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ABSTRACT

Forecasting rare events in multivariate time-series data is challenging due to severe
class imbalance, long-range dependencies, and distributional uncertainty. We in-
troduce EVEREST, a transformer-based architecture for probabilistic rare-event
forecasting that delivers calibrated predictions and tail-aware risk estimation, with
auxiliary interpretability via attention-based signal attribution. EVEREST inte-
grates four components: (i) a learnable attention bottleneck for soft aggregation
of temporal dynamics; (ii) an evidential head for estimating aleatoric and epis-
temic uncertainty via a Normal-Inverse-Gamma distribution; (iii) an extreme-
value head that models tail risk using a Generalized Pareto Distribution; and (iv)
a lightweight precursor head for early-event detection. These modules are jointly
optimized with a composite loss (focal loss, evidential NLL, and a tail-sensitive
EVT penalty) and act only at training time; deployment uses a single classifi-
cation head with no inference overhead (approximately 0.81M parameters). On
a decade of space-weather data, EVEREST achieves state-of-the-art True Skill
Statistic (TSS) of 0.973/0.970/0.966 at 24/48/72-hour horizons for C-class flares.
The model is compact, efficient to train on commodity hardware, and applica-
ble to high-stakes domains such as industrial monitoring, weather, and satellite
diagnostics. Limitations include reliance on fixed-length inputs and exclusion
of image-based modalities, motivating future extensions to streaming and multi-
modal forecasting.

1 INTRODUCTION

Problem and setting. Forecasting rare, high-impact events in multivariate time series is important
in science and operations (e.g., space weather, industrial monitoring, and power systems). The set-
ting is challenging due to extreme class imbalance, long-range temporal dependencies, and the need
for calibrated probabilities and explicit tail-risk assessment. Thresholded, asymmetric decisions are
the norm, so average losses are a poor proxy for operational utility; models should be accurate,
calibrated, and efficient at inference.

What makes it hard. (1) Imbalance and long horizons: rare positives and long contexts dilute
signal. Recent long-horizon approaches improve aggregation via frequency decompositions and
patches, and pure-convolutional stacks rival attention for long dependencies, but calibration under
class rarity remains nontrivial (Zhou et al.| [2022; [Nie et al.| [2023; [Luo & Wang| [2024). (2) Cali-
bration and decision relevance: in high-stakes regimes, miscalibration directly degrades thresholded
utility; reliability (ECE, Brier) and decomposition of uncertainty support rational cutoffs (Sensoy
et al., [2018; |/Amini et al.| |2020; van Amersfoort et al.,[2020). (3) Tail behaviour: catastrophic out-
comes live in the far tail, where standard objectives under-weight exceedances. Peaks-over-threshold
methods from extreme value theory (EVT) provide a principled way to model exceedances beyond
a high quantile (Coles| 2001} /de Haan & Ferreira, [2006).

Approach. EVEREST co-optimizes discrimination, calibration, and tail-risk within a single en-
coder and schedule, producing material rare-event gains while keeping deployment identical to a
standard classifier. A single-query attention bottleneck aggregates long-range temporal evidence



with minimal compute, acting as a lightweight, task-conditioned pooling mechanism (cf. global
tokens/attention pooling; §2). Training adds evidential (NIG), EVT exceedance, and precursor aux-
iliaries to shape rare-event dynamics and reliability; deployment uses only the classification logit,
with the auxiliaries optional for diagnostics, so inference cost is unchanged.

Contributions. (1) A practical recipe that co-optimizes discrimination, calibration, and tail-risk in
one compact backbone (encoder — attention bottleneck — shallow shared MLP), yielding consis-
tent TSS and reliability gains with unchanged inference. The model is compact (0.81M params) and
retains single-head inference (no runtime overhead); auxiliaries are training-only regularizers that
shape this shared backbone. (2) Solar-flare SOTA with fair comparisons: on SHARP-GOES (2010-
2023), EVEREST reaches TSS 0.973/0.970/0.966 (>C, 24/48/72h), 0.898/0.920/0.906 (>M),
and 0.907/0.936/0.966 (>MS5) with strong calibration (e.g., M5-72h ECE = 0.016), on the same
SHARP-GOES split, our reported scores are higher than the baseline values (e.g., +0.251 TSS for
>C—48,h; +0.237 for >M5-72,h; Section E[) (3) Cross-domain transfer on SKAB (industrial valve
forecasting) without architectural changes, achieving F1 = 98.16% and TSS = 0.964. (4) Ablations
and diagnostics: we quantify the marginal contribution of the bottleneck, evidential, EVT, and pre-
cursor heads; report reliability diagrams and cost—loss analyses; and show that attention attributions
align with known precursors. (5) Reproducibility and clarity: documented splits/preprocessing,
fixed configurations, explicit evaluation protocol (point-wise), and full complexity reporting.

Roadmap. §@] situates the design among recent time-series Transformers, calibration methods, and
EVT. details the bottleneck and heads, the composite loss, and thresholding choices. covers
datasets, metrics, baselines, and efficiency reporting. §E]presents results, ablations, and diagnostics.
§6] discusses limitations (fixed windows, unimodal inputs) and extensions.

2 RELATED WORK

Rare-event time series and imbalance. Rare-event forecasting combines severe class imbalance
with long temporal contexts. Early pipelines treated sequences as snapshots (hand-crafted per-
window features + classifier), while modern sequence models (TCNs/Transformers) exploit tem-
poral evolution. Cost-sensitive training such as focal loss mitigates skew without distorting the data
distribution; by contrast, aggressive oversampling can harm physical consistency and cause temporal
leakage, motivating a “train once, weight in loss” strategy for operational settings. recent supervised
pipelines report strong solar-flare discrimination at 24—72,h horizons, e.g., CNN/RNN hybrids and
task-specific Transformers (e.g., [Liu et al., 2019} |Sun et al, |2022} |Abduallah et al., 2023). In this
paper we report our results on the same SHARP—GOES dataset.

Transformers for time series. Transformers are competitive forecasters but naive self-attention
scales as O(T?). Recent designs compress or restructure temporal information: patch/token re-
organization with channel-first encoders (Nie et al., [2023)), frequency/decomposition modules for
long horizons (Zhou et al., [2022)), and inverted architectures that summarize time before mixing
channels (Liu et al.| [2024). Pure-convolutional stacks rival attention at lower cost on long sequences
(Luo & Wang, 2024). Our single-query attention bottleneck is a lightweight, task-conditioned ag-
gregator in this space, closer to attention pooling/global tokens (lIlse et al., [2018; |Lee et al., [2019)
than to full self-attention over all steps.

Calibration and evidential learning. Operational thresholds make reliability as important as dis-
crimination. Beyond TSS/AUPRC, reporting ECE and Brier score supports decision-quality assess-
ment; temperature scaling can improve marginal fit but discards input-conditional epistemic cues
(Guo et al.,|2017). Deterministic OOD surrogates and deep ensembles address uncertainty at higher
compute (van Amersfoort et al.l [2020; [Lakshminarayanan et al., [2017), whereas evidential meth-
ods learn distributional parameters in closed form (Dirichlet for classification; NIG for regression)
enabling mean/variance without Monte Carlo (Sensoy et al., [2018; |Amini et al., 2020). Recent
conformal developments provide distribution-shift—robust error guarantees and selection control,
complementing probabilistic calibration in time series (Ding et al., |2023). We adopt an evidential
NIG head over the logit with explicit reliability reporting.



Tail risk and EVT in ML. Average losses under-weight catastrophic extremes. Peaks-over-
threshold modeling with Generalized Pareto exceedances provides a principled account of distri-
bution tails widely used in the sciences; incorporating EVT-inspired objectives focuses learning
on high-quantile regions where decisions are costly (Coles, 2001} [de Haan & Ferreiral [2006). We
adopt a training-time EVT exceedance loss (no inference-time fitting) that complements calibrated
probabilities by reallocating gradient mass to high-risk tails.

Auxiliary/precursor supervision and multi-task learning. Auxiliary heads can improve a pri-
mary task through a shared backbone and implicit regularization—even when those heads are unused
at inference (Caruanal 1997} |Standley et al., 2020). We include a lightweight precursor head that
provides early-window supervision as a training-only auxiliary objective; in ablations it improves
TSS and calibration, while deployment remains single-head.

Industrial anomaly benchmarks. SKAB provides multivariate valve traces widely used for time-
series anomaly detection (Filonov et al., |2020); among strong baselines, TranAD reports leading
F1 on several valves (Tuli et al [2022). We retain the same protocol as published research for
comparison.

Gap and positioning. Most prior work optimizes sequence encoders or calibration in isolation;
tail risk is rarely addressed jointly with reliability in a compact model. EVEREST contributes
a practical recipe that (i) focuses long contexts via a single-query attention bottleneck, (ii) learns
calibrated, closed-form uncertainty (evidential NIG on the logit), and (iii) emphasizes extremes
through an EVT exceedance penalty—trained jointly yet deployed with a single classification head
at test time.

3 METHOD

3.1 PROBLEM FORMULATION AND NOTATION

We consider binary rare—event forecasting on multivariate time series. Each example is a window
X € RT*F withlabel y € {0, 1} indicating whether an event occurs within a fixed forecast horizon.
The model outputs a probability p € [0, 1] used with a decision threshold 7 to produce an alert. We
report skill with the True Skill Statistic (TSS) and assess reliability with Brier score and Expected
Calibration Error (ECE).

3.2 ARCHITECTURE OVERVIEW

The network comprises: (i) an input embedding with scaled positional encoding, (ii) a 6 Trans-
former encoder, (iii) a single-query attention bottleneck that aggregates the sequence into one latent
vector z, and (iv) a shallow shared MLP (128-d) from which four parallel heads branch: a primary
binary classification logit (used at inference) and three training-only auxiliaries—evidential (NIG),
EVT (GPD) exceedance, and a lightweight precursor head.

Deployment path. Unless explicitly stated otherwise, inference uses only the classification head
(single forward pass). Evidential/EVT/precursor heads are training-time auxiliaries; they can be
evaluated offline for diagnostics but are never required for test-time decisions.

3.3 EMBEDDING AND TRANSFORMER BACKBONE

Raw inputs X are projected to d-dimensional tokens and combined with sinusoidal positional codes
scaled by a learnable global factor a:

ho = LN(Wemp X + bemp), ~ H® = Drop(hg + a - PE).
We apply L=6 encoder blocks with multi-head self-attention and position-wise feed-forward net-
works:
HO = LN(H"=Y + DropMHA(H'"))), H® = LN(H® + Drop[FFN(H")]),
forl = 1,...,6. The reference setting ( uses d=128, L=6, H=4 attention heads, FFN width
256, and dropout p=0.20.



3.4 ATTENTION BOTTLENECK (TEMPORAL FOCUSING)

Let H = [hy,...,hr] € R¥T denote the final encoder states and w € RY a learned scorer. We
compute a single soft attention distribution over time and the pooled vector

T
ap = softmaxt(wTht), z= Z arhy, weRY
t=1

This single-query bottleneck adds only +d parameters and O(7'd) flops, yet concentrates capacity
on weak, distributed precursors that global average pooling (GAP) tends to dilute. In ablations (§3),
replacing the bottleneck with mean pooling substantially reduces skill (e.g., ATSS = +0.427 on
the hardest M5-72 h task).

3.5 HEADS AND PROBABILISTIC TARGETS
The pooled representation z feeds four parallel linear heads:

* Classification (logit): | = Wtz + beig, with p = o (1).

* Evidential (NIG) head: predicts (u, v, a, §) and minimises a closed-form evidential ob-
Jjective over the logit, yielding analytic predictive mean/variance without Monte Carlo
sampling. In ablations it primarily improves discrimination (e.g., ATSS = +0.064 on
M5-72h; §5).

* EVT (GPD) head: predicts Generalized Pareto parameters (£, o) for logit exceedances
above a high batchwise quantile (90% by default), with a stability regularizer; this shifts
gradient mass to the risky upper tail and improves rare-event skill.

* Precursor (auxiliary) head: trained with the same binary label as an auxiliary objective
(anticipatory supervision) via binary cross-entropy. It is not used at inference. Removing
it degrades M5-72h TSS by —0.650 (§5).

3.6 COMPOSITE LOSS AND TRAINING SCHEDULE

The training objective unifies four complementary criteria—discrimination, calibration, tail aware-
ness, and anticipatory supervision—within a single composite loss. Formally, we optimise

L= >\f »Cfocal + Ae »Cevid + A Eevt + )\p »Cprec~

This structure can be interpreted through the lens of the Information Bottleneck (IB) principle
(Tishby et al., 2000): the encoder compresses inputs X into a latent Z while maximising mutual
information I(Z;Y") with the event label. Each loss term targets a distinct component of this bal-
ance: L, improves separation under extreme rarity, Leyiq regularises predictive entropy (reducing
H(Y|Z)), Lew reallocates bits toward tail exceedances, and L. enriches I(Z; Yeany) to capture
anticipatory structure.

Focal discrimination. The focal term Ly, addresses extreme class imbalance by re-weighting
misclassified positives. With focusing parameter -, it emphasises hard rare-event examples:

Liven = =% Y (1= pi)y: log pi + 5] (1 — ;) log(1 — py).

?

We anneal y : 0 — 2 linearly over the first 50 epochs, initially allowing broad exploration and later
sharpening emphasis on difficult rare-event instances.

Evidential calibration. The evidential term L4 learns Normal-Inverse-Gamma (NIG) param-
eters over the logit, yielding closed-form predictive mean and variance without Monte Carlo sam-
pling. This acts as a Bayesian surrogate: rather than only predicting p, the model quantifies epistemic
and aleatoric uncertainty. In practice, ablations show small effects on ECE but consistent gains in
discrimination on the hardest tasks (§3).



Tail emphasis via EVI. The EVT term L.y, fits a Generalized Pareto Distribution (GPD) to logit
exceedances above a high quantile u. For a batch of logits {l;}, exceedances {l; — u : I; > u} are
modelled with

1/
Pr(L>u+a|L>u~(1+52) 7,

where (&, o) are learned tail parameters. This reallocates gradient mass to rare high-risk predictions,
aligning optimization with extreme-value theory and improving sensitivity to catastrophic outcomes.

Precursor supervision. The precursor term Ly reuses the binary event label as an auxiliary
signal, optimised with binary cross-entropy. It serves as anticipatory supervision, encouraging Z
to encode early discriminative cues rather than only near-term signals. In the IB view, this enriches
I1(Z;Y) by regularising toward features predictive of both early and late outcomes.

Weighting and robustness. We set (Af, Ac, A¢, Ap) = (0.8, 0.1, 0.1, 0.05) by small-grid search.
Ablations confirm stability to +-20% perturbations. This reflects the relative dominance of discrim-
ination, with auxiliary heads providing calibrated and tail-sensitive regularization.

Overall, the composite objective can be viewed as enforcing a multi-view consistency: L, drives
separation, L.yiq calibrates predictive entropy, L, shapes the heavy tail, and L. enforces temporal
anticipation. Together, they yield an encoder that balances predictive skill with uncertainty fidelity
under extreme rarity.

optimization. We train with AdamW (8;=0.9, 3,=0.999), learning rate 3x10~*, weight decay
10~*, and automatic mixed precision on CUDA. The focal parameter ~ is annealed linearly from
0 to 2 over the first 50 epochs. One mini-batch update computes all four losses in a single back-
propagation pass (no extra memory pass for auxiliaries).

Training vs. inference. All four losses act only at training; deployment uses the classification
head p = o (1), with uncertainty/tail diagnostics evaluated offline if desired.

3.7 COMPLEXITY AND EFFICIENCY

At the reference shape, the model has ~ 8.14 x 10° parameters and ~ 1.66 x 107 FLOPs per window;
the six-layer backbone accounts for > 97% of both, while the bottleneck adds only +d parameters.
A full per-module budget and a comparison to SolarFlareNet (Abduallah et al., 2023) are provided

in Appendix

4 EXPERIMENTAL SETUP

4.1 DATASETS AND SPLITS

Solar flares (SHARP-GOES). We adopt the SHARP-GOES protocol and splits consistent with
prior work (Abduallah et al.l [2023): SHARP vector-magnetogram parameters aligned to GOES
flare labels across Solar Cycle 24-25, with standard quality masks (QUALITY=0, |[CMD| < 70°,
observer radial-velocity filter) applied before windowing. We use the same nine SHARP parameters
and the same window construction for 24/48/72 h horizons. To prevent leakage, we use the iden-
tical HARPNUM-stratified train/validation/test split; the resulting per-horizon, per-class counts are
consolidated in Appendix [B] (Table [5)). All preprocessing (normalization, cadence handling, label
alignment) follows that setup to ensure 1:1 comparability.

SKAB (industrial transfer). We evaluate cross-domain transfer on the Skoltech Anomaly Bench-
mark (SKAB) (Filonov et al.||2020) using fixed-length windows (stride two), stacked raw-+diff chan-
nels, chronological 70/15/15 splits, and standardization fitted on train only. We do not apply over-
sampling or task-specific loss reweighting. TranAD is the strongest published reference (Tuli et al.,
2022). Full data-processing protocol, model configuration, and the complete results/comparisons
are provided in Appendix [C|(Tables|[6] [7).



4.2 METRICS AND EVALUATION PROTOCOL

Primary and secondary metrics. Our primary discrimination metric is the True Skill Statistic
(TSS),

_ TP _FP
TSS = 1578 — FRFTN

reported at the task-specific operating threshold 7* (below). We also report Precision/Recall/F1,
AUROC and PR-AUC for ranking quality, and the Brier score for probabilistic accuracy. Reliability
is quantified via Expected Calibration Error (ECE) with equal-frequency binning (15 bins).

Operating thresholds and cost sensitivity. Decision thresholds are selected by grid search over
7 € {0.10,0.11,...,0.90} using the balanced score (40% TSS, 20% F1, 15% Precision, 15%
Recall, 10% Specificity). For sensitivity to asymmetric costs, we complement this with a cost-loss
sweep (e.g., Cpn:Crp=20:1) and report the minimum-cost threshold in §5]alongside the balanced
operating point.

Statistical rigor and leakage control. Each model is trained/evaluated over five random seeds;
we report means and 95% Cls via 10*-draw bootstrap on the held-out test set. The solar data splits
are HARPNUNM-stratified to preclude temporal leakage across active-region instances. All threshold
selection and early stopping are performed on the validation split only.

4.3 TRAINING DETAILS AND HPO

All models are trained in PyTorch with automatic mixed precision (AMP), AdamW
(81=0.9, 82=0.999), cosine-decayed learning rate, gradient-norm clipping (1.0), and the composite
objective from with A=(0.8,0.1,0.1,0.05) and focal -y annealed 0—2 over the first 50 epochs.
Hyper-parameter optimization follows the three-stage protocol (Sobol scan — Optuna refinement
— confirmation), limited to the six knobs that explained the bulk of validation-TSS variance: em-
bedding width d, encoder depth L, dropout p, focal v, peak LR 7,,.x, and batch size B. The search
priors and the final chosen configuration are in Appendix [D} per-scenario optima are tabulated in

Appendix [D.4]

Statistical protocol. For each threshold-horizon task we train five seeds and report means with
95% ClIs via 10*-draw bootstrap on the held-out test set, stratified by NOAA active-region identifier
to preclude temporal leakage. Operating thresholds are selected by a grid over 7 € {0.10,...,0.90}
(step 0.01) using a balanced score (40% TSS, 20% F1, 15% Precision, 15% Recall, 10% Specificity).
Unless stated, headline metrics use the task-specific 7* from this procedure. We also filter obviously
failed runs and report minimum detectable effects (e.g., ATSS > 0.02) alongside p-values from the
bootstrap test.

4.4 FIGURES AND TABLES FOR REPRODUCIBILITY

To keep the setup self-contained within the page budget, we reuse the same artefacts and protocol as
our released implementation:

» SHARP feature list and motivations (Table[d): the nine input parameters with brief phys-
ical rationale.

* Dataset distribution (Table[5): counts per horizon, class, and split under HARPNUM strat-
ification.

* CMD filtering diagram (Fig. : effect of the [CMD| < 70° mask on the usable sequence
pool during solar data pre-processing.

5 RESULTS

5.1 HEADLINE PERFORMANCE

Compared to strong baselines on the solar flare dataset (Liu et al.,[2019;|Sun et al., [2022; |Abduallah
et al.,2023), EVEREST shows large TSS gains across horizons, with especially strong improve-



Cost-Loss Analysis: M5-72h Model
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Figure 1: Cost-loss analysis for the M5-72 h model under asymmetric costs (Cpn:Cpp = 20:1).
The left panel shows the cost curve; the right panel highlights the minimum-cost threshold 7* =
0.240 versus the balanced-score threshold 7 = 0.460.

ments for rare M5 events. All nine tasks exceed the reported baseline TSS values (Table([T). Table[IT]
reports bootstrapped metrics; EVEREST delivers consistently high discrimination for common C-
class events (TSS > 0.966 at all horizons) and strong performance for rarer M and M5 classes. See
for calibration diagnostics, and Appendix [E] for full per-task results and operating thresholds.

5.2 CALIBRATION AND RELIABILITY

We report calibration with Brier score and Expected Calibration Error (ECE; 15 equal-frequency
bins) alongside TSS. On the most imbalanced task (M5-72 h) we obtain ECE = 0.016 with a near-
diagonal reliability curve; similar trends hold for C=72h and M-72h. Diagnostics use the same
seeds, splits, and binning as the headline metrics in Table[IT] Full reliability diagrams are provided
in Appendix [F|

5.3 DECISION ANALYSIS UNDER ASYMMETRIC COSTS

Operational use often values missed-event costs far above false alarms. For M5-72h, a cost-loss
sweep with Cpn:Crp=20:1 yields a minimum-cost threshold of 7* = 0.240, distinct from the
balanced-score 7 = 0.460. Figure [I]illustrates the trade-off; the corresponding confusion matrices
are in Appendix [G|

By threshold class. >C: TSS remains within 0.973/0.970/0.966 (24/48/72h), with precision
0.994/0.993/0.992 and minor horizon decay (ATSS= 0.007 from 24 h to 72h). >M: Despite
stronger imbalance, TSS reaches 0.898,/0.920,/0.906 with recall > 0.908; precision gains with hori-
zon (0.728 —0.834). >MS5: For the rarest events, TSS is 0.907/0.936,/0.966 with tight CIs and the
best ECE (e.g., 0.016 at 72 h).

Comparison to prior work. Table [I| summarizes TSS versus reported baselines. Our reported
scores are higher than published baseline values (e.g., +0.251 TSS for >C—48h and +0.237 for
>M5-72h). Significance testing is applied within our models.

This explicit operating-point choice addresses decision relevance under asymmetric costs without
retraining, and the full confusion matrices are provided in Appendix

5.4 ABLATIONS

A leave-one-component-out suite (five seeds each) quantifies the marginal utility of each module on
the hardest task (M5-72 h). Headline effect sizes are:

* Attention bottleneck: 4-0.427 TSS over mean pooling.
* EVT head: 4-0.285 TSS with major extreme-Brier gains.

* Evidential NIG head: 4-0.064 TSS with lower ECE.
» Composite schedule: +0.045 TSS from  annealing and stable joint training.



Table 1: TSS performance across flare thresholds and horizons. Bold indicates the best performance
within each horizon. Reported values for EVEREST are mean (standard deviation) over 5 seeds.

Method Horizon >C >M >M5.0
Liu et al. (2019) 24h 0.612 0.792 0.881
Sun et al. (2022) 24h 0.756 0.826 -
Abduallah et al. (2023) 24h 0.835 0.839 0.818
48h 0.719 0.728 0.736
72h 0.702 0.714 0.729
EVEREST 24h 0.973 (0.001) 0.898 (0.011) 0.907 (0.025)
48h 0.970 (0.001) 0.920 (0.007) 0.936 (0.021)
72h 0.966 (0.001) 0.906 (0.012) 0.966 (0.024)

Removing the precursor auxiliary degrades performance by —0.650 TSS, showing that anticipatory
supervision materially shapes the backbone even though it is discarded at inference. Mixed-precision
(AMP) was also indispensable: FP32 runs diverged or underperformed. Full per-variant metrics,
bootstrap significance tests, and calibration effects are consolidated in Appendix

5.5 INTERPRETABILITY

Saliency analysis highlights how EVEREST differentiates between prediction outcomes. True pos-
itives show coordinated increases in USFLUX and MEANGAM in the final hours before the forecast
horizon, consistent with flux emergence and field-inclination steepening. True negatives and false
positives exhibit flatter or noisier signatures. Confidence-stratified TP cases show that gradients are
strongest when predictive confidence is high. Full gradient visualisations are provided in Appendix/l]

5.6 PROSPECTIVE CASE STUDY

We evaluate EVEREST on the unseen 6 Sep 2017 X9.3 flare (NOAA AR 12673), the largest event
of Solar Cycle 24. Data from 3-7 September 2017 were excluded from training and threshold
calibration. The probability trace and lead-time statistics are provided in Appendix [J] (Figure [7]and

Table [13).

5.7 CROSS-DOMAIN TRANSFER: SKAB

With the architecture unchanged, EVEREST achieves mean TSS = 0.964 and F1 = 98.16% on
SKAB (Filonov et al.| [2020). We include SKAB because it is multivariate, rare-event—oriented, and
widely used in anomaly detection; baseline results (e.g., TranAD)(Tuli et al.||2022). Full valve-level
metrics and calibration diagnostics are in Appendix

5.8 EFFICIENCY SNAPSHOT

Training uses AMP and the composite schedule from §3] The model is compact (814k params)
yet compute-dense (16.6M FLOPs/reference shape), with mean epoch times ~24 s on RTX A6000
and ~69 s on M2 Pro; full energy and carbon accounting appears in the supplement; results remain
within typical “Green AI” norms for this model scale.

Summary. Across nine tasks, EVEREST reports higher TSS than the baselines with strong cali-
bration, clear module-level attributions for its gains, and actionable threshold analyses. The same
backbone generalises to SKAB without architectural changes.

6 CONCLUSION

We presented EVEREST, a compact, domain-agnostic Transformer and unified training recipe for
rare-event time series that jointly targets discrimination, calibration, and tail-risk. From an infor-



mation—bottleneck perspective (Tishby et al.| |2000), the model shapes a latent representation Z that
preserves maximal mutual information with the event label Y while discarding nuisance variability.
Each auxiliary term enforces a distinct view of this principle: focal loss drives separation under
rarity, the evidential head regularises predictive entropy, the EVT penalty reallocates gradient mass
to tail exceedances, and the precursor head biases compression toward anticipatory signals. Deploy-
ment remains single-head and incurs no inference overhead.

Across nine solar-flare tasks, EVEREST achieves strong TSS (e.g., C: 0.973/0.970/0.966 at
24/48/72h; M5: 0.907/0.936/0.966), with well-calibrated probabilities (e.g., M5-72h ECE =
0.016). The same backbone transfers unchanged to SKAB with F1=98.16%, TSS=0.964, sur-
passing published baselines (Filonov et al.l [2020; Tuli et al. 2022)). Ablations attribute gains to
temporal focusing (+0.427 TSS), EVT tail emphasis (+0.285), and evidential calibration (+0.064).
Interpretability analyses show attention concentrating on physically meaningful precursors, and a
prospective X9.3 case study demonstrates early, well-calibrated alerts. Training is efficient (8§14k
params, AMP-enabled), supporting practical deployment.

Limitations. Our study inherits several constraints: (i) a fixed context window, which may miss
very slow precursor dynamics; (ii) data gaps and quality filters that reduce effective coverage; (iii)
potential cycle-dependent drift between training and deployment periods; (iv) extreme scarcity of
the highest-magnitude events (e.g., X-class), limiting tail fitting and evaluation; and (v) unimodal
inputs—image and radio modalities are not considered here.

Future work. Promising directions include (i) streaming/state-space memory or compressive
transformers for indefinite context; (ii) multimodal fusion (e.g., SHARP + EUV/radio) with cadence-
aware alignment; (iii) federated or continual training to mitigate cross-cycle drift and institutional
data silos; (iv) model compression (quantisation/distillation) and hardware-aware compilation for
edge/ops deployment; and (v) richer time-series XAl (counterfactuals, TS-IG) to strengthen opera-
tional trust and post-hoc auditing.

Broader impacts. Reliable, calibrated, and tail-aware rare-event forecasts can improve risk com-
munication and decision-making in high-stakes domains (e.g., space weather, industrial monitor-
ing, power systems). EVEREST emphasises small-model efficiency and mixed-precision training,
maintaining a “Green AI” footprint while providing actionable probabilities and threshold analy-
ses. We provide an anonymized artifact (code and splits) to support transparent benchmarking and
reproducible research.

REPRODUCIBILITY STATEMENT

Code to reproduce all experiments is provided in the Supplementary Material, includ-
ing an anonymized repository with README.md, requirements.txt, and ready-to-run
scripts for solar flares (models/train.py, models/evaluate_solar.py) and SKAB
(models/train_skab.py, models/evaluate_skab.py). The archive includes the ex-
act processed train/validation/test splits, configuration files, and evaluation routines used to report
results. Runs use five fixed seeds, mixed precision (AMP), AdamW, cosine learning-rate decay,
gradient clipping, and deterministic cuDNN settings; thresholds are selected via a grid sweep and
metrics include TSS, Brier score, and ECE with 15 equal-frequency bins. Environment versions are
pinned in requirements.txt, enabling end-to-end replication.
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Table 2: Per-module parameter and FLOP budget for EVEREST (FP32 multiply—adds; T'=10,
F=9, batch=1).

Module Params (k) FLOPs (M)
Embedding + positional encoding 1.54 0.03
Transformer encoder x 6 794.88 16.24
Attention bottleneck 0.13 0.00
Classification head 16.64 0.34
Evidential (NIG) head 0.52 0.01
EVT (GPD) head 0.26 0.01
Precursor head 0.13 0.00
Total 814.10 16.63

Table 3: Complexity comparison with SolarFlareNet (I'=10, F'=9, batch=1).

Model Params (k) FLOPs (M) FLOPs/Param
SolarFlareNet (Abduallah et al., [2023)) 6120 0.62 0.10
EVEREST 814 16.6 20.4

A COMPLEXITY PROFILE

All numbers refer to a single forward pass with 7=10 time steps, F'=9 SHARP features, and batch
size 1.

Per-module budget. The six-layer Transformer backbone accounts for the vast majority of pa-
rameters and computation, with 794.9k of 814.1k trainable weights (97.6 %) and 16.24M of 16.63M
FLOPs (97.7%). Each backbone weight is thus used about 20.4 times per inference. The auxiliary
heads (evidential, EVT, precursor) together contribute only 0.91k parameters (0.11%) and 0.02M
FLOPs (0.12%).

Cross-model comparison (SolarFlareNet). We compare EVEREST against SolarFlareNet (Ab-
duallah et al.,|2023)) under the same input shape and profiling settings.

The reference architecture above underpins all reported experiments; hyper-parameter ranges, abla-
tions, and evaluation protocols align with the modules and objectives in Section [3]

B DATASET AND PRE-PROCESSING

Pipeline. Our data pipeline builds on |Abduallah et al.| (2023), enhancing temporal fidelity (12-
minute cadence), enforcing stricter quality masks, and version-controlling all outputs. SHARP vec-
tor magnetograms (SDO/HMI) are merged with GOES flare data (NOAA/SWPC), programmatically
harvested (JSOC, SunPy HEK), and segmented into supervised, HARPNUM-stratified windows.

Features. Nine SHARP parameters were retained from the original 25, following physical inter-
pretability and prior studies (Abduallah et al.l 2023). Tabled]lists the features.

Split strategy. The mission window spans May 2010-May 2025. We create datasets for nine tasks
(three flare thresholds x three horizons). Each HARPNUM appears in exactly one split. Table [3]
gives the per-class distribution.

C SKAB INDUSTRIAL ANOMALY BENCHMARK

To assess cross-domain transfer, we evaluate EVEREST on the Skoltech Anomaly Benchmark
(SKAB) (Filonov et al., [2020), a suite of multivariate valve-sensor traces with rare fault events.
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Table 4: Selected SHARP features and their physical motivations.

Feature Description Physical motivation
TOTUSJH Total unsigned current helicity Magnetic twist; non-potentiality
TOTPOT Total magnetic free energy density Energy reservoir for reconnection
USFLUX Total unsigned flux AR size / activity
MEANGBT  Gradient of total field Localised magnetic complexity
MEANSHR  Mean shear angle Shearing near PIL
MEANGAM Mean angle from radial Loop inclination
MEANALP  Twist parameter o Field line torsion
TOTBSQ Total field strength squared Energetic capacity
R_VALUE PIL integral Complexity near polarity inversion

Table 5: Number of positive and negative examples per flare class and horizon.

Flare Horizon Split Positives Negatives

C 24h Train 244,968 218,217
Test 31,897 15,878

48h Train 316,149 301,714

Test 40,987 21,573

72h Train 356,219 350,853

Test 46,066 25,663

M 24h Train 13,989 449,196
Test 1,368 46,407

48h Train 16,709 601,154

Test 1,775 60,785

72h Train 18,505 688,567

Test 2,131 69,598

M5 24h Train 2,125 461,060
Test 104 47,671

48h Train 2,255 615,608

Test 104 62,456

72h Train 2,375 704,697

Test 104 71,625

We adopt the standard windowing (24 steps, stride two), stacked raw-+diff channels, chronological
70/15/15 splits, and standardisation fitted on train only. No oversampling or loss reweighting is used.
Architecture and loss weights are unchanged except for a reduced width (d=96) and depth (L=4)
to match the smaller dataset scale.

Results. Table [f]reports mean performance across all eight valve scenarios. EVEREST achieves
strong discrimination (TSS 0.964 £ 0.028) and calibration, with F1 exceeding 98%.

Comparison with baselines. Table[7]situates our results against prior published methods. EVER-
EST surpasses the strongest reported baseline (TranAD (Tuli et al.|[2022))) by roughly two F1 points,
without task-specific tuning.

D HYPER-PARAMETER OPTIMISATION

Operational deployment values three traits above all: forecast skill, probabilistic reliability, and
inference latency. We therefore tune only the hyper-parameters that collectively maximise skill x

latency L.

Method synopsis. We run a three-stage Bayesian study (Optuna v3.6 + Ray Tune) over six knobs:
embedding width d, encoder depth L, dropout p, focal exponent -y, peak learning rate 7.y, and
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Table 6: EVEREST averaged across all SKAB valves.
Metric Precision (%) Recall (%) F1 (%) TSS

EVEREST 97.7+29 98.6£32 982417 0.964+0.028

Table 7: F1 comparison on SKAB valve anomalies.

Model Reference F1 (%)
Isolation F, LOF, etc. |Filonov et al.[(2020) 65-75
Autoencoder Filonov et al.|(2020) 70-80
CNN/LSTM hybrids  [Filonov et al.| (2020) 75-85
TAnoGAN Bashar & Nayak| (2020) 79-92
DeepLog Du et al.| (2017) 87-91
LSTM-VAE Park et al. (2018) 86-93
OmniAnomaly Su et al.[|(2019) 88-94
USAD Audibert et al.| (2020) 89-95
TranAD Tuli et al.| (2022) 91-96
EVEREST — 98.2 + 1.7

batch size B. Median-stopping pruning halves the number of full trainings needed. A Sobol sensi-
tivity scan (Appendix [D.T)) confirmed that these six knobs explain 91 of the variance in validation
TSS.

Search logistics. Each flare-class/lead-time pair receives ~165 trials split into exploration, refine-
ment, and confirmation phases; exact budgets and early-stop criteria are in Appendix

Final tuning space and winner. Table[§|summarises the priors and the final configuration adopted
for all production models. Full per-scenario optima are in Appendix [D.4]

The selected tuple (d=128, L=6, y=2, p=0.20, Nmax = 4x107* B=512) achieves TSS =
0.795 £ 0.005 and inference latency of 4 + 0.6s on an NVIDIA RTX 6000. These values are
frozen for all ablations and the compute-budget audit.

D.1 SOBOL SENSITIVITY SCAN

A 64-trial Sobol sweep assessed first-order and total-order effects; the six retained knobs jointly
explain 91 of variance in validation TSS. Full indices and code are in the repository.

D.2 SEARCH PROTOCOL

Each study followed the three-stage schedule in Table[9] Trials were pruned with Optuna’s median
rule after five epochs.

D.3 HYPER-PARAMETER RATIONALE

Capacity: d and L govern receptive field and FLOPs.
Regularisation: p mitigates over-fit.
Imbalance: + addresses the 1:297 positive/negative ratio.

Optimiser dynamics: 7,5 sets AdamW step size.

A

Throughput: B trades GPU utilisation for generalisation.
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Table 8: Search priors and final hyper-parameters used in production

Hyperparam Prior Rationale Best
Embedding d {64,128,192,256} capacity vs. latency 128
Encoder depth L {4, 6,8} receptive field 6
Dropout p 1]0.05,0.40] over-fit control 0.20
Focal U[1,4] minority gradient 2.0
Peak LR 7)max Log-U[2x107%, 8x1074]  step size 4x1074
Batch size B {256,512, 768,1024} throughput vs. generalisation 512

Table 9: Trial budget per stage for each flare-class/lead-time study

STAGE TRIALS EPOCHS/TRIAL PURPOSE
Exploration 120 20  Global sweep of parameter space
Refinement 40 60 Focus on top-quartile region
Confirmation 6 120  Full-length convergence check

D.4 PER-SCENARIO OPTIMA

Table[T0]lists the best trial for each of the nine studies.

A clear pattern emerges: C and M classes share a single optimum across all windows, while M5
requires larger capacity for short horizons and deeper, narrower networks for 72h forecasts.

D.5 ADDITIONAL DATA PRE-PROCESSING VISUALS

* CMD filtering diagram (Fig. : effect of the [CMD| < 70° mask on the usable sequence
pool during solar data pre-processing.
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Table 10: Best hyper-parameters per flare class and forecast window

FLARE WINDOW d L D v Nmax (107%) B TIME (s)
C 24h 128 4 0353 2.803 5.337 512 3323
C 48h 128 4 0353 2.803 5.337 512 4621
C 72h 128 4 0353 2.803 5.337 512 4856
M 24h 128 4 0353 2.803 5.337 512 3705
M 48h 128 4 0353 2.803 5.337 512 5105
M 72h 128 4 0353 2.803 5.337 512 5871
M5 24h 192 4 0300 3.282 4.355 256 3778
M5 48h 192 4 0300 3.282 4355 256 4977
M5 72h 64 8 0239 3422 6.927 1024 5587

Figure 2: Central-meridian—distance (CMD) quality mask applied to an HMI synoptic magne-
togram. The bright-green curve marks the acceptance limit [CMD| = 70°; grey wedges beyond this
boundary are discarded. Active-region boxes are color-coded by the centroid rule: green outlines
(e.g., AR 12263, 12266) fall inside the limit and are retained, whereas red outlines (e.g., AR 12267)
lie outside and are excluded. The mask removes limb data affected by foreshortening and line-of-
sight artifacts while preserving the central disk used for training and evaluation.

E EXTENDED RESULTS AND PROTOCOLS

E.1 EXPERIMENTAL PROTOCOL

We evaluate nine benchmark tasks (three flare thresholds: C, M, MS5; three horizons: 24h, 48h,
72h). Performance statistics are computed via 10,000-fold bootstrap resampling with splits stratified
by NOAA active-region identifier to avoid temporal leakage. Each task is trained and evaluated
with 5 random seeds; metrics are aggregated as mean (standard deviation) unless otherwise noted.
Thresholds are selected by a balanced scoring rule over a grid of 81 values in [0.1, 0.9] (step 0.01),
with a fallback of 0.5 if no improvement is found. Statistical significance is assessed at p < 0.05
with a minimum effect size threshold ATSS > 0.02.

E.2 BOOTSTRAPPED METRICS (FULL)

Table[TT|reports bootstrapped performance on the held-out test set for all nine tasks (higher is better
for TSS/Precision/Recall; lower is better for Brier/ECE).
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Table 11: Bootstrapped performance (mean + 95% CI) of EVEREST on the held-out test set.
Thresholds are the task-specific optima from the balanced scoring rule.

Task TSS Precision Recall Brier ECE
C-24h 0.973 £0.001 0.994 £ 0.000 0.986 +0.001 0.015+0.000 0.049 £ 0.000
C-48h 0.970 £0.001 0.993 £0.000 0.984 £0.001 0.017 £0.000 0.054 £ 0.000
C-72h 0.966 + 0.001 0.992 +0.000 0.982 +0.001 0.018 == 0.000 0.052 =+ 0.000
M-24h 0.898 £0.011 0.728 £0.016 0.908 =£0.011 0.011 £0.000 0.037 £ 0.001
M-48h 0.920 £ 0.007 0.772 £0.010 0.928 £0.007 0.009 £ 0.000 0.029 =+ 0.000
M-72h 0.906 +£0.012 0.834 +=0.015 0.911 =£0.012 0.010 == 0.000 0.033 £+ 0.001
M5-24h 0907 £0.025 0.686 = 0.033 0.908 = 0.025 0.003 = 0.000 0.031 £ 0.000
M5-48h  0.936 £ 0.021 0.713 £0.035 0.937 £0.021 0.002 £ 0.000 0.020 £ 0.000
M5-72h  0.966 £+ 0.024 0.727 £0.053 0.966 + 0.024 0.002 = 0.000 0.016 £ 0.000

Table 12: Statistical significance of TSS improvements over the strongest baseline (Abduallah et
al. 2023). EVEREST values are mean (95% CI) from 10,000 bootstrap resamples stratified by
HARPNUM. Asterisks denote bootstrap p-values for the null Hy : ATSS < 0: * p < 0.05, **
p < 0.01, #** p < 0.001.

Task Baseline TSS EVEREST TSS Effect size ATSS
C-24h 0.835 0.973 (0.001) +0.138***
M-24h 0.839 0.898 (0.011) +0.059%*:*
M5-24h 0.818 0.907 (0.025) +0.089%**
C-48h 0.719 0.970 (0.001) +0.25]1 ***
M-48h 0.728 0.920 (0.007) +0.192%*:*
M5-48h 0.736 0.936 (0.021) +0.2007%**
C-72h 0.702 0.966 (0.001) +0.264***
M-72h 0.714 0.906 (0.012) +0.192%%:*
M5-72h 0.729 0.966 (0.024) +0.237#**

E.3 SIGNIFICANCE VS. BASELINE

We compare against the strongest baseline (Abduallah et al.| 2023). Improvements are significant at
p < 0.01 for all nine tasks (Table[T2} bootstrap hypothesis testing).

E.4 CALIBRATION AND OPERATING POINTS

Reliability diagrams (15 equal-frequency bins) and cost—loss analyses are provided for represen-
tative tasks (figures referenced in the main text). Operating thresholds 7* for each task are the
grid-search optima under the balanced scoring rule; values are available in the code repository and
summary tables.

F ADDITIONAL CALIBRATION PLOT

G CONFUSION MATRIX ANALYSIS UNDER ASYMMETRIC COSTS

The confusion matrices below quantify the effect of selecting different operating thresholds on the
M5-72h task. At the balanced-score threshold (7 = 0.460), the model achieves strong overall
discrimination but incurs some false negatives. At the cost-minimising threshold (7* = 0.240), all
false negatives are eliminated at the expense of more false positives.
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Figure 3: Reliability diagram for the M5-72 h task. Shaded region shows 95% bootstrap confidence
intervals; the dashed line indicates perfect calibration. ECE = 0.016 with maximum bin gap 0.263.
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Figure 4: Confusion matrices for the M5-72h model. Left: balanced-score threshold 7 = 0.460
(92 TP, 45 FP, 71,580 TN, 12 EN). Right: cost-minimising threshold 7* = 0.240 (104 TP, 115 FP,
71,510 TN, 0 FN).

H ABLATION STUDY SUITE

We ran a systematic leave-one-component-out protocol with five seeds per variant to quantify the
contribution of each EVEREST module. All runs targeted M5-class flares at 72 h horizon (the
hardest task), with identical data splits, early stopping (120 epochs), and bootstrap evaluation (10*
replicates). Tables [I3] and [T4] report mean metrics, effect sizes, and significance relative to the full
model.

Interpretation. Four findings stand out: (i) mixed precision is numerically indispensable (FP32
diverged); (ii) the precursor auxiliary is the strongest regulariser, preventing collapse under extreme
rarity; (iii) the attention bottleneck far outperforms mean pooling; (iv) evidential and EVT heads
play complementary roles, with the former reducing calibration error and the latter improving tail-
sensitive discrimination. These results support the design hypothesis that each module addresses a
distinct failure mode.
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Table 13: EVEREST ablation results on M5-72 h (mean =+ s.d. over 5 seeds).

VARIANT TSS F1  BRIER ECE P
Full model 0.746 £0.146 0.747 0.0013 0.0110 —
No Evidential head 0.682 +0.193 0.626 0.0015 0.0111 < 0.01
No EVT head 0.461 £0.369 0438 0.0039 0.0336 < 0.01
Mean pooling 0.319£0.319 0.304 0.0229 0.1158 < 0.001

Cross-entropy loss ~ 0.209 £0.332 0.195 0.0013  0.0023 < 0.001
No Precursor head  0.096 £0.174 0.095 0.0194 0.1105 < 0.001
FP32 training 0.000 £0.000 0.000 0.0520 0.2248 < 0.001

Table 14: Component ablation on M5-72 h. Paired bootstrap (10* replicates) vs. full model.
COMPONENT REMOVED ATSS REL. CHANGE (%) p-VALUE

Mixed Precision (AMP) -0.746 -100 < 0.001
Precursor head -0.650 -87 < 0.001
Focal loss -0.537 =72 < 0.001
Attention bottleneck -0.427 -57 < 0.001
EVT head -0.285 -38 < 0.001
Evidential head -0.064 -9 0.004

I GRADIENT-BASED INTERPRETABILITY

We visualise feature—saliency gradients for representative tasks to probe the signals driving EVER-
EST predictions. Figure [5] summarises average gradient evolution across true positives (TP), true
negatives (TN), and false positives (FP). Distinct temporal morphologies emerge: TP cases show
sustained positive gradients in USFLUX and MEANGAM, while TN and FP cases lack such coherent
rises.

To examine how predictive confidence aligns with saliency signals, Figure [6] shows TP cases strat-
ified by model confidence. High-confidence TPs exhibit the strongest multi-feature gradients,
whereas low-confidence TPs show weaker but still consistent rises.

19



TP Cases (n=8) TN Cases (i

UsFLUX o008 000z 000z 000 000 000 “00t0 0008 ‘o008 0008
MEANGAM 005 000 <002 s00sr o023 vo0ss “0026 000 oot 0061 sot0s
20 20
MEANGET 0006 1000 001 o0 [RICHREINN 000 o0 15 ‘o019 s0007 s0005 0001 15
10 10
MEANGBZ w0001 0002 F ‘0020 s000s so00z 00 0003 %
o5 37 05 3y
52 5
MEANGEH “oots o0 00 32 ‘0060 0002 aco 00 32
ki
05 EE -05EY
MeANZD PRI o0 o000 s€ 0031 40002 s00s0 o018 s<
10 -10
Totusiz 0006 0003 000 o001 15 o013 0007 0005 s
20 20
MEANALP g o0z s006 0038 o117
ToTUsH oon so002 oo ooas 002
PO I P PP PP A S P
& & S
Time Intervals (12-min steps) Time Intervals (12-min steps)
FP Cases (n=8) FN Cases (n=3)
UsFLx | o0 +o0s 10006 10009 10006 10002 -0.006 40001 40006
MEANGAM { 0059 0147 o0 asm wa7an 0012 0om 10003 0097 0004 0035 40085
20 20
MEANGET { s0007 s0.026 15 10009 10008 000 40002 40007 s0001 000 15
10 10
MEANGBZ { +0.003 +0.011 x is 00 so002 so0as s00ma 00z 000 <000z i
o5 37 95 =g
52 o3
MEANGEH | 0006 0085 -o0m |s0ash -oo0s 0157 00 g2 0001 40013 40003 40005 002 0004 +0008 00 32
£% £
-05 EE -05 EE
MEAN)ZD { 40011 0128 -0.063 |+0.187 +0.010 -0200 = 40010 40017 0011 0002 -0.002 -0.004 -0.004 3%
10 -10
ToTusiz { 0000 009 +o0m oo0z 0108 s ‘0007 s0006 s0012 0008 0008 oo 0013 s
20 20
MEANALP { 0011 o oaz 01s2 sz YR 000 0om ooz 01m oow oo sooss
ToTUSHH { *0017 oo voon [T ‘008 0131 0012 005 0052 000 001
PP P
P A A A S S S EOAP A A P S
Time Intervals (12-min steps) Time Intervals (12-min steps)

Figure 5: Feature evolution heatmaps across prediction outcomes (True Positive, True Negative,
False Positive). Coordinated increases in USFLUX and MEANGAM appear in TPs, while TNs and
FPs show flatter or noisier profiles.
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Figure 6: Gradient evolution for True Positive (TP) M5-72h predictions stratified by model confi-
dence. Strongest gradients appear in high-confidence cases.
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September 6, 2017 X9.3 Solar Flare - Prospective Analysis
EVEREST Model Performance with 72h Rolling Predictions
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Figure 7: Prospective replay of the 6 September 2017 X9.3 flare. Blue: EVEREST M5-72h
probability (with 95% interval, if shown). Dashed lines mark alert thresholds (10%, 20%, 46%);
grey shows GOES soft X-ray flux.

Table 15: Lead-time statistics for EVEREST (M5-72h) on the 6 Sep 2017 X9.3 flare.
Threshold (1) First crossing (UTC) Lead time Continuous alert length

10% 04 Sep 00:57 59.3h 60.8 h
20% 04 Sep 14:01 52.5h 53.6h
46% 06 Sep 09:19 2.7h 23h

J PROSPECTIVE REPLAY: 6 SEPTEMBER 2017 X9.3 FLARE

The X9.3 flare of 6 September 2017 (NOAA AR 12673, peak at 12:02 UT) was held out from train-
ing and threshold calibration (3—7 Sep 2017) to provide a true out-of-sample test. Figure [7] shows
the M5-72 h probability trace; Table[I3]lists the associated lead times for several alert thresholds.
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