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Abstract

Semantically meaningful sentence embeddings
are important for numerous tasks in natural lan-
guage processing. To obtain such embeddings,
recent studies explored the idea of utilizing
synthetically generated data from pretrained
language models (PLMs) as a training corpus.
However, PLMs often generate unrealistic sen-
tences (i.e., sentences different from human-
written sentences). We hypothesize that train-
ing a model with these unrealistic sentences
can have an adverse effect on learning semanti-
cally meaningful embeddings. To analyze this,
we first train a classification model that identi-
fies unrealistic sentences and observe that the
linguistic features of the sentences predicted as
unrealistic are significantly different from those
of human-written sentences. Based on this, we
propose a novel approach that first trains the
classifier to measure the importance of each
sentence. The distilled information from the
classifier is then used to train a reliable sentence
embedding model. Through extensive evalua-
tion on four real-world datasets, we demon-
strate that our model trained on synthetic data
generalizes well and outperforms the baselines.

1 Introduction

High-quality sentence embeddings are essential to
diverse applications in natural language process-
ing (Cer et al., 2018; Reimers and Gurevych, 2019).
However, obtaining a large amount of human-
annotated datasets to train a sentence embedding
model is difficult and expensive. To address this,
Schick and Schiitze (2021) recently introduced a
method to train a sentence embedding model on
synthetic data generated from pretrained language
models (PLMs). However, PLMs sometimes pro-
duce unrealistic sentences different from human-
written ones (Solaiman et al., 2019; Holtzman et al.,
2019; Fagni et al., 2020). Therefore, training a
model on synthetic data from PLMs may lead to
performance degradation in various natural lan-
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Figure 1: Sentences generated from the PLMs can be
either realistic or unrealistic. Unrealistic sentences are
distinct from human-written ones, whereas realistic sen-
tences can be considered a subset of human-written
sentences. We explore the effect of reducing the adverse
effects of unrealistic sentences when training a model.

guage processing tasks, but the study on the impact
of such unrealistic data remains under-explored.

To this end, we first provide an in-depth analy-
sis to demonstrate the shift of synthetic samples
(both realistic and unrealistic) from the human-
written sentences. In particular, we train a classifier
(i.e., Synthetic Data Identification (SDI) model)
that identifies synthetic data from human-written
sentences and observes that the linguistic features
of the sentences predicted as unrealistic are much
different from the human-written sentences com-
pared to the linguistic features of the sentences
predicted as realistic. Figure 1 presents an illus-
tration to demonstrate different sentence distribu-
tions. Based on this analysis, we propose a simple
method, Reweighting Loss based on Importance
of Machine-written SEntence (RISE), which first
utilizes the trained SDI model to measure the im-
portance of each sentence in learning semantically
meaningful sentence embeddings. Then, we utilize
this distilled information from the SDI model and
propose a data-item-level reweighting strategy to
train a reliable sentence embedding model.

We evaluate the performance of our method
on four different sentence similarity comparison
datasets. Extensive experiments show that our
model outperforms baseline models and general-
izes better than the baselines across all datasets.

To sum up, our contributions include:

* We analyze the linguistic features of machine-
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BLEU-N  34.80 25.75 2.93 30.3 34.95 7.86 48.53 46.97 5.59
Jaccard 41.98 33.97 5.98 39.91 42.49 11.31 53.55 53.33 10.52
Distinct-N  44.53 35.93 17.03 38.10 25.23 24.10 44.63 32.10 22.00
Zipf coeff. 1.03 1.07 1.23 1.11 1.06 1.12 0.98 1.02 1.23

Table 1: Results for comparing the sentences in different group. Jaccard indicates Jaccard similarity score. The
score of generated sentences far from human scores is highlighted in underline. BLEU-N and Distinct-N indicate
the average score with different N. The full results are available in Appendix E.

written sentences (both unrealistic and realis-
tic) compared to human-written sentences.

* We also propose a simple yet effective method
that first utilizes the Synthetic Data Identifica-
tion (SDI) model to measure the importance
of machine-written sentences for learning se-
mantically meaningful embeddings.

* We then propose a new loss term based on
the importance of sentences to train a reliable
sentence embedding model.

* We extensively evaluate our model on diverse
datasets and observe that our method consis-
tently enhance sentence encoder performance
trained on synthetic datasets.

2 Related Work

Synthetic data generation using pretrained lan-
guage models has shown promising results in vari-
ous natural language processing tasks (Yang et al.,
2020; Papanikolaou and Pierleoni, 2020; Ding
et al., 2020; Edwards et al., 2021; Chang et al.,
2021). Recently, Schick and Schiitze (2021) pro-
posed a new method, DINO, to generate a synthetic
dataset for textual semantic similarity task. Another
recent work, Yoo et al. (2021) proposed a new
data augmentation framework for sentence clas-
sification by leveraging a large-scale PLM (Brown
et al., 2020). However, synthetic data can be mis-
used in malicious usage, such as fake news gen-
eration. To prevent such a fraudulent use, recent
studies (Zellers et al., 2019; Weiss, 2019; Uchendu
et al., 2020; Adelani et al., 2020) aim to detect
the synthetically generated text. On the contrary,
we identify unrealistic sentences from machine-
written data and mitigate their influence to achieve
accurate and robust learning. While Yi et al. (2021)
suggested assigning high weights to challenging
examples in a data augmentation setup, our work
mainly focuses on using only synthetic samples
from PLMs.

3 Analysis on Synthetic Sentences

This section describes the generation of the syn-
thetic dataset, followed by training the model to
identify synthetic sentences from human-written
ones. Then, we present a novel analysis to demon-
strate the shift of synthetic samples (both realistic
and unrealistic) from the human-written sentences.

Synthetic Data Generation. To obtain machine-
generated sentences, we leverage the ability of
prompt-based zero-shot generation in a generative
PLM (Radford et al., 2019) (Figure 2 A). Specif-
ically, given a sentence =, € Cg. Where Cy, is
a set of human-written sentences and the target
similarity level y € Y, this framework produces
a sentence x,, € X,, that has semantic similarity
with zj equal to the target similarity level y. The
generated examples {z,,, z,,y} are later used to
train a model for sentence similarity comparison
tasks.

For generating a synthetic dataset, we use Se-
mantic Textual Similarity benchmark (STSb) (Cer
et al., 2017), Quora Question Pairs (QQP) !,
and Microsoft Research Paraphrase Cor-
pus (MRPC) (Dolan and Brockett, 2005) to
obtain a corpus of human-written sentences. We
follow the details for the data generation process in
Schick and Schiitze (2021). Through this synthetic
data generation process, we obtain about 76k, 78k,
and 55k examples of STSb, QQP, and MRPC
datasets, respectively.

Synthetic Data Identification (SDI). We now
train a binary classification model D based on a
bi-directional PLM (Devlin et al., 2019) to dis-
tinguish machine-written sentences from human-
written sentences (Figure 2 B). We refer to this
model as the Synthetic Data Identification (SDI)
model and train it separately for each C's,... We use
machine-written sentences X,,, and human-written
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Figure 2: Overview of RISE. We feed an instruction /,, and a human-written sentence xy, to the Generator G’ which
produces a machine-written sentence xs. We then measure importance score pp using x4 as input. Finally, we
predict the similarity score using the embedding vector of x; and z;. We compute the loss and multiply p,.

sentences X} in the same proportion for training
the model.”> We use the prediction confidence pp
of the sentence to measure the degree of the shift
of the generated sentences from the human-written
sentences.

Analysis. We now analyze to demonstrate the
shift of synthetic samples from the human-written
sentences. We use the following metrics to ana-
lyze the lexical-level linguistic patterns of each
sentence: (1) BLEU (Papineni et al., 2002) and
Jaccard Similarity (Montahaei et al., 2019) that
calculate the lexical-level similarity between z,,
and its paired sentence. (2) Distinct-N (Li et al.,
2015) that calculates the ratio of unique N-grams
among the total number of N-grams in each group
for x,,. (3) Zipf coefficient (Holtzman et al., 2019)
that calculates the Zipf coefficient to analyze the
vocabulary usage for x,,,. We utilize the predic-
tion confidence pp from the SDI model to measure
the importance of generated sentences in learning
meaningful sentence embeddings. We select the top
10% (pp(xm,) 1) and bottom 10% (pp(xy,) ) of
the machine-written sentences based on their sorted
importance and analyze their linguistic features.
Table 1 presents results to demonstrate that the
unrealistic samples are significantly shifted from
the human-written sentences. Further, we observe
that except for Zipf coefficient in QQP dataset, gen-
erated sentences with high pp(z,,) always have
scores close to the scores of human-written sen-
tences (rp) compared to the sentences with low
pp (). We provide a detailed analysis in Ap-
pendix E. Based on these observations, we confirm
that there exist a large variance in terms of how
much the sentences are shifted from human-written
sentences. Therefore, it is critical to handle the gen-
erated sentences carefully so that the model is not

The accuracy of classifiers of each dataset on the valida-
tion set are 77.87, 83.21, and 93.05% in STSb, MRPC, and
QQP datasets, respectively.

biased to the sentences that are sufficiently differ-
ent from human-written sentences (i.e., unrealistic
samples).

4 Method

We now introduce a simple yet effective method,
Reweighting Loss based on Importance of
Machine-written SEntence (RISE), that aims to
give less importance to unrealistic machine-written
sentences than realistic sentences. Our method con-
sists of two stages: (1) measuring the importance
of the generated sentences in learning semantically
meaningful embeddings using the prediction con-
fidence pp from the SDI model (defined in Sec-
tion 3); 2) utilizing the importance score to control
the weight of the loss for each example during train-
ing so that the model does not deviate significantly
from the distribution of the human-written text.
The training procedure except for loss is the same
as usual training of a sentence embedding model
based on the bi-encoder architecture (Reimers and
Gurevych, 2019). More details on training the sen-
tence encoder are provided in Appendix C.

Reweighting Loss using Importance Score. We
utilize the prediction confidence pp from the SDI
model (Section 3) to measure the importance of
generated sentences. In particular, we modify the
loss to make the realistic machine-written exam-
ples (i.e., examples with high scores) have more
contribution to the loss, whereas the unrealistic
machine-written examples (i.e., examples with low
score) have less contribution (in Figure 2 C). The
loss of each example is defined as:

Lw(af) =PpPpD * [’(ef)? (1)

where £(6y) denotes the original loss of the sen-
tence encoder F' for sentence similarity task, and
L.,(6y) denotes the modified loss by RISE. 6y de-
notes the parameters of the sentence encoder. This



STShb QQP MRPC PAWS
Csre  Model r P Acc. F1 Acc. Fl1 F1

STSh DINO 78.45 77.71 73.14 68.04 70.44 81.16 47.30
RISE 79.11 (+0.66)  78.57 (+0.86) 74.47 (+1.33) 69.08 (+1.04) 72.84 (+2.4)  82.01 (+0.85)  50.24 (+2.94)
L Filtering ~ 77.73 (-0.72) 77.45 (-026)  73.06 (-0.08)  67.94 (-0.10)  68.96 (-1.48)  81.35 (+0.19)  46.72 (-0.58)
L Random  79.03 +0.58)  78.39 (+0.68)  73.09 (-0.05)  68.03 -0.01)  71.09 (+0.65) 81.62 (+0.46)  50.17 (+2.87)

00P DINO 64.93 65.93 73.20 67.72 70.75 80.40 44.47
RISE 78.36 (+13.43)  77.13 (+112) 73.35 (+0.15)  67.76 (+0.04) 72.38 (+1.63) 81.35 (+0.95) 46.28 (+1.81)
L Filtering ~ 65.24 (+0.31)  66.36 (+0.43) 73.48 (+0.28)  67.95 (+0.23)  69.77 -098)  80.26 (-0.14)  43.36 (-1.11)
L Random  73.49 (+8.56)  72.88 (+6.95)  73.14 (-0.06)  67.75 (+0.03)  69.76 (-0.99)  80.83(+0.43) 46.97 (+2.5)

MRPC DINO 75.51 73.87 71.85 65.70 71.57 81.55 47.35
RISE 7747 +1.96)  76.86 (+2.99) 74.23 (+2.38) 68.82 (+3.12)  71.97 (+0.9) 81.95 +04)  49.35 (+2.00)
L Filtering ~ 76.25 (+0.74)  74.88 (+1.01)  71.05 (-0.80)  64.82 (-0.88)  71.34 (-023)  80.76 (-0.79)  47.84 (+0.49)
L Random  76.06 (+0.55)  74.51 (+0.64) 72.52 (+0.67) 66.45 (+0.75) 72.19 (+0.62) 81.71 (+0.16)  47.56 (+0.21)

Table 2: Evaluation results of different sentence embedding models on four sentence similarity task dataset. We
highlight the best result within each Cj,. in each metric as bold. The number in right bracket indicates the
performance difference with DINO. For regression task, we use Pearson correlation () and Spearman’s rank
correlation coefficient (p) metrics are used for evaluation. Each score represents the average of five trials.

re-weighting procedure aims to adjust the influence
of examples based on the extent of shift of the sen-
tence from the human-written sentences.

5 Experimental Settings

We evaluate each model on Paraphrase Adver-
saries from Word Scrambling of Quora Question
Pairs (Zhang et al., 2019) (PAWS-QQP) including
STSb, QQP, and MRPC. It aims to evaluate the
robustness of the model against adversarial attacks
for the sentence similarity comparison task. We
provide more details in the Appendix B.

We train a model to solve the sentence similarity
task as a regression problem. However, since all
datasets except STSb only contain discrete labels,
we set threshold using the validation dataset to
make a binary decision.

We apply our method to DINO and denote it as
RISE. In addition to experiments with RISE, we
conduct experiments with the following variants:
(1) Filtering: We filter out the bottom 10% of the
machine-written sentences based on their sorted
importance. We then use the remaining examples
for training without using our modified loss. (2)
Random: We randomly sample a scalar value from
U(0,1) for each example and use it as it’s impor-
tance. DINO and variants of our method are based
on sentence-RoBERTa-base architecture, and are
fine-tuned on synthetic datasets only.

6 Results

Table 2 report the performance of our method
and the baselines on the sentence similarity task.
We observe that our model outperforms the strong

baselines and improves the performance of models
trained on synthetic datasets. These results support
our assumption that reweighting the loss of each
machine-written sentence based on it’s importance
would enhance the reliability of the model and mak-
ing it less biased to unrealistic machine-written sen-
tences. Especially, we find that the magnitude of
improvement is usually higher when the model is
evaluated on the human-annotated dataset from dif-
ferent domain than the source of training data Cy;...
These results imply that our method can enhance
the robustness of the sentence encoder trained on a
synthetic dataset when evaluated on dataset from
different domain. In terms of the variants of our
method, using the randomly sampled scalar value
as an importance score usually degrades perfor-
mance. In addition, models that filter out unrealis-
tic examples and train without using RISE shows
lower performance than RISE. Based on these ob-
servations, we confirm that training the model using
RISE enhances the reliability of the model.

7 Conclusion

In this paper, we confirm that the linguistic features
of unrealistic machine-written sentences are dissim-
ilar to those of human-written sentences. Based on
this, we propose a new method to reweight the loss
based on the importance of the sentences from syn-
thetic data identification (SDI) model for learning
semantically meaningful embeddings. The exten-
sive experiments show that RISE achieves perfor-
mance gains over strong baselines, and the results
show the robustness of our model.
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Appendix
A Training Details

Environment Details All experiments in Table 2 in
the main paper is implemented in Ubuntu 18.04.4
LTS, 3090 RTX GPU with 24GB of memory, and
AMD EPYC 7702. The version of libraries we ex-
periment are 3.8 for python and 1.4.0 for pytorch.
We implemented all models with PyTorch using
Sentence-Transformers? library from Ubiquitous
Knowledge Processing Lab.

Training and Evaluation. We train a model to
solve sentence similarity task as a regression prob-
lem. However, since all the datasets except STSb
only contain discrete labels, we set the threshold
using validation dataset to make binary decision.
Training a model takes 5 minutes per epoch.
Hyperparameter Details The DINO are repro-
duced as described in the previous works. To com-
pute sentence simiarity score, we use cosine sim-
ilarity as distance metric. We search the best hy-
perparameters using grid search. During the pre-
diction of SDI model, we use use the temperature
scaling (7) (Kumar et al., 2018) is applied before
softmax function. The best hyperparameters for
each dataset of RISE are described as below:

Hyperparameter | STSb QQP MRPC
batch size 32 32 32
learning rate 2e-5  2e-5 2e-5
number of epochs 3 3 3

temperature 7 0.5 0.9 0.7

Table 3: Hyperparameters used in experiments. We con-
duct grid search to find the best hyperparameter settings.

B Datasets Details

As aforementioned in Section 3, STSb (Cer et al.,
2017), QQP, and MRPC (Dolan and Brockett,
2005) are used to obtain a corpus of human-written
sentences. The size of corpus |Cj,.| is equally set
to 10,000 across datasets. The set of similarity level
Y is {0,0.5, 1}. We generate samples from corpus
Sentence Textual Simiarlity benchmark(STSb)
(Cer et al., 2018) consists of sentence pairs drawn
from news, video and image captions, and natu-
ral language inference data. Each pair is human-
annotated with a continuous score from 1 to 5; the
task is to predict these scores. In this experiment,

Shttps://github.com/UKPLab/
sentence-transformers

Data STSb QQP MRPC PAWS-QQP
Xfram 769k 782k  55.3k -

X%v 592k 783k 6.3k -

Xdev 15k 18.1k 0.4k 0.3k
Xfest 14k 404k 1.7k 0.3k

src

Table 4: Dataset statistics. The class distribution of
MRPC, QQP, and PAWS-QQP is imbalanced.

we normalize the original similarity score to have
from O to 1. We evaluate using Pearson and Spear-
man correlation coefficients.

Quora Question Pairs(QQP) “ consists of ques-
tion pairs from the community Quora. The task is to
classify that a pairs of question have semantically
same meaning.

Microsoft Research Paraphrase Corpus(MRPC)
(Dolan and Brockett, 2005) is a corpus of sentence
pairs from online news sources, with human an-
notations for whether the sentences in the pair are
semantically same. The class have the imbalanced
distribution.(68% positive).

Paraphrase Adversaries from Word Scrambling
of Quora Question PAWS-QQP (Zhang et al.,
2019) contains human-labeled and noisily labeled
pairs that feature the importance of modeling struc-
ture, context, and word order information for the
problem of paraphrase identification. The dataset
has two subsets, one based on Wikipedia and the
other one based on the Quora Question Pairs (QQP)
dataset. In this paper, we only use examples based
on QQP. The class have the imbalanced distribu-
tion.(31.3% positive).

C Training Sentence Encoder for
Sentence Similarity Task

Sentence similarity task aims to determine the sim-
ilarity between two sentences. It can be formulated
by classifying whether the two sentences are seman-
tically similar or not or by measuring the distance
between two sentences. A common and scalable
approach for this task is based on Bi-encoder ar-
chitecture (Reimers and Gurevych, 2019) which
involves converting the sentences into embedding
vectors and then measuring the similarity between
sentences by calculating the distance between them
in the embedding space.

More formally, given two sentences s; and So,
and their ground truth similarity score y, a sentence
encoder F' encodes the sentences, s; and s, into

*https://quoradata.quora.com/

First-Quora—-Dataset—-Release—Question—-Pairs
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their embedding vectors, e; and e, respectively.
A distance metric d is then used to measure their
similarity score g, which is defined by:

:l) = d(el,eg). (2)

This approach aims to predict the similarity
score (y) close to the ground-truth similarity score
(y) by minimizing the mean squared error (MSE)
which is given by:

N

L(6) =D (9 —vi)*, 3)

i=1
where 0 is the parameter of embedding model F'.

D Limitations and Future Work

Although extensive experiments shows the effec-
tiveness of our method, adjustment of the impor-
tance of each sentence may lead to learning a
bias from the classifier. In future work, we plan to
conduct an in-depth human analysis for machine-
written sentences that are judged to be realistic or
not. On the other hand, our work focused on unre-
alistic sentence in sentence similarity comparison
tasks. The effect of training unrealistic examples in
other natural language tasks worth to be explored.
We will remain this analysis as our future work.

E Detailed Analysis on Table 1

In this section, we present our detailed observa-
tions in Table 1 and the results of‘ the different
N-gram in BLEU and Jaccard similarity. we ob-
serve that the number of unique N-gram occurs
frequently when pp(z,,) is high. In terms of lex-
ical similarity (BLEU and Jaccard) with a paired
sentences, the scores of synthetic sentences x,,
with high pp(z,,) are higher about 20 points than
those with low pp(z,,) and are similar to xp. The
distribution of word usage in generated sentences
are also close to human-written sentences when
predicted realistic score is high in two out of three
datasets. Based on these observations, we confirm
that even though the sentences are generated by the
same machine in the same environment, there is a
large variance in the extent to which the sentences
are shifted from human-written sentences. There-
fore, it is critical to handle the generated sentences
carefully so that the model is not biased to the sen-
tences that are very different from human-written
sentences (i.e., unrealistic samples).

F Additional Results

We further compare our model trained on syn-
thetic data against the following sentence en-
coders that are fine-tuned on natural language
inference (NLI) dataset: Universal Sentence En-
coder(USE) (Cer et al., 2018), InferSent (Con-
neau et al., 2017), sentence-BERT (Reimers and
Gurevych, 2019), and sentence-RoBERTa. We also
compare our trained model against the models
that are not trained on human-annotated dataset,
namely: GloVe (Pennington et al., 2014), BERT-
CLS, sentence-BERT, sentence-RoBERTa. We
present the results in Table 6 along with the results
in Table 2.

As we can see, our model outperforms all the
other baselines that are not trained on human-
annotated dataset, and sometimes even better than
the models trained on human-annotated dataset
(i.e., NLI). Our method contributes to improve the
performance of models trained on synthetic dataset.
These results support our assumption that adjusting
loss of each machine-written sentence according to
the importance would help in enhancing the relia-
bility of the model and making it less biased by un-
realistic machine-written sentences. Especially, We
find that the magnitude of improvement is usually
higher when the model is evaluated on the dataset
which is not a source of human-written sentence xy,.
These results imply that our method can enhance
robustness of the sentence encoder with synthetic
dataset when the sentence distribution is shifted.
In terms of the variants of our method, using the
randomly sampled scalar value as importance score
usually degrades performance. In addition, filter-
ing unrealistic examples without adjustment show
lower performance than RISE. Based on these ob-
servations, we confirm that information about how
realistic each example is contributes to the sentence
encoder trained on synthetically generated datasets.



STSb QQP MRPC
Th pD("L"m) 0 pD(l‘m) \L Th pD(CL'm) ) pD(fL'm) 1 Th pD($m) T pD(l'm) 1

BLEU-1 5102  40.87 753 4594  46.88 1346 6186  59.17 15.19
BLEU-2 3755  27.01 207 3225  36.14 771 5113 4936 3.93

BLEU-3 2851  19.88 120 2419 3049 568 4357 4242 1.92

BLEU-4  22.10 1522 090  18.80  26.8 457 3757 3692 1.30
BLEU-N 3480 2575 2.93 303 34.95 7.86 4853 4697 5.59
Jaccard 4198  33.97 598 3991 4249 1131 5355 5333 10.52
Distinct-1 8.5 5.1 1.8 5.7 37 3.4 7.8 43 25

Distinct-2 ~ 49.7 36.5 15.0 39.5 25.5 234 48.7 314 20.1
Distinct-3  75.4 66.2 343 69.1 46.5 45.5 77.4 60.6 434
DistincttN  44.53  35.93 1703 38.10 2523 24.10  44.63 3210 22.00
Zipf coeff.  1.03 1.07 1.23 111 1.06 112 0.98 1.02 1.23

Table 5: Results for comparing the sentences in different group. Jaccard indicates Jaccard similarity score. The score
of generated sentences that is far from human scores is highlighted in underline. For BLEU-N and Distinct-N, we
report the average score with different V.

STSb QQP MRPC PAWS
Core Model T p Acc. F1 Acc. F1 F1
GloVe 47.30 50.70 68.51 63.30 71.53 80.91 44.16
BERT-CLS 17.18 20.30 66.38 61.50 66.03 79.79 49.32
BERT 4791 47.29 68.70 64.26 70.38 80.50 46.05
BERT* 74.15 76.98 73.10 67.08 73.39 81.68 53.91
RoBERTa 52.36 54.35 67.91 63.67 72.28 81.20 44.03
RoBERTa* 74.78 77.80 73.56 67.00 75.76 82.46 56.48
USE* 78.72 77.08 73.19 69.27 67.47 80.35 45.34
InferSent* 49.53 50.86 68.94 64.13 65.97 79.32 45.01
STSh DINO 78.45 77.71 73.14 68.04 70.44 81.16 47.30
RISE 79.11 (+0.66)  78.57 (+1.46) 74.47 1.33)  69.08 (+1.04) 72.84 (+2.4)  82.01 (+0.85)  50.24 (+2.94)
L Filtering 7773 (-0.72)  77.45 (+034)  73.06 (-0.08) 67.94 (-0.10)  68.96 (-1.48)  81.35 (+0.19)  46.72 (-0.58)
L Random 79.03 (+0.58)  78.39 (+1.28)  73.09 (-0.05)  68.03 (-0.01)  71.09 (+0.65) 81.62 (+0.46)  50.17 (+2.87)
00P DINO 64.93 65.93 73.20 67.72 70.75 80.40 44 47
RISE 78.36 (+13.43) 7713 (+11.2)  73.35(+0.15)  67.76 (+0.04)  72.38 (+1.63)  81.35 (+0.95) 46.28 (+1.81)
L Filtering 65.24 +0.31)  66.36 (+0.43)  73.48 (+0.28)  67.95 (+0.23)  69.77 (-0.98)  80.26 (-0.14)  43.36 (-1.11)
L Random 73.49 (+8.56)  72.88 (+6.95)  73.14 (-0.06)  67.75 (+0.03)  69.76 (-0.99)  80.83(+0.43) 46.97 (+2.5)
MRPC DINO 75.51 73.87 71.85 65.70 71.57 81.55 47.35
RISE 7747 +1.96) 76.86 (+2.99) 74.23 (+2.38) 68.82 (+3.12)  71.97 (+0.4) 81.95 +04)  49.35 (+2.00)
L Filtering 76.25 (+0.74)  74.88 (+1.01)  71.05(-0.80)  64.82 (-0.88) 7134 (-023)  80.76 (-0.79)  47.84 (+0.49)
L Random 76.06 (+0.55)  74.51 (+0.64) 72.52 (+0.67) 66.45 (+0.75) 72.19 (+0.62) 81.71 (+0.16)  47.56 (+0.21)

Table 6: Evaluation results of different sentence embedding models on four sentence similarity task dataset. The
models trained with human-annotated dataset (e.g., NLI) are marked with *. BERT and RoBERTa indicate sentence-
BERT and sentence-RoBERTS, respectively. We highlight the best result in each pair of Cj,../evaluation datasets
and the best result in overall result in each metric as bold and underline, respectively. The number in right bracket
indicates the performance difference with DINO. For regression task, we use Pearson correlation () and Spearman’s
rank correlation coefficient (p) metrics are used for evaluation. Each score represents the average of five trials.



