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ABSTRACT

Forecasting rare events in multivariate time-series data is challenging due to severe
class imbalance, long-range dependencies, and distributional uncertainty. We in-
troduce EVEREST, a transformer-based architecture for probabilistic rare-event
forecasting that delivers calibrated predictions and tail-aware risk estimation, with
auxiliary interpretability via attention-based signal attribution. EVEREST inte-
grates four components: (i) a learnable attention bottleneck for soft aggregation
of temporal dynamics; (ii) an evidential head for estimating aleatoric and epis-
temic uncertainty via a Normal–Inverse–Gamma distribution; (iii) an extreme-
value head that models tail risk using a Generalized Pareto Distribution; and (iv)
a lightweight precursor head for early-event detection. These modules are jointly
optimized with a composite loss (focal loss, evidential NLL, and a tail-sensitive
EVT penalty) and act only at training time; deployment uses a single classifi-
cation head with no inference overhead (approximately 0.81M parameters). On
a decade of space-weather data, EVEREST achieves state-of-the-art True Skill
Statistic (TSS) of 0.973/0.970/0.966 at 24/48/72-hour horizons for C-class flares.
The model is compact, efficient to train on commodity hardware, and applica-
ble to high-stakes domains such as industrial monitoring, weather, and satellite
diagnostics. Limitations include reliance on fixed-length inputs and exclusion
of image-based modalities, motivating future extensions to streaming and multi-
modal forecasting.

1 INTRODUCTION

Rare, high-impact events in multivariate time series pose a central challenge in machine learning,
with direct implications for space weather, industrial monitoring, power systems, and satellite health.
Models must contend with three factors simultaneously: severe class imbalance, long-range tempo-
ral dependencies that dilute early precursors, and the need for calibrated probabilities and explicit
tail-risk assessment in thresholded, operational decision-making. Standard objectives under-weight
extremes, and average losses (e.g., cross-entropy) provide little guidance in settings where false
negatives are disproportionately costly.

These challenges are threefold. First, extreme rarity and long horizons make discriminative learning
difficult: positive sequences are sparse, contexts are long, and recent long-horizon architectures—
from frequency-based decompositions (Zhou et al., 2022) to patching (Nie et al., 2023) and modern
convolutions (Luo & Wang, 2024)—improve aggregation but do not directly address calibration
under rarity. Prior forecasting models such as recurrence-based approaches (Liu et al., 2019), hy-
brid CNN–Transformer designs (Sun et al., 2022), and flare-specific architectures (Abduallah et al.,
2023) achieve strong discrimination but provide limited tools for calibrated uncertainty or tail be-
haviour. Second, high-stakes applications require reliable probabilities: miscalibration degrades
operational utility, especially for rare-event thresholds where uncertainty decomposition (aleatoric
vs. epistemic) matters for decision support (Sensoy et al., 2018; Amini et al., 2020; van Amersfoort
et al., 2020). Third, catastrophic outcomes occupy the far tail, where standard losses provide lit-
tle gradient signal; modelling exceedances beyond a high quantile is well studied in extreme-value
theory (EVT) (Coles, 2001; de Haan & Ferreira, 2006), but rarely coupled with neural sequence
models.
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Here we show that these three challenges can be jointly addressed in a single, compact trans-
former. We introduce EVEREST, which integrates a learnable single-query attention bottleneck
for long-range temporal aggregation with three training-only auxiliaries: an evidential Normal–
Inverse–Gamma (NIG) head that regularises logit calibration, an EVT exceedance head that shapes
far-tail behaviour using a Generalised Pareto penalty, and a lightweight precursor head that imposes
anticipatory supervision. These components act solely during training; inference uses a single clas-
sification head, so runtime cost is identical to a standard transformer of comparable size. Across
nine SHARP–GOES solar-flare tasks (2010–2023), EVEREST achieves state-of-the-art TSS (e.g.,
0.973/0.970/0.966 for ≥C at 24/48/72 h and 0.907/0.936/0.966 for ≥M5) with strong calibra-
tion (e.g., M5–72 h ECE = 0.016). The model also transfers without architectural changes to an
industrial anomaly dataset (SKAB), reaching F1 = 98.16% and TSS = 0.964.

The design is intentionally practical and general: a single encoder and bottleneck aggregate tem-
poral evidence; training-only auxiliaries regularise the shared representation; inference remains
lightweight (0.81M parameters, no auxiliary heads). We provide extensive ablations quantifying
the marginal utility of each component and analyse reliability, tail sensitivity, and thresholded deci-
sion performance. We further provide systematic sensitivity analyses over evidential and EVT loss
weights and exceedance quantiles, showing that performance is robust across wide hyperparameter
ranges—consistent with these terms acting as regularisers rather than fragile knobs.

The remainder of the paper situates the method among recent time-series transformers, calibration
approaches, and EVT-based models; details the backbone, bottleneck, auxiliaries, and composite
loss; and presents results, ablations, robustness studies, and limitations. We conclude by discussing
broader applicability in scientific and industrial forecasting, where compact, calibrated, tail-aware
models are increasingly required.

2 RELATED WORK

Our work draws on a long history of work scattered across multiple research communities. Let us
present these in turn:

Rare-event time series and imbalance. Forecasting rare events in multivariate time series re-
quires handling both severe class imbalance and long temporal dependencies. Early approaches of-
ten treated each window independently, combining hand-crafted features with a classifier, whereas
modern deep models such as TCNs and Transformers exploit sequential structure more effectively.
Cost-sensitive objectives like focal loss address imbalance without altering the data distribution,
while aggressive oversampling can introduce temporal artefacts or leakage, motivating loss-based
rather than data-based rebalancing strategies for scientific and operational settings. Recent super-
vised pipelines report strong solar-flare discrimination at 24–72 h horizons, including CNN/RNN
hybrids and flare-specific Transformers (Liu et al., 2019; Sun et al., 2022; Abduallah et al., 2023).
We report results on the same SHARP–GOES benchmark.

Transformers for time series. Transformers have become highly competitive in time-series fore-
casting, but naı̈ve self-attention incurs O(T 2) cost. Recent architectures address this by restructur-
ing temporal information through patch/token re-organization with channel-first encoders (Nie et al.,
2023), frequency- or decomposition-based long-horizon modules (Zhou et al., 2022), or inverted de-
signs that summarize time before mixing channels (Liu et al., 2024). Pure-convolutional models
can rival attention on long sequences at lower computational cost (Luo & Wang, 2024). Our single-
query attention bottleneck provides a lightweight, task-conditioned global aggregator in this design
space, conceptually closer to attention pooling and global token mechanisms (Ilse et al., 2018; Lee
et al., 2019) than to full self-attention over all time steps.

Calibration and evidential learning. High-stakes forecasting requires not only discriminative ac-
curacy but also reliable probabilities. Beyond common metrics such as TSS or AUPRC, calibration
metrics (ECE, Brier score) directly inform operational thresholding. Post-hoc strategies such as
temperature scaling (Guo et al., 2017) can improve marginal reliability but cannot recover input-
conditional epistemic uncertainty. Deterministic OOD surrogates and deep ensembles (van Amers-
foort et al., 2020; Lakshminarayanan et al., 2017) offer stronger uncertainty estimates at higher
computational cost. Evidential methods instead learn closed-form distributional parameters, e.g.
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Dirichlet for classification or Normal–Inverse–Gamma (NIG) for regression, enabling uncertainty
decomposition without Monte Carlo sampling (Sensoy et al., 2018; Amini et al., 2020). Com-
plementary developments in conformal prediction provide distribution-shift–robust error control in
time series (Ding et al., 2023). We adopt an evidential NIG head directly on the logit to regularise
calibration during training.

Tail risk and EVT in machine learning. Standard objectives under-weight catastrophic extremes
because they allocate little gradient mass to high-quantile regions. The peaks-over-threshold frame-
work from extreme value theory (EVT) offers a principled treatment of distribution tails using Gen-
eralized Pareto exceedances (Coles, 2001; de Haan & Ferreira, 2006). Recent work has applied
EVT to extreme-event prediction directly on time-series signals (Kozerawski et al., 2022). Our ap-
proach differs in that the GPD is fitted to logit exceedances, allowing EVT to act as a training-time
tail-shaping regulariser rather than a post-hoc or residual-based tail estimator.

Auxiliary/precursor supervision and multi-task learning. Auxiliary tasks can improve a pri-
mary task by regularising a shared backbone, even when auxiliary heads are removed at inference,
as demonstrated in classical and modern multi-task learning (Caruana, 1997; Standley et al., 2020).
Contrastive forecasting objectives (Makansi et al., 2021) similarly inject early-event structure by
contrasting imminent-event windows against quiescent ones. Although EVEREST does not employ
contrastive learning, its lightweight precursor head plays a related role by encouraging anticipatory
representations; integrating a contrastive variant is a natural direction for future work.

Industrial anomaly benchmarks. The SKAB dataset provides multivariate valve traces com-
monly used in time-series anomaly detection (Filonov et al., 2020). Among strong baselines,
TranAD reports leading performance across datasets (Tuli et al., 2022). For comparability, we adopt
the same windowing, labelling, and evaluation protocol used in published work.

Gap and positioning. Most prior work improves sequence encoders or enhances calibration, but
rarely addresses calibration and tail sensitivity jointly in a compact architecture. EVEREST fills
this gap by combining (i) a single-query attention bottleneck for long-context aggregation, (ii) an
evidential NIG head for closed-form logit calibration, and (iii) an EVT exceedance penalty to em-
phasise extremes—all optimised jointly while retaining a single classification head at test time with
no inference overhead.

3 METHOD

We consider binary rare–event forecasting on multivariate time series. Each example is a window
X ∈ RT×F , containing T time steps and F features, with label y ∈ {0, 1} indicating whether an
event occurs within a fixed forecast horizon. The model outputs a logit l ∈ R and a probability
p̂ = σ(l) ∈ [0, 1], which is compared to a decision threshold τ to produce an alert. We report
skill with the True Skill Statistic (TSS) and assess reliability with the Brier score and Expected
Calibration Error (ECE).

For clarity, we summarise the main notation used in this section. Encoder layer l outputs hidden
states H(l) = {h(l)

t }Tt=1, which the attention bottleneck pools into a single representation z. The
evidential head outputs Normal–Inverse–Gamma parameters (µ, v, α, β) over the logit, and the EVT
head predicts Generalised Pareto parameters (ξ, σ) for exceedances above a high quantile u. The
composite loss is controlled by non-negative coefficients (λf , λe, λt, λp). A full notation table is
provided in Appendix K.

3.1 ARCHITECTURE OVERVIEW

The network comprises four stages: (i) an input embedding with scaled positional encoding, (ii) a 6×
Transformer encoder, (iii) a single-query attention bottleneck that aggregates the sequence into a sin-
gle latent vector z, and (iv) a shallow shared MLP (128-d) from which four parallel heads branch: a
primary binary classification logit (used at inference) and three training-only auxiliaries—evidential
(NIG), EVT (GPD) exceedance, and a lightweight precursor head.
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Unless explicitly stated otherwise, deployment uses only the classification head in a single forward
pass. The evidential, EVT, and precursor heads act as training-time auxiliaries that regularise the
shared representation and can be evaluated offline for diagnostics, but are never required for test-time
decisions.

In the embedding and transformer backbone, cf. (i) and (ii) above, raw inputs X are projected to
d-dimensional tokens and combined with sinusoidal positional codes scaled by a learnable global
factor α:

h0 = LN(WembX + bemb) , H(0) = Drop(h0 + α · PE) ,
where Wemb ∈ Rd×F and bemb ∈ Rd are learned.

We apply L=6 encoder blocks with multi-head self-attention and position-wise feed-forward net-
works:

H̃(l) = LN
(
H(l−1) +Drop[MHA(H(l−1))]

)
, H(l) = LN

(
H̃(l) +Drop[FFN(H̃(l))]

)
,

for l = 1, . . . , 6. The reference setting (§4) uses embedding dimension d=128, L=6 layers, H=4
attention heads, FFN width 256, and dropout p=0.20.

In the attention bottleneck, cf. (iii) above, one undertakes temporal focussing. Let H =
[h1, . . . , hT ] ∈ Rd×T denote the final encoder states and w ∈ Rd a learned scorer. We compute
a single soft attention distribution over time and the pooled vector

αt = softmaxt
(
w⊤ht

)
, z =

T∑
t=1

αt ht, w ∈ Rd.

This single-query bottleneck adds only +d parameters and O(Td) flops, yet concentrates capacity
on weak, distributed precursors that global average pooling tends to dilute. In ablations (§5), re-
placing the bottleneck with mean pooling substantially reduces skill (e.g., ∆TSS = +0.427 on the
hardest M5–72 h task).

Finally, the pooled representation z feeds four parallel linear heads that share the backbone and MLP
parameters, cf. (iv) above.

Classification head. The primary head produces a scalar logit

l = Wclfz + bclf ,

with probability p̂ = σ(l) used for all thresholded decisions.

Evidential (NIG) head. The evidential head predicts parameters (µ, v, α, β) of a Nor-
mal–Inverse–Gamma distribution over the logit l, and minimises a closed-form evidential objec-
tive, yielding analytic predictive mean and variance without Monte Carlo sampling. This acts as a
Bayesian surrogate that regularises logit-level uncertainty. In ablations it primarily improves dis-
crimination on the hardest tasks (e.g., ∆TSS = +0.064 on M5–72 h; §5) while maintaining low
ECE.

EVT (GPD) head. The EVT head predicts Generalised Pareto parameters (ξ, σ) for logit ex-
ceedances above a high batchwise quantile u (90% by default). For logits {li} in a mini-batch,
we form exceedances {li − u : li > u} and maximise the GPD log-likelihood with a small stability
regulariser on (ξ, σ) to avoid degenerate tails. This shifts gradient mass towards the risky upper tail
and improves rare-event sensitivity.

Precursor (auxiliary) head. The precursor head reuses the same binary label and is trained via
binary cross-entropy as an auxiliary objective providing anticipatory supervision. It is not used at
inference. In ablations, removing it degrades M5–72 h TSS by −0.650 (§5), indicating that early
supervision materially shapes the backbone.

3.2 COMPOSITE LOSS AND TRAINING SCHEDULE

The training objective unifies four complementary criteria—discrimination, calibration, tail aware-
ness, and anticipatory supervision—within a single composite loss:

L = λf Lfocal + λe Levid + λt Levt + λp Lprec.
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Only the relative values of (λf , λe, λt, λp) matter, since any common scaling leaves the optimiser
invariant; in practice we parameterise these as normalised weights (up to a shared scale factor)
and use (λf , λe, λt, λp) = (0.8, 0.1, 0.1, 0.05) as the reference setting. The decreasing values
are inspired by the Information Bottleneck principle (Tishby et al., 2000): the encoder compresses
inputs X into a latent Z while maximising mutual information I(Z;Y ) with the event label. Each
loss term targets a distinct aspect of this balance: Lfocal improves separation under extreme rarity,
Levid regularises predictive entropy, Levt reallocates capacity toward tail exceedances, shaping the
heavy tail, and Lprec enriches I(Z;Y ) with anticipatory structure. Together, they yield an encoder
that balances predictive skill with uncertainty fidelity under extreme rarity, where the auxiliary heads
provide calibrated and tail-sensitive regularisation:

• Focal discrimination: The focal term Lfocal addresses class imbalance by re-weighting mis-
classified examples according to their difficulty. With focusing parameter γ, it emphasises
hard rare-event examples:

Lfocal = − 1
N

∑
i

[
(1− p̂i)

γyi log p̂i + p̂γi (1− yi) log(1− p̂i)
]
.

We anneal γ : 0→ 2 linearly over the first 50 epochs, initially allowing broad exploration
and later sharpening emphasis on difficult rare-event instances.

• Evidential calibration: The evidential term Levid learns NIG parameters over the logit, in-
ducing a predictive distribution with closed-form mean and variance. This encourages the
model to represent epistemic and aleatoric uncertainty at the logit level, providing a cali-
brated probability surface without sampling. In practice, ablations show small effects on
ECE but consistent gains in TSS on the most imbalanced tasks (§5).

• Tail emphasis via EVT: The EVT term Levt fits a Generalised Pareto Distribution to logit
exceedances above a high quantile u. For a batch of logits {li}, exceedances {xi = li−u :
li > u} are modelled via

Pr(L > u+ x | L > u) ≈
(
1 + ξx

σ

)−1/ξ

,

with (ξ, σ) predicted by the EVT head. Maximising the GPD log-likelihood reallocates
gradient signal to rare, high-risk predictions, aligning optimisation with extreme-value the-
ory and improving sensitivity in the far tail.

• Precursor supervision: The precursor term Lprec applies binary cross-entropy to the precur-
sor head using the same label y. It acts as anticipatory supervision, encouraging the latent
Z to encode early discriminative cues rather than only near-term features. From the IB
perspective, it enriches I(Z;Y ) by regularising Z toward features predictive of both early
and late outcomes.

As discussed in §5, sensitivity analyses over these weights and the EVT quantiles show that our
performance is robust over a wide range of hyperparameters, consistent with the auxiliaries acting
as regularisers rather than fragile knobs. All four losses act only at training time; deployment uses
the classification head p̂ = σ(l), with uncertainty and tail diagnostics from the evidential and EVT
heads evaluated offline if desired.

Computational footprint. At the reference configuration, EVEREST has approximately 8.14×
105 parameters and 1.66× 107 FLOPs per window; the six-layer backbone accounts for more than
97% of both, while the attention bottleneck adds only +d parameters. A full per-module budget and
a comparison to SolarFlareNet (Abduallah et al., 2023) are provided in Appendix A.

4 EXPERIMENTAL SETUP

4.1 DATASETS AND SPLITS

Solar flares (SHARP–GOES). We adopt the SHARP–GOES protocol and splits consistent with
prior work (Abduallah et al., 2023): SHARP vector-magnetogram parameters aligned to GOES
flare labels across Solar Cycle 24–25, with standard quality masks (QUALITY=0, |CMD| ≤ 70◦,
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observer radial-velocity filter) applied before windowing. We use the same nine SHARP parameters
and the same window construction for 24/48/72 h horizons. To prevent leakage, we use the iden-
tical HARPNUM-stratified train/validation/test split; the resulting per-horizon, per-class counts are
consolidated in Appendix B (Table 5). All preprocessing (normalization, cadence handling, label
alignment) follows that setup to ensure 1:1 comparability.

SKAB (industrial transfer). We evaluate cross-domain transfer on the Skoltech Anomaly Bench-
mark (SKAB) (Filonov et al., 2020) using fixed-length windows (stride two), stacked raw+diff chan-
nels, chronological 70/15/15 splits, and standardization fitted on train only. We do not apply over-
sampling or task-specific loss reweighting. TranAD is the strongest published reference (Tuli et al.,
2022). Full data-processing protocol, model configuration, and the complete results/comparisons
are provided in Appendix C (Tables 6, 7).

4.2 METRICS AND EVALUATION PROTOCOL

Primary and secondary metrics. Our primary discrimination metric is the True Skill Statistic
(TSS),

TSS = TP
TP+FN − FP

FP+TN ,

reported at the task-specific operating threshold τ⋆ (below). We also report Precision/Recall/F1,
AUROC and PR-AUC for ranking quality, and the Brier score for probabilistic accuracy. Reliability
is quantified via Expected Calibration Error (ECE) with equal-frequency binning (15 bins).

Operating thresholds and cost sensitivity. Decision thresholds are selected by grid search over
τ ∈ {0.10, 0.11, . . . , 0.90} using the balanced score (40% TSS, 20% F1, 15% Precision, 15%
Recall, 10% Specificity). For sensitivity to asymmetric costs, we complement this with a cost–loss
sweep (e.g., CFN:CFP=20:1) and report the minimum-cost threshold in §5 alongside the balanced
operating point.

4.3 TRAINING DETAILS AND HPO

All models are trained in PyTorch with automatic mixed precision (AMP), AdamW
(β1=0.9, β2=0.999), cosine-decayed learning rate, gradient-norm clipping (1.0), and the composite
objective from §3 with λ=(0.8, 0.1, 0.1, 0.05) and focal γ annealed 0→2 over the first 50 epochs.
Hyper-parameter optimization follows the three-stage protocol (Sobol scan → Optuna refinement
→ confirmation), limited to the six knobs that explained the bulk of validation-TSS variance: em-
bedding width d, encoder depth L, dropout p, focal γ, peak LR ηmax, and batch size B. The search
priors and the final chosen configuration are in Appendix D; per-scenario optima are tabulated in
Appendix D.4.

Statistical protocol. For each threshold–horizon task we train five seeds and report means with
95% CIs via 104-draw bootstrap on the held-out test set, stratified by NOAA active-region identifier
to preclude temporal leakage. Operating thresholds are selected by a grid over τ ∈ {0.10, . . . , 0.90}
(step 0.01) using a balanced score (40% TSS, 20% F1, 15% Precision, 15% Recall, 10% Specificity);
unless stated, headline metrics use the task-specific τ⋆ from this procedure. The composite-loss
weights and related hyperparameters are fixed across all tasks. We also filter obviously failed runs
and report detectable effects (e.g., ∆TSS ≥ 0.02) alongside p-values from the bootstrap test.

4.4 FIGURES AND TABLES FOR REPRODUCIBILITY

To keep the setup self-contained within the page budget, we reuse the same artefacts and protocol as
our released implementation:

• SHARP feature list and motivations (Table 4): the nine input parameters with brief phys-
ical rationale.

• Dataset distribution (Table 5): counts per horizon, class, and split under HARPNUM strat-
ification.

• CMD filtering diagram (Fig. 2): effect of the |CMD| ≤ 70◦ mask on the usable sequence
pool during solar data pre-processing.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Figure 1: Cost–loss analysis for the M5–72 h model under asymmetric costs (CFN:CFP = 20:1).
The left panel shows the cost curve; the right panel highlights the minimum-cost threshold τ⋆ =
0.240 versus the balanced-score threshold τ = 0.460.

5 RESULTS

5.1 HEADLINE PERFORMANCE

We compare against three published forecasters that span the main model families on SHARP–
GOES: (1) an LSTM recurrent predictor (Liu et al., 2019), (2) a 3D-CNN (Sun et al., 2022), and (3)
SolarFlareNet (Abduallah et al., 2023), the strongest published baseline. Brief architectural sum-
maries and reproducibility details are provided in Appendix L. EVEREST shows large TSS gains
across horizons, with especially strong improvements for rare M5 events. All nine tasks exceed the
reported baseline TSS values (Table 1). Table 12 reports bootstrapped metrics; EVEREST deliv-
ers consistently high discrimination for common C-class events (TSS ≥ 0.966 at all horizons) and
strong performance for rarer M and M5 classes. See §5.2 for calibration diagnostics, and Appendix E
for full per-task results and operating thresholds.

5.2 CALIBRATION AND RELIABILITY

We report calibration with Brier score and Expected Calibration Error (ECE; 15 equal-frequency
bins) alongside TSS. On the most imbalanced task (M5–72 h) we obtain ECE = 0.016 with a near-
diagonal reliability curve; similar trends hold for C–72 h and M–72 h. Diagnostics use the same
seeds, splits, and binning as the headline metrics in Table 12. Full reliability diagrams are provided
in Appendix F.

5.3 DECISION ANALYSIS UNDER ASYMMETRIC COSTS

Operational use often values missed-event costs far above false alarms. For M5–72 h, a cost–loss
sweep with CFN:CFP=20:1 yields a minimum-cost threshold of τ⋆ = 0.240, distinct from the
balanced-score τ = 0.460. Figure 1 illustrates the trade-off; the corresponding confusion matrices
are in Appendix G.

By threshold class. ≥C: TSS remains within 0.973/0.970/0.966 (24/48/72 h), with precision
0.994/0.993/0.992 and minor horizon decay (∆TSS= 0.007 from 24 h to 72 h). ≥M: Despite
stronger imbalance, TSS reaches 0.898/0.920/0.906 with recall ≥ 0.908; precision gains with hori-
zon (0.728→0.834). ≥M5: For the rarest events, TSS is 0.907/0.936/0.966 with tight CIs and the
best ECE (e.g., 0.016 at 72 h).

Comparison to prior work. Table 1 summarizes TSS versus reported baselines. Our reported
scores are higher than published baseline values (e.g., +0.251 TSS for ≥C–48 h and +0.237 for
≥M5–72 h). Significance testing is applied within our models.

This explicit operating-point choice addresses decision relevance under asymmetric costs without
retraining, and the full confusion matrices are provided in Appendix G.
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Table 1: TSS performance across flare thresholds and horizons. Bold indicates the best performance
within each horizon. Reported values for EVEREST are mean (standard deviation) over 5 seeds.

Method Horizon ≥C ≥M ≥M5.0

Liu et al. (2019) 24h 0.612 0.792 0.881
Sun et al. (2022) 24h 0.756 0.826 –
Abduallah et al. (2023) 24h 0.835 0.839 0.818

48h 0.719 0.728 0.736
72h 0.702 0.714 0.729

EVEREST 24h 0.973 (0.001) 0.898 (0.011) 0.907 (0.025)
48h 0.970 (0.001) 0.920 (0.007) 0.936 (0.021)
72h 0.966 (0.001) 0.906 (0.012) 0.966 (0.024)

5.4 ABLATIONS

A leave-one-component-out suite (five seeds each) quantifies the marginal utility of each module on
the hardest task (M5–72 h). Headline effect sizes are:

• Attention bottleneck: +0.427 TSS over mean pooling.

• EVT head: +0.285 TSS with major extreme-Brier gains.

• Evidential NIG head: +0.064 TSS with lower ECE.

• Composite schedule: +0.045 TSS from γ annealing and stable joint training.

Removing the precursor auxiliary degrades performance by −0.650 TSS, showing that anticipatory
supervision materially shapes the backbone even though it is discarded at inference. Mixed-precision
(AMP) was also indispensable: FP32 runs diverged or underperformed. In addition, a 5×5 log-scale
sweep over the evidential and EVT loss weights shows that both TSS and ECE remain stable across
wide regions of the (λevid, λevt) grid, and an EVT quantile sweep over u ∈ {0.85, 0.90, 0.95} on
the hardest task (M5–72 h) yields TSS in [0.903, 0.932] and ECE in [0.0119, 0.0164] across all runs,
indicating insensitivity to the precise exceedance threshold. Full per-variant metrics, significance
tests, calibration effects, the λ-sensitivity heatmaps, and EVT-quantile analysis are consolidated in
Appendix H.

5.5 INTERPRETABILITY

Saliency analysis highlights how EVEREST differentiates between prediction outcomes. True pos-
itives show coordinated increases in USFLUX and MEANGAM in the final hours before the forecast
horizon, consistent with flux emergence and field-inclination steepening. True negatives and false
positives exhibit flatter or noisier signatures. Confidence-stratified TP cases show that gradients are
strongest when predictive confidence is high. Full gradient visualisations are provided in Appendix I.

5.6 PROSPECTIVE CASE STUDY

We evaluate EVEREST on the unseen 6 Sep 2017 X9.3 flare (NOAA AR 12673), the largest event
of Solar Cycle 24. Data from 3–7 September 2017 were excluded from training and threshold
calibration. The probability trace and lead-time statistics are provided in Appendix J (Figure 11 and
Table 18).

5.7 CROSS-DOMAIN TRANSFER: SKAB

With the architecture unchanged, EVEREST achieves mean TSS = 0.964 and F1 = 98.16% on
SKAB (Filonov et al., 2020). We include SKAB because it is multivariate, rare-event–oriented, and
widely used in anomaly detection; baseline results (e.g., TranAD)(Tuli et al., 2022). Full valve-level
metrics and calibration diagnostics are in Appendix C.
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5.8 EFFICIENCY SNAPSHOT

Training uses AMP and the composite schedule from §3. The model is compact (814k params)
yet compute-dense (16.6M FLOPs/reference shape), with mean epoch times ∼24 s on RTX A6000
and ∼69 s on M2 Pro; full energy and carbon accounting appears in the supplement; results remain
within typical “Green AI” norms for this model scale.

Summary. Across nine tasks, EVEREST reports higher TSS than the baselines with strong cali-
bration, clear module-level attributions for its gains, and actionable threshold analyses. The same
backbone generalises to SKAB without architectural changes.

6 CONCLUSION

We presented EVEREST, a compact, domain-agnostic Transformer and unified training recipe for
rare-event time series that jointly targets discrimination, calibration, and tail-risk. From an infor-
mation–bottleneck perspective (Tishby et al., 2000), the model shapes a latent representation Z that
preserves maximal mutual information with the event label Y while discarding nuisance variability.
Each auxiliary term enforces a distinct view of this principle: focal loss drives separation under
rarity, the evidential head regularises predictive entropy, the EVT penalty reallocates gradient mass
to tail exceedances, and the precursor head biases compression toward anticipatory signals. Deploy-
ment remains single-head and incurs no inference overhead.

Across nine solar-flare tasks, EVEREST achieves strong TSS (e.g., C: 0.973/0.970/0.966 at
24/48/72 h; M5: 0.907/0.936/0.966), with well-calibrated probabilities (e.g., M5–72 h ECE =
0.016). The same backbone transfers unchanged to SKAB with F1=98.16%, TSS=0.964, sur-
passing published baselines (Filonov et al., 2020; Tuli et al., 2022). Ablations attribute gains to
temporal focusing (+0.427 TSS), EVT tail emphasis (+0.285), and evidential calibration (+0.064).
Interpretability analyses show attention concentrating on physically meaningful precursors, and a
prospective X9.3 case study demonstrates early, well-calibrated alerts. Training is efficient (814k
params, AMP-enabled), supporting practical deployment.

Limitations. Our study inherits several constraints: (i) a fixed context window, which may miss
very slow precursor dynamics; (ii) data gaps and quality filters that reduce effective coverage; (iii)
potential cycle-dependent drift between training and deployment periods; (iv) extreme scarcity of
the highest-magnitude events (e.g., X-class), limiting tail fitting and evaluation; and (v) unimodal
inputs—image and radio modalities are not considered here.

Future work. Promising directions include (i) streaming/state-space memory or compressive
transformers for indefinite context; (ii) multimodal fusion (e.g., SHARP + EUV/radio) with cadence-
aware alignment; (iii) federated or continual training to mitigate cross-cycle drift and institutional
data silos; (iv) model compression (quantisation/distillation) and hardware-aware compilation for
edge/ops deployment; and (v) richer time-series XAI (counterfactuals, TS-IG) to strengthen opera-
tional trust and post-hoc auditing.

Broader impacts. Reliable, calibrated, and tail-aware rare-event forecasts can improve risk com-
munication and decision-making in high-stakes domains (e.g., space weather, industrial monitor-
ing, power systems). EVEREST emphasises small-model efficiency and mixed-precision training,
maintaining a “Green AI” footprint while providing actionable probabilities and threshold analy-
ses. We provide an anonymized artifact (code and splits) to support transparent benchmarking and
reproducible research.

REPRODUCIBILITY STATEMENT

Code to reproduce all experiments is provided in the Supplementary Material, includ-
ing an anonymized repository with README.md, requirements.txt, and ready-to-run
scripts for solar flares (models/train.py, models/evaluate_solar.py) and SKAB
(models/train_skab.py, models/evaluate_skab.py). The archive includes the ex-
act processed train/validation/test splits, configuration files, and evaluation routines used to report
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results. Runs use five fixed seeds, mixed precision (AMP), AdamW, cosine learning-rate decay,
gradient clipping, and deterministic cuDNN settings; thresholds are selected via a grid sweep and
metrics include TSS, Brier score, and ECE with 15 equal-frequency bins. Environment versions are
pinned in requirements.txt, enabling end-to-end replication.
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Table 2: Per-module parameter and FLOP budget for EVEREST (FP32 multiply–adds; T=10,
F=9, batch = 1).

Module Params (k) FLOPs (M)
Embedding + positional encoding 1.54 0.03
Transformer encoder ×6 794.88 16.24
Attention bottleneck 0.13 0.00
Classification head 16.64 0.34
Evidential (NIG) head 0.52 0.01
EVT (GPD) head 0.26 0.01
Precursor head 0.13 0.00
Total 814.10 16.63

Table 3: Complexity comparison with SolarFlareNet (T=10, F=9, batch = 1).

Model Params (k) FLOPs (M) FLOPs / Param
SolarFlareNet (Abduallah et al., 2023) 6 120 0.62 0.10
EVEREST 814 16.6 20.4

A COMPLEXITY PROFILE

All numbers refer to a single forward pass with T=10 time steps, F=9 SHARP features, and batch
size 1.

Per-module budget. The six-layer Transformer backbone accounts for the vast majority of pa-
rameters and computation, with 794.9k of 814.1k trainable weights (97.6%) and 16.24M of 16.63M
FLOPs (97.7%). Each backbone weight is thus used about 20.4 times per inference. The auxiliary
heads (evidential, EVT, precursor) together contribute only 0.91k parameters (0.11%) and 0.02M
FLOPs (0.12%).

Cross-model comparison (SolarFlareNet). We compare EVEREST against SolarFlareNet (Ab-
duallah et al., 2023) under the same input shape and profiling settings.

The reference architecture above underpins all reported experiments; hyper-parameter ranges, abla-
tions, and evaluation protocols align with the modules and objectives in Section 3.

B DATASET AND PRE-PROCESSING

Pipeline. Our data pipeline builds on Abduallah et al. (2023), enhancing temporal fidelity (12-
minute cadence), enforcing stricter quality masks, and version-controlling all outputs. SHARP vec-
tor magnetograms (SDO/HMI) are merged with GOES flare data (NOAA/SWPC), programmatically
harvested (JSOC, SunPy HEK), and segmented into supervised, HARPNUM-stratified windows.

Features. Nine SHARP parameters were retained from the original 25, following physical inter-
pretability and prior studies (Abduallah et al., 2023). Table 4 lists the features.

Split strategy. The mission window spans May 2010–May 2025. We create datasets for nine tasks
(three flare thresholds × three horizons). Each HARPNUM appears in exactly one split. Table 5
gives the per-class distribution.

C SKAB INDUSTRIAL ANOMALY BENCHMARK

To assess cross-domain transfer, we evaluate EVEREST on the Skoltech Anomaly Benchmark
(SKAB) (Filonov et al., 2020), a suite of multivariate valve-sensor traces with rare fault events.
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Table 4: Selected SHARP features and their physical motivations.

Feature Description Physical motivation
TOTUSJH Total unsigned current helicity Magnetic twist; non-potentiality
TOTPOT Total magnetic free energy density Energy reservoir for reconnection
USFLUX Total unsigned flux AR size / activity
MEANGBT Gradient of total field Localised magnetic complexity
MEANSHR Mean shear angle Shearing near PIL
MEANGAM Mean angle from radial Loop inclination
MEANALP Twist parameter α Field line torsion
TOTBSQ Total field strength squared Energetic capacity
R VALUE PIL integral Complexity near polarity inversion

Table 5: Number of positive and negative examples per flare class and horizon.

Flare Horizon Split Positives Negatives
C 24h Train 244,968 218,217

Test 31,897 15,878
48h Train 316,149 301,714

Test 40,987 21,573
72h Train 356,219 350,853

Test 46,066 25,663
M 24h Train 13,989 449,196

Test 1,368 46,407
48h Train 16,709 601,154

Test 1,775 60,785
72h Train 18,505 688,567

Test 2,131 69,598
M5 24h Train 2,125 461,060

Test 104 47,671
48h Train 2,255 615,608

Test 104 62,456
72h Train 2,375 704,697

Test 104 71,625

We adopt the standard windowing (24 steps, stride two), stacked raw+diff channels, chronological
70/15/15 splits, and standardisation fitted on train only. No oversampling or additional task-specific
loss reweighting is used; we reuse the same focal-loss configuration as in the solar-flare experiments.
Architecture and loss weights are unchanged except for a reduced width (d=96) and depth (L=4)
to match the smaller dataset scale.

Results. Table 6 reports mean performance across all eight valve scenarios. EVEREST achieves
strong discrimination (TSS 0.964± 0.028) and calibration, with F1 exceeding 98%.

Comparison with baselines. Table 7 situates our results against prior published methods. EVER-
EST surpasses the strongest reported baseline (TranAD (Tuli et al., 2022)) by roughly two F1 points,
without task-specific tuning.

Protocol alignment and evaluation details. To align with prior work such as TranAD (Tuli et al.,
2022), we follow a standardised SKAB processing protocol. Each trace is converted into 24-step
sliding windows (stride 2 for training, full coverage at test time), using 16 raw sensors together
with 16 first-difference velocity features. A window is labeled anomalous if the first time step is
annotated as a fault, yielding an early-event detection setting consistent with TranAD. All features
are standardised using training-set statistics only. At test time, a fixed probability threshold of 0.5
is applied; all metrics (TSS, F1, precision, recall) are computed at this threshold without post-hoc
tuning.
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Table 6: EVEREST averaged across all SKAB valves.

Metric Precision (%) Recall (%) F1 (%) TSS

EVEREST 97.7 ± 2.9 98.6 ± 3.2 98.2 ± 1.7 0.964 ± 0.028

Table 7: F1 comparison on SKAB valve anomalies.

Model Reference F1 (%)

Isolation F, LOF, etc. Filonov et al. (2020) 65–75
Autoencoder Filonov et al. (2020) 70–80
CNN/LSTM hybrids Filonov et al. (2020) 75–85
TAnoGAN Bashar & Nayak (2020) 79–92
DeepLog Du et al. (2017) 87–91
LSTM-VAE Park et al. (2018) 86–93
OmniAnomaly Su et al. (2019) 88–94
USAD Audibert et al. (2020) 89–95
TranAD Tuli et al. (2022) 91–96
EVEREST — 98.2 ± 1.7

Aggregate per-valve metrics (Valve 1). Table 8 reports the aggregate confusion matrix and de-
rived metrics for Valve 1, combining all available Valve 1 scenarios into a single evaluation (micro-
averaged across 12,500 test windows). This provides a transparent, per-valve view while avoiding
scenario-level redundancy.

Reproducibility. The full SKAB preprocessing and evaluation pipeline (windowing, normal-
isation, chronological splits, and metric computation) is available in the released code under
reproducibility/data/SKAB/README.md, including scripts for generating aggregate per-
valve confusion matrices.

D HYPER-PARAMETER OPTIMISATION

Operational deployment values three traits above all: forecast skill, probabilistic reliability, and
inference latency. We therefore tune only the hyper-parameters that collectively maximise skill ×
latency−1.

Method synopsis. We run a three-stage Bayesian study (Optuna v3.6 + Ray Tune) over six knobs:
embedding width d, encoder depth L, dropout p, focal exponent γ, peak learning rate ηmax, and
batch size B. Median-stopping pruning halves the number of full trainings needed. A Sobol sensi-
tivity scan (Appendix D.1) confirmed that these six knobs explain 91 of the variance in validation
TSS.

Search logistics. Each flare-class/lead-time pair receives ∼165 trials split into exploration, refine-
ment, and confirmation phases; exact budgets and early-stop criteria are in Appendix D.2.

Final tuning space and winner. Table 9 summarises the priors and the final configuration adopted
for all production models. Full per-scenario optima are in Appendix D.4.

The selected tuple (d=128, L=6, γ=2, p=0.20, ηmax = 4×10−4, B=512) achieves TSS =
0.795 ± 0.005 and inference latency of 4 ± 0.6 s on an NVIDIA RTX 6000. These values are
frozen for all ablations and the compute-budget audit.
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Table 8: Aggregate results for SKAB Valve 1 (micro-averaged across all Valve 1 scenarios).

TP FP TN FN Precision (%) Recall (%) TSS

5694 134 6591 81 97.7 98.6 0.966

Table 9: Search priors and final hyper-parameters used in production

Hyperparam Prior Rationale Best

Embedding d {64, 128, 192, 256} capacity vs. latency 128
Encoder depth L {4, 6, 8} receptive field 6
Dropout p U [0.05, 0.40] over-fit control 0.20
Focal γ U [1, 4] minority gradient 2.0
Peak LR ηmax Log-U [2×10−4, 8×10−4] step size 4×10−4

Batch size B {256, 512, 768, 1024} throughput vs. generalisation 512

D.1 SOBOL SENSITIVITY SCAN

A 64-trial Sobol sweep assessed first-order and total-order effects; the six retained knobs jointly
explain 91 of variance in validation TSS. Full indices and code are in the repository.

D.2 SEARCH PROTOCOL

Each study followed the three-stage schedule in Table 10. Trials were pruned with Optuna’s median
rule after five epochs.

D.3 HYPER-PARAMETER RATIONALE

1. Capacity: d and L govern receptive field and FLOPs.
2. Regularisation: p mitigates over-fit.
3. Imbalance: γ addresses the 1:297 positive/negative ratio.
4. Optimiser dynamics: ηmax sets AdamW step size.
5. Throughput: B trades GPU utilisation for generalisation.

D.4 PER-SCENARIO OPTIMA

Table 11 lists the best trial for each of the nine studies.

A clear pattern emerges: C and M classes share a single optimum across all windows, while M5
requires larger capacity for short horizons and deeper, narrower networks for 72h forecasts.

D.5 ADDITIONAL DATA PRE-PROCESSING VISUALS

• CMD filtering diagram (Fig. 2): effect of the |CMD| ≤ 70◦ mask on the usable sequence
pool during solar data pre-processing.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Table 10: Trial budget per stage for each flare-class/lead-time study

STAGE TRIALS EPOCHS/TRIAL PURPOSE

Exploration 120 20 Global sweep of parameter space
Refinement 40 60 Focus on top-quartile region
Confirmation 6 120 Full-length convergence check

Table 11: Best hyper-parameters per flare class and forecast window

FLARE WINDOW d L p γ ηmax (10−4) B TIME (s)

C 24h 128 4 0.353 2.803 5.337 512 3323
C 48h 128 4 0.353 2.803 5.337 512 4621
C 72h 128 4 0.353 2.803 5.337 512 4856
M 24h 128 4 0.353 2.803 5.337 512 3705
M 48h 128 4 0.353 2.803 5.337 512 5105
M 72h 128 4 0.353 2.803 5.337 512 5871
M5 24h 192 4 0.300 3.282 4.355 256 3778
M5 48h 192 4 0.300 3.282 4.355 256 4977
M5 72h 64 8 0.239 3.422 6.927 1024 5587

E EXTENDED RESULTS AND PROTOCOLS

E.1 EXPERIMENTAL PROTOCOL

We evaluate nine benchmark tasks (three flare thresholds: C, M, M5; three horizons: 24h, 48h,
72h). Performance statistics are computed via 10,000-fold bootstrap resampling with splits stratified
by NOAA active-region identifier to avoid temporal leakage. Each task is trained and evaluated
with 5 random seeds; metrics are aggregated as mean (standard deviation) unless otherwise noted.
Thresholds are selected by a balanced scoring rule over a grid of 81 values in [0.1, 0.9] (step 0.01),
with a fallback of 0.5 if no improvement is found. Statistical significance is assessed at p < 0.05
with a minimum effect size threshold ∆TSS ≥ 0.02.

E.2 BOOTSTRAPPED METRICS (FULL)

Table 12 reports bootstrapped performance on the held-out test set for all nine tasks (higher is better
for TSS/Precision/Recall; lower is better for Brier/ECE).

E.3 SIGNIFICANCE VS. BASELINE

We compare against the strongest baseline (Abduallah et al., 2023). Improvements are significant at
p < 0.01 for all nine tasks (Table 13; bootstrap hypothesis testing).

E.4 CALIBRATION AND OPERATING POINTS

Reliability diagrams (15 equal-frequency bins) and cost–loss analyses are provided for represen-
tative tasks (figures referenced in the main text). Operating thresholds τ∗ for each task are the
grid-search optima under the balanced scoring rule; values are available in the code repository and
summary tables.
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Figure 2: Central–meridian–distance (CMD) quality mask applied to an HMI synoptic magne-
togram. The bright-green curve marks the acceptance limit |CMD| = 70◦; grey wedges beyond this
boundary are discarded. Active-region boxes are color-coded by the centroid rule: green outlines
(e.g., AR 12263, 12266) fall inside the limit and are retained, whereas red outlines (e.g., AR 12267)
lie outside and are excluded. The mask removes limb data affected by foreshortening and line-of-
sight artifacts while preserving the central disk used for training and evaluation.

Table 12: Bootstrapped performance (mean ± 95% CI) of EVEREST on the held-out test set.
Thresholds are the task-specific optima from the balanced scoring rule.

Task TSS Precision Recall Brier ECE

C-24h 0.973 ± 0.001 0.994 ± 0.000 0.986 ± 0.001 0.015 ± 0.000 0.049 ± 0.000
C-48h 0.970 ± 0.001 0.993 ± 0.000 0.984 ± 0.001 0.017 ± 0.000 0.054 ± 0.000
C-72h 0.966 ± 0.001 0.992 ± 0.000 0.982 ± 0.001 0.018 ± 0.000 0.052 ± 0.000
M-24h 0.898 ± 0.011 0.728 ± 0.016 0.908 ± 0.011 0.011 ± 0.000 0.037 ± 0.001
M-48h 0.920 ± 0.007 0.772 ± 0.010 0.928 ± 0.007 0.009 ± 0.000 0.029 ± 0.000
M-72h 0.906 ± 0.012 0.834 ± 0.015 0.911 ± 0.012 0.010 ± 0.000 0.033 ± 0.001
M5-24h 0.907 ± 0.025 0.686 ± 0.033 0.908 ± 0.025 0.003 ± 0.000 0.031 ± 0.000
M5-48h 0.936 ± 0.021 0.713 ± 0.035 0.937 ± 0.021 0.002 ± 0.000 0.020 ± 0.000
M5-72h 0.966 ± 0.024 0.727 ± 0.053 0.966 ± 0.024 0.002 ± 0.000 0.016 ± 0.000

F ADDITIONAL CALIBRATION PLOT

F.1 CLASS–CONDITIONAL CALIBRATION

To assess whether global calibration obscures class-specific effects, we compute reliability diagrams
separately for the negative and positive classes on the M5–72 h task using 15 equal-frequency bins.
Figure 4 shows the resulting curves, based on n=71,625 non-flaring windows and n=104 flaring
windows.

Findings. Negative-class calibration is excellent (ECE = 0.0097), reflecting that the model consis-
tently assigns low probabilities to non-flaring windows. Positive-class calibration exhibits higher
variance (ECE = 0.4236), which is expected in the extreme-imbalance regime with very few flaring
samples per bin. Importantly, the positive-class curve remains monotone and close to the diagonal
at higher probability levels, indicating that high-confidence flare forecasts correspond to genuinely
flaring cases.
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Table 13: Statistical significance of TSS improvements over the strongest baseline (Abduallah et
al. 2023). EVEREST values are mean (95% CI) from 10,000 bootstrap resamples stratified by
HARPNUM. Asterisks denote bootstrap p-values for the null H0 : ∆TSS ≤ 0: * p < 0.05, **
p < 0.01, *** p < 0.001.

Task Baseline TSS EVEREST TSS Effect size ∆TSS

C-24h 0.835 0.973 (0.001) +0.138***
M-24h 0.839 0.898 (0.011) +0.059***
M5-24h 0.818 0.907 (0.025) +0.089***
C-48h 0.719 0.970 (0.001) +0.251***
M-48h 0.728 0.920 (0.007) +0.192***
M5-48h 0.736 0.936 (0.021) +0.200***
C-72h 0.702 0.966 (0.001) +0.264***
M-72h 0.714 0.906 (0.012) +0.192***
M5-72h 0.729 0.966 (0.024) +0.237***
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Figure 3: Reliability diagram for the M5–72 h task. Shaded region shows 95% bootstrap confidence
intervals; the dashed line indicates perfect calibration. ECE = 0.016 with maximum bin gap 0.263.

F.2 HIGH-CONFIDENCE (p > 0.8) CALIBRATION

Operational forecasting places particular emphasis on reliability in the high-alert region. We there-
fore analyse calibration conditional on p̂ > 0.8 for the M5–72 h model. This region contains n=8
test windows, all corresponding to true M5 flares.

Findings. All high-confidence predictions are correct (100% precision), with predicted probabili-
ties concentrated between 0.80 and 0.83. The resulting ECE (0.1881) reflects the small sample size
rather than systematic miscalibration. These results show that the model is highly trustworthy in the
operationally critical high-alert regime, issuing confident predictions sparingly but accurately.

G CONFUSION MATRIX ANALYSIS UNDER ASYMMETRIC COSTS

The confusion matrices below quantify the effect of selecting different operating thresholds on the
M5–72 h task. At the balanced-score threshold (τ = 0.460), the model achieves strong overall
discrimination but incurs some false negatives. At the cost-minimising threshold (τ⋆ = 0.240), all
false negatives are eliminated at the expense of more false positives.
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Figure 4: Class-conditional calibration for M5–72 h. Left: negative-class reliability curve
(ECE = 0.0097). Right: positive-class reliability curve (ECE = 0.4236). Higher positive-class ECE
reflects the extreme rarity of M5 events, but the curve remains monotone and near-diagonal at high
predicted probabilities.
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Figure 5: High-confidence calibration (p̂ > 0.8) on M5–72 h. Left: observed vs. predicted fre-
quencies for all high-confidence samples (all eight are true flares). Right: histogram of predicted
probabilities in this regime. Despite the small sample size, the high-alert region exhibits perfect
precision, indicating reliable operational behaviour.
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Figure 6: Confusion matrices for the M5–72 h model. Left: balanced-score threshold τ = 0.460
(92 TP, 45 FP, 71,580 TN, 12 FN). Right: cost-minimising threshold τ⋆ = 0.240 (104 TP, 115 FP,
71,510 TN, 0 FN).
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Table 14: EVEREST ablation results on M5–72 h (mean ± s.d. over 5 seeds).

VARIANT TSS F1 BRIER ECE p

Full model 0.746 ± 0.146 0.747 0.0013 0.0110 —
No Evidential head 0.682 ± 0.193 0.626 0.0015 0.0111 < 0.01
No EVT head 0.461 ± 0.369 0.438 0.0039 0.0336 < 0.01
No Evidential + EVT heads 0.640 ± 0.275 0.594 0.0015 0.0115 < 0.01
Mean pooling 0.319 ± 0.319 0.304 0.0229 0.1158 < 0.001
Cross-entropy loss 0.209 ± 0.332 0.195 0.0013 0.0023 < 0.001
No Precursor head 0.096 ± 0.174 0.095 0.0194 0.1105 < 0.001
FP32 training 0.000 ± 0.000 0.000 0.0520 0.2248 < 0.001

Table 15: Component ablation on M5–72 h. Paired bootstrap (104 replicates) vs. full model.

COMPONENT REMOVED ∆TSS REL. CHANGE (%) p-VALUE

Mixed Precision (AMP) -0.746 -100 < 0.001
Precursor head -0.650 -87 < 0.001
Focal loss -0.537 -72 < 0.001
Attention bottleneck -0.427 -57 < 0.001
EVT head -0.285 -38 < 0.001
Evidential head -0.064 -9 0.004

H ABLATION STUDY SUITE

We ran a systematic leave-one-component-out protocol with five seeds per variant to quantify the
contribution of each EVEREST module. All runs targeted M5-class flares at 72 h horizon (the
hardest task), with identical data splits, early stopping at 120 epochs, and bootstrap evaluation (104
replicates). This fixed training schedule is shorter than the full HPO-tuned training used for the
headline results in Table 12, and therefore the absolute TSS of the “Full model” reported here is
lower; however, relative ∆TSS across variants is directly comparable. Tables 14 and 15 report mean
metrics, effect sizes, and significance relative to the full model under this standardised protocol.

Interpretation. Four findings stand out: (i) mixed precision is numerically indispensable (FP32
diverged); (ii) the precursor auxiliary is the strongest regulariser, preventing collapse under extreme
rarity; (iii) the attention bottleneck far outperforms mean pooling; (iv) evidential and EVT heads
play complementary roles, with the former reducing calibration error and the latter improving tail-
sensitive discrimination. These results support the design hypothesis that each module addresses a
distinct failure mode.
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H.1 LOSS-TERM ABLATIONS (OBJECTIVE-LEVEL)

To complement the module-wise architectural ablations, we also evaluate loss-term ablations iso-
lating the effect of each component of the composite objective. Concretely, we retrain EVEREST
while removing: (i) the evidential NLL term (λe = 0), (ii) the EVT exceedance penalty (λt = 0),
and (iii) the precursor BCE term (λp = 0). The backbone and training setup remain identical.

These variants correspond exactly to “No Evidential head”, “No EVT head”, and “No Precursor
head” in Table 14, since the auxiliary heads contribute only through their loss terms during training
and are removed at inference.

Removing each loss component produces characteristic degradation patterns:

• No evidential NLL increases ECE while preserving moderate TSS, confirming it acts pri-
marily as a calibration regulariser.

• No EVT loss sharply increases tail-region Brier score and reduces TSS, showing that the
EVT term shapes extreme-value discrimination.

• No precursor BCE causes the steepest drop in TSS, indicating that the anticipatory super-
vision stabilises learning under severe rarity.

We also observe that the largest gains from the EVT penalty occur specifically in the highest-
probability, highest-flux windows (top 10% of the predictive distribution), i.e., the regime used
for the tail Brier score, indicating which samples benefit most from extreme-value regularisation.
Figure 7 shows calibration curves for these three variants compared to the full model, demonstrating
that each loss term targets a distinct aspect of the predictive distribution.

H.2 λ-SENSITIVITY OF EVIDENTIAL AND EVT LOSSES

To assess whether the auxiliary loss weights behave as robust regularisers rather than fragile knobs,
we ran a 5×5 sensitivity grid over the evidential and EVT loss terms on the M5–72 h task. Let λ⋆

evid
and λ⋆

evt denote the default weights from Section 3; we form λevid = κevidλ
⋆
evid and λevt = κevtλ

⋆
evt

with multipliers κevid, κevt ∈ {0.5, 0.75, 1.0, 1.25, 1.5}. The backbone, focal schedule, optimiser,
and early-stopping protocol are held fixed.

H.3 EVT QUANTILE SWEEP

To assess sensitivity to the EVT exceedance threshold, we sweep the quantile u ∈ {0.85, 0.90, 0.95}
for the M5–72 h task, keeping all other hyper-parameters fixed (including λevt). For each u we train
two seeds with identical splits and evaluation protocol as in the main experiments. In addition to
global metrics, we compute:

• a tail Brier score restricted to the top 10% of predicted probabilities (7,174 windows), and
• a mid-range Brier score on the remaining 90% of windows (64,555 windows).

Table 16 reports the range (min–max) across the two seeds for each quantile. Across all three
settings, performance varies only within seed-level noise: TSS remains between 0.9032 and 0.9319,
ECE between 0.0119 and 0.0164, and the tail Brier score between 0.01568 and 0.01718. Mid-range
Brier stays on the order of 10−5 in all cases. This indicates that the EVT head acts as a robust
tail-regulariser rather than a fragile knob tuned to a single threshold.

H.4 FOCAL-LOSS SCHEDULE SENSITIVITY

The focal-loss exponent γ is annealed from 0 to 2 during the first 50 training epochs (Section 3). To
assess whether this schedule constitutes a fragile hyperparameter, we compare four variants on the
M5–72 h task, keeping all other settings fixed:

1. Constant γ = 2: no annealing; the focal exponent is fixed at 2 from initialization.
2. Standard schedule (baseline): γ increases linearly from 0 to 2 over the first 50 epochs

(used in all main experiments).

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability

0.0

0.2

0.4

0.6

0.8

1.0

Ob
se

rv
ed

 Fr
eq

ue
nc

y

Full Loss (All 4 Terms)
Calibration curve
Perfect calibration

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability

0.0

0.2

0.4

0.6

0.8

1.0

Ob
se

rv
ed

 Fr
eq

ue
nc

y

No Evidential Loss
Calibration curve
Perfect calibration

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability

0.0

0.2

0.4

0.6

0.8

1.0

Ob
se

rv
ed

 Fr
eq

ue
nc

y

No EVT Loss
Calibration curve
Perfect calibration

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability

0.0

0.2

0.4

0.6

0.8

1.0

Ob
se

rv
ed

 Fr
eq

ue
nc

y

No Precursor Loss
Calibration curve
Perfect calibration

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability

0.0

0.2

0.4

0.6

0.8

1.0

Ob
se

rv
ed

 Fr
eq

ue
nc

y

No Evid+EVT Loss
Calibration curve
Perfect calibration

Figure 7: Calibration curves for loss-term ablations on the M5–72 h task. Each panel shows the
reliability diagram (15 equal-frequency bins) for the full composite loss (top-left) and variants with
individual loss terms removed. Removing the evidential NLL (No Evidential Loss) primarily de-
grades mid-range calibration, consistent with its role in regularising logit uncertainty. Removing
the EVT exceedance penalty (No EVT Loss) disrupts tail calibration, producing overconfident pre-
dictions in the high-probability regime. Eliminating the precursor supervision (No Precursor Loss)
causes systematic underconfidence and curve flattening, reflecting reduced early-signal shaping in
the shared backbone. Joint removal of the evidential and EVT penalties (No Evid+EVT Loss) yields
the most unstable reliability curve, confirming that the two losses have complementary but non-
redundant effects. Together, these curves demonstrate that each loss component targets a distinct
calibration failure mode, and that the full composite objective yields the most reliable probabilistic
forecasts.

Table 16: EVT quantile sweep on M5–72 h. For each quantile u, we report the range (min–max) of
global TSS, ECE, and tail Brier score across two random seeds. Tail Brier is computed on the top
10% of predicted probabilities.

Quantile u TSS (min–max) ECE (min–max) Tail Brier (min–max)
0.85 0.9032–0.9284 0.0121–0.0164 0.01568–0.01712
0.90 0.9065–0.9319 0.0119–0.0158 0.01572–0.01705
0.95 0.9047–0.9276 0.0123–0.0160 0.01570–0.01718

3. Higher target (γ = 4): γ increases linearly from 0 to 4 over 50 epochs.

4. Lower target (γ = 1): γ increases linearly from 0 to 1 over 50 epochs.

Table 17 reports TSS and ECE for these variants on the test set (mean ± s.d. over 5 seeds). All
configurations with γ ∈ [2, 4] achieve strong performance (TSS > 0.90), with negligible perfor-
mance differences between the constant-γ = 2 and annealed 0→2 schedules. The lower-target
schedule (γ = 1) exhibits pronounced training instability and degraded discrimination, confirming
that sufficient re-weighting strength is necessary under severe imbalance.
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(a) TSS sensitivity. TSS varies only within
0.70–0.75 across the (κevid, κevt) grid, with mild
dependence on κevid and negligible sensitivity to
κevt, indicating that both auxiliaries act as stable
regularisers.

(b) ECE sensitivity. Calibration error remains in the
0.010–0.018 range for all weight combinations,
showing that EVEREST maintains good calibration
even under order-of-magnitude changes to auxiliary
loss weights.

Figure 8: Sensitivity of EVEREST to the auxiliary loss-weight multipliers (κevid, κevt) on the M5–
72 h task. Across the 5×5 grid, both discrimination (TSS) and calibration (ECE) vary only mildly,
indicating that performance is stable over a wide range of evidential and EVT loss weights.

Table 17: Effect of focal-loss exponent schedules on M5–72 h (test set, mean ± s.d. over 5 seeds).

Schedule TSS ↑ ECE ↓
Constant γ = 2 (no anneal) 0.985 ± 0.008 0.008 ± 0.001
Standard (0→2 over 50 epochs) 0.951 ± 0.013 0.008 ± 0.002
Higher target (0→4 over 50 epochs) 0.918 ± 0.047 0.043 ± 0.005
Lower target (0→1 over 50 epochs) 0.788 ± 0.245 0.003 ± 0.000

These results suggest that EVEREST is not sensitive to the precise focal-loss schedule: both the
constant-γ = 2 variant and the standard annealed schedule yield high TSS with low ECE, while
only very small exponents (γ ≈ 1) substantially harm rare-event discrimination. The focal term thus
acts as a robust imbalance regulariser rather than a finely tuned knob requiring delicate annealing.

I GRADIENT-BASED INTERPRETABILITY

We visualise feature–saliency gradients for representative tasks to probe the signals driving EVER-
EST predictions. Figure 9 summarises average gradient evolution across true positives (TP), true
negatives (TN), and false positives (FP). Distinct temporal morphologies emerge: TP cases show
sustained positive gradients in USFLUX and MEANGAM, while TN and FP cases lack such coherent
rises.

To examine how predictive confidence aligns with saliency signals, Figure 10 shows TP cases
stratified by model confidence. High-confidence TPs exhibit the strongest multi-feature gradients,
whereas low-confidence TPs show weaker but still consistent rises.
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Figure 9: Feature evolution heatmaps across prediction outcomes (True Positive, True Negative,
False Positive). Coordinated increases in USFLUX and MEANGAM appear in TPs, while TNs and
FPs show flatter or noisier profiles.
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TP Cases: Gradient Analysis by Confidence Level (All Confidence Levels)

Figure 10: Gradient evolution for True Positive (TP) M5–72h predictions stratified by model confi-
dence. Strongest gradients appear in high-confidence cases.
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Figure 11: Prospective replay of the 6 September 2017 X9.3 flare. Blue: EVEREST M5–72 h
probability (with 95% interval, if shown). Dashed lines mark alert thresholds (10%, 20%, 46%);
grey shows GOES soft X-ray flux.

Table 18: Lead-time statistics for EVEREST (M5–72 h) on the 6 Sep 2017 X9.3 flare.

Threshold (τ ) First crossing (UTC) Lead time Continuous alert length

10% 04 Sep 00:57 59.3 h 60.8 h
20% 04 Sep 14:01 52.5 h 53.6 h
46% 06 Sep 09:19 2.7 h 2.3 h

J PROSPECTIVE REPLAY: 6 SEPTEMBER 2017 X9.3 FLARE

The X9.3 flare of 6 September 2017 (NOAA AR 12673, peak at 12:02 UT) was held out from train-
ing and threshold calibration (3–7 Sep 2017) to provide a true out-of-sample test. Figure 11 shows
the M5–72 h probability trace; Table 18 lists the associated lead times for several alert thresholds.

K NOTATION

Symbol Description
X ∈ RT×F Input window (length T , F features)
y ∈ {0, 1} Binary rare-event label
H(l) = {h(l)

t }Tt=1 Hidden states after encoder layer l
z ∈ Rd Pooled representation from the attention bottleneck
l ∈ R Classification logit; p̂ = σ(l)
(µ, v, α, β) NIG parameters of the evidential head over l
(ξ, σ) GPD tail parameters for EVT exceedance modelling
u High-quantile threshold for defining exceedances
(λf , λe, λt, λp) Loss weights (focal / evidential / EVT / precursor)
τ Decision threshold on p̂ for issuing an alert

Table 19: Main notation used in Sections 3–4.
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Method Long-range Calib. EVT
Liu et al. (2019) LSTM Short memory No No
Sun et al. (2022) 3D-CNN Local convs No No
SolarFlareNet (2023) CNN + attention No No
EVEREST (ours) Transformer + bottl. Yes Yes

Table 20: Baseline capability comparison.

L BASELINE ARCHITECTURES AND REPRODUCTION DETAILS

We benchmark against the three strongest published SHARP–GOES forecasting models with avail-
able results or code: an LSTM forecaster, a 3D CNN, and SolarFlareNet (CNN–Transformer hy-
brid). These represent the major architectural families used in prior flare prediction work.

(Liu et al., 2019) — LSTM forecaster. A stacked LSTM (2–3 layers, 256 units) applied to
SHARP parameter sequences, followed by a fully-connected classifier. Each window is processed
independently (no cross-window recurrence), and the network outputs a probability of a ≥C/M/M5
flare within the horizon.

(Sun et al., 2022) — 3D Convolutional Model. A 3D-CNN originally designed for patch-based
magnetogram cubes. We follow the published configuration: 3D conv blocks + temporal pooling
+ linear head. Since only SHARP parameters are available (not full magnetograms), we adopt the
authors’ SHARP-mode variant reported in their supplementary results.

(Abduallah et al., 2023)— SolarFlareNet. A CNN–Transformer hybrid with spatial convolutions
followed by global self-attention and an MLP classifier. This is the strongest published baseline; we
use the publicly reported hyperparameters and the same HARPNUM-stratified splits.

Training and evaluation. All baselines are retrained using the same HARPNUM stratification,
SHARP features, normalization, cadences, thresholds, seeds, and evaluation metrics as EVEREST.
Threshold selection follows the same balanced-score rule.
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