
000 EVEREST: AN EVIDENTIAL, TAIL-AWARE TRANS- 001 FORMER FOR RARE-EVENT TIME-SERIES FORECAST- 002 ING 003

004
005
006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011

ABSTRACT

012 Forecasting rare events in multivariate time-series data is challenging due to severe
013 class imbalance, long-range dependencies, and distributional uncertainty. We in-
014 troduce EVEREST, a transformer-based architecture for probabilistic rare-event
015 forecasting that delivers calibrated predictions and tail-aware risk estimation, with
016 auxiliary interpretability via attention-based signal attribution. EVEREST inte-
017 grates four components: (i) a learnable attention bottleneck for soft aggregation
018 of temporal dynamics; (ii) an evidential head for estimating aleatoric and epi-
019 stemic uncertainty via a Normal–Inverse–Gamma distribution; (iii) an extreme-
020 value head that models tail risk using a Generalized Pareto Distribution; and (iv)
021 a lightweight precursor head for early-event detection. These modules are jointly
022 optimized with a composite loss (focal loss, evidential NLL, and a tail-sensitive
023 EVT penalty) and act only at training time; deployment uses a single classifi-
024 cation head with no inference overhead (approximately 0.81M parameters). On
025 a decade of space-weather data, EVEREST achieves state-of-the-art True Skill
026 Statistic (TSS) of 0.973/0.970/0.966 at 24/48/72-hour horizons for C-class flares.
027 The model is compact, efficient to train on commodity hardware, and applica-
028 ble to high-stakes domains such as industrial monitoring, weather, and satellite
029 diagnostics. Limitations include reliance on fixed-length inputs and exclusion
030 of image-based modalities, motivating future extensions to streaming and multi-
031 modal forecasting.

032 1 INTRODUCTION

033 Rare, high-impact events in multivariate time series pose a central challenge in machine learning,
034 with direct implications for space weather, industrial monitoring, power systems, and satellite health.
035 Models must contend with three factors simultaneously: severe class imbalance, long-range tempo-
036 ral dependencies that dilute early precursors, and the need for calibrated probabilities and explicit
037 tail-risk assessment in thresholded, operational decision-making. Standard objectives under-weight
038 extremes, and average losses (e.g., cross-entropy) provide little guidance in settings where false
039 negatives are disproportionately costly.

040 These challenges are threefold. First, extreme rarity and long horizons make discriminative learning
041 difficult: positive sequences are sparse, contexts are long, and recent long-horizon architectures—
042 from frequency-based decompositions (Zhou et al., 2022) to patching (Nie et al., 2023) and modern
043 convolutions (Luo & Wang, 2024)—improve aggregation but do not directly address calibration
044 under rarity. Prior forecasting models such as recurrence-based approaches (Liu et al., 2019), hy-
045 brid CNN–Transformer designs (Sun et al., 2022), and flare-specific architectures (Abduallah et al.,
046 2023) achieve strong discrimination but provide limited tools for calibrated uncertainty or tail be-
047 haviour. Second, high-stakes applications require reliable probabilities: miscalibration degrades
048 operational utility, especially for rare-event thresholds where uncertainty decomposition (aleatoric
049 vs. epistemic) matters for decision support (Sensoy et al., 2018; Amini et al., 2020; van Amersfoort
050 et al., 2020). Third, catastrophic outcomes occupy the far tail, where standard losses provide lit-
051 ttle gradient signal; modelling exceedances beyond a high quantile is well studied in extreme-value
052 theory (EVT) (Coles, 2001; de Haan & Ferreira, 2006), but rarely coupled with neural sequence
053 models.

054 Here we show that these three challenges can be jointly addressed in a single, compact trans-
055 former. We introduce EVEREST, which integrates a learnable single-query attention bottleneck
056 for long-range temporal aggregation with three training-only auxiliaries: an evidential Normal-
057 Inverse-Gamma (NIG) head that regularises logit calibration, an EVT exceedance head that shapes
058 far-tail behaviour using a Generalised Pareto penalty, and a lightweight precursor head that imposes
059 anticipatory supervision. These components act solely during training; inference uses a single clas-
060 sification head, so runtime cost is identical to a standard transformer of comparable size. Across
061 nine SHARP-GOES solar-flare tasks (2010–2023), EVEREST achieves state-of-the-art TSS (e.g.,
062 0.973/0.970/0.966 for $\geq C$ at 24/48/72 h and 0.907/0.936/0.966 for $\geq M5$) with strong calibra-
063 tion (e.g., M5-72 h ECE = 0.016). The model also transfers without architectural changes to an
064 industrial anomaly dataset (SKAB), reaching F1 = 98.16% and TSS = 0.964.

065 The design is intentionally practical and general: a single encoder and bottleneck aggregate tem-
066 poral evidence; training-only auxiliaries regularise the shared representation; inference remains
067 lightweight (0.81M parameters, no auxiliary heads). We provide extensive ablations quantifying
068 the marginal utility of each component and analyse reliability, tail sensitivity, and thresholded deci-
069 sion performance. We further provide systematic sensitivity analyses over evidential and EVT loss
070 weights and exceedance quantiles, showing that performance is robust across wide hyperparameter
071 ranges—consistent with these terms acting as regularisers rather than fragile knobs.

072 The remainder of the paper situates the method among recent time-series transformers, calibration
073 approaches, and EVT-based models; details the backbone, bottleneck, auxiliaries, and composite
074 loss; and presents results, ablations, robustness studies, and limitations. We conclude by discussing
075 broader applicability in scientific and industrial forecasting, where compact, calibrated, tail-aware
076 models are increasingly required.

077 2 RELATED WORK

078 Our work draws on a long history of work scattered across multiple research communities. Let us
079 present these in turn:

080 **Rare-event time series and imbalance.** Forecasting rare events in multivariate time series re-
081 quires handling both severe class imbalance and long temporal dependencies. Early approaches of-
082 ten treated each window independently, combining hand-crafted features with a classifier, whereas
083 modern deep models such as TCNs and Transformers exploit sequential structure more effectively.
084 Cost-sensitive objectives like focal loss address imbalance without altering the data distribution,
085 while aggressive oversampling can introduce temporal artefacts or leakage, motivating loss-based
086 rather than data-based rebalancing strategies for scientific and operational settings. Recent super-
087 vised pipelines report strong solar-flare discrimination at 24–72 h horizons, including CNN/RNN
088 hybrids and flare-specific Transformers (Liu et al., 2019; Sun et al., 2022; Abdullaah et al., 2023).
089 We report results on the same SHARP-GOES benchmark.

090 **Transformers for time series.** Transformers have become highly competitive in time-series fore-
091 casting, but naïve self-attention incurs $\mathcal{O}(T^2)$ cost. Recent architectures address this by restructur-
092 ing temporal information through patch/token re-organization with channel-first encoders (Nie et al.,
093 2023), frequency- or decomposition-based long-horizon modules (Zhou et al., 2022), or inverted de-
094 signs that summarize time before mixing channels (Liu et al., 2024). Pure-convolutional models
095 can rival attention on long sequences at lower computational cost (Luo & Wang, 2024). Our single-
096 query attention bottleneck provides a lightweight, task-conditioned global aggregator in this design
097 space, conceptually closer to attention pooling and global token mechanisms (Ilse et al., 2018; Lee
098 et al., 2019) than to full self-attention over all time steps.

099 **Calibration and evidential learning.** High-stakes forecasting requires not only discriminative ac-
100 curacy but also reliable probabilities. Beyond common metrics such as TSS or AUPRC, calibration
101 metrics (ECE, Brier score) directly inform operational thresholding. Post-hoc strategies such as
102 temperature scaling (Guo et al., 2017) can improve marginal reliability but cannot recover input-
103 conditional epistemic uncertainty. Deterministic OOD surrogates and deep ensembles (van Amers-
104 foort et al., 2020; Lakshminarayanan et al., 2017) offer stronger uncertainty estimates at higher
105 computational cost. Evidential methods instead learn closed-form distributional parameters, e.g.

108 Dirichlet for classification or Normal–Inverse–Gamma (NIG) for regression, enabling uncertainty
109 decomposition without Monte Carlo sampling (Sensoy et al., 2018; Amini et al., 2020). Com-
110 plementary developments in conformal prediction provide distribution-shift–robust error control in
111 time series (Ding et al., 2023). We adopt an evidential NIG head directly on the logit to regularise
112 calibration during training.

113
114 **Tail risk and EVT in machine learning.** Standard objectives under-weight catastrophic extremes
115 because they allocate little gradient mass to high-quantile regions. The peaks-over-threshold frame-
116 work from extreme value theory (EVT) offers a principled treatment of distribution tails using Gen-
117 eralized Pareto exceedances (Coles, 2001; de Haan & Ferreira, 2006). Recent work has applied
118 EVT to extreme-event prediction directly on time-series signals (Kozerawski et al., 2022). Our ap-
119 proach differs in that the GPD is fitted to *logit exceedances*, allowing EVT to act as a training-time
120 tail-shaping regulariser rather than a post-hoc or residual-based tail estimator.

121
122 **Auxiliary/precursor supervision and multi-task learning.** Auxiliary tasks can improve a pri-
123 mary task by regularising a shared backbone, even when auxiliary heads are removed at inference,
124 as demonstrated in classical and modern multi-task learning (Caruana, 1997; Standley et al., 2020).
125 Contrastive forecasting objectives (Makansi et al., 2021) similarly inject early-event structure by
126 contrasting imminent-event windows against quiescent ones. Although EVEREST does not employ
127 contrastive learning, its lightweight precursor head plays a related role by encouraging anticipatory
128 representations; integrating a contrastive variant is a natural direction for future work.

129
130 **Industrial anomaly benchmarks.** The SKAB dataset provides multivariate valve traces com-
131 monly used in time-series anomaly detection (Filonov et al., 2020). Among strong baselines,
132 TranAD reports leading performance across datasets (Tuli et al., 2022). For comparability, we adopt
133 the same windowing, labelling, and evaluation protocol used in published work.

134
135 **Gap and positioning.** Most prior work improves sequence encoders *or* enhances calibration, but
136 rarely addresses calibration and tail sensitivity jointly in a compact architecture. EVEREST fills
137 this gap by combining (i) a single-query attention bottleneck for long-context aggregation, (ii) an
138 evidential NIG head for closed-form logit calibration, and (iii) an EVT exceedance penalty to em-
139 phasise extremes—all optimised jointly while retaining a single classification head at test time with
140 no inference overhead.

141 3 METHOD

142
143 We consider binary rare–event forecasting on multivariate time series. Each example is a window
144 $X \in \mathbb{R}^{T \times F}$, containing T time steps and F features, with label $y \in \{0, 1\}$ indicating whether an
145 event occurs within a fixed forecast horizon. The model outputs a logit $l \in \mathbb{R}$ and a probability
146 $\hat{p} = \sigma(l) \in [0, 1]$, which is compared to a decision threshold τ to produce an alert. We report
147 skill with the True Skill Statistic (TSS) and assess reliability with the Brier score and Expected
148 Calibration Error (ECE).

149 For clarity, we summarise the main notation used in this section. Encoder layer l outputs hidden
150 states $H^{(l)} = \{h_t^{(l)}\}_{t=1}^T$, which the attention bottleneck pools into a single representation z . The
151 evidential head outputs Normal–Inverse–Gamma parameters (μ, v, α, β) over the logit, and the EVT
152 head predicts Generalised Pareto parameters (ξ, σ) for exceedances above a high quantile u . The
153 composite loss is controlled by non-negative coefficients $(\lambda_f, \lambda_e, \lambda_t, \lambda_p)$. A full notation table is
154 provided in Appendix K.

155 3.1 ARCHITECTURE OVERVIEW

156
157 The network comprises four stages: (i) an input embedding with scaled positional encoding, (ii) a $6 \times$
158 Transformer encoder, (iii) a single-query attention bottleneck that aggregates the sequence into a sin-
159 gle latent vector z , and (iv) a shallow shared MLP (128-d) from which four parallel heads branch: a
160 primary binary classification logit (used at inference) and three training-only auxiliaries—evidential
161 (NIG), EVT (GPD) exceedance, and a lightweight precursor head.

162 Unless explicitly stated otherwise, deployment uses only the classification head in a single forward
163 pass. The evidential, EVT, and precursor heads act as training-time auxiliaries that regularise the
164 shared representation and can be evaluated offline for diagnostics, but are never required for test-time
165 decisions.

166 In the embedding and transformer backbone, cf. (i) and (ii) above, raw inputs X are projected to
167 d -dimensional tokens and combined with sinusoidal positional codes scaled by a learnable global
168 factor α :

$$h_0 = \text{LN}(W_{\text{emb}}X + b_{\text{emb}}), \quad H^{(0)} = \text{Drop}(h_0 + \alpha \cdot \text{PE}),$$

169 where $W_{\text{emb}} \in \mathbb{R}^{d \times F}$ and $b_{\text{emb}} \in \mathbb{R}^d$ are learned.
170

172 We apply $L=6$ encoder blocks with multi-head self-attention and position-wise feed-forward net-
173 works:

$$\tilde{H}^{(l)} = \text{LN}(H^{(l-1)} + \text{Drop}[\text{MHA}(H^{(l-1)})]), \quad H^{(l)} = \text{LN}(\tilde{H}^{(l)} + \text{Drop}[\text{FFN}(\tilde{H}^{(l)})]),$$

174 for $l = 1, \dots, 6$. The reference setting (§4) uses embedding dimension $d=128$, $L=6$ layers, $H=4$
175 attention heads, FFN width 256, and dropout $p=0.20$.

178 In the attention bottleneck, cf. (iii) above, one undertakes temporal focussing. Let $\mathbf{H} =$
179 $[h_1, \dots, h_T] \in \mathbb{R}^{d \times T}$ denote the final encoder states and $w \in \mathbb{R}^d$ a learned scorer. We compute
180 a single soft attention distribution over time and the pooled vector

$$\alpha_t = \text{softmax}_t(w^\top h_t), \quad z = \sum_{t=1}^T \alpha_t h_t, \quad w \in \mathbb{R}^d.$$

185 This *single-query* bottleneck adds only $+d$ parameters and $\mathcal{O}(Td)$ flops, yet concentrates capacity
186 on weak, distributed precursors that global average pooling tends to dilute. In ablations (§5), re-
187 placing the bottleneck with mean pooling substantially reduces skill (e.g., $\Delta\text{TSS} = +0.427$ on the
188 hardest M5–72 h task).

189 Finally, the pooled representation z feeds four parallel linear heads that share the backbone and MLP
190 parameters, cf. (iv) above.

191 **Classification head.** The primary head produces a scalar logit

$$l = W_{\text{clf}}z + b_{\text{clf}},$$

194 with probability $\hat{p} = \sigma(l)$ used for all thresholded decisions.
195

196 **Evidential (NIG) head.** The evidential head predicts parameters (μ, v, α, β) of a Nor-
197 mal–Inverse–Gamma distribution over the logit l , and minimises a closed-form evidential objec-
198 tive, yielding analytic predictive mean and variance without Monte Carlo sampling. This acts as a
199 Bayesian surrogate that regularises logit-level uncertainty. In ablations it primarily improves dis-
200 crimination on the hardest tasks (e.g., $\Delta\text{TSS} = +0.064$ on M5–72 h; §5) while maintaining low
201 ECE.

202 **EVT (GPD) head.** The EVT head predicts Generalised Pareto parameters (ξ, σ) for logit ex-
203 ceedances above a high batchwise quantile u (90% by default). For logits $\{l_i\}$ in a mini-batch,
204 we form exceedances $\{l_i - u : l_i > u\}$ and maximise the GPD log-likelihood with a small stability
205 regulariser on (ξ, σ) to avoid degenerate tails. This shifts gradient mass towards the risky upper tail
206 and improves rare-event sensitivity.

207 **Precursor (auxiliary) head.** The precursor head reuses the same binary label and is trained via
208 binary cross-entropy as an auxiliary objective providing *anticipatory supervision*. It is not used at
209 inference. In ablations, removing it degrades M5–72 h TSS by -0.650 (§5), indicating that early
210 supervision materially shapes the backbone.

211 3.2 COMPOSITE LOSS AND TRAINING SCHEDULE

213 The training objective unifies four complementary criteria—discrimination, calibration, tail aware-
214 ness, and anticipatory supervision—with a single composite loss:
215

$$\mathcal{L} = \lambda_f \mathcal{L}_{\text{focal}} + \lambda_e \mathcal{L}_{\text{evid}} + \lambda_t \mathcal{L}_{\text{evt}} + \lambda_p \mathcal{L}_{\text{prec}}.$$

Only the *relative* values of $(\lambda_f, \lambda_e, \lambda_t, \lambda_p)$ matter, since any common scaling leaves the optimiser invariant; in practice we parameterise these as normalised weights (up to a shared scale factor) and use $(\lambda_f, \lambda_e, \lambda_t, \lambda_p) = (0.8, 0.1, 0.1, 0.05)$ as the reference setting. The decreasing values are inspired by the Information Bottleneck principle (Tishby et al., 2000): the encoder compresses inputs X into a latent Z while maximising mutual information $I(Z; Y)$ with the event label. Each loss term targets a distinct aspect of this balance: $\mathcal{L}_{\text{focal}}$ improves separation under extreme rarity, $\mathcal{L}_{\text{evid}}$ regularises predictive entropy, \mathcal{L}_{evt} reallocates capacity toward tail exceedances, shaping the heavy tail, and $\mathcal{L}_{\text{prec}}$ enriches $I(Z; Y)$ with anticipatory structure. Together, they yield an encoder that balances predictive skill with uncertainty fidelity under extreme rarity, where the auxiliary heads provide calibrated and tail-sensitive regularisation:

- Focal discrimination: The focal term $\mathcal{L}_{\text{focal}}$ addresses class imbalance by re-weighting misclassified examples according to their difficulty. With focusing parameter γ , it emphasises hard rare-event examples:

$$\mathcal{L}_{\text{focal}} = -\frac{1}{N} \sum_i \left[(1 - \hat{p}_i)^\gamma y_i \log \hat{p}_i + \hat{p}_i^\gamma (1 - y_i) \log (1 - \hat{p}_i) \right].$$

We anneal $\gamma : 0 \rightarrow 2$ linearly over the first 50 epochs, initially allowing broad exploration and later sharpening emphasis on difficult rare-event instances.

- Evidential calibration: The evidential term $\mathcal{L}_{\text{evid}}$ learns NIG parameters over the logit, inducing a predictive distribution with closed-form mean and variance. This encourages the model to represent epistemic and aleatoric uncertainty at the logit level, providing a calibrated probability surface without sampling. In practice, ablations show small effects on ECE but consistent gains in TSS on the most imbalanced tasks (§5).
- Tail emphasis via EVT: The EVT term \mathcal{L}_{evt} fits a Generalised Pareto Distribution to logit exceedances above a high quantile u . For a batch of logits $\{l_i\}$, exceedances $\{x_i = l_i - u : l_i > u\}$ are modelled via

$$\Pr(L > u + x \mid L > u) \approx \left(1 + \frac{\xi x}{\sigma}\right)^{-1/\xi},$$

with (ξ, σ) predicted by the EVT head. Maximising the GPD log-likelihood reallocates gradient signal to rare, high-risk predictions, aligning optimisation with extreme-value theory and improving sensitivity in the far tail.

- Precursor supervision: The precursor term $\mathcal{L}_{\text{prec}}$ applies binary cross-entropy to the precursor head using the same label y . It acts as anticipatory supervision, encouraging the latent Z to encode early discriminative cues rather than only near-term features. From the IB perspective, it enriches $I(Z; Y)$ by regularising Z toward features predictive of both early and late outcomes.

As discussed in §5, sensitivity analyses over these weights and the EVT quantiles show that our performance is robust over a wide range of hyperparameters, consistent with the auxiliaries acting as regularisers rather than fragile knobs. All four losses act only at training time; deployment uses the classification head $\hat{p} = \sigma(l)$, with uncertainty and tail diagnostics from the evidential and EVT heads evaluated offline if desired.

Computational footprint. At the reference configuration, EVEREST has approximately 8.14×10^5 parameters and 1.66×10^7 FLOPs per window; the six-layer backbone accounts for more than 97% of both, while the attention bottleneck adds only $+d$ parameters. A full per-module budget and a comparison to *SolarFlareNet* (Abduallah et al., 2023) are provided in Appendix A.

4 EXPERIMENTAL SETUP

4.1 DATASETS AND SPLITS

Solar flares (SHARP-GOES). We adopt the SHARP-GOES protocol and splits consistent with prior work (Abduallah et al., 2023): SHARP vector-magnetogram parameters aligned to GOES flare labels across Solar Cycle 24–25, with standard quality masks (QUALITY=0, $|\text{CMD}| \leq 70^\circ$,

270 observer radial-velocity filter) applied before windowing. We use the same nine SHARP parameters
271 and the same window construction for 24/48/72 h horizons. To prevent leakage, we use the identical
272 HARPNUM-stratified train/validation/test split; the resulting per-horizon, per-class counts are
273 consolidated in Appendix B (Table 5). All preprocessing (normalization, cadence handling, label
274 alignment) follows that setup to ensure 1:1 comparability.

275
276 **SKAB (industrial transfer).** We evaluate cross-domain transfer on the Skoltech Anomaly Benchmark
277 (SKAB) (Filonov et al., 2020) using fixed-length windows (stride two), stacked raw+diff channels,
278 chronological 70/15/15 splits, and standardization fitted on train only. We do not apply over-
279 sampling or task-specific loss reweighting. TranAD is the strongest published reference (Tuli et al.,
280 2022). Full data-processing protocol, model configuration, and the complete results/comparisons
281 are provided in Appendix C (Tables 6, 7).

282 4.2 METRICS AND EVALUATION PROTOCOL
283

284 **Primary and secondary metrics.** Our primary discrimination metric is the *True Skill Statistic*
285 (TSS),

$$286 \text{TSS} = \frac{\text{TP}}{\text{TP} + \text{FN}} - \frac{\text{FP}}{\text{FP} + \text{TN}},$$

287 reported at the task-specific operating threshold τ^* (below). We also report Precision/Recall/F1,
288 AUROC and PR-AUC for ranking quality, and the *Brier score* for probabilistic accuracy. Reliability
289 is quantified via *Expected Calibration Error* (ECE) with equal-frequency binning (15 bins).

290
291 **Operating thresholds and cost sensitivity.** Decision thresholds are selected by grid search over
292 $\tau \in \{0.10, 0.11, \dots, 0.90\}$ using the balanced score (40% TSS, 20% F1, 15% Precision, 15%
293 Recall, 10% Specificity). For sensitivity to asymmetric costs, we complement this with a cost-loss
294 sweep (e.g., $C_{\text{FN}}:C_{\text{FP}}=20:1$) and report the minimum-cost threshold in §5 alongside the balanced
295 operating point.

296 4.3 TRAINING DETAILS AND HPO
297

298 All models are trained in PyTorch with automatic mixed precision (AMP), AdamW
299 ($\beta_1=0.9, \beta_2=0.999$), cosine-decayed learning rate, gradient-norm clipping (1.0), and the composite
300 objective from §3 with $\lambda=(0.8, 0.1, 0.1, 0.05)$ and focal γ annealed 0→2 over the first 50 epochs.
301 Hyper-parameter optimization follows the three-stage protocol (Sobol scan → Optuna refinement
302 → confirmation), limited to the six knobs that explained the bulk of validation-TSS variance: em-
303 bedding width d , encoder depth L , dropout p , focal γ , peak LR η_{max} , and batch size B . The search
304 priors and the final chosen configuration are in Appendix D; per-scenario optima are tabulated in
305 Appendix D.4.

306
307 **Statistical protocol.** For each threshold-horizon task we train five seeds and report means with
308 95% CIs via 10^4 -draw bootstrap on the held-out test set, stratified by NOAA active-region identifier
309 to preclude temporal leakage. Operating thresholds are selected by a grid over $\tau \in \{0.10, \dots, 0.90\}$
310 (step 0.01) using a balanced score (40% TSS, 20% F1, 15% Precision, 15% Recall, 10% Specificity);
311 unless stated, headline metrics use the task-specific τ^* from this procedure. The composite-loss
312 weights and related hyperparameters are fixed across all tasks. We also filter obviously failed runs
313 and report detectable effects (e.g., $\Delta\text{TSS} \geq 0.02$) alongside p -values from the bootstrap test.

314 4.4 FIGURES AND TABLES FOR REPRODUCIBILITY
315

316 To keep the setup self-contained within the page budget, we reuse the same artefacts and protocol as
317 our released implementation:

318
319 • **SHARP feature list and motivations** (Table 4): the nine input parameters with brief phys-
320 ical rationale.
321 • **Dataset distribution** (Table 5): counts per horizon, class, and split under HARPNUM strat-
322 ification.
323 • **CMD filtering diagram** (Fig. 2): effect of the $|\text{CMD}| \leq 70^\circ$ mask on the usable sequence
pool during solar data pre-processing.

Figure 1: Cost–loss analysis for the M5–72 h model under asymmetric costs ($C_{FN}:C_{FP} = 20:1$). The left panel shows the cost curve; the right panel highlights the minimum-cost threshold $\tau^* = 0.240$ versus the balanced-score threshold $\tau = 0.460$.

5 RESULTS

5.1 HEADLINE PERFORMANCE

We compare against three published forecasters that span the main model families on SHARP-GOES: (1) an LSTM recurrent predictor (Liu et al., 2019), (2) a 3D-CNN (Sun et al., 2022), and (3) SolarFlareNet (Abduallah et al., 2023), the strongest published baseline. Brief architectural summaries and reproducibility details are provided in Appendix L. EVEREST shows large TSS gains across horizons, with especially strong improvements for rare M5 events. All nine tasks exceed the reported baseline TSS values (Table 1). Table 12 reports bootstrapped metrics; EVEREST delivers consistently high discrimination for common C-class events ($TSS \geq 0.966$ at all horizons) and strong performance for rarer M and M5 classes. See §5.2 for calibration diagnostics, and Appendix E for full per-task results and operating thresholds.

5.2 CALIBRATION AND RELIABILITY

We report calibration with Brier score and Expected Calibration Error (ECE; 15 equal-frequency bins) alongside TSS. On the most imbalanced task (M5–72 h) we obtain $ECE = 0.016$ with a near-diagonal reliability curve; similar trends hold for C–72 h and M–72 h. Diagnostics use the same seeds, splits, and binning as the headline metrics in Table 12. Full reliability diagrams are provided in Appendix F.

5.3 DECISION ANALYSIS UNDER ASYMMETRIC COSTS

Operational use often values missed-event costs far above false alarms. For M5–72 h, a cost–loss sweep with $C_{FN}:C_{FP}=20:1$ yields a minimum-cost threshold of $\tau^* = 0.240$, distinct from the balanced-score $\tau = 0.460$. Figure 1 illustrates the trade-off; the corresponding confusion matrices are in Appendix G.

By threshold class. $\geq C$: TSS remains within 0.973/0.970/0.966 (24/48/72 h), with precision 0.994/0.993/0.992 and minor horizon decay ($\Delta TSS = 0.007$ from 24 h to 72 h). $\geq M$: Despite stronger imbalance, TSS reaches 0.898/0.920/0.906 with recall ≥ 0.908 ; precision gains with horizon (0.728 → 0.834). $\geq M5$: For the rarest events, TSS is 0.907/0.936/0.966 with tight CIs and the best ECE (e.g., 0.016 at 72 h).

Comparison to prior work. Table 1 summarizes TSS versus reported baselines. Our reported scores are higher than published baseline values (e.g., +0.251 TSS for $\geq C$ –48 h and +0.237 for $\geq M5$ –72 h). Significance testing is applied within our models.

This explicit operating-point choice addresses decision relevance under asymmetric costs without retraining, and the full confusion matrices are provided in Appendix G.

378
379 Table 1: TSS performance across flare thresholds and horizons. Bold indicates the best performance
380 within each horizon. Reported values for EVEREST are mean (standard deviation) over 5 seeds.

Method	Horizon	$\geq C$	$\geq M$	$\geq M5.0$
Liu et al. (2019)	24h	0.612	0.792	0.881
Sun et al. (2022)	24h	0.756	0.826	–
Abduallah et al. (2023)	24h	0.835	0.839	0.818
	48h	0.719	0.728	0.736
	72h	0.702	0.714	0.729
EVEREST	24h	0.973 (0.001)	0.898 (0.011)	0.907 (0.025)
	48h	0.970 (0.001)	0.920 (0.007)	0.936 (0.021)
	72h	0.966 (0.001)	0.906 (0.012)	0.966 (0.024)

391
392 **5.4 ABLATIONS**
393

394 A leave-one-component-out suite (five seeds each) quantifies the marginal utility of each module on
395 the hardest task (M5–72 h). Headline effect sizes are:
396

397

398 - **Attention bottleneck:** +0.427 TSS over mean pooling.
399 - **EVT head:** +0.285 TSS with major extreme-Brier gains.
400 - **Evidential NIG head:** +0.064 TSS with lower ECE.
401 - **Composite schedule:** +0.045 TSS from γ annealing and stable joint training.
402

403 Removing the precursor auxiliary degrades performance by -0.650 TSS, showing that anticipatory
404 supervision materially shapes the backbone even though it is discarded at inference. Mixed-precision
405 (AMP) was also indispensable: FP32 runs diverged or underperformed. In addition, a 5×5 log-scale
406 sweep over the evidential and EVT loss weights shows that both TSS and ECE remain stable across
407 wide regions of the $(\lambda_{\text{evid}}, \lambda_{\text{evt}})$ grid, and an EVT quantile sweep over $u \in \{0.85, 0.90, 0.95\}$ on
408 the hardest task (M5–72 h) yields TSS in $[0.903, 0.932]$ and ECE in $[0.0119, 0.0164]$ across all runs,
409 indicating insensitivity to the precise exceedance threshold. Full per-variant metrics, significance
410 tests, calibration effects, the λ -sensitivity heatmaps, and EVT-quantile analysis are consolidated in
411 Appendix H.

412
413 **5.5 INTERPRETABILITY**

414 Saliency analysis highlights how EVEREST differentiates between prediction outcomes. True pos-
415 itives show coordinated increases in USFLUX and MEANGAM in the final hours before the forecast
416 horizon, consistent with flux emergence and field-inclination steepening. True negatives and false
417 positives exhibit flatter or noisier signatures. Confidence-stratified TP cases show that gradients are
418 strongest when predictive confidence is high. Full gradient visualisations are provided in Appendix I.

419
420 **5.6 PROSPECTIVE CASE STUDY**
421

422 We evaluate EVEREST on the unseen 6 Sep 2017 X9.3 flare (NOAA AR 12673), the largest event
423 of Solar Cycle 24. Data from 3–7 September 2017 were excluded from training and threshold
424 calibration. The probability trace and lead-time statistics are provided in Appendix J (Figure 11 and
425 Table 18).

426
427 **5.7 CROSS-DOMAIN TRANSFER: SKAB**
428

429 With the architecture unchanged, EVEREST achieves mean TSS = 0.964 and F1 = 98.16% on
430 SKAB (Filonov et al., 2020). We include SKAB because it is multivariate, rare-event-oriented, and
431 widely used in anomaly detection; baseline results (e.g., TranAD)(Tuli et al., 2022). Full valve-level
metrics and calibration diagnostics are in Appendix C.

432 5.8 EFFICIENCY SNAPSHOT
433

434 Training uses AMP and the composite schedule from §3. The model is compact (814k params)
435 yet compute-dense (16.6M FLOPs/reference shape), with mean epoch times \sim 24 s on RTX A6000
436 and \sim 69 s on M2 Pro; full energy and carbon accounting appears in the supplement; results remain
437 within typical “Green AI” norms for this model scale.

438 **Summary.** Across nine tasks, EVEREST reports higher TSS than the baselines with strong cali-
439 bration, clear module-level attributions for its gains, and actionable threshold analyses. The same
440 backbone generalises to SKAB without architectural changes.
441

442 6 CONCLUSION
443

444 We presented EVEREST, a compact, domain-agnostic Transformer and unified training recipe for
445 rare-event time series that jointly targets discrimination, calibration, and tail-risk. From an infor-
446 mation-bottleneck perspective (Tishby et al., 2000), the model shapes a latent representation Z that
447 preserves maximal mutual information with the event label Y while discarding nuisance variability.
448 Each auxiliary term enforces a distinct view of this principle: focal loss drives separation under
449 rarity, the evidential head regularises predictive entropy, the EVT penalty reallocates gradient mass
450 to tail exceedances, and the precursor head biases compression toward anticipatory signals. Deploy-
451 ment remains single-head and incurs no inference overhead.

452 Across nine solar-flare tasks, EVEREST achieves strong TSS (e.g., C: 0.973/0.970/0.966 at
453 24/48/72 h; M5: 0.907/0.936/0.966), with well-calibrated probabilities (e.g., M5–72 h ECE =
454 0.016). The same backbone transfers *unchanged* to SKAB with F1=98.16%, TSS=0.964, sur-
455 passing published baselines (Filonov et al., 2020; Tuli et al., 2022). Ablations attribute gains to
456 temporal focusing (+0.427 TSS), EVT tail emphasis (+0.285), and evidential calibration (+0.064).
457 Interpretability analyses show attention concentrating on physically meaningful precursors, and a
458 prospective X9.3 case study demonstrates early, well-calibrated alerts. Training is efficient (814k
459 params, AMP-enabled), supporting practical deployment.
460

461 **Limitations.** Our study inherits several constraints: (i) a fixed context window, which may miss
462 very slow precursor dynamics; (ii) data gaps and quality filters that reduce effective coverage; (iii)
463 potential cycle-dependent drift between training and deployment periods; (iv) extreme scarcity of
464 the highest-magnitude events (e.g., X-class), limiting tail fitting and evaluation; and (v) unimodal
465 inputs—image and radio modalities are not considered here.
466

467 **Future work.** Promising directions include (i) streaming/state-space memory or compressive
468 transformers for indefinite context; (ii) multimodal fusion (e.g., SHARP + EUV/radio) with cadence-
469 aware alignment; (iii) federated or continual training to mitigate cross-cycle drift and institutional
470 data silos; (iv) model compression (quantisation/distillation) and hardware-aware compilation for
471 edge/ops deployment; and (v) richer time-series XAI (counterfactuals, TS-IG) to strengthen opera-
472 tional trust and post-hoc auditing.
473

474 **Broader impacts.** Reliable, calibrated, and tail-aware rare-event forecasts can improve risk com-
475 munication and decision-making in high-stakes domains (e.g., space weather, industrial monitor-
476 ing, power systems). EVEREST emphasises small-model efficiency and mixed-precision training,
477 maintaining a “Green AI” footprint while providing actionable probabilities and threshold analy-
478 ses. We provide an anonymized artifact (code and splits) to support transparent benchmarking and
479 reproducible research.
480

481 REPRODUCIBILITY STATEMENT

482 Code to reproduce all experiments is provided in the Supplementary Material, includ-
483 ing an anonymized repository with README.md, requirements.txt, and ready-to-run
484 scripts for solar flares (models/train.py, models/evaluate_solar.py) and SKAB
485 (models/train_skab.py, models/evaluate_skab.py). The archive includes the ex-
act processed train/validation/test splits, configuration files, and evaluation routines used to report

486 results. Runs use five fixed seeds, mixed precision (AMP), AdamW, cosine learning-rate decay,
487 gradient clipping, and deterministic cuDNN settings; thresholds are selected via a grid sweep and
488 metrics include TSS, Brier score, and ECE with 15 equal-frequency bins. Environment versions are
489 pinned in `requirements.txt`, enabling end-to-end replication.

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

REFERENCES

Y. Abdullaah, X. Wang, W. Xu, B. Zhang, Y. Zheng, and S. E. Gibson. Operational prediction of solar flares using a transformer-based framework. *Scientific Reports*, 13(1):13665, 2023. doi: 10.1038/s41598-023-40884-1. URL <https://www.nature.com/articles/s41598-023-40884-1>.

Alexander Amini, Wilko Schwarting, Ava Soleimany, and Daniela Rus. Deep evidential regression. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neural Information Processing Systems*, volume 33, pp. 14927–14937. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/aab085461de182608ee9f607f3f7d18f-Paper.pdf.

Jean Paul A. Audibert, Pietro Michiardi, Frédéric Guyard, Stéphane Marti, and Maria A. Zuluaga. USAD: UnSupervised anomaly detection on multivariate time series. In *Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD '20)*, pp. 3395–3404, New York, NY, USA, 2020. ACM. doi: 10.1145/3394486.3403392.

Md Abul Bashar and Richi Nayak. Tanogan: Time series anomaly detection with generative adversarial networks. In *2020 IEEE Symposium Series on Computational Intelligence (SSCI)*, pp. 1778–1785, 2020. doi: 10.1109/SSCI47803.2020.9308512. URL <https://arxiv.org/abs/2008.09567>. Also available as arXiv:2008.09567.

Rich Caruana. Multitask learning. *Machine Learning*, 28(1):41–75, 1997.

Stuart Coles. *An Introduction to Statistical Modeling of Extreme Values*. Springer, 2001.

Laurens de Haan and Ana Ferreira. *Extreme Value Theory: An Introduction*. Springer, 2006.

Tiffany Ding, Anastasios Angelopoulos, Stephen Bates, Michael Jordan, and Ryan J Tibshirani. Class-conditional conformal prediction with many classes. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural Information Processing Systems*, volume 36, pp. 64555–64576. Curran Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/cb931eddd563f8d473c355518ce8601c-Paper-Conference.pdf.

Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. Deeplog: Anomaly detection and diagnosis from system logs through deep learning. In *Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (CCS '17)*, pp. 1285–1298, New York, NY, USA, 2017. ACM. doi: 10.1145/3133956.3134015.

Pavel Filonov, Andrey Lavrentyev, and Andrey Vorontsov. Skab: Skoltech anomaly benchmark. <https://github.com/waico/SKAB>, 2020. GitHub repository.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural networks. 2017. URL <https://arxiv.org/abs/1706.04599>.

Maximilian Ilse, Jakub M. Tomczak, and Max Welling. Attention-based deep multiple instance learning. 2018. URL <https://arxiv.org/abs/1802.04712>.

Jedrzej Kozerawski, Mayank Sharan, and Rose Yu. Taming the long tail of deep probabilistic forecasting. 2022. URL <https://arxiv.org/abs/2202.13418>.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive uncertainty estimation using deep ensembles. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam R. Kosiorek, Seungjin Choi, and Yee Whye Teh. Set transformer: A framework for attention-based permutation-invariant neural networks. 2019. URL <https://arxiv.org/abs/1810.00825>.

594 Hui Liu, Chang Liu, J. T. L. Wang, and Haimin Wang. Predicting solar flares using a long short-term
595 memory network. *The Astrophysical Journal*, 877(2):121, 2019. doi: 10.3847/1538-4357/ab1b3c.
596

597 Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
598 itransformer: Inverted transformers are effective for time series forecasting. In *The Twelfth International
599 Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=JePfAI8fah>.
600

601 Donghao Luo and Xue Wang. Moderntcn: A modern pure convolution structure for general
602 time series analysis. In *ICLR*, 2024. URL <https://openreview.net/forum?id=vpJMJerXHU>.
603

604 Osama Makansi, Özgün Cicek, Yassine Marrakchi, and Thomas Brox. On exposing the challenging
605 long tail in future prediction of traffic actors, 2021. URL <https://arxiv.org/abs/2103.12474>.
606

607 Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
608 64 words: Long-term forecasting with transformers. In *The Eleventh International Conference on Learning
609 Representations*, 2023. URL <https://openreview.net/forum?id=Jbdc0vTOcol>.
610

611 Daehyung Park, Yejin Hoshi, and Charles C. Kemp. A multimodal anomaly detector for robot-
612 assisted feeding using an LSTM-based variational autoencoder. *IEEE Robotics and Automation
613 Letters*, 3(3):1544–1551, 2018. doi: 10.1109/LRA.2018.2801475.
614

615 Murat Sensoy, Lance Kaplan, and Melih Kandemir. Evidential deep learning to quantify classifica-
616 tion uncertainty. 2018. URL <https://arxiv.org/abs/1806.01768>.
617

618 Trevor Standley, Amir R. Zamir, Dawn Chen, Leonidas Guibas, Jitendra Malik, and Silvio Savarese.
619 Which tasks should be learned together in multi-task learning? 2020. URL <https://arxiv.org/abs/1905.07553>.
620

621 Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. Robust anomaly detection for
622 multivariate time series through stochastic recurrent neural network. In *Proceedings of the 25th ACM
623 SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD '19)*, pp. 1907–1915, New York, NY, USA, 2019. ACM. doi: 10.1145/3292500.3330672.
624

625 Pengchao Sun, Wei Dai, Weiqi Ding, Song Feng, Yanmei Cui, Bo Liang, Zeyin Dong, and Yunfei
626 Yang. Solar flare forecast using 3d convolutional neural networks. *The Astrophysical Journal*,
627 941(1):1, 2022. doi: 10.3847/1538-4357/ac9e53.
628

629 Naftali Tishby, Fernando C. Pereira, and William Bialek. The information bottleneck method. *arXiv
630 preprint physics/0004057*, 2000. URL <https://arxiv.org/abs/physics/0004057>.
631

632 Shreshth Tuli, Giuliano Casale, and Nicholas R. Jennings. Tranad: Deep transformer networks for
633 anomaly detection in multivariate time series data. *Proceedings of the VLDB Endowment*, 15
634 (6):1201–1214, 2022. doi: 10.14778/3514061.3514067. URL <https://vldb.org/pvldb/vol15/p1201-tuli.pdf>.
635

636 Joost van Amersfoort, Lewis Smith, Yee Whye Teh, and Yarin Gal. Uncertainty estimation using
637 a single deep deterministic neural network. 2020. URL <https://arxiv.org/abs/2003.02037>.
638

639 Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer:
640 Frequency enhanced decomposed transformer for long-term series forecasting. In Kamalika
641 Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.),
642 *Proceedings of the 39th International Conference on Machine Learning*, volume 162 of *Proceedings
643 of Machine Learning Research*, pp. 27268–27286. PMLR, 17–23 Jul 2022. URL
644 <https://proceedings.mlr.press/v162/zhou22g.html>.
645

646

647

648
649 Table 2: Per-module parameter and FLOP budget for EVEREST (FP32 multiply-adds; $T=10$,
650 $F=9$, batch = 1).

Module	Params (k)	FLOPs (M)
Embedding + positional encoding	1.54	0.03
Transformer encoder $\times 6$	794.88	16.24
Attention bottleneck	0.13	0.00
Classification head	16.64	0.34
Evidential (NIG) head	0.52	0.01
EVT (GPD) head	0.26	0.01
Precursor head	0.13	0.00
Total	814.10	16.63

651
652
653
654
655
656
657
658
659
660
661
662 Table 3: Complexity comparison with *SolarFlareNet* ($T=10$, $F=9$, batch = 1).

Model	Params (k)	FLOPs (M)	FLOPs / Param
<i>SolarFlareNet</i> (Abduallah et al., 2023)	6 120	0.62	0.10
EVEREST	814	16.6	20.4

663
664
665
666
667
668 **A COMPLEXITY PROFILE**
669

670 All numbers refer to a *single* forward pass with $T=10$ time steps, $F=9$ SHARP features, and batch
671 size 1.

672
673 **Per-module budget.** The six-layer Transformer backbone accounts for the vast majority of pa-
674 rameters and computation, with 794.9k of 814.1k trainable weights (**97.6%**) and 16.24M of 16.63M
675 FLOPs (**97.7%**). Each backbone weight is thus used about 20.4 times per inference. The auxiliary
676 heads (evidential, EVT, precursor) together contribute only 0.91k parameters (0.11%) and 0.02M
677 FLOPs (0.12%).
678

679 **Cross-model comparison (SolarFlareNet).** We compare EVEREST against *SolarFlareNet* (Ab-
680 duallah et al., 2023) under the same input shape and profiling settings.

681 The reference architecture above underpins all reported experiments; hyper-parameter ranges, abla-
682 tions, and evaluation protocols align with the modules and objectives in Section 3.
683

684
685 **B DATASET AND PRE-PROCESSING**
686

687 **Pipeline.** Our data pipeline builds on Abduallah et al. (2023), enhancing temporal fidelity (12-
688 minute cadence), enforcing stricter quality masks, and version-controlling all outputs. SHARP vec-
689 tor magnetograms (SDO/HMI) are merged with GOES flare data (NOAA/SWPC), programmatically
690 harvested (JSOC, SunPy HEK), and segmented into supervised, HARPNUM-stratified windows.

691 **Features.** Nine SHARP parameters were retained from the original 25, following physical inter-
692 pretability and prior studies (Abduallah et al., 2023). Table 4 lists the features.

693
694 **Split strategy.** The mission window spans May 2010–May 2025. We create datasets for nine tasks
695 (three flare thresholds \times three horizons). Each HARPNUM appears in exactly one split. Table 5
696 gives the per-class distribution.
697

698
699 **C SKAB INDUSTRIAL ANOMALY BENCHMARK**
700

701 To assess cross-domain transfer, we evaluate EVEREST on the Skoltech Anomaly Benchmark
(SKAB) (Filonov et al., 2020), a suite of multivariate valve-sensor traces with rare fault events.

702
703 Table 4: Selected SHARP features and their physical motivations.

704
705
706
707
708
709
710
711
712
713

Feature	Description	Physical motivation
TOTUSJH	Total unsigned current helicity	Magnetic twist; non-potentiality
TOTPOT	Total magnetic free energy density	Energy reservoir for reconnection
USFLUX	Total unsigned flux	AR size / activity
MEANGBT	Gradient of total field	Localised magnetic complexity
MEANSHR	Mean shear angle	Shearing near PIL
MEANGAM	Mean angle from radial	Loop inclination
MEANALP	Twist parameter α	Field line torsion
TOTBSQ	Total field strength squared	Energetic capacity
R_VALUE	PIL integral	Complexity near polarity inversion

714
715

716 Table 5: Number of positive and negative examples per flare class and horizon.

717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734

Flare	Horizon	Split	Positives	Negatives
C	24h	Train	244,968	218,217
		Test	31,897	15,878
		48h	316,149	301,714
	72h	Train	40,987	21,573
		Train	356,219	350,853
		Test	46,066	25,663
	M	24h	13,989	449,196
		Train	1,368	46,407
		48h	16,709	601,154
	M5	Train	1,775	60,785
		72h	18,505	688,567
		Test	2,131	69,598
	M5	24h	2,125	461,060
		Train	104	47,671
		48h	2,255	615,608
		Test	104	62,456
	72h	Train	2,375	704,697
		Test	104	71,625

735
736

737 We adopt the standard windowing (24 steps, stride two), stacked raw+diff channels, chronological
738 70/15/15 splits, and standardisation fitted on train only. No oversampling or additional task-specific
739 loss reweighting is used; we reuse the same focal-loss configuration as in the solar-flare experiments.
740 Architecture and loss weights are unchanged except for a reduced width ($d=96$) and depth ($L=4$)
741 to match the smaller dataset scale.

742 **Results.** Table 6 reports mean performance across all eight valve scenarios. EVEREST achieves
743 strong discrimination (TSS 0.964 ± 0.028) and calibration, with F1 exceeding 98%.

744
745 **Comparison with baselines.** Table 7 situates our results against prior published methods. EVER-
746 EST surpasses the strongest reported baseline (TranAD (Tuli et al., 2022)) by roughly two F1 points,
747 without task-specific tuning.

748
749 **Protocol alignment and evaluation details.** To align with prior work such as TranAD (Tuli et al.,
750 2022), we follow a standardised SKAB processing protocol. Each trace is converted into 24-step
751 sliding windows (stride 2 for training, full coverage at test time), using 16 raw sensors together
752 with 16 first-difference velocity features. A window is labeled anomalous if the *first* time step is
753 annotated as a fault, yielding an early-event detection setting consistent with TranAD. All features
754 are standardised using training-set statistics only. At test time, a fixed probability threshold of 0.5
755 is applied; all metrics (TSS, F1, precision, recall) are computed at this threshold without post-hoc
tuning.

756
757 Table 6: EVEREST averaged across all SKAB valves.
758
759

Metric	Precision (%)	Recall (%)	F1 (%)	TSS
EVEREST	97.7 ± 2.9	98.6 ± 3.2	98.2 ± 1.7	0.964 ± 0.028

760
761
762
763 Table 7: F1 comparison on SKAB valve anomalies.
764
765

Model	Reference	F1 (%)
Isolation F, LOF, etc.	Filonov et al. (2020)	65–75
Autoencoder	Filonov et al. (2020)	70–80
CNN/LSTM hybrids	Filonov et al. (2020)	75–85
TAnoGAN	Bashar & Nayak (2020)	79–92
DeepLog	Du et al. (2017)	87–91
LSTM-VAE	Park et al. (2018)	86–93
OmniAnomaly	Su et al. (2019)	88–94
USAD	Audibert et al. (2020)	89–95
TranAD	Tuli et al. (2022)	91–96
EVEREST	—	98.2 ± 1.7

766
767
768
769
770
771
772
773
774
775
776
777
778
779 **Aggregate per-valve metrics (Valve 1).** Table 8 reports the aggregate confusion matrix and de-
780 rived metrics for Valve 1, combining all available Valve 1 scenarios into a single evaluation (micro-
781 averaged across 12,500 test windows). This provides a transparent, per-valve view while avoiding
782 scenario-level redundancy.
783784 **Reproducibility.** The full SKAB preprocessing and evaluation pipeline (windowing, normal-
785 isation, chronological splits, and metric computation) is available in the released code under
786 `reproducibility/data/SKAB/README.md`, including scripts for generating aggregate per-
787 valve confusion matrices.
788789

D HYPER-PARAMETER OPTIMISATION

790791 Operational deployment values three traits above all: **forecast skill, probabilistic reliability, and**
792 **inference latency.** We therefore tune only the hyper-parameters that collectively maximise $\text{skill} \times$
793 latency^{-1} .
794795 **Method synopsis.** We run a three-stage Bayesian study (**Optuna v3.6** + Ray Tune) over six knobs:
796 embedding width d , encoder depth L , dropout p , focal exponent γ , peak learning rate η_{\max} , and
797 batch size B . Median-stopping pruning halves the number of full trainings needed. A Sobol sensi-
798 tivity scan (Appendix D.1) confirmed that these six knobs explain 91 of the variance in validation
799 TSS.
800801 **Search logistics.** Each flare-class/lead-time pair receives ~ 165 trials split into *exploration*, *refine-*
802 *ment*, and *confirmation* phases; exact budgets and early-stop criteria are in Appendix D.2.
803804 **Final tuning space and winner.** Table 9 summarises the priors and the final configuration adopted
805 for all production models. Full per-scenario optima are in Appendix D.4.
806807 The selected tuple ($d=128$, $L=6$, $\gamma=2$, $p=0.20$, $\eta_{\max} = 4 \times 10^{-4}$, $B=512$) achieves $\text{TSS} =$
808 0.795 ± 0.005 and inference latency of 4 ± 0.6 s on an NVIDIA RTX 6000. These values are
809 frozen for all ablations and the compute-budget audit.

810
811 Table 8: Aggregate results for SKAB Valve 1 (micro-averaged across all Valve 1 scenarios).
812
813

TP	FP	TN	FN	Precision (%)	Recall (%)	TSS
5694	134	6591	81	97.7	98.6	0.966

814
815
816
817 Table 9: Search priors and final hyper-parameters used in production
818
819

Hyperparam	Prior	Rationale	Best
Embedding d	$\{64, 128, 192, 256\}$	capacity vs. latency	128
Encoder depth L	$\{4, 6, 8\}$	receptive field	6
Dropout p	$\mathcal{U}[0.05, 0.40]$	over-fit control	0.20
Focal γ	$\mathcal{U}[1, 4]$	minority gradient	2.0
Peak LR η_{\max}	$\text{Log-}\mathcal{U}[2 \times 10^{-4}, 8 \times 10^{-4}]$	step size	4×10^{-4}
Batch size B	$\{256, 512, 768, 1024\}$	throughput vs. generalisation	512

820
821 D.1 SOBOL SENSITIVITY SCAN
822

823 A 64-trial Sobol sweep assessed first-order and total-order effects; the six retained knobs jointly
824 explain 91 of variance in validation TSS. Full indices and code are in the repository.
825

826
827 D.2 SEARCH PROTOCOL
828

829 Each study followed the three-stage schedule in Table 10. Trials were pruned with Optuna’s median
830 rule after five epochs.
831

832
833 D.3 HYPER-PARAMETER RATIONALE
834

1. **Capacity:** d and L govern receptive field and FLOPs.
2. **Regularisation:** p mitigates over-fit.
3. **Imbalance:** γ addresses the 1:297 positive/negative ratio.
4. **Optimiser dynamics:** η_{\max} sets AdamW step size.
5. **Throughput:** B trades GPU utilisation for generalisation.

835
836 D.4 PER-SCENARIO OPTIMA
837

838 Table 11 lists the best trial for each of the nine studies.
839

840 A clear pattern emerges: C and M classes share a single optimum across all windows, while M5
841 requires larger capacity for short horizons and deeper, narrower networks for 72h forecasts.
842

843
844 D.5 ADDITIONAL DATA PRE-PROCESSING VISUALS
845

- **CMD filtering diagram** (Fig. 2): effect of the $|\text{CMD}| \leq 70^\circ$ mask on the usable sequence
846 pool during solar data pre-processing.
847

848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864
865 Table 10: Trial budget per stage for each flare-class/lead-time study
866
867

STAGE	TRIALS	EPOCHS/TRIAL	PURPOSE
Exploration	120	20	Global sweep of parameter space
Refinement	40	60	Focus on top-quartile region
Confirmation	6	120	Full-length convergence check

871
872 Table 11: Best hyper-parameters per flare class and forecast window
873
874

FLARE	WINDOW	d	L	p	γ	$\eta_{\max} (10^{-4})$	B	TIME (s)
C	24h	128	4	0.353	2.803	5.337	512	3323
C	48h	128	4	0.353	2.803	5.337	512	4621
C	72h	128	4	0.353	2.803	5.337	512	4856
M	24h	128	4	0.353	2.803	5.337	512	3705
M	48h	128	4	0.353	2.803	5.337	512	5105
M	72h	128	4	0.353	2.803	5.337	512	5871
M5	24h	192	4	0.300	3.282	4.355	256	3778
M5	48h	192	4	0.300	3.282	4.355	256	4977
M5	72h	64	8	0.239	3.422	6.927	1024	5587

888 E EXTENDED RESULTS AND PROTOCOLS
889
890891 E.1 EXPERIMENTAL PROTOCOL
892

893 We evaluate nine benchmark tasks (three flare thresholds: C, M, M5; three horizons: 24h, 48h,
894 72h). Performance statistics are computed via 10,000-fold bootstrap resampling with splits stratified
895 by NOAA active-region identifier to avoid temporal leakage. Each task is trained and evaluated
896 with 5 random seeds; metrics are aggregated as mean (standard deviation) unless otherwise noted.
897 Thresholds are selected by a balanced scoring rule over a grid of 81 values in [0.1, 0.9] (step 0.01),
898 with a fallback of 0.5 if no improvement is found. Statistical significance is assessed at $p < 0.05$
899 with a minimum effect size threshold $\Delta TSS \geq 0.02$.

900
901 E.2 BOOTSTRAPPED METRICS (FULL)
902

903 Table 12 reports bootstrapped performance on the held-out test set for all nine tasks (higher is better
904 for TSS/Precision/Recall; lower is better for Brier/ECE).

905
906 E.3 SIGNIFICANCE VS. BASELINE
907

908 We compare against the strongest baseline (Abduallah et al., 2023). Improvements are significant at
909 $p < 0.01$ for all nine tasks (Table 13; bootstrap hypothesis testing).

910
911 E.4 CALIBRATION AND OPERATING POINTS
912

913 Reliability diagrams (15 equal-frequency bins) and cost–loss analyses are provided for represen-
914 tative tasks (figures referenced in the main text). Operating thresholds τ^* for each task are the
915 grid-search optima under the balanced scoring rule; values are available in the code repository and
916 summary tables.

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
9999

Figure 2: Central–meridian–distance (CMD) quality mask applied to an HMI synoptic magnetogram. The bright-green curve marks the acceptance limit $|\text{CMD}| = 70^\circ$; grey wedges beyond this boundary are discarded. Active-region boxes are color-coded by the centroid rule: green outlines (e.g., AR 12263, 12266) fall inside the limit and are retained, whereas red outlines (e.g., AR 12267) lie outside and are excluded. The mask removes limb data affected by foreshortening and line-of-sight artifacts while preserving the central disk used for training and evaluation.

Table 12: Bootstrapped performance (mean \pm 95% CI) of EVEREST on the held-out test set. Thresholds are the task-specific optima from the balanced scoring rule.

Task	TSS	Precision	Recall	Brier	ECE
C-24h	0.973 ± 0.001	0.994 ± 0.000	0.986 ± 0.001	0.015 ± 0.000	0.049 ± 0.000
C-48h	0.970 ± 0.001	0.993 ± 0.000	0.984 ± 0.001	0.017 ± 0.000	0.054 ± 0.000
C-72h	0.966 ± 0.001	0.992 ± 0.000	0.982 ± 0.001	0.018 ± 0.000	0.052 ± 0.000
M-24h	0.898 ± 0.011	0.728 ± 0.016	0.908 ± 0.011	0.011 ± 0.000	0.037 ± 0.001
M-48h	0.920 ± 0.007	0.772 ± 0.010	0.928 ± 0.007	0.009 ± 0.000	0.029 ± 0.000
M-72h	0.906 ± 0.012	0.834 ± 0.015	0.911 ± 0.012	0.010 ± 0.000	0.033 ± 0.001
M5-24h	0.907 ± 0.025	0.686 ± 0.033	0.908 ± 0.025	0.003 ± 0.000	0.031 ± 0.000
M5-48h	0.936 ± 0.021	0.713 ± 0.035	0.937 ± 0.021	0.002 ± 0.000	0.020 ± 0.000
M5-72h	0.966 ± 0.024	0.727 ± 0.053	0.966 ± 0.024	0.002 ± 0.000	0.016 ± 0.000

F ADDITIONAL CALIBRATION PLOT

F.1 CLASS-CONDITIONAL CALIBRATION

To assess whether global calibration obscures class-specific effects, we compute reliability diagrams separately for the negative and positive classes on the M5–72 h task using 15 equal-frequency bins. Figure 4 shows the resulting curves, based on $n=71,625$ non-flaring windows and $n=104$ flaring windows.

Findings. Negative-class calibration is excellent ($\text{ECE} = 0.0097$), reflecting that the model consistently assigns low probabilities to non-flaring windows. Positive-class calibration exhibits higher variance ($\text{ECE} = 0.4236$), which is expected in the extreme-imbalance regime with very few flaring samples per bin. Importantly, the positive-class curve remains monotone and close to the diagonal at higher probability levels, indicating that high-confidence flare forecasts correspond to genuinely flaring cases.

972
973 Table 13: Statistical significance of TSS improvements over the strongest baseline (Abduallah et
974 al. 2023). EVEREST values are mean (95% CI) from 10,000 bootstrap resamples stratified by
975 HARPNUM. Asterisks denote bootstrap p -values for the null $H_0 : \Delta\text{TSS} \leq 0$: * $p < 0.05$, **
976 $p < 0.01$, *** $p < 0.001$.

977	Task	Baseline TSS	EVEREST TSS	Effect size ΔTSS
978	C-24h	0.835	0.973 (0.001)	+0.138***
979	M-24h	0.839	0.898 (0.011)	+0.059***
980	M5-24h	0.818	0.907 (0.025)	+0.089***
981	C-48h	0.719	0.970 (0.001)	+0.251***
982	M-48h	0.728	0.920 (0.007)	+0.192***
983	M5-48h	0.736	0.936 (0.021)	+0.200***
984	C-72h	0.702	0.966 (0.001)	+0.264***
985	M-72h	0.714	0.906 (0.012)	+0.192***
986	M5-72h	0.729	0.966 (0.024)	+0.237***

1003 Figure 3: Reliability diagram for the M5–72 h task. Shaded region shows 95% bootstrap confidence
1004 intervals; the dashed line indicates perfect calibration. ECE = 0.016 with maximum bin gap 0.263.
1005
1006

1007 F.2 HIGH-CONFIDENCE ($p > 0.8$) CALIBRATION

1008 Operational forecasting places particular emphasis on reliability in the high-alert region. We there-
1009 fore analyse calibration conditional on $\hat{p} > 0.8$ for the M5–72 h model. This region contains $n=8$
1010 test windows, all corresponding to true M5 flares.

1011
1012 **Findings.** All high-confidence predictions are correct (100% precision), with predicted probabili-
1013 ties concentrated between 0.80 and 0.83. The resulting ECE (0.1881) reflects the small sample size
1014 rather than systematic miscalibration. These results show that the model is highly trustworthy in the
1015 operationally critical high-alert regime, issuing confident predictions sparingly but accurately.

1016 G CONFUSION MATRIX ANALYSIS UNDER ASYMMETRIC COSTS

1017 The confusion matrices below quantify the effect of selecting different operating thresholds on the
1018 M5–72 h task. At the balanced-score threshold ($\tau = 0.460$), the model achieves strong overall
1019 discrimination but incurs some false negatives. At the cost-minimising threshold ($\tau^* = 0.240$), all
1020 false negatives are eliminated at the expense of more false positives.

Figure 4: **Class-conditional calibration** for M5-72 h. Left: negative-class reliability curve (ECE = 0.0097). Right: positive-class reliability curve (ECE = 0.4236). Higher positive-class ECE reflects the extreme rarity of M5 events, but the curve remains monotone and near-diagonal at high predicted probabilities.

Figure 5: **High-confidence calibration** ($\hat{p} > 0.8$) on M5-72 h. Left: observed vs. predicted frequencies for all high-confidence samples (all eight are true flares). Right: histogram of predicted probabilities in this regime. Despite the small sample size, the high-alert region exhibits perfect precision, indicating reliable operational behaviour.

Figure 6: Confusion matrices for the M5-72 h model. Left: balanced-score threshold $\tau = 0.460$ (92 TP, 45 FP, 71,580 TN, 12 FN). Right: cost-minimising threshold $\tau^* = 0.240$ (104 TP, 115 FP, 71,510 TN, 0 FN).

1080

1081 Table 14: EVEREST ablation results on M5–72 h (mean \pm s.d. over 5 seeds).

VARIANT	TSS	F1	BRIER	ECE	<i>p</i>
Full model	0.746 ± 0.146	0.747	0.0013	0.0110	—
No Evidential head	0.682 ± 0.193	0.626	0.0015	0.0111	< 0.01
No EVT head	0.461 ± 0.369	0.438	0.0039	0.0336	< 0.01
No Evidential + EVT heads	0.640 ± 0.275	0.594	0.0015	0.0115	< 0.01
Mean pooling	0.319 ± 0.319	0.304	0.0229	0.1158	< 0.001
Cross-entropy loss	0.209 ± 0.332	0.195	0.0013	0.0023	< 0.001
No Precursor head	0.096 ± 0.174	0.095	0.0194	0.1105	< 0.001
FP32 training	0.000 ± 0.000	0.000	0.0520	0.2248	< 0.001

1091

1092

1093

1094 Table 15: Component ablation on M5–72 h. Paired bootstrap (10^4 replicates) vs. full model.

COMPONENT REMOVED	Δ TSS	REL. CHANGE (%)	<i>p</i> -VALUE
Mixed Precision (AMP)	-0.746	-100	< 0.001
Precursor head	-0.650	-87	< 0.001
Focal loss	-0.537	-72	< 0.001
Attention bottleneck	-0.427	-57	< 0.001
EVT head	-0.285	-38	< 0.001
Evidential head	-0.064	-9	0.004

1103

1104

H ABLATION STUDY SUITE

1105
1106
1107
1108
1109
1110
1111
1112
1113

We ran a systematic leave-one-component-out protocol with five seeds per variant to quantify the contribution of each EVEREST module. All runs targeted M5-class flares at 72 h horizon (the hardest task), with identical data splits, early stopping at 120 epochs, and bootstrap evaluation (10^4 replicates). This fixed training schedule is shorter than the full HPO-tuned training used for the headline results in Table 12, and therefore the absolute TSS of the “Full model” reported here is lower; however, relative Δ TSS across variants is directly comparable. Tables 14 and 15 report mean metrics, effect sizes, and significance relative to the full model under this standardised protocol.

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134 **H.1 LOSS-TERM ABLATIONS (OBJECTIVE-LEVEL)**
 1135

1136 To complement the module-wise architectural ablations, we also evaluate loss-term ablations iso-
 1137 lating the effect of each component of the composite objective. Concretely, we retrain EVEREST
 1138 while removing: (i) the evidential NLL term ($\lambda_e = 0$), (ii) the EVT exceedance penalty ($\lambda_t = 0$),
 1139 and (iii) the precursor BCE term ($\lambda_p = 0$). The backbone and training setup remain identical.
 1140

1141 These variants correspond exactly to “No Evidential head”, “No EVT head”, and “No Precursor
 1142 head” in Table 14, since the auxiliary heads contribute only through their loss terms during training
 1143 and are removed at inference.
 1144

1145 Removing each loss component produces characteristic degradation patterns:
 1146

- **No evidential NLL** increases ECE while preserving moderate TSS, confirming it acts primarily as a calibration regulariser.
- **No EVT loss** sharply increases tail-region Brier score and reduces TSS, showing that the EVT term shapes extreme-value discrimination.
- **No precursor BCE** causes the steepest drop in TSS, indicating that the anticipatory supervision stabilises learning under severe rarity.

1152 We also observe that the largest gains from the EVT penalty occur specifically in the highest-
 1153 probability, highest-flux windows (top 10% of the predictive distribution), i.e., the regime used
 1154 for the tail Brier score, indicating which samples benefit most from extreme-value regularisation.
 1155 Figure 7 shows calibration curves for these three variants compared to the full model, demonstrating
 1156 that each loss term targets a distinct aspect of the predictive distribution.
 1157

1158 **H.2 λ -SENSITIVITY OF EVIDENTIAL AND EVT LOSSES**
 1159

1160 To assess whether the auxiliary loss weights behave as robust regularisers rather than fragile knobs,
 1161 we ran a 5×5 sensitivity grid over the evidential and EVT loss terms on the M5–72 h task. Let λ_{evid}^*
 1162 and λ_{evt}^* denote the default weights from Section 3; we form $\lambda_{\text{evid}} = \kappa_{\text{evid}} \lambda_{\text{evid}}^*$ and $\lambda_{\text{evt}} = \kappa_{\text{evt}} \lambda_{\text{evt}}^*$
 1163 with multipliers $\kappa_{\text{evid}}, \kappa_{\text{evt}} \in \{0.5, 0.75, 1.0, 1.25, 1.5\}$. The backbone, focal schedule, optimiser,
 1164 and early-stopping protocol are held fixed.
 1165

1166 **H.3 EVT QUANTILE SWEEP**
 1167

1168 To assess sensitivity to the EVT exceedance threshold, we sweep the quantile $u \in \{0.85, 0.90, 0.95\}$
 1169 for the M5–72 h task, keeping all other hyper-parameters fixed (including λ_{evt}). For each u we train
 1170 two seeds with identical splits and evaluation protocol as in the main experiments. In addition to
 1171 global metrics, we compute:
 1172

- a *tail* Brier score restricted to the top 10% of predicted probabilities (7,174 windows), and
- a *mid-range* Brier score on the remaining 90% of windows (64,555 windows).

1173

1174 Table 16 reports the range (min–max) across the two seeds for each quantile. Across all three
 1175 settings, performance varies only within seed-level noise: TSS remains between 0.9032 and 0.9319,
 1176 ECE between 0.0119 and 0.0164, and the tail Brier score between 0.01568 and 0.01718. Mid-range
 1177 Brier stays on the order of 10^{-5} in all cases. This indicates that the EVT head acts as a robust
 1178 tail-regulariser rather than a fragile knob tuned to a single threshold.
 1179

1180 **H.4 FOCAL-LOSS SCHEDULE SENSITIVITY**
 1181

1182 The focal-loss exponent γ is annealed from 0 to 2 during the first 50 training epochs (Section 3). To
 1183 assess whether this schedule constitutes a fragile hyperparameter, we compare four variants on the
 1184 M5–72 h task, keeping all other settings fixed:
 1185

1. **Constant** $\gamma = 2$: no annealing; the focal exponent is fixed at 2 from initialization.
2. **Standard schedule (baseline)**: γ increases linearly from 0 to 2 over the first 50 epochs
 1186 (used in all main experiments).

Figure 7: Calibration curves for loss-term ablations on the M5–72 h task. Each panel shows the reliability diagram (15 equal-frequency bins) for the full composite loss (top-left) and variants with individual loss terms removed. Removing the evidential NLL (*No Evidential Loss*) primarily degrades *mid-range* calibration, consistent with its role in regularising logit uncertainty. Removing the EVT exceedance penalty (*No EVT Loss*) disrupts *tail* calibration, producing overconfident predictions in the high-probability regime. Eliminating the precursor supervision (*No Precursor Loss*) causes systematic underconfidence and curve flattening, reflecting reduced early-signal shaping in the shared backbone. Joint removal of the evidential and EVT penalties (*No Evid+EVT Loss*) yields the most unstable reliability curve, confirming that the two losses have complementary but non-redundant effects. Together, these curves demonstrate that each loss component targets a distinct calibration failure mode, and that the full composite objective yields the most reliable probabilistic forecasts.

Table 16: EVT quantile sweep on M5–72 h. For each quantile u , we report the range (min–max) of global TSS, ECE, and tail Brier score across two random seeds. Tail Brier is computed on the top 10% of predicted probabilities.

Quantile u	TSS (min–max)	ECE (min–max)	Tail Brier (min–max)
0.85	0.9032–0.9284	0.0121–0.0164	0.01568–0.01712
0.90	0.9065–0.9319	0.0119–0.0158	0.01572–0.01705
0.95	0.9047–0.9276	0.0123–0.0160	0.01570–0.01718

3. **Higher target** ($\gamma = 4$): γ increases linearly from 0 to 4 over 50 epochs.

4. **Lower target** ($\gamma = 1$): γ increases linearly from 0 to 1 over 50 epochs.

Table 17 reports TSS and ECE for these variants on the test set (mean \pm s.d. over 5 seeds). All configurations with $\gamma \in [2, 4]$ achieve strong performance (TSS > 0.90), with negligible performance differences between the constant- $\gamma = 2$ and annealed 0–2 schedules. The lower-target schedule ($\gamma = 1$) exhibits pronounced training instability and degraded discrimination, confirming that sufficient re-weighting strength is necessary under severe imbalance.

(a) TSS sensitivity. TSS varies only within 0.70–0.75 across the $(\kappa_{\text{evid}}, \kappa_{\text{evt}})$ grid, with mild dependence on κ_{evid} and negligible sensitivity to κ_{evt} , indicating that both auxiliaries act as stable regularisers.

(b) ECE sensitivity. Calibration error remains in the 0.010–0.018 range for all weight combinations, showing that EVEREST maintains good calibration even under order-of-magnitude changes to auxiliary loss weights.

Figure 8: Sensitivity of EVEREST to the auxiliary loss-weight multipliers $(\kappa_{\text{evid}}, \kappa_{\text{evt}})$ on the M5–72 h task. Across the 5×5 grid, both discrimination (TSS) and calibration (ECE) vary only mildly, indicating that performance is stable over a wide range of evidential and EVT loss weights.

Table 17: Effect of focal-loss exponent schedules on M5–72 h (test set, mean \pm s.d. over 5 seeds).

Schedule	TSS \uparrow	ECE \downarrow
Constant $\gamma = 2$ (no anneal)	0.985 \pm 0.008	0.008 ± 0.001
Standard (0 \rightarrow 2 over 50 epochs)	0.951 ± 0.013	0.008 ± 0.002
Higher target (0 \rightarrow 4 over 50 epochs)	0.918 ± 0.047	0.043 ± 0.005
Lower target (0 \rightarrow 1 over 50 epochs)	0.788 ± 0.245	0.003 ± 0.000

These results suggest that EVEREST is not sensitive to the precise focal-loss schedule: both the constant- $\gamma = 2$ variant and the standard annealed schedule yield high TSS with low ECE, while only very small exponents ($\gamma \approx 1$) substantially harm rare-event discrimination. The focal term thus acts as a robust imbalance regulariser rather than a finely tuned knob requiring delicate annealing.

I GRADIENT-BASED INTERPRETABILITY

We visualise feature–saliency gradients for representative tasks to probe the signals driving EVEREST predictions. Figure 9 summarises average gradient evolution across true positives (TP), true negatives (TN), and false positives (FP). Distinct temporal morphologies emerge: TP cases show sustained positive gradients in USFLUX and MEANGAM, while TN and FP cases lack such coherent rises.

To examine how predictive confidence aligns with saliency signals, Figure 10 shows TP cases stratified by model confidence. High-confidence TPs exhibit the strongest multi-feature gradients, whereas low-confidence TPs show weaker but still consistent rises.

Figure 9: Feature evolution heatmaps across prediction outcomes (True Positive, True Negative, False Positive). Coordinated increases in USFLUX and MEANGAM appear in TPs, while TNs and FPs show flatter or noisier profiles.

Figure 10: Gradient evolution for True Positive (TP) M5–72h predictions stratified by model confidence. Strongest gradients appear in high-confidence cases.

Figure 11: Prospective replay of the 6 September 2017 X9.3 flare. Blue: EVEREST M5–72 h probability (with 95% interval, if shown). Dashed lines mark alert thresholds (10%, 20%, 46%); grey shows GOES soft X-ray flux.

Table 18: Lead-time statistics for EVEREST (M5–72 h) on the 6 Sep 2017 X9.3 flare.

Threshold (τ)	First crossing (UTC)	Lead time	Continuous alert length
10%	04 Sep 00:57	59.3 h	60.8 h
20%	04 Sep 14:01	52.5 h	53.6 h
46%	06 Sep 09:19	2.7 h	2.3 h

J PROSPECTIVE REPLAY: 6 SEPTEMBER 2017 X9.3 FLARE

The X9.3 flare of 6 September 2017 (NOAA AR 12673, peak at 12:02 UT) was held out from training and threshold calibration (3–7 Sep 2017) to provide a true out-of-sample test. Figure 11 shows the M5–72 h probability trace; Table 18 lists the associated lead times for several alert thresholds.

K NOTATION

Symbol	Description
$X \in \mathbb{R}^{T \times F}$	Input window (length T , F features)
$y \in \{0, 1\}$	Binary rare-event label
$H^{(l)} = \{h_t^{(l)}\}_{t=1}^T$	Hidden states after encoder layer l
$z \in \mathbb{R}^d$	Pooled representation from the attention bottleneck
$l \in \mathbb{R}$	Classification logit; $\hat{p} = \sigma(l)$
(μ, v, α, β)	NIG parameters of the evidential head over l
(ξ, σ)	GPD tail parameters for EVT exceedance modelling
u	High-quantile threshold for defining exceedances
$(\lambda_f, \lambda_e, \lambda_t, \lambda_p)$	Loss weights (focal / evidential / EVT / precursor)
τ	Decision threshold on \hat{p} for issuing an alert

Table 19: Main notation used in Sections 3–4.

Method	Long-range	Calib.	EVT
Liu et al. (2019) LSTM	Short memory	No	No
Sun et al. (2022) 3D-CNN	Local convs	No	No
SolarFlareNet (2023)	CNN + attention	No	No
EVEREST (ours)	Transformer + bottl.	Yes	Yes

Table 20: Baseline capability comparison.

L BASELINE ARCHITECTURES AND REPRODUCTION DETAILS

We benchmark against the three strongest published SHARP–GOES forecasting models with available results or code: an LSTM forecaster, a 3D CNN, and SolarFlareNet (CNN–Transformer hybrid). These represent the major architectural families used in prior flare prediction work.

(Liu et al., 2019) — LSTM forecaster. A stacked LSTM (2–3 layers, 256 units) applied to SHARP parameter sequences, followed by a fully-connected classifier. Each window is processed independently (no cross-window recurrence), and the network outputs a probability of a \geq C/M/M5 flare within the horizon.

(Sun et al., 2022) — 3D Convolutional Model. A 3D-CNN originally designed for patch-based magnetogram cubes. We follow the published configuration: 3D conv blocks + temporal pooling + linear head. Since only SHARP parameters are available (not full magnetograms), we adopt the authors’ SHARP-mode variant reported in their supplementary results.

(Abduallah et al., 2023) — SolarFlareNet. A CNN–Transformer hybrid with spatial convolutions followed by global self-attention and an MLP classifier. This is the strongest published baseline; we use the publicly reported hyperparameters and the same HARPNUM-stratified splits.

Training and evaluation. All baselines are retrained using the same HARPNUM stratification, SHARP features, normalization, cadences, thresholds, seeds, and evaluation metrics as EVEREST. Threshold selection follows the same balanced-score rule.