilled information from the SDI model and 062

propose a data-item-level reweighting strategy to 063

train a reliable sentence embedding model. 064

We evaluate the performance of our method 065

on four different sentence similarity comparison 066

datasets. Extensive experiments show that our 067

model outperforms baseline models and general- 068

izes better than the baselines across all datasets. 069

To sum up, our contributions include: 070

• We analyze the linguistic features of machine- 071
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STSb QQP MRPC

xh pD(xm) ↑ pD(xm) ↓ xh pD(xm) ↑ pD(xm) ↓ xh pD(xm) ↑ pD(xm) ↓

BLEU-N 34.80 25.75 2.93 30.3 34.95 7.86 48.53 46.97 5.59
Jaccard 41.98 33.97 5.98 39.91 42.49 11.31 53.55 53.33 10.52

Distinct-N 44.53 35.93 17.03 38.10 25.23 24.10 44.63 32.10 22.00
Zipf coeff. 1.03 1.07 1.23 1.11 1.06 1.12 0.98 1.02 1.23

Table 1: Results for comparing the sentences in different group. Jaccard indicates Jaccard similarity score. The
score of generated sentences far from human scores is highlighted in underline. BLEU-N and Distinct-N indicate
the average score with different N . The full results are available in Appendix E.

written sentences (both unrealistic and realis-072

tic) compared to human-written sentences.073

• We also propose a simple yet effective method074

that first utilizes the Synthetic Data Identifica-075

tion (SDI) model to measure the importance076

of machine-written sentences for learning se-077

mantically meaningful embeddings.078

• We then propose a new loss term based on079

the importance of sentences to train a reliable080

sentence embedding model.081

• We extensively evaluate our model on diverse082

datasets and observe that our method consis-083

tently enhance sentence encoder performance084

trained on synthetic datasets.085

2 Related Work086

Synthetic data generation using pretrained lan-087

guage models has shown promising results in vari-088

ous natural language processing tasks (Yang et al.,089

2020; Papanikolaou and Pierleoni, 2020; Ding090

et al., 2020; Edwards et al., 2021; Chang et al.,091

2021). Recently, Schick and Schütze (2021) pro-092

posed a new method, DINO, to generate a synthetic093

dataset for textual semantic similarity task. Another094

recent work, Yoo et al. (2021) proposed a new095

data augmentation framework for sentence clas-096

sification by leveraging a large-scale PLM (Brown097

et al., 2020). However, synthetic data can be mis-098

used in malicious usage, such as fake news gen-099

eration. To prevent such a fraudulent use, recent100

studies (Zellers et al., 2019; Weiss, 2019; Uchendu101

et al., 2020; Adelani et al., 2020) aim to detect102

the synthetically generated text. On the contrary,103

we identify unrealistic sentences from machine-104

written data and mitigate their influence to achieve105

accurate and robust learning. While Yi et al. (2021)106

suggested assigning high weights to challenging107

examples in a data augmentation setup, our work108

mainly focuses on using only synthetic samples109

from PLMs.110

3 Analysis on Synthetic Sentences 111

This section describes the generation of the syn- 112

thetic dataset, followed by training the model to 113

identify synthetic sentences from human-written 114

ones. Then, we present a novel analysis to demon- 115

strate the shift of synthetic samples (both realistic 116

and unrealistic) from the human-written sentences. 117

Synthetic Data Generation. To obtain machine- 118

generated sentences, we leverage the ability of 119

prompt-based zero-shot generation in a generative 120

PLM (Radford et al., 2019) (Figure 2 A). Specif- 121

ically, given a sentence xh ∈ Csrc where Csrc is 122

a set of human-written sentences and the target 123

similarity level y ∈ Y , this framework produces 124

a sentence xm ∈ Xm that has semantic similarity 125

with xh equal to the target similarity level y. The 126

generated examples {xm, xh, y} are later used to 127

train a model for sentence similarity comparison 128

tasks. 129

For generating a synthetic dataset, we use Se- 130

mantic Textual Similarity benchmark (STSb) (Cer 131

et al., 2017), Quora Question Pairs (QQP) 1, 132

and Microsoft Research Paraphrase Cor- 133

pus (MRPC) (Dolan and Brockett, 2005) to 134

obtain a corpus of human-written sentences. We 135

follow the details for the data generation process in 136

Schick and Schütze (2021). Through this synthetic 137

data generation process, we obtain about 76k, 78k, 138

and 55k examples of STSb, QQP, and MRPC 139

datasets, respectively. 140

Synthetic Data Identification (SDI). We now 141

train a binary classification model D based on a 142

bi-directional PLM (Devlin et al., 2019) to dis- 143

tinguish machine-written sentences from human- 144

written sentences (Figure 2 B). We refer to this 145

model as the Synthetic Data Identification (SDI) 146

model and train it separately for each Csrc. We use 147

machine-written sentences Xm and human-written 148

1https://quoradata.quora.com/
First-Quora-Dataset-Release-Question-Pairs
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Figure 2: Overview of RISE. We feed an instruction Iy and a human-written sentence xh to the Generator G which
produces a machine-written sentence xs. We then measure importance score pD using xs as input. Finally, we
predict the similarity score using the embedding vector of xs and xh. We compute the loss and multiply ph.

sentences Xh in the same proportion for training149

the model.2 We use the prediction confidence pD150

of the sentence to measure the degree of the shift151

of the generated sentences from the human-written152

sentences.153

Analysis. We now analyze to demonstrate the154

shift of synthetic samples from the human-written155

sentences. We use the following metrics to ana-156

lyze the lexical-level linguistic patterns of each157

sentence: (1) BLEU (Papineni et al., 2002) and158

Jaccard Similarity (Montahaei et al., 2019) that159

calculate the lexical-level similarity between xm160

and its paired sentence. (2) Distinct-N (Li et al.,161

2015) that calculates the ratio of unique N-grams162

among the total number of N-grams in each group163

for xm. (3) Zipf coefficient (Holtzman et al., 2019)164

that calculates the Zipf coefficient to analyze the165

vocabulary usage for xm. We utilize the predic-166

tion confidence pD from the SDI model to measure167

the importance of generated sentences in learning168

meaningful sentence embeddings. We select the top169

10% (pD(xm) ↑) and bottom 10% (pD(xm) ↓) of170

the machine-written sentences based on their sorted171

importance and analyze their linguistic features.172

Table 1 presents results to demonstrate that the173

unrealistic samples are significantly shifted from174

the human-written sentences. Further, we observe175

that except for Zipf coefficient in QQP dataset, gen-176

erated sentences with high pD(xm) always have177

scores close to the scores of human-written sen-178

tences (xh) compared to the sentences with low179

pD(xm). We provide a detailed analysis in Ap-180

pendix E. Based on these observations, we confirm181

that there exist a large variance in terms of how182

much the sentences are shifted from human-written183

sentences. Therefore, it is critical to handle the gen-184

erated sentences carefully so that the model is not185

2The accuracy of classifiers of each dataset on the valida-
tion set are 77.87, 83.21, and 93.05% in STSb, MRPC, and
QQP datasets, respectively.

biased to the sentences that are sufficiently differ- 186

ent from human-written sentences (i.e., unrealistic 187

samples). 188

4 Method 189

We now introduce a simple yet effective method, 190

Reweighting Loss based on Importance of 191

Machine-written SEntence (RISE), that aims to 192

give less importance to unrealistic machine-written 193

sentences than realistic sentences. Our method con- 194

sists of two stages: (1) measuring the importance 195

of the generated sentences in learning semantically 196

meaningful embeddings using the prediction con- 197

fidence pD from the SDI model (defined in Sec- 198

tion 3); 2) utilizing the importance score to control 199

the weight of the loss for each example during train- 200

ing so that the model does not deviate significantly 201

from the distribution of the human-written text. 202

The training procedure except for loss is the same 203

as usual training of a sentence embedding model 204

based on the bi-encoder architecture (Reimers and 205

Gurevych, 2019). More details on training the sen- 206

tence encoder are provided in Appendix C. 207

Reweighting Loss using Importance Score. We 208

utilize the prediction confidence pD from the SDI 209

model (Section 3) to measure the importance of 210

generated sentences. In particular, we modify the 211

loss to make the realistic machine-written exam- 212

ples (i.e., examples with high scores) have more 213

contribution to the loss, whereas the unrealistic 214

machine-written examples (i.e., examples with low 215

score) have less contribution (in Figure 2 C). The 216

loss of each example is defined as: 217

Lw(θf) = pD ∗ L(θf), (1) 218

219
where L(θf) denotes the original loss of the sen- 220

tence encoder F for sentence similarity task, and 221

Lw(θf) denotes the modified loss by RISE. θf de- 222

notes the parameters of the sentence encoder. This 223
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STSb QQP MRPC PAWS

Csrc Model r ρ Acc. F1 Acc. F1 F1

STSb DINO 78.45 77.71 73.14 68.04 70.44 81.16 47.30
RISE 79.11 (+0.66) 78.57 (+0.86) 74.47 (+1.33) 69.08 (+1.04) 72.84 (+2.4) 82.01 (+0.85) 50.24 (+2.94)
⌞ Filtering 77.73 (-0.72) 77.45 (-0.26) 73.06 (-0.08) 67.94 (-0.10) 68.96 (-1.48) 81.35 (+0.19) 46.72 (-0.58)
⌞ Random 79.03 (+0.58) 78.39 (+0.68) 73.09 (-0.05) 68.03 (-0.01) 71.09 (+0.65) 81.62 (+0.46) 50.17 (+2.87)

QQP DINO 64.93 65.93 73.20 67.72 70.75 80.40 44.47
RISE 78.36 (+13.43) 77.13 (+11.2) 73.35 (+0.15) 67.76 (+0.04) 72.38 (+1.63) 81.35 (+0.95) 46.28 (+1.81 )
⌞ Filtering 65.24 (+0.31) 66.36 (+0.43) 73.48 (+0.28) 67.95 (+0.23) 69.77 (-0.98) 80.26 (-0.14) 43.36 (-1.11)
⌞ Random 73.49 (+8.56) 72.88 (+6.95) 73.14 (-0.06) 67.75 (+0.03) 69.76 (-0.99) 80.83( +0.43) 46.97 (+2.5)

MRPC DINO 75.51 73.87 71.85 65.70 71.57 81.55 47.35
RISE 77.47 (+1.96) 76.86 (+2.99) 74.23 (+2.38) 68.82 (+3.12) 71.97 (+0.4) 81.95 (+0.4) 49.35 (+2.00)
⌞ Filtering 76.25 (+0.74) 74.88 (+1.01) 71.05 (-0.80) 64.82 (-0.88) 71.34 (-0.23) 80.76 (-0.79) 47.84 (+0.49)
⌞ Random 76.06 (+0.55) 74.51 (+0.64) 72.52 (+0.67) 66.45 (+0.75) 72.19 (+0.62) 81.71 (+0.16) 47.56 (+0.21)

Table 2: Evaluation results of different sentence embedding models on four sentence similarity task dataset. We
highlight the best result within each Csrc in each metric as bold. The number in right bracket indicates the
performance difference with DINO. For regression task, we use Pearson correlation (r) and Spearman’s rank
correlation coefficient (ρ) metrics are used for evaluation. Each score represents the average of five trials.

re-weighting procedure aims to adjust the influence224

of examples based on the extent of shift of the sen-225

tence from the human-written sentences.226

5 Experimental Settings227

We evaluate each model on Paraphrase Adver-228

saries from Word Scrambling of Quora Question229

Pairs (Zhang et al., 2019) (PAWS-QQP) including230

STSb, QQP, and MRPC. It aims to evaluate the231

robustness of the model against adversarial attacks232

for the sentence similarity comparison task. We233

provide more details in the Appendix B.234

We train a model to solve the sentence similarity235

task as a regression problem. However, since all236

datasets except STSb only contain discrete labels,237

we set threshold using the validation dataset to238

make a binary decision.239

We apply our method to DINO and denote it as240

RISE. In addition to experiments with RISE, we241

conduct experiments with the following variants:242

(1) Filtering: We filter out the bottom 10% of the243

machine-written sentences based on their sorted244

importance. We then use the remaining examples245

for training without using our modified loss. (2)246

Random: We randomly sample a scalar value from247

U(0, 1) for each example and use it as it’s impor-248

tance. DINO and variants of our method are based249

on sentence-RoBERTa-base architecture, and are250

fine-tuned on synthetic datasets only.251

6 Results252

Table 2 report the performance of our method253

and the baselines on the sentence similarity task.254

We observe that our model outperforms the strong255

baselines and improves the performance of models 256

trained on synthetic datasets. These results support 257

our assumption that reweighting the loss of each 258

machine-written sentence based on it’s importance 259

would enhance the reliability of the model and mak- 260

ing it less biased to unrealistic machine-written sen- 261

tences. Especially, we find that the magnitude of 262

improvement is usually higher when the model is 263

evaluated on the human-annotated dataset from dif- 264

ferent domain than the source of training data Csrc. 265

These results imply that our method can enhance 266

the robustness of the sentence encoder trained on a 267

synthetic dataset when evaluated on dataset from 268

different domain. In terms of the variants of our 269

method, using the randomly sampled scalar value 270

as an importance score usually degrades perfor- 271

mance. In addition, models that filter out unrealis- 272

tic examples and train without using RISE shows 273

lower performance than RISE. Based on these ob- 274

servations, we confirm that training the model using 275

RISE enhances the reliability of the model. 276

7 Conclusion 277

In this paper, we confirm that the linguistic features 278

of unrealistic machine-written sentences are dissim- 279

ilar to those of human-written sentences. Based on 280

this, we propose a new method to reweight the loss 281

based on the importance of the sentences from syn- 282

thetic data identification (SDI) model for learning 283

semantically meaningful embeddings. The exten- 284

sive experiments show that RISE achieves perfor- 285

mance gains over strong baselines, and the results 286

show the robustness of our model. 287
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Appendix444

A Training Details445

Environment Details All experiments in Table 2 in446

the main paper is implemented in Ubuntu 18.04.4447

LTS, 3090 RTX GPU with 24GB of memory, and448

AMD EPYC 7702. The version of libraries we ex-449

periment are 3.8 for python and 1.4.0 for pytorch.450

We implemented all models with PyTorch using451

Sentence-Transformers3 library from Ubiquitous452

Knowledge Processing Lab.453

Training and Evaluation. We train a model to454

solve sentence similarity task as a regression prob-455

lem. However, since all the datasets except STSb456

only contain discrete labels, we set the threshold457

using validation dataset to make binary decision.458

Training a model takes 5 minutes per epoch.459

Hyperparameter Details The DINO are repro-460

duced as described in the previous works. To com-461

pute sentence simiarity score, we use cosine sim-462

ilarity as distance metric. We search the best hy-463

perparameters using grid search. During the pre-464

diction of SDI model, we use use the temperature465

scaling (τ ) (Kumar et al., 2018) is applied before466

softmax function. The best hyperparameters for467

each dataset of RISE are described as below:

Hyperparameter STSb QQP MRPC
batch size 32 32 32

learning rate 2e-5 2e-5 2e-5
number of epochs 3 3 3

temperature τ 0.5 0.9 0.7

Table 3: Hyperparameters used in experiments. We con-
duct grid search to find the best hyperparameter settings.

468

B Datasets Details469

As aforementioned in Section 3, STSb (Cer et al.,470

2017), QQP, and MRPC (Dolan and Brockett,471

2005) are used to obtain a corpus of human-written472

sentences. The size of corpus |Csrc| is equally set473

to 10,000 across datasets. The set of similarity level474

Y is {0, 0.5, 1}. We generate samples from corpus475

Sentence Textual Simiarlity benchmark(STSb)476

(Cer et al., 2018) consists of sentence pairs drawn477

from news, video and image captions, and natu-478

ral language inference data. Each pair is human-479

annotated with a continuous score from 1 to 5; the480

task is to predict these scores. In this experiment,481

3https://github.com/UKPLab/
sentence-transformers

Data STSb QQP MRPC PAWS-QQP
Xtrain

m 76.9k 78.2k 55.3k -
Xdev

m 59.2k 78.3k 6.3k -
Xdev

src 1.5k 18.1k 0.4k 0.3k
Xtest

src 1.4k 40.4k 1.7k 0.3k

Table 4: Dataset statistics. The class distribution of
MRPC, QQP, and PAWS-QQP is imbalanced.

we normalize the original similarity score to have 482

from 0 to 1. We evaluate using Pearson and Spear- 483

man correlation coefficients. 484

Quora Question Pairs(QQP) 4 consists of ques- 485

tion pairs from the community Quora. The task is to 486

classify that a pairs of question have semantically 487

same meaning. 488

Microsoft Research Paraphrase Corpus(MRPC) 489

(Dolan and Brockett, 2005) is a corpus of sentence 490

pairs from online news sources, with human an- 491

notations for whether the sentences in the pair are 492

semantically same. The class have the imbalanced 493

distribution.(68% positive). 494

Paraphrase Adversaries from Word Scrambling 495

of Quora Question PAWS-QQP (Zhang et al., 496

2019) contains human-labeled and noisily labeled 497

pairs that feature the importance of modeling struc- 498

ture, context, and word order information for the 499

problem of paraphrase identification. The dataset 500

has two subsets, one based on Wikipedia and the 501

other one based on the Quora Question Pairs (QQP) 502

dataset. In this paper, we only use examples based 503

on QQP. The class have the imbalanced distribu- 504

tion.(31.3% positive). 505

C Training Sentence Encoder for 506

Sentence Similarity Task 507

Sentence similarity task aims to determine the sim- 508

ilarity between two sentences. It can be formulated 509

by classifying whether the two sentences are seman- 510

tically similar or not or by measuring the distance 511

between two sentences. A common and scalable 512

approach for this task is based on Bi-encoder ar- 513

chitecture (Reimers and Gurevych, 2019) which 514

involves converting the sentences into embedding 515

vectors and then measuring the similarity between 516

sentences by calculating the distance between them 517

in the embedding space. 518

More formally, given two sentences s1 and s2, 519

and their ground truth similarity score y, a sentence 520

encoder F encodes the sentences, s1 and s2, into 521

4https://quoradata.quora.com/
First-Quora-Dataset-Release-Question-Pairs
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their embedding vectors, e1 and e2, respectively.522

A distance metric d is then used to measure their523

similarity score ŷ, which is defined by:524

ŷ = d(e1, e2). (2)525

This approach aims to predict the similarity526

score (ŷ) close to the ground-truth similarity score527

(y) by minimizing the mean squared error (MSE)528

which is given by:529

L(θf) =
N∑
i=1

(ŷi − yi)
2, (3)530

where θf is the parameter of embedding model F .531

D Limitations and Future Work532

Although extensive experiments shows the effec-533

tiveness of our method, adjustment of the impor-534

tance of each sentence may lead to learning a535

bias from the classifier. In future work, we plan to536

conduct an in-depth human analysis for machine-537

written sentences that are judged to be realistic or538

not. On the other hand, our work focused on unre-539

alistic sentence in sentence similarity comparison540

tasks. The effect of training unrealistic examples in541

other natural language tasks worth to be explored.542

We will remain this analysis as our future work.543

E Detailed Analysis on Table 1544

In this section, we present our detailed observa-545

tions in Table 1 and the results of‘ the different546

N-gram in BLEU and Jaccard similarity. we ob-547

serve that the number of unique N-gram occurs548

frequently when pD(xm) is high. In terms of lex-549

ical similarity (BLEU and Jaccard) with a paired550

sentences, the scores of synthetic sentences xm551

with high pD(xm) are higher about 20 points than552

those with low pD(xm) and are similar to xh. The553

distribution of word usage in generated sentences554

are also close to human-written sentences when555

predicted realistic score is high in two out of three556

datasets. Based on these observations, we confirm557

that even though the sentences are generated by the558

same machine in the same environment, there is a559

large variance in the extent to which the sentences560

are shifted from human-written sentences. There-561

fore, it is critical to handle the generated sentences562

carefully so that the model is not biased to the sen-563

tences that are very different from human-written564

sentences (i.e., unrealistic samples).565

F Additional Results 566

We further compare our model trained on syn- 567

thetic data against the following sentence en- 568

coders that are fine-tuned on natural language 569

inference (NLI) dataset: Universal Sentence En- 570

coder(USE) (Cer et al., 2018), InferSent (Con- 571

neau et al., 2017), sentence-BERT (Reimers and 572

Gurevych, 2019), and sentence-RoBERTa. We also 573

compare our trained model against the models 574

that are not trained on human-annotated dataset, 575

namely: GloVe (Pennington et al., 2014), BERT- 576

CLS, sentence-BERT, sentence-RoBERTa. We 577

present the results in Table 6 along with the results 578

in Table 2. 579

As we can see, our model outperforms all the 580

other baselines that are not trained on human- 581

annotated dataset, and sometimes even better than 582

the models trained on human-annotated dataset 583

(i.e., NLI). Our method contributes to improve the 584

performance of models trained on synthetic dataset. 585

These results support our assumption that adjusting 586

loss of each machine-written sentence according to 587

the importance would help in enhancing the relia- 588

bility of the model and making it less biased by un- 589

realistic machine-written sentences. Especially, We 590

find that the magnitude of improvement is usually 591

higher when the model is evaluated on the dataset 592

which is not a source of human-written sentence xh. 593

These results imply that our method can enhance 594

robustness of the sentence encoder with synthetic 595

dataset when the sentence distribution is shifted. 596

In terms of the variants of our method, using the 597

randomly sampled scalar value as importance score 598

usually degrades performance. In addition, filter- 599

ing unrealistic examples without adjustment show 600

lower performance than RISE. Based on these ob- 601

servations, we confirm that information about how 602

realistic each example is contributes to the sentence 603

encoder trained on synthetically generated datasets. 604
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STSb QQP MRPC
xh pD(xm) ↑ pD(xm) ↓ xh pD(xm) ↑ pD(xm) ↓ xh pD(xm) ↑ pD(xm) ↓

BLEU-1 51.02 40.87 7.53 45.94 46.88 13.46 61.86 59.17 15.19
BLEU-2 37.55 27.01 2.07 32.25 36.14 7.71 51.13 49.36 3.93
BLEU-3 28.51 19.88 1.20 24.19 30.49 5.68 43.57 42.42 1.92
BLEU-4 22.10 15.22 0.90 18.80 26.28 4.57 37.57 36.92 1.30
BLEU-N 34.80 25.75 2.93 30.3 34.95 7.86 48.53 46.97 5.59
Jaccard 41.98 33.97 5.98 39.91 42.49 11.31 53.55 53.33 10.52
Distinct-1 8.5 5.1 1.8 5.7 3.7 3.4 7.8 4.3 2.5
Distinct-2 49.7 36.5 15.0 39.5 25.5 23.4 48.7 31.4 20.1
Distinct-3 75.4 66.2 34.3 69.1 46.5 45.5 77.4 60.6 43.4
Distinct-N 44.53 35.93 17.03 38.10 25.23 24.10 44.63 32.10 22.00
Zipf coeff. 1.03 1.07 1.23 1.11 1.06 1.12 0.98 1.02 1.23

Table 5: Results for comparing the sentences in different group. Jaccard indicates Jaccard similarity score. The score
of generated sentences that is far from human scores is highlighted in underline. For BLEU-N and Distinct-N, we
report the average score with different N .

STSb QQP MRPC PAWS

Csrc Model r ρ Acc. F1 Acc. F1 F1

GloVe 47.30 50.70 68.51 63.30 71.53 80.91 44.16
BERT-CLS 17.18 20.30 66.38 61.50 66.03 79.79 49.32
BERT 47.91 47.29 68.70 64.26 70.38 80.50 46.05
BERT* 74.15 76.98 73.10 67.08 73.39 81.68 53.91
RoBERTa 52.36 54.35 67.91 63.67 72.28 81.20 44.03
RoBERTa* 74.78 77.80 73.56 67.00 75.76 82.46 56.48
USE* 78.72 77.08 73.19 69.27 67.47 80.35 45.34
InferSent* 49.53 50.86 68.94 64.13 65.97 79.32 45.01

STSb DINO 78.45 77.71 73.14 68.04 70.44 81.16 47.30
RISE 79.11 (+0.66) 78.57 (+1.46) 74.47 (1.33) 69.08 (+1.04) 72.84 (+2.4) 82.01 (+0.85) 50.24 (+2.94)
⌞ Filtering 77.73 (-0.72) 77.45 (+0.34) 73.06 (-0.08) 67.94 (-0.10) 68.96 (-1.48) 81.35 (+0.19) 46.72 (-0.58)
⌞ Random 79.03 (+0.58) 78.39 (+1.28) 73.09 (-0.05) 68.03 (-0.01) 71.09 (+0.65) 81.62 (+0.46) 50.17 (+2.87)

QQP DINO 64.93 65.93 73.20 67.72 70.75 80.40 44.47
RISE 78.36 (+13.43) 77.13 (+11.2) 73.35 (+0.15) 67.76 (+0.04) 72.38 (+1.63) 81.35 (+0.95) 46.28 (+1.81 )
⌞ Filtering 65.24 (+0.31) 66.36 (+0.43) 73.48 (+0.28) 67.95 (+0.23) 69.77 (-0.98) 80.26 (-0.14) 43.36 (-1.11)
⌞ Random 73.49 (+8.56) 72.88 (+6.95) 73.14 (-0.06) 67.75 (+0.03) 69.76 (-0.99) 80.83( +0.43) 46.97 (+2.5)

MRPC DINO 75.51 73.87 71.85 65.70 71.57 81.55 47.35
RISE 77.47 (+1.96) 76.86 (+2.99) 74.23 (+2.38) 68.82 (+3.12) 71.97 (+0.4) 81.95 (+0.4) 49.35 (+2.00)
⌞ Filtering 76.25 (+0.74) 74.88 (+1.01) 71.05 (-0.80) 64.82 (-0.88) 71.34 (-0.23) 80.76 (-0.79) 47.84 (+0.49)
⌞ Random 76.06 (+0.55) 74.51 (+0.64) 72.52 (+0.67) 66.45 (+0.75) 72.19 (+0.62) 81.71 (+0.16) 47.56 (+0.21)

Table 6: Evaluation results of different sentence embedding models on four sentence similarity task dataset. The
models trained with human-annotated dataset (e.g., NLI) are marked with *. BERT and RoBERTa indicate sentence-
BERT and sentence-RoBERTa, respectively. We highlight the best result in each pair of Csrc/evaluation datasets
and the best result in overall result in each metric as bold and underline, respectively. The number in right bracket
indicates the performance difference with DINO. For regression task, we use Pearson correlation (r) and Spearman’s
rank correlation coefficient (ρ) metrics are used for evaluation. Each score represents the average of five trials.
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