
Measuring the effect of pretraining a hierarchical autoencoder for binary
intent classification on data with similar structure

Emilien Jemelen†
ENSAE - IP Paris

emilien.jemelen@ensae.fr

Christophe Morau†
ENSAE - IP Paris

christophe.morau@ensae.fr

Abstract

In this article, we examine the potential of the
hierarchical autoencoder presented in (Cha-
puis et al., 2020) for classifying movie re-
views. Our objective is to determine how ef-
fective this model, which is tailored for pro-
cessing conversations and utterances, is when
applied to tasks with different hierarchical
structures.

Our findings indicate that pretraining the hier-
archical model on a dataset of movie subtitles
unexpectedly fails to enhance prediction accu-
racy and performs worse than the same model
without any pretraining. This suggests that
the structure learned from subtitle conversa-
tions may not always generalize well to written
paragraphs. These results prompt a discussion
on the requirements that both data and models
should meet to qualify for an accuracy boost
through hierarchical pretraining.

In conclusion, our study provides novel in-
sights into the potential of hierarchical autoen-
coders for natural language processing tasks
and emphasizes the importance of compre-
hending the specific characteristics of data to
optimize model performance.

1 Introduction

Sentiment analysis, the process of determining the
emotional tone or attitude expressed in a piece of
text, is becoming increasingly important in vari-
ous fields such as marketing, social media (Witon*
et al., 2018), and customer service . The senti-
ment of a sentence can provide valuable insights
into the opinions, preferences, and needs of indi-
viduals, groups, or communities.

In the context of social media, for example, sen-
timent analysis can be used to track the public’s re-

†With equal contribution

sponse to a product launch, political event, or so-
cial issue. In customer service, sentiment analysis
can help companies identify and address customer
complaints or feedback in real-time (Jalalzai*
et al., 2020; Colombo* et al., 2019), thus improv-
ing customer satisfaction and loyalty. In addition,
sentiment analysis (Pichler et al., 2022; Colombo
et al., 2022, 2021) can be used to filter out inappro-
priate or offensive content from online platforms
and detect potential threats or risks.

Overall, understanding the sentiment of a sen-
tence is crucial in today’s digital world, where
large amounts of text are generated and consumed
every day. Sentiment analysis provides a power-
ful tool for extracting valuable insights from text
data and improving various NLP applications, ulti-
mately benefiting individuals, businesses, and so-
ciety as a whole (Colombo, 2021).

In this paper, we studied an extension of the
hierarchical autoencoder proposed by (Chapuis
et al., 2020) to a different type of problems: pre-
dicting if a movie review is either positive or neg-
ative. Our idea was that the hierarchical encoder,
which captures signals both from the utterance and
dialog levels, might also be able to model the inter-
actions between the sentences of a movie review.

2 Related works

We relied heavily on the methodology introduced
in (Chapuis et al., 2020), in which the authors
proposed a neural net approach for sentiment
recognition based on the pretraining of a hi-
erarchical autoencoder. By masking pieces of
utterances and - at a higher level - utterances them-
selves in the context of dialogs, the pretraining
allows the autoencoder to get a deep under-
standing of the language structure itself before
proceeding to any specific posterior classification
task. The model is composed of a first layer of



several transformers responsible to process the
utterances, a second layer responsible to process
the whole dialog through another transformer
and a decoder. The hierarchical autoencoder was
trained using MLM loss and GAP loss. After the
pretraining, the encoder was reused to finetune
a classification task on the identification of dia-
log acts and of sentiments and emotions in dialogs.

We were also inspired by the works of (Garcia
et al., 2019). Considering that opinions have in-
herently a hierarchical structure, they proposed a
hierarchical model to classify opinions expressed
through videos. In such a model, each sentence
contributes to the final score which determines the
classification. Our aim was then to study how well
the hierarchical model described in (Chapuis et al.,
2020) would fare in a similar context : identifying
if written movie reviews are either positive or neg-
ative (i.e. the viewer liked or disliked the movie).

3 Method

3.1 Pretraining

Since we were trying to assess how well the
hierarchical autoenconder proposed by (Chapuis
et al., 2020) could be generalized to another
classification problem, we mostly reused its exact
same structure in our project. The first layer was
composed of several transformers, each one of
them being responsible to process one utterance.
The output of these transformers were then
concatenated and fed into another transfomer, in
charge of processing information at the dialog
level. Following the methogology of the original
paper, a dialog was defined as a sequence of
utterances with less than 6 seconds between them.
Finally, a transformer decoder was in charge of
retrieving the original information fed into the
encoder for a given utterance.

Fig n°1, taken from (Chapuis et al., 2020) :
general structure of the proposed hierarchical

dialog encoder, with a decoder: fu
θ , fd

θ and
the sequence label decoder gdecθ are colored
respectively in green, blue and red

To pretrain the model, we chose to focus en-
tirely on the MLM loss. The Masked Language
Model (MLM) loss, from (Devlin et al., 2018),
(Liu et al., 2019), and (Lan et al., 2019) is an ob-
jective function that relies on the maximization of
the probabilities to retrieve successfully the true
value of some tokens that were masked. For a
given utterance ui in which the set of tokens M
were masked:

Lu(θ, ui, ũi) = E[
∑
t∈M

log(pθ(wt|ũi))]

where wt is the original token before it was
masked as t and ũi is the corrupted utterance. As
in (Chapuis et al., 2020), we generalize the MLM
loss to also apply masks at the utterance level in-
stead of the tokens level in order to better train
our hierarchical model. Considering an utterance
S that we fully mask, our definition of the gener-
alized MLM was:

LC(θ, C, C̃) = E[
∑
t∈S

log(pθ(wt|C̃))]

with C̃ the corrupted corpus. Finally, given a cor-
rupted version of the corpus C̃t randomly masked
at the token level and a corrupted version of the
corpus C̃S masked at the utterance level, our ob-
jective function is:

Lobj(θ, C) = λ1

∑
ũ∈C̃t

Lu(θ, u, ũ)+λ2LC(θ, C, C̃S)

with λ1, λ2 convex weights.

3.2 Finetuning
The hierarchical autoencoder, once pretrained,
should be able to understand the structure of a text
not only at the token level (a token can be pre-
dicted based on its context) but also at the utter-
ance level. Considering that predicting a masked
utterance from a time-split sequence of OpenSub-
titles utterances could be similar to predicting a
punctuation-split movie review, we expected this
to be helpful to classify movie reviews.

Instead of relying on the presence and contri-
bution of some key tokens (e.g. ”bad”, ”good”)
to make a prediction, a finetuned model using the
pretrained architecture would better understand



opinions at the sentence level (e.g. ”The movie
was a bit disappointing” / ”But overall it was still
fun”) and use this information to better understand
the review.

The information about the structure of a text
and the way utterances interact with each other
was learnt by the two layers of transformers of
our pretrained model : the hierarchical encoding
part. The decoding part which had been used
to pretrain the model could then be dropped. In
our architecture, the output of the hierarchical
encoder was of dimension W × D, with W
the total number of tokens of the corpus and D
the embedding dimension. Since we wanted to
measure the contribution of each utterance, we
first reallocated each token to its utterance in
order to have a tensor of dimension S × D′ with
S the total number of sentences in the review
and D′ = D ∗ P with P the padded size of each
sentence.

We then added one last layer with 2 output neu-
rons on top of our pretrained model, plus a soft-
max was applied to the outputs of the model to
have the probabilites of belonging to each class
(positive / negative review). The final output is of
dimension S × 2 and each line can be interpreted
as the contribution of a sentence to the decision:
with some level of confidence (the probabilities),
the columns express whether the review will be
negative or positive according to each sentence. To
make a final decision on the opinion of the review,
we summed the probabilities (to take into account
all the different ”votes”) and took the class with
the maximum value (the most popular vote).

That last layer is the one that is finetuned. To
train the model, we used the cross-entropy loss on
the (normalized) sum of probabilities that is used
to make the final decision.

4 Experiments Protocol

All the code implementation is available with open
access on our Google Colab webpage1.

4.1 Data preprocessing for the pretraining

After loading one half of the French OpenSubti-
tles database2 (for a total of 1.2 GB of data), we

1https://colab.research.google.com/drive/1riDtBYltV
syup8Vr6-hCATJvPJNWaCmR?usp=sharing

2https://opus.nlpl.eu/OpenSubtitles-alt-v2018.php

followed the preprocessing steps from (Chapuis
et al., 2020) and associated two successive utter-
ances in a common conversation when the time
between them was less or equal than 6 seconds.

For the OpenSubtitles conversations to be
treated batch-wise by a Dataloader module (which
is the only way we found to do the pretraining
without reaching the limits of the Colab environ-
ment at our disposal), we had to proceed to an
additional padding step both at the sentence and
at the dialog levels. Given the distribution of the
sizes of tokenized sentences and of conversations,
a limit of 30 tokens per sentence and a limit of 10
sentences per dialog seemed reasonable.

Since embeddings are required as inputs of the
model, we first built a tokenizer based on the vo-
cabulary of the OpenSubtitles utterances. In a sec-
ond time, we contemplated using Word2Vec em-
bedding module to turn tokens into embeddings
of a certain size (100 in our case, due to limited
computation capacity). Yet, Word2Vec seemed to
struggle with punctuation marks, which would be
important in our case, so a custom FastText em-
bedding model trained on our OpenSubstitles ut-
terances was prefered instead.

4.2 Protocol of the pretraining

The pretraining of the autoencoder was done
on one third of the preprocessed OpenSubtitles
data using a stochastic gradient descent on all
the parameters. No particular adjustment was
required (gradients clipping, for instance) as the
learning phase showed a clear and smooth de-
crease of the batch-wise MLM loss. Nonetheless,
each pretraining epoch would require a very high
computation capacity, so only 3 epochs could be
conducted entirely.

Fig. n°2 : per-epoch MLM losses

Remarks on Fig. n°2 :
We had to stop the pretraining long before

reaching the flat part of the learning curve.
The gradient descent was performed on the pa-

rameters of the autoencoder, so there is no notion



of classification so far. To be more precise, we
made the hypothesis that the decrease of the MLM
loss (i.e. the improvement of the model parame-
ters in terms of prediction of the masked elements
of the OpenSubtitles training corpus) would result
later in a more accurate classification layer. This
assumption will be examined later in this paper.

4.3 Protocol of the training for classification
of movie reviews

The data used for training and testing the classifi-
cation layer of the model were taken from the Al-
locine movie reviews available in the Huggingface
database3.

The training of the classification layer was per-
formed by stochastic gradient descent using all
the reviews in the Allocine train set (for a total
of 160,000 reviews and their labels : ”positive”
or ”negative”) and the cross entropy loss function
from Pytorch.

Conversely to the pretraining gradient descent,
the training of the classification layer quickly ap-
peared to be problematic, due to the explosion of
oscillating gradients (vectors of higher and higher
norms with nearly exact opposite values). A rea-
son for this explosion could have been that the loss
was stuck at a local yet not optimal mode.

After trying - without much improvement - to
fine-tune the learning rate and momentum param-
eters of the descent, plus trying another method of
parameters optimization (Adam from Pytorch), a
clear improvement came from limiting the norm
of the gradients, a method also known as ”clip-
ping”. Different values were tested, and a clip-
ping of the gradients norms at 1 seemed best, al-
lowing the loss to decrease slowly but consistently
through epochs.

3https://huggingface.co/datasets/allocine

Fig. n°3 : Geogebra illustration of the interest
of clipping the gradients in the case of narrow
slopes region

After 30 training epochs, it seemed that we had
reached a flatter part of the learning curve in terms
of cross-entropy. The losses through epochs are
displayed below :

Fig. n°4 : evolution of the per-epoch cross-entropy
during the training of the classification layer

Remark on Fig. n°4 : the per-epoch cross-
entropy loss went down from around 107,000 to
approximately 93,000. Even on the train set, it
seems that the classification layer training results
are quite limited.



5 Results

To assess the accuracy of our pretrained model for
the classification of Allocine movie reviews, we
drew randomly 50 bootstrapped sets of 20 reviews
from the whole test dataset (which contained
20,000 reviews, so any statistic computed on the
base of the 10,000 bootstrapped reviews should
represent the whole test data) and computed the
average accuracy of review classification per
bootstrapped set. Below is the distribution of the
accuracy over the bootstrapped sets of reviews :

Fig. n°5 : distribution of the classification
accuracies over bootstrapped sets of reviews

Remarks on Fig. n°5 :
The classification model does not happen to per-

form worse than randomness.
The global average accuracy of prediction over

the bootstrapped sets of movie reviews is 64%.

6 Discussion/Conclusion

After a computationally greedy pretraining of
our hierarchical autoencoder and a training of a
classification layer, we reached an accuracy of
movie reviews classification of 64%. One can
wonder how much the pretraining is accountable
for this accuracy result : would a not pretrained
model have performed the same way or even
better after a similar training for classification ?

To answer that question, we instanciated our
model without any pretraining (ie with random
weights) and subsequently proceeded to the same
training of the classification layer as for our
pretrained model (30 epochs of gradient descent
with the exact same parameters).

As a result, the accuracy of the model trained
for classification but without any pretraining
scored an accuracy of 68% of correct predictions

for movie reviews classification (our pretrained
model had scored only 64%). Therefore, the
pretraining as we did it seems to have been no
more than a poor initialization position for the
gradient descent of the classification layer.

There might be different reasons that could
explain the poor performance of hierarchical
pretraining in our case. Notably, it could be that
our custom FastText model trained only on the
limited OpenSubtitles data has overfitted these
data and could not really capture the signals of
movie reviews, which are utterances of quite
different lexical fields. Another possibility could
be that we wrongly assumed that predicting a
masked utterance from a time-split sequence of
OpenSubtitles utterances would be similar to
predicting a punctuation-split movie review.

To get a clear-cut answer about the relevance
of the hierarchical pretraining for the movie re-
views classification problem and maybe find a way
of improvement of the baseline accuracy score, it
would be interesting to pretrain the autoencoder
on a dedicated portion of the Allocine movie re-
views dataset, in order to elude the potential is-
sues of too different lexical fields and the time-
split utterance/punctuation-split sentence similar-
ity assumption.



. References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Wojciech Witon*, Pierre Colombo*, Ashutosh Modi,
and Mubbasir Kapadia. 2018. Disney at iest 2018:
Predicting emotions using an ensemble. In Wassa
@EMNP2018.

Pierre Colombo*, Wojciech Witon*, Ashutosh Modi,
James Kennedy, and Mubbasir Kapadia. 2019.
Affect-driven dialog generation. NAACL 2019.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for selfsupervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Alexandre Garcia, Pierre Colombo, Slim Essid, Flo-
rence d’Alché Buc, and Chloé Clavel. 2019. From
the token to the review: A hierarchical multi-
modal approach to opinion mining. arXiv preprint
arXiv:1908.11216v3.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Hamid Jalalzai*, Pierre Colombo*, Chloé Clavel, Éric
Gaussier, Giovanna Varni, Emmanuel Vignon, and
Anne Sabourin. 2020. Heavy-tailed representa-
tions, text polarity classification & data augmenta-
tion. NeurIPS 2020.

Emile Chapuis, Pierre Colombo, Matteo Manica,
Matthieu Labeau, and Chloé Clavel. 2020. Hierar-
chical pre-training for sequence labelling in spoken
dialog. arXiv preprint arXiv:2009.11152v3.

Pierre Colombo. 2021. Learning to represent and gen-
erate text using information measures. Ph.D. thesis,
(PhD thesis) Institut polytechnique de Paris.

Pierre Colombo, Chloe Clavel, and Pablo Piantanida.
2021. A novel estimator of mutual information for
learning to disentangle textual representations. ACL
2021.

Georg Pichler, Pierre Jean A Colombo, Malik Boudiaf,
Günther Koliander, and Pablo Piantanida. 2022. A
differential entropy estimator for training neural net-
works. In ICML 2022.

Pierre Colombo, Guillaume Staerman, Nathan Noiry,
and Pablo Piantanida. 2022. Learning disentan-
gled textual representations via statistical measures
of similarity. ACL 2022.


