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Abstract

How to design reinforcement learning (RL) tasks that effectively unleash the
reasoning capability of large language models (LLMs) remains an open question.
Existing RL tasks (e.g., math, programming, and constructing reasoning tasks)
face three key limitations: ❶ Scalability. They rely heavily on human annotation
or expensive LLM synthesis to generate sufficient training data. ❷ Verifiability.
LLMs’ outputs are hard to verify automatically and reliably. ❸ Controllable
Difficulty. Most tasks lack fine-grained difficulty control, making it challenging to
train LLMs from easy to hard and progressively develop reasoning capability.
To address these limitations, we propose SATURN, a SAT-based RL framework
that uses Boolean Satisfiability (SAT) problems to train and evaluate LLM rea-
soning. SATURN enables scalable task construction, rule-based verification, and
precise difficulty control. SATURN designs a curriculum learning pipeline that
continuously improves LLMs’ reasoning capability by constructing SAT tasks
of increasing difficulty and training LLMs from easy to hard. To ensure stable
training, we design a principled mechanism to control difficulty transitions.
We introduce SATURN-2.6k, a dataset of 2,660 SAT problems with varying
difficulty. It supports the evaluation of how LLM reasoning changes with problem
difficulty. We apply SATURN to DeepSeek-R1-Distill-Qwen and obtain SATURN-
1.5B and SATURN-7B. We achieve several notable results: ❶ On SAT problems,
SATURN-1.5B and SATURN-7B achieve average pass@3 improvements of +14.0
and +28.1, respectively. ❷ On math and programming tasks, SATURN-1.5B
and SATURN-7B improve average scores by +4.9 and +1.8 on benchmarks (e.g.,
AIME, LiveCodeBench). ❸ Compared to the state-of-the-art (SOTA) approach in
constructing RL tasks, SATURN achieves further improvements of +8.8%. We
release the source code, data, and models to support future research at https:
//github.com/gtxygyzb/Saturn-code.

1 Introduction

Recently, reinforcement learning (RL) has become a promising paradigm for unleashing the reasoning
capability of large language models (LLMs), particularly in math, programming, and logical reasoning
(e.g., OpenAI-o1 [21], DeepSeek-R1 [11], Kimi-k1.5 [37]). During the RL training process, the
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design of RL tasks plays a critical role [14, 31, 32]. A well-designed RL task should elicit LLMs’
reasoning capability, fostering behaviors such as hesitation, reflection, backtracking, summarization,
and verification [28, 31, 43, 44, 53].

However, how to design RL tasks that can continuously enhance LLMs’ reasoning capability remains
an open question. We think a well-designed RL task for reasoning should satisfy the following three
criteria: ❶ Scalability. RL training requires large-scale data. RL tasks should support scalable data
without human annotation or expensive LLMs’ synthesis. ❷ Verifiability. RL rewards must be
unambiguously correct. The outputs of LLMs for the task should be easy to verify. ❸ Controllable
Difficulty. Reasoning capability emerges progressively [42]. RL tasks should support the difficulty
control to enable curriculum learning, allowing LLMs to gradually develop more complex reasoning
skills [16].

Table 1: The comparison between existing RL tasks and SATURN.

Tasks Scalability Verifiability Controllable Difficulty

ScaleQuest [12] ✗ ✗ ✗
GSM8K (Math) [9] ✗ ✓ ✗
LiveCodeBench [22] ✗ ✓ ✗
Game Werewolf [45, 48] ✗ ✗ ✗
LMRL Gym [4] ✗ ✓ ✓
SPAG [7] ✗ ✓ ✗
Knights&Knaves [46] ✓ ✓ ✗

SATURN (Ours) ✓ ✓ ✓

Table 1 shows the features of current mainstream RL tasks. None of them satisfy all three criteria.
Existing RL tasks can be divided into two categories: (1) One category of RL tasks requires LLMs
to solve math or programming problems, with rewards based on the correctness of the final answer
or code [5, 6, 9, 27]. However, these tasks rely on human annotation for ground-truth solutions or
test cases, suffer from a lack of high-quality problems, and offer only coarse control over reasoning
difficulty [23, 26]. (2) Another category focuses on manually designed reasoning tasks [12, 45, 46, 48].
For instance, Logic-RL [47] leverages natural language logic K&K puzzles to improve LLMs’
reasoning capability through RL. However, they also present limitations, such as hard to scale
up due to reliance on sampling from LLMs [7, 12], hard to verify despite relying on LLMs for
cross-validation [12, 41, 51], and hard to control difficulty [45, 48].

In this paper, we aim to answer the following research question:

Key Question

Can we design an RL task that supports scalability, verifiability, controllable difficulty, and
enhances the reasoning capability of LLMs?

To this end, we propose Boolean Satisfiability (SAT) problem as the task for RL. Figure 1 shows
an illustration of SAT problems and corresponding features. SAT satisfies all three desiderata we
outlined earlier: ❶Scalability. SAT instances can be generated programmatically at scale without
human annotation or LLM synthesis, allowing for virtually unlimited training data. ❷ Verifiability.
SAT is a well-established NP-complete problem in theoretical computer science [10]. The correctness
of a solution can be easily verified in linear time. But solving SAT problems requires complex
reasoning. ❸ Controllable Difficulty. The difficulty of SAT instances can be precisely adjusted (e.g.,
number of variables, clauses), making it suitable for curriculum learning. What’s more, SAT serves as
a universal substrate for limited forms of logical reasoning, as many problems in propositional logic,
finite-domain first-order logic, and modal logic can be systematically reduced to SAT [17, 24, 36].

Building on these advantages, we propose SAT-based reinforcement learning to Unleash LLMs
ReasoNing, or SATURN. SATURN is a multi-stage curriculum learning-based RL framework that
continuously improves the reasoning capability of LLMs. SATURN efficiently constructs SAT tasks
with controllable difficulty and organizes them into progressive stages from easy to hard, allowing
LLMs to develop reasoning skills step by step. To ensure training stability and effective progression,
we design a principled mechanism to control difficulty transitions based on LLMs’ performance.
SATURN enables smooth curriculum advancement and steady enhancement of reasoning capability.
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Figure 1: An illustration of SAT problems and its corresponding features.

We introduce the SATURN-2.6k dataset, consisting of 1,500 training instances, 160 test instances at
the same difficulty as the training set, and 1,000 test instances from 10 harder unseen difficulty levels.
The test set serves as a benchmark for systematically evaluating how LLMs’ reasoning capability
varies with increasing SAT task difficulty. We release SAT construction scripts alongside the dataset,
which enable the creation of virtually unlimited SAT instances.

We apply SATURN to DeepSeek-R1-Distill-Qwen-1.5B and 7B [11], obtaining SATURN-1.5B and
SATURN-7B. Experiments show that SATURN effectively enhances LLMs’ reasoning capability in
generalizable scenarios:

• SATURN-1.5B and SATURN-7B achieve strong performance on SATURN-2.6k benchmarks. On
unseen harder test set, two models achieve pass@3 improvements of +14.0 and +28.1 respectively.

• The reasoning capability learned from SATURN transfers well to math and programming tasks,
bringing average improvements of +4.9 and +1.8 on popular benchmarks such as AIME [2], AMC
[1], MATH-500 [19], GPQA Diamond [35], and LiveCodebench [22] for two SATURN models.

• Compared to the prior SOTA approach (e.g., Logic-RL), SATURN achieve average improvements
of +8.8% on math and programming tasks.

2 SATURN

Figure 2: The overall framework of SATURN. It alternates between two interconnected loops: (1)
Curriculum Estimation Loop. (2) LLMs Training Loop. The two loops iterate until the maximum
number of curriculum stages is reached.

2.1 SATURN Learning Loop Framework

We introduce SATURN, a multi-stage RL framework that leverages SAT tasks to unleash LLMs’
reasoning via curriculum learning. As illustrated in Figure 2, SATURN alternates between two inter-
connected loops: Curriculum Estimation Loop dynamically constructs SAT instances of adjustable
difficulty and evaluates LLMs’ performance to determine whether to advance the curriculum stage;
LLMs Training Loop employs RL to optimize LLMs on current difficulty SAT tasks. The curriculum
loop presented in Algorithm 1 proceeds as follows:

Step 1: Curriculum Estimation Loop. Given initial SAT difficulty, SAT_Construction generates
a validation set of SAT instances. The LLM is evaluated on this set using the pass@1 metric. If
the performance exceeds a predefined threshold ϵ, the curriculum controller advances to a harder
configuration with an increased estimated difficulty. Otherwise, SATURN process enters Step 2
LLMs training loop at the current SAT difficulty. This adaptive loop ensures that the LLM is always
trained at the frontier of its reasoning capability, neither too easy nor too hard.

3



Step 2: LLMs Training Loop. For the current difficulty, SAT_Construction generates a set of
training instances that are different from the validation set. These samples are then used to train LLMs
with GRPO. The reward function encourages outputs that are both logically correct and properly
formatted. The training loop proceeds until pass@1 > ϵ on the validation set. After that, the process
backs to Step 1 to reassess and potentially advance the curriculum.

The two loops iterate jointly. SATURN process terminates when a predefined total number of
iterations is reached. Importantly, SATURN is not designed to replace math or programming tasks,
but to serve as a complementary strategy for enhancing LLMs’ reasoning. In practice, SATURN can
be integrated with math and programming tasks to enable a stronger training framework.

SATURN learning loop raises three core challenges: ❶ Section 2.2 introduces how to construct
scalable and controllable SAT instances. ❷ Section 2.3 presents how to estimate instance difficulty
for curriculum learning. ❸ Section 2.4 explains how to train LLMs on SAT tasks with RL.

2.2 SAT Instances Construction

In this subsection, we formalize the construction of SAT instances. A SAT problem determines
whether a propositional formula can be satisfied by a Boolean truth assignment. Formally, we define
a (n, k, l)-SAT instance in conjunctive normal form (CNF) as:{

Φ =
(
xa1,1

∨ ¬xa1,2
∨ · · · ∨ xa1,n

)
∧ · · · ∧

(
xal,1

∨ · · · ∨ ¬xal,n

)
where ai,j ∈ {1, . . . , k}, i ∈ [1, l]Z, j ∈ [1, n]Z

(1)

where each clause contains exactly n variables (literals), each being either xi or its negation ¬xi, k is
the total number of variables, and l is the total number of clauses. Based on the definition, we design
a SAT instance constructor, SAT_Construction(n, k, l,m), which uniformly samples m SAT in-
stances from the space of (n, k, l)-SAT. By adjusting the parameters (n, k, l,m), SAT_Construction
enables the scalable and controllable construction of SAT instances. The design details of the con-
structor algorithm are provided in Appendix B. All generated SAT instances are guaranteed to be
satisfiable.

2.3 Estimation of Task Difficulty

In this subsection, we present the estimation of SAT task difficulty for LLMs. This estimation also
serves as the foundation for curriculum learning in LLMs.

As a canonical NP-complete problem [10], SAT admits a polynomial-time reduction from any other
NP problem [25]. SAT exhibits a known phase transition phenomenon: when the clause-to-variable
ratio αc = l/k approaches a critical threshold (typically near 4.26 for 3-SAT), the probability of
satisfiability drops sharply, and problem difficulty peaks. This phenomenon probably stems from
replica symmetry breaking (RSB) [54]: near αc, the solution space fractures into disconnected clusters
separated by energy barriers. Beyond αc, the space collapses, reducing complexity.

However, RSB theory is designed for heuristic SAT solvers. For humans or LLMs solving SAT
problems through logical steps such as trial, verification, and reasoning, such solver-like phase
transitions are hardly observable in human-like thinking processes. While any n-SAT (n > 3) can be
reduced to 3-SAT [25], they differ significantly for LLMs in terms of solution space size and token
length.

Prior work [18] on SAT tasks for LLMs typically categorized difficulty based on phase transition
points. To systematically estimate task difficulty, we define an analytical estimator of the expected
solution space size. Given a (n, k, l) SAT instance, its difficulty for LLMs can be approximately
estimated by:

D(n, k, l) = log2(k) + 2 log2(l)− n+
k

n
(2)

Eq. (2) provides a more controllable, fine-grained estimation of SAT task difficulty. The detailed
derivation is provided in Appendix C. To further validate Eq. (2), we evaluate LLMs’ performance on
SAT instances with varying difficulty levels. As shown in Figure 3, each point represents a LLM’s
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average pass@3 on the same estimated difficulty instances. Pass@3 generally decreases as D(n, k, l)
increases, suggesting that our estimation aligns with the solvability trends observed in practical
LLMs. Stronger LLMs maintain higher pass@3, while weaker LLMs exhibit lower scores overall.
The validity of the estimation in Eq. (2) is further confirmed by ablation experiments, as detailed in
Appendix C.
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Figure 3: Scatter plots of pass@3 versus estimated difficulty D(n, k, l) for different LLMs, with
linear regression fits. The linear regression for two models achieve R2 values of 0.707 and 0.724
respectively, suggesting a reasonably strong linear relationship between difficulty and pass@3.

2.4 Reinforcement Learning with GRPO

In this subsection, we introduce the single-stage RL training for given (n, k, l)-difficulty tasks. RL can
further improve LLMs’ generalization by directly optimizing policy gradients over diverse reasoning
trajectories [11]. Given the SAT tasks, we then train LLMs using the original sample-level GRPO to
optimize the policy πθ with KL divergence penalty. The GRPO objective function is defined as:

LGRPO(θ) =E[q ∼ P (Q), {oi}Gi=1 ∼ πθold(O|q)]

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

{
min

[
ri,t(θ)Âi,t, clip (ri,t(θ), 1− ϵ, 1 + ϵ) Âi,t

]
− βDKL [πθ ∥ πref]

}
where ri,t(θ) =

πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
, Âi,t =

ri − mean(r)
std(r)

(3)

where q denotes a SAT instance, oi is the reasoning trajectory generated by the policy πθ, and G
groups SAT instances with identical (n, k, l) parameters. A simple yet effective reward scheme [11] is
designed that combines a format reward and a correctness reward. Specifically, ri = −1 if an output
is invalid (i.e., missing the \boxed{} wrapper); ri = 0 for well-formatted but incorrect answers; and
ri = 1 only when both the format and the answer are correct. Here, an answer is considered correct if
it passes a verifier and represents a full satisfying assignment. Training schedule and hyperparameter
settings are detailed in Appendix D. And the SAT prompt template is shown in Appendix F.

3 Experiments

We apply SATURN to DeepSeek-R1-Distill-Qwen-1.5B and 7B, obtaining SATURN-1.5B and
SATURN-7B. To evaluate the effectiveness of SATURN, we conduct a large-scale study to evaluate
both models. In this section, we introduce our research questions (RQs), benchmarks, baselines, and
evaluation metrics. For each RQ, we present the corresponding experimental design, results, and
analysis in separate subsections.
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3.1 Research Questions

Our study aims to answer the following research questions:

RQ1: How much improvement does SATURN achieve in solving SAT tasks? We evaluate
SATURN-1.5B and SATURN-7B performance on SATURN-2.6k with different difficulty levels.

RQ2: How effectively does SATURN generalize to math and programming tasks? To evaluate
the transferability of reasoning capabilities learned by SATURN, we evaluate the performance of
LLMs on math and programming benchmarks and compare them with current SOTA LLMs.

RQ3: How does SATURN compare to prior RL tasks? To explore the relationship between SAT-
URN and existing RL tasks, RQ3 investigates whether SATURN can (1) serve as a complementary
task to math and programming, and (2) outperform other constructing RL tasks.

RQ4: How does SATURN affect LLMs reasoning trajectory? RQ4 explores whether SATURN
influences the reasoning patterns of LLMs, particularly in terms of response length and the capability
of verification. We investigate whether the reasoning improvements observed in SAT tasks generalize
to math and programming.

3.2 Experimental Setup

SATURN Hyperparameters For SATURN-1.5B and SATURN-7B, we set the initial SAT instance
parameters (n, k, l) to (3, 5, 5) and (3, 5, 13), respectively. In Curriculum Estimation Loop, the ϵ
threshold is set to 0.5 for the 1.5B model and 0.75 for the 7B model. In LLMs Training Loop, we
evaluate the pass@kwith a step size of 250 training samples. The total number of curriculum iterations
is set to 2. Detailed hyperparameters are provided in Appendix A. Ablation studies in Appendix H
demonstrate the necessity of curriculum learning and the effectiveness of hyperparameters on SAT
difficulty, thresholds, step sizes, etc.

Benchmarks. ❶ Building upon SAT_Construction tool and difficulty estimation, we release
SATURN-2.6k, a curated benchmark designed to evaluate LLMs’ reasoning capability across varying
complexity. SATURN-2.6k consists of 1,500 training instances and 160 test instances that share the
same estimated difficulty level. To assess performance under increasing task complexity, SATURN-
2.6k further includes 1,000 test instances from 10 unseen harder difficulty levels, with 100 instances
per level. These levels are selected based on our difficulty estimation D(n, k, l), enabling a systematic
analysis of how LLM performance changes as problem difficulty increases. Additionally, custom
datasets of desired difficulty can be constructed using our open-sourced SAT_Construction tool.
❷ For math and programming tasks, following DeepSeek-AI [11], we use AIME 24/25 [2], AMC
22/23 [1], MATH-500 [19], GPQA Diamond [35], and LiveCodeBench v4_v5 subset [22].

Baseline Model. We conduct evaluations against several 1.5B and 7B parameter reasoning models
as the baselines, which include DeepSeek-R1-Distill-Qwen-1.5B & 7B [11], Still-3-1.5B-Preview
[40], s1.1-1.5B & 7B [31], z1-7B [50], OpenThinker-7B [38], and DeepScaleR-1.5B-Preview [29].
In addition, we include a supervised fine-tuning (SFT)-only baseline trained on the Math training
dataset [19], which provides step-by-step problem reasoning trajectories. We randomly select the
most difficult Level-5 1,000 problems from training set for one epoch of SFT, following the same
training template as DeepSeek-R1-Distill-Qwen. With the same dataset size, our setup enables a fair
comparison between SFT and RL on SAT tasks.

Evaluation Metrics. Following DeepSeek-AI [11], we use pass@k as the evaluation metric.
Pass@k assesses the probability that at least one correct solution is generated within k attempts. For
SAT problems, we evaluate pass@k ∈ {1, 3, 5, 7, 10} and sample 12 times per problem. For math
and programming benchmarks, we use pass@1, following a context length of 32,768 and temperature
= 0.6. More evaluation hyperparameters are provided in Appendix E. All experiments are conducted
on NVIDIA 8×A100 (40GB) GPUs. Specific prompts are detailed in Appendix F.

3.3 RQ1: SATURN Substantially Improves Performance on SAT Tasks

We evaluate the performance of SATURN-1.5B and SATURN-7B on SAT tasks using SATURN-2.6k
test set. Specifically, the evaluation involves unseen SAT instances that were not included in the
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training data. The results, presented in Table 2, 10–14, and detailed in Appendix G, demonstrate the
performance of LLMs across different SAT difficulties.

Table 2: Performance (pass@k, in %) on SATURN-2.6k test set across different difficulty levels.

Model SAT-(3,5,5) SAT-(3,5,8)
@1 @3 @5 @7 @10 @1 @3 @5 @7 @10

DeepSeek-R1-Distill-Qwen-1.5B 36.7 71.7 85.4 91.7 96.2 20.3 47.6 63.6 73.4 81.9
SATURN-1.5B-Iteration-1 59.7 90.4 97.1 99.1 99.8 41.0 74.0 85.6 91.1 95.6
SATURN-1.5B-Iteration-2 70.3 95.9 99.0 99.7 99.9 47.0 82.6 93.9 98.0 99.8

Model SAT-(3,5,13) SAT-(3,5,15)
@1 @3 @5 @7 @10 @1 @3 @5 @7 @10

DeepSeek-R1-Distill-Qwen-7B 53.9 86.2 94.2 97.3 99.3 39.3 74.9 88.3 94.3 98.3
SATURN-7B-Iteration-1 73.0 96.1 98.9 99.7 99.9 65.7 91.8 96.8 98.7 99.7
SATURN-7B-Iteration-2 89.5 99.0 99.9 100.0 100.0 85.4 98.3 99.8 99.9 100.0

SATURN substantially improves LLM performance on SAT tasks across varying difficulty
levels. On the difficulty SAT-(3,5,5), SATURN-1.5B improves pass@1 from 36.7 to 59.7 at Iteration-
1, and further to 70.3 at Iteration-2, achieving a total gain of +33.6. On the unseen harder test
set (Table 11), SATURN-1.5B improves average pass@3 from 10.1 to 24.2, while SATURN-7B
improves from 36.1 to 64.2. On average, these models achieve pass@3 improvements of +14.0 and
+28.1 respectively, confirming that SATURN effectively enhances LLM reasoning across both seen
and unseen SAT difficulties.

3.4 RQ2: SATURN Demonstrates Strong Generalization to Math and Programming

We assess whether the reasoning capability learned by SATURN generalizes to math and program-
ming tasks. We evaluate SATURN-1.5B and SATURN-7B on a range of reasoning benchmarks. The
results shown in Table 3 provide a detailed comparison.

Table 3: Performance comparison on math and programming Benchmarks

Model AIME 24/25 AMC 22/23 Math500 GPQA-D LiveCodeBench Avg.
GPT-4o (Aug’24) 11.7 - 79.5 52.1 31.7 -
Claude 3.5 Sonnet (Oct ’24) 15.7 - 77.1 59.9 38.1 -

s1.1-1.5B 1.7 25.3 42.2 29.3 2.2 20.1
Still-3-1.5B-Preview 23.3 74.7 84.6 34.8 17.1 46.9
DeepSeek-R1-Distill-Qwen-1.5B 21.6 65.1 83.6 30.3 16.4 43.4

+ SFT 25.0 68.7 82.0 34.3 14.6 44.9
SATURN-1.5B 28.3 73.5 84.6 37.4 17.4 48.2
z1-7B 8.3 39.8 74.2 35.4 19.3 35.4
s1.1-7B 21.7 61.4 80.8 43.4 12.8 44.0
OpenThinker-7B 26.7 53.0 88.6 42.9 21.5 46.5
DeepSeek-R1-Distill-Qwen-7B 50.0 80.7 93.2 49.0 35.4 61.7
SATURN-7B 48.3 85.5 95.0 50.5 37.7 63.4

❶ SATURN shows strong generalization to math and programming tasks. On the AIME 24/25
benchmark, SATURN-1.5B outperforms z1-7B by 8.3 and s1.1-7B by 21.7. Similarly, SATURN-
7B achieves a strong improvement on the Math500 dataset, increasing from 93.2 to 95.0. On
LiveCodeBench, it improves from 35.4 to 37.7. On average, SATURN-1.5B improves by +4.9,
and SATURN-7B improves by +1.8 across these benchmarks. These results highlight that SAT-
URN enhances the reasoning performance of LLMs across various math and programming tasks,
demonstrating strong generalization of the learned reasoning capabilities from SAT.

❷ SATURN outperforms SFT on broader benchmarks. Consistent with the observations in SFT
Memorizes, RL Generalizes [8], SFT improves performance on math-focused benchmarks (AIME,
AMC, and Math500) that are similar to its supervised training domain. However, on LiveCodeBench,
SFT drops from 16.4 to 14.6, exhibiting an alignment tax [33], where specializing on a narrow
domain compromises performance on other tasks. In contrast, SATURN improves performance
across all benchmarks, with SATURN-1.5B reaching 17.4 on LiveCodeBench. Averaging across all
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benchmarks, SATURN-1.5B outperforms the SFT counterpart by 3.3, demonstrating that SATURN
generalizes effectively.

3.5 RQ3: SATURN Serves as a Complement and Further Enhances LLM Reasoning

RQ3 studies the relationship between SATURN and existing RL tasks. Beyond the DeepSeek-R1-
Distill-Qwen-7B, we introduce two additional models: Qwen2.5-7B-Instruct-1M [39, 49] following
Logic-RL [47] settings, and DeepScaleR-1.5B-Preview [29], which is further RL trained on 40k math
and programming examples from DeepSeek-R1-Distill-Qwen-7B. We compare SATURN against
several prior constructing RL task approaches, including Logic-RL [47], SPGA [7], and ScaleQuest
[12], which represent strong baselines. Each approach is applied to different models for comparison.
Results are summarized in Table 4.

Table 4: Comparison of SATURN and prior approaches across various LLMs.

Model AIME 24/25 AMC 22/23 Math500 GPQA-D LiveCodeBench Avg.
SPGA-3 (82k) 0.0 3.6 7.2 24.7 0.0 7.1
ScaleQuest (25k) 6.7 45.8 74.6 31.3 7.9 33.3
Qwen2.5-7B-Instruct-1M 5.0 41.0 74.4 32.3 9.8 32.5

+ Logic-RL (5k) 6.7 49.4 72.0 29.3 9.0 33.3
+ Saturn (1k) 10.0 47.0 74.8 37.9 11.3 36.2

DeepSeek-R1-Distill-Qwen-7B 50.0 80.7 93.2 49.0 35.4 61.7
+ Logic-RL (5k) 50.0 80.7 93.4 52.0 35.7 62.4
+ Saturn (1k) 48.3 85.5 95.0 50.5 37.7 63.4

DeepScaleR-1.5B-Preview 30.0 74.7 87.8 37.4 19.8 49.9
+ Logic-RL (5k) 28.3 77.1 86.4 35.9 20.7 49.7
+ Saturn (0.5k) 35.0 73.5 88.6 43.4 21.0 52.3

❶ SATURN serves as a strong complement to math and programming. On DeepScaleR-1.5B-
Preview—despite being further RL trained with 40k math and programming examples—SATURN
still brings additional improvements, raising the average score from 49.9 to 52.3. Notably, it improves
AIME by +5.0 and GPQA-D by +6.0. ❷ SATURN outperforms prior constructing RL task
approaches across multiple models. On Qwen2.5-7B-Instruct-1M, SATURN uses only 1k training
examples but improves the average score from 32.5 to 36.2, achieving a relative improvement of
+8.8% over Logic-RL trained with 5k examples. These results indicate that SATURN not only
complements math and programming tasks, but also provides greater improvements compared to
other constructing RL task approaches.

3.6 RQ4: SATURN Enhances Self-verification in LLMs’ Reasoning Trajectories

RQ4 investigates whether SATURN affects LLMs’ reasoning behavior. On Qwen2.5-7B-Instruct-1M,
we observe a gradual increase in response length during training, as illustrated in Figure 4, replicating
the lengthening phenomenon reported in the R1 and Logic-RL [11, 47].

Figure 4: Response length trend during SATURN training on Qwen2.5-7B-Instruct-1M.
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Figure 5: Comparison of reasoning trajectories on Math 500 Question No.402 between two models.

To examine whether such reasoning patterns generalize, we present case studies across SAT and
math domains. Figure 12 shows that solving SAT variables requires rechecking all clauses, naturally
encouraging self-verification. In Figure 5, SATURN-7B verifies intermediate conclusions within a
small scenario and successfully chooses the correct solution path. In contrast, the baseline model
reaches a wrong answer and skips verification, even when inconsistencies are detected.

Recent studies [15, 20] identify core behaviors shared by expert human reasoners and LLMs, such
as verification and backtracking. These behaviors are domain-agnostic and provide fundamental
reasoning patterns applicable to a wide range of tasks. In line with these findings, SATURN reinforces
similar behaviors during SAT solving, leading to more structured reasoning trajectories. More
reasoning trajectories are provided in Appendix J to illustrate how SATURN works. These results
suggest that the self-verification patterns learned from SAT transfer well to math and programming
tasks, improving reasoning robustness and reliability.

4 Discussion

4.1 Limitations of Reasoning Capability Learned from SATURN

During curriculum learning, we observed that as the number of training iterations increases, the
improvements in math and programming tasks tend to plateau, which is consistent with the findings
in Logic-RL. Detailed evaluation results are provided in Table 5. This plateau may stem from several
factors: ❶ Knowledge limitations. SATURN improves formal logical reasoning but does not provide
domain-specific knowledge supervision. This limits its effectiveness in tasks requiring mathematical
or algorithmic knowledge. ❷ Context window bottlenecks. SAT problems are NP-complete tasks,
and the required reasoning length grows exponentially with increasing problem difficulty. This leads
to bottlenecks in the model’s capability to handle increasingly complex tasks. ❸ Limited plasticity
and forgetting. Model plasticity and catastrophic forgetting are known limitations that hinder further
improvements with additional training stages [3, 13].

4.2 Potential of SATURN on Stronger Models

To explore the potential of SATURN to stronger models, we evaluate frontier LLMs on SAT tasks
using the extended SAT instances. Results are shown in Appendix I. Although these LLMs exhibit
stronger performance, they still make common errors such as hallucinating clauses, confidently
committing to incorrect decisions, or failing to apply basic logical rules. Even more advanced LLMs
still struggle to solve complex SAT problems. We believe SATURN remains a promising approach for
enhancing reasoning in stronger LLMs. With sufficient computation, SATURN can offer a scalable,
verifiable, and controllable path to further improve reasoning capabilities.
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Table 5: Performance of multi-Stage SATURN iterations on math and programming benchmarks

Model AIME 24/25 AMC 22/23 Math500 GPQA-D LiveCodeBench Avg.
DeepSeek-R1-Distill-Qwen-1.5B 21.6 65.1 83.6 30.3 16.4 43.4
SATURN-1.5B-Iteration-1 26.7 68.6 85.0 33.3 16.9 46.1
SATURN-1.5B-Iteration-2 28.3 73.5 84.6 37.4 17.4 48.2
SATURN-1.5B-Iteration-3 28.3 66.3 85.8 36.9 16.7 46.9

DeepSeek-R1-Distill-7B 50.0 80.7 93.2 49.0 35.4 61.7
SATURN-7B-Iteration-1 48.3 83.1 94.6 50.5 36.6 62.6
SATURN-7B-Iteration-2 48.3 85.5 95.0 50.5 37.7 63.4
SATURN-7B-Iteration-3 46.7 87.9 93.2 58.1 38.1 64.8

5 Related Work

5.1 Constructing Reasoning Tasks for Reinforcement Learning

Several works have explored constructing reasoning tasks to improve the reasoning capability of
LLMs. Logic-RL [47] and LMRL Gym [4] train LLMs on natural language logic puzzles but
lack scalability due to their limited puzzle set. ScaleQuest [12], Entity-Deducing Game [52], and
K&K [46] propose automatic generation of constructing questions, but rely on LLM sampling or
handcrafted templates, making large-scale generation costly and hard to verify. CodeDPO [51]
and PuzzBench [41] employ LLM-based verification, which may fail silently and cannot ensure
correctness. Wolf Game [45, 48] focus on multi-step logic reasoning but offer no control over task
difficulty, limiting their support for curriculum learning. Overall, these tasks fall short in scalability,
verifiability, or controllable difficulty. See Appendix K for detailed comparisons.

5.2 SAT-Based Evaluation of LLM Reasoning Capability

Recent studies have evaluated the reasoning capability of LLMs on SAT problems. Most of these
works focus on analyzing model behavior around the SAT phase transition [18, 30, 34], where
problem hardness peaks. However, the phase transition theory is originally designed for heuristic
SAT solvers and does not align well with the reflective and verification-based reasoning processes of
humans or LLMs. These studies also lack a fine-grained scalable difficulty framework and typically
divide difficulty based on the phase transition threshold. They are further limited to supervised
fine-tuning and do not consider large reasoning models with long-CoT reasoning capability trained
via RL. Our work addresses these limitations by building a progressive evaluation and curriculum
learning pipeline, enabling precise difficulty control and the generalization of LLMs.

6 Conclusion and Future Work

We present SATURN, a SAT-based RL framework for unleashing and evaluating the reasoning
capability of LLMs. By leveraging SAT’s scalability, verifiability, and controllable difficulty,
SATURN addresses key limitations of existing RL tasks. It constructs a multi-stage curriculum to
gradually enhance reasoning, and introduces the SATURN-2.6k benchmark for controlled evaluation.
Applied to DeepSeek-R1-Distill-Qwen, SATURN produces SATURN-1.5B and SATURN-7B, which
show strong gains on unseen SAT tasks and generalize well to math and programming benchmarks.

In future work, we plan to: (1) apply SATURN to larger-scale LLMs, (2) break the existing paradigm’s
reliance on human-annotated data and explore new paths toward building LLMs with continuous
self-evolution capabilities.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
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A Pseudocode of SATURN Algorithm and Hyperparameters

Algorithm 1 presents the complete algorithmic workflow of SATURN.

Algorithm 1 SATURN Learning_Loop(n, k, l, πθ) # LLM represents πθ

def Increase_difficulty(n, k, l, step =1):
"""
Increments by D_step to increase SAT difficulty.
"""
return n, k, l + D_step

def SATURN_learning_loop(n, k, l, LLM):
for t in range (2): # Max total curriculum iterations

# Step 1: Curriculum Estimation Loop
# Generate validation set
Val_set = SAT_Construction(n, k, l, Val_size)
pass_at_1 = evaluate(Val_set , LLM) # Evaluate pass@1

if pass_at_1 >= epsilon:
n, k, l = Increase_difficulty(n, k, l)

else:
# Step 2: LLM Training Loop (only if pass_at_1 < epsilon)
for i in range (10): # Max GRPO steps per level

# Generate training set
D_train = SAT_Construction(n, k, l, Train_size)
LLM = GRPO(LLM , D_train)

# Re -generate validation set
Val_set = SAT_Construction(n, k, l, Val_size)
pass_at_1 = evaluate(Val_set , LLM) # Evaluate pass@1
if pass_at_1 >= epsilon:

break

return LLM

Table 6 shows all SATURN hyperparameters.
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Table 6: SATURN Hyperparameters

Parameter SATURN-1.5B SATURN-7B
Initial (n, k, l) (3, 5, 5) (3, 5, 13)
pass@k threshold ϵ 0.5 0.75
Training set size per step (Train_size) 250 250
Validation set size per step (Val_size) 40 40
Difficulty increment (D_step) 1 2
Curriculum iterations 2 2
Max GRPO steps per level 10 10

B Construction Procedure of SAT Instances

This appendix describes the implementation details of the SAT_Construction algorithm introduced
in Section 2.1. The goal is to generate m satisfiable (n, k, l)-SAT instances in conjunctive normal
form (CNF), each constructed to be consistent with a known Boolean solution. The algorithm ensures
diversity and uniformity across sampled instances.

The construction procedure is outlined in Algorithm 2 and consists of the following steps:

1. A Boolean solution is randomly generated for the k variables.
2. The constructor randomly selects n variables from the k variables to form a clause.
3. Under the constraint of satisfying the solution, the n variables are randomly negated,

resulting in 2n − 1 satisfiable clauses per variable set. From these steps, we uniformly
obtain a large number of single-clause samples from the total of 2k ·

(
k
n

)
· (2n − 1) valid

(solution, clause) pairs, with an upper bound set to 100,000.
4. These (solution, clause) pairs are grouped into clusters based on the same solution.
5. Within each cluster, we randomly select l clauses and shuffle their order to construct a full

SAT instance that satisfies the corresponding solution.
6. Finally, we uniformly sample across clusters and remove duplicates to obtain a total of m

diverse SAT instances.

C Derivation and Validity of Difficulty Estimation for SAT Tasks on LLMs

As stated in Section 2.2, we propose a composite difficulty function Eq. (2) to estimate the reasoning
difficulty of SAT problems for LLMs. This difficulty score combines a sparsity-based estimate of
solution density with a structural complexity adjustment.

Step 1: Sparsity-Based Estimate (D1)

We first estimate task difficulty by measuring the ratio between symbolic search cost and expected
solution space size.

The symbolic search cost is approximately proportional to the number of variable-symbol combina-
tions across decoding steps. For a problem with k variables and l decoding steps, we estimate:

Search Cost ∝ k · l (4)

For Boolean constraint problems like SAT, the number of satisfying assignments is sparse. Assuming
a random clauses, the expected number of valid solutions is:

Expected Solutions ≈ 2n − 1 ≈ 2n (5)

where we approximate 2n − 1 by 2n for analytical simplicity.

Taking the ratio and applying a logarithmic transform yields:

D1(n, k, l) = log2(k · l)− log2(2
n) = log2(k) + log2(l)− n (6)
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Algorithm 2 SAT_Construction(n, k, l,m)

def SAT_Construction(n, k, l, m):
V = [x_1 , x_2 , ..., x_k] # k Boolean variables
P = set() # pool of (solution , clause) pairs

# Step 1-3: Generate (solution , clause) pairs
while len(P) < 100000: # max number of single -clause samples

vars = sample_variables(V, n) # select n vars from V
# e.g., [x_2 , x_4 , ...]

solution = random_assign(vars) # assign 0/1 to vars
# e.g., {x_2:1, x_4:0, ...}

clause = generate(vars , solution) # create clause
# e.g., {x_2 or !x_4 ...}

P.add((solution , clause)) # store pair

# Step 4: Group by solution
clusters = group_by_solution(P) # solution -> list of clauses

# Step 5-6: Construct m SAT instances
instances = set()
while len(instances) < m:

solution , clauses = sample_cluster(clusters) # select a group
if len(clauses) < l:

continue
selected_clauses = sample_clauses(clauses , l) # pick l clauses
shuffle(selected_clauses)
instances.add((solution , selected_clauses))

return instances

Step 2: Structural Complexity Adjustment (D2)

In addition to solution sparsity, symbolic reasoning difficulty also depends on the structural properties
of the input formula. We construct a structure-aware term D2(n, k, l) based on two contributing
factors.

First, consider the symbolic reuse density: when k variables are reused across n clauses, each variable
is, on average, involved in n/k constraints. This increases the interdependency between clauses.
Since higher reuse leads to greater symbolic entanglement, making factorization more challenging
for the model, we define the inverse ratio k

n as a proxy for the structural cost:

Variable Interaction Cost =
k

n
(7)

Second, the clause length l determines the number of symbols that each clause contains. Longer
clauses introduce more intra-clause dependencies, increasing local reasoning complexity. We approx-
imate this with:

ClauseWidth Cost = log2(l) (8)

These two components affect reasoning difficulty independently—one globally through variable
sharing, and the other locally through clause complexity. We, therefore, combine them additively
into:

D2(n, k, l) =
k

n
+ log2(l) (9)

This additive form is justified as both terms grow monotonically with symbolic complexity and are
approximately aligned in scale, enabling stable and interpretable difficulty estimation.
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Step 3: Final Composite Metric

Combining both components yields:
D(n, k, l) = D1(n, k, l) +D2(n, k, l) (10)

= log2(k) + log2(l)− n+
k

n
+ log2(l) (11)

= log2(k) + 2 log2(l)− n+
k

n
(12)

This final composite metric provides a stable and interpretable approximation of symbolic difficulty
for LLMs, taking into account both sparsity and structure.

Step 4: Ablation Study about estimation metric

To further validate the necessity and effectiveness of Eq. (12) composite metric, we conduct an
ablation study comparing alternative formulations. Table 7 reports the R2 correlation of each metric
with LLM performance (pass@3) across multiple model scales.

Table 7: Metric comparison across models.

Metric Formula R1-Qwen-1.5B Saturn-1.5B R1-Qwen-7B Saturn-7B Avg. Std. Dev.

−k − l · log2(1− 1
2n ) 0.507 0.537 0.132 0.000 0.294 0.269

α · k
n + β · log2(l), α = 2, β = 1 0.428 0.478 0.568 0.508 0.496 0.059

α · k
n + β · log2(l), α = 1, β = 1 0.240 0.279 0.719 0.826 0.516 0.300

log2(k · l)− log2(2
n − 1) 0.875 0.893 0.451 0.157 0.594 0.356

log2(k) + 2 · log2(l)− n+ k
n 0.707 0.746 0.724 0.501 0.670 0.113

Simpler metrics that consider only sparsity or only structural complexity perform worse overall,
confirming that both components are essential for accurately capturing task difficulty. Our metric
log2(k) + 2 · log2(l) − n + k

n combines both solution sparsity and structural complexity, which
achieves the best overall correlation. The ratio between the solution space and the LLM’s search
space is the most crucial aspect. On SATURN-7B, the R2 value is about 0.5 because the LLM already
achieves over 90% accuracy on easy problems, which limits the observable linear correlation in that
range. The corresponding figures are shown in Figures 10 and 11.

D Training Schedule for SATURN-1.5B and SATURN-7B

This appendix provides additional details on the SATURN-1.5B and SATURN-7B training. We
conduct all experiments on 8 NVIDIA A100 40GB GPUs. We use the OpenRLHF framework2 for
GRPO training. The framework is designed to make RL training simple and user-friendly, which
works well in our experiments. The hyperparameters used in training are summarized in Table 8. All
other parameters not listed above consistently follow the default settings of OpenRLHF.

Figure 6 and Figure 7 illustrate the training curves of SATURN-1.5B and SATURN-7B. Both
models show a clear upward trend in the average reward during training, accompanied by early
fluctuations that gradually stabilize. The maximum reward curves quickly reach high values and
maintain them throughout most of the training process. These results indicate that both SATURN-
1.5B and SATURN-7B successfully learn to generate high-reward outputs, demonstrating effective
SAT reward-guided optimization.

E Evaluation Hyperparameters

This appendix provides additional details on the hyperparameters used in the evaluation. We use the
Hugging Face lighteval library3 for math and programming evaluations. It offers efficient bench-
marks, helping us assess LLMs’ performance across various tasks while ensuring both computational

2https://github.com/OpenRLHF/OpenRLHF
3https://github.com/huggingface/lighteval
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Table 8: OpenRLHF Training Hyperparameters

Parameter SATURN-1.5B SATURN-7B

Actor learning rate 5× 10−7 5× 10−7

Initial KL coefficient 1× 10−3 1× 10−3

Batch size (train) 2 2
Batch size (rollout) 2 2
Samples per prompt 8 8
Prompt length (max) 1024 1024
Generation length (max) 10000 8192
Temperature 0.8 1.0
Zero redundancy stage 3 3
Use bf16 Yes Yes
KL estimator k3 k3
Advantage estimator GroupNorm GroupNorm
Use reward normalization Yes Yes

Figure 6: Training curves of various metrics for SATURN-1.5B.

efficiency and high-quality results. For the evaluation of the DeepSeek-R1 series distillation models,
we use lighteval with the Hugging Face-Open-R1 framework4. This framework effectively
reproduces the evaluation results of the R1 series models.

During the evaluation process, we follow the parameter settings from Hugging Face-Open-R1, as
shown in Table 9. Additionally, for LiveCodeBench, we also select the default v4_v5 version of

4https://github.com/huggingface/open-r1

Figure 7: Training curves of various metrics for SATURN-7B.
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this framework. Due to the long inference budget required by LiveCodeBench, we set the maximum
response length to 16K and generate four samples per instance to estimate pass@1. All other
parameters not listed and mentioned above consistently follow the default settings of Hugging
Face-Open-R1.

For larger closed-source models, we report the benchmark results from a public benchmark website5.

Table 9: Evaluation Hyperparameters for Hugging Face-Open-R1

Hyperparameter Setting
Data type bfloat16
Maximum model length 32,768
Maximum new tokens 32,768
Temperature 0.6
Top-p (nucleus sampling) 0.95

F Prompt Templates

This appendix provides the prompt templates used for evaluation, ensuring consistency and repro-
ducibility across tasks. Figure 8 presents the format for SAT problem training and evaluation, while
Figure 9 shows the template used for math, programming, and GPQA Diamond tasks.

Figure 8: Prompt format used for SAT problem training and evaluation.

G Detailed Performances of SATURN models on SATURN-2.6k

This appendix provides additional details of SATURN-1.5B and 7B on SATURN-2.6k spanning 10
harder SAT difficulty levels. Experimental results are shown in Table 10–14, and Figures 10–11. We
summarize two key observations:

❶ The pass@3 accuracy correlates strongly with the estimated SAT difficulty D(n, k, l) across
models. Specifically, the linear regression R2 scores are 0.746 for SATURN-1.5B and 0.707 for
DeepSeek-R1-Distill-Qwen-1.5B (Figure 10), and 0.5011 for SATURN-7B and 0.724 for DeepSeek-
R1-Distill-Qwen-7B (Figure 11). These results indicate that our difficulty function effectively
captures problem hardness, supporting the design of a curriculum learning schedule based on it. They
also demonstrate that SAT is a reliable benchmark for evaluating reasoning capability.

5https://artificialanalysis.ai/models
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Figure 9: Prompt format used for math, programming, and GPQA Diamond problems evaluation.

❷ Although our models are trained only on relatively easier SAT problems, they show consistent
improvements on harder levels. As shown in Table 10–14, both SATURN-1.5B and SATURN-7B
generalize well to more challenging problems, highlighting the effectiveness of our curriculum-driven
training strategy.

Table 10: Full pass@1 results on SATURN-2.6k

Model (3,7,40) (3,5,25) (3,5,20) (3,6,20) (3,7,20) (4,7,40) (4,8,40) (4,7,20) (6,7,40) (5,8,40) Avg.
R1-Distill-1.5B 0.3 1.3 3.3 3.3 3.3 1.1 1.6 7.2 10.6 4.4 3.6
SATURN-1.5B 0.3 6.2 7.8 7.3 8.9 3.3 4.2 22.5 29.0 12.9 10.2
R1-Distill-7B 2.3 12.3 19.2 23.3 21.5 3.8 4.5 30.1 24.4 12.3 15.4
SATURN-7B 8.6 44.7 66.4 64.5 64.6 9.2 10.3 57.3 36.4 19.2 38.1

Table 11: Full pass@3 results on SATURN-2.6k

Model (3,7,40) (3,5,25) (3,5,20) (3,6,20) (3,7,20) (4,7,40) (4,8,40) (4,7,20) (6,7,40) (5,8,40) Avg.
R1-Distill-1.5B 1.0 3.8 9.4 9.1 9.3 3.3 4.7 19.3 28.9 12.5 10.1
SATURN-1.5B 0.8 15.8 19.5 18.5 21.6 9.5 11.3 50.3 62.5 31.7 24.2
R1-Distill-7B 6.5 31.2 45.6 52.8 49.9 10.4 11.8 65.6 56.2 31.3 36.1
SATURN-7B 22.9 78.2 94.1 93.5 93.3 24.3 26.5 91.0 72.4 45.7 64.2

Table 12: Full pass@5 results on SATURN-2.6k

Model (3,7,40) (3,5,25) (3,5,20) (3,6,20) (3,7,20) (4,7,40) (4,8,40) (4,7,20) (6,7,40) (5,8,40) Avg.
R1-Distill-1.5B 1.7 6.1 14.9 14.2 14.4 5.4 7.6 29.2 43.7 19.6 15.7
SATURN-1.5B 1.3 23.5 27.9 26.7 30.6 14.9 17.2 67.0 79.0 44.1 33.2
R1-Distill-7B 10.5 44.7 62.3 69.2 66.9 16.0 17.5 82.9 74.0 45.4 48.9
SATURN-7B 34.4 89.5 98.5 98.6 98.2 35.9 38.6 97.5 86.4 62.4 74.0

Table 13: Full pass@7 results on SATURN-2.6k

Model (3,7,40) (3,5,25) (3,5,20) (3,6,20) (3,7,20) (4,7,40) (4,8,40) (4,7,20) (6,7,40) (5,8,40) Avg.
R1-Distill-1.5B 2.3 8.1 19.9 18.9 18.9 7.6 10.1 37.4 55.7 25.8 20.5
SATURN-1.5B 1.8 30.1 34.2 32.8 37.5 19.8 22.1 78.2 87.8 52.5 39.7
R1-Distill-7B 14.3 54.6 73.6 78.7 77.8 20.9 22.2 91.6 84.3 56.3 57.4
SATURN-7B 43.7 94.2 99.6 99.7 99.5 45.0 47.6 99.2 92.2 73.5 79.4

28



Table 14: Full pass@10 results on SATURN-2.6k

Model (3,7,40) (3,5,25) (3,5,20) (3,6,20) (3,7,20) (4,7,40) (4,8,40) (4,7,20) (6,7,40) (5,8,40) Avg.
R1-Distill-1.5B 3.3 10.6 26.8 25.2 24.6 10.8 14.5 47.9 69.3 33.7 26.7
SATURN-1.5B 2.5 38.7 41.3 39.5 45.7 26.2 28.0 89.6 101.0 75.9 46.7
R1-Distill-7B 19.6 65.0 84.7 86.6 87.8 27.2 27.9 97.4 92.8 68.6 65.8
SATURN-7B 54.9 97.1 99.9 99.9 100.0 55.0 57.3 99.8 95.3 84.7 84.4

Figure 10: Scatter plots of pass@3 versus estimated difficulty D(n, k, l) for DeepSeek-R1-Distill-
Qwen-1.5B and SATURN-1.5B, with linear regression fits. The linear regression for two models
achieve R2 values of 0.707 and 0.746 respectively.

Figure 11: Scatter plots of pass@3 versus estimated difficulty D(n, k, l) for DeepSeek-R1-Distill-
Qwen-7B and SATURN-7B, with linear regression fits. The linear regression for two models achieve
R2 values of 0.724 and 0.5011 respectively.
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H Ablation Studies for SATURN

This appendix presents the ablation studies for SATURN, as shown in Table 15 and Table 16. Each
training setting is denoted as (n, k, l) × Train_size, where (n, k, l) controls SAT construction
and Train_size is the number of training examples. Here, Train_size can also be written as
Train_size = D×num, where D is the number of difficulty levels and num is the number of samples
per level in SATURN-2.6k (Figure 11 and 10). These experiments validate the effectiveness of
curriculum learning and the design of various SAT training configurations.

Table 15: Ablation comparison on math and programming benchmarks

Training Setting AIME 24/25 AMC 22/23 Math500 GPQA-D LiveCodeBench Avg.
(3, 5, 10)× 500 45.0 84.3 93.2 53.5 35.1 62.2
(3, 5, 13)× 500 50.0 83.1 94.6 50.0 36.1 62.8
(3, 5, 15)× 500 35.0 68.7 86.6 46.0 31.3 53.5
(3, 5, 13)× 1000 51.7 81.9 94.0 47.5 37.2 62.5
((3, 5, 13) + (3, 5, 15))× 500 (one epoch) 43.3 86.7 93.0 49.5 35.8 61.7
(3, 5, 13)× 500 + (3, 5, 15)× 500 48.3 85.5 95.0 50.5 37.7 63.4

Table 16: Ablation Study with Different Sampling Strategies and Training Budgets

Training Setting AIME 24/25 AMC 22/23 Math500 GPQA-D LiveCodeBench Avg.
(n, k, l)× 100× 10 + shuffle 38.3 66.3 90.6 44.9 35.2 55.1
(n, k, l)× 100× 10 46.7 85.5 93.2 50.5 36.9 62.3
(n, k, l)× 200× 5 + shuffle 48.3 81.9 93.0 52.0 35.8 62.2
(n, k, l)× 200× 5 46.7 88.0 93.2 48.0 35.8 62.6
(3, 5, 13)× 500 + (3, 5, 15)× 500 48.3 85.5 95.0 50.5 37.7 63.4

In Table 15, we evaluate the impact of SAT difficulty, training budgets, and curriculum structure. We
draw two key conclusions:

❶ SATs that are too easy or too hard hinder model learning. Training solely on easy (3, 5, 10)×
500 or hard (3, 5, 15)× 500 instances results in lower average scores (62.2 and 53.5, respectively).
In contrast, moderate-difficulty SATs (3, 5, 13) × 500 yield a higher score of 62.8, showing that
balanced difficulty is essential for effective reasoning development.

❷ Multi-stage curriculum learning outperforms flat or mixed training. Curriculum learning
with progressively increasing SAT difficulty (3, 5, 13)× 500 + (3, 5, 15)× 500 achieves the highest
average score of 63.4. In contrast, one-epoch mixed training ((3, 5, 13) + (3, 5, 15)) × 500 only
reaches 61.7, despite using the same total number of examples. Furthermore, simply scaling up a
single-stage setting (3, 5, 13) × 1000 yields 62.5, which is also inferior to the curriculum. These
results indicate that progressive difficulty scheduling is more effective than either flat or mixed
training with the same or larger data budget.

Table 16 further investigates the impact of training thresholds and step sizes under a fixed total
training budget.

❸ Gradual difficulty progression outperforms random shuffling of difficulty levels. Both
(n, k, l)× 100× 10 and (n, k, l)× 200× 5 perform better when difficulty levels follow a gradual
progression (62.3 and 62.6), compared to random shuffling of difficulty levels (55.1 and 62.2). This
demonstrates that a curriculum learning approach with progressive difficulty scheduling is more
effective.

❹ Excessively fine-grained difficulty levels hinder performance. Training with overly fine-grained
difficulty levels, such as (n, k, l)×100×10, results in lower performance (55.1) compared to coarser
steps like (n, k, l)× 200× 5 (62.6). Both of these configurations perform worse than the two-stage
curriculum (3, 5, 13) × 500 + (3, 5, 15) × 500, which achieves the highest performance with an
average score of 63.4. This indicates that excessively fine-grained difficulty levels prevent the model
from effectively mastering each level before moving on to the next, hindering overall learning.
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I Behavior of Stronger LLMs on Extended SATURN Tasks

This appendix demonstrates the performance of stronger LLMs on more challenging SAT tasks. The
experimental results are shown in Table 17. Even the strongest LLMs available today cannot solve
complex SAT tasks as effectively as humans using simple reflection and verification search. Due to
the long CoT involved, the full LLMs’ outputs are provided in the supplementary material.

Table 17: One-shot performance of stronger LLMs on extended SATURN tasks. Models with ✔
successfully solve the corresponding difficulty of SAT tasks. Kimi-1.5 solves the task but with
significantly longer reasoning chains.

SAT Task (n, k, length) GPT-4o O1-mini DeepSeek-V3 R1 Kimi-1.5
(3, 5, 30) ✗ ✔ ✗ ✔ ✔*
(4, 7, 80) ✗ ✗ ✗ ✗ ✗

To provide a baseline comparison, we also tested a CDCL SAT solver 6 on the SATURN-2.6k test set.
The results are as follows:

Table 18: CDCL SAT solver performance on SATURN-2.6k test set.

Metric Value

Total instances 1000
Satisfiable 1000
Unsatisfiable 0
Valid SAT Models 1000
Model Accuracy 100.00%
Total time taken (s) 0.14

Table 18 shows that the CDCL SAT solver significantly outperforms current LLMs like DeepSeek-R1,
both in terms of runtime and accuracy. SATURN applied to today’s strongest LLMs still has great
potential.

J Examples of Different LLMs’ Reasoning Trajectories

This appendix presents examples of different LLMs’ reasoning trajectories, as shown in Figures 5
and 12. The full LLMs’ outputs are provided in the supplementary material.

In the case of Math500-41 (Table 13), SATURN improves its ability to avoid unnecessary calculations
and dead-end reasoning paths. By leveraging the self-verification patterns learned from SAT tasks,
such as "I made a mistake earlier," SATURN-7B can better navigate through the problem, discarding
invalid paths earlier in the process.

In the case of Math500-402 (Table 5), SATURN-7B demonstrates a stronger ability to self-verify
intermediate conclusions in a smaller scenario (with 4 individuals). While DeepSeek-R1-Distill-
Qwen-7B also tries to identify a smaller scenario, it fails to recheck the result when an inconsistency
is found, instead stating, "perhaps I’m overcomplicating this." In contrast, SATURN-7B can identify
the error and re-verify the results within this small scenario, ultimately selecting the correct solution
from two possible candidates.

In conclusion, SATURN-7B exhibits enhanced self-verification capabilities. LLMs sometimes
confidently claim that a wrong answer is correct. Solving SAT tasks inherently involves frequent and
fine-grained clause verification, which trains LLMs to perform precise checking during reasoning. The
self-verification patterns learned from SAT tasks help LLMs solve math problems more effectively
by selecting correct solutions from multiple options. These results suggest that the self-verification
mechanisms developed during SAT learning (Table 12) generalize well to math and programming
tasks, improving the LLMs’ reasoning robustness and reliability.

6https://en.wikipedia.org/wiki/Conflict-driven_clause_learning
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Figure 12: Case study of SATURN-7B’s reasoning trajectory on a SAT instance.

Figure 13: Comparison of reasoning trajectories on Math 500 Question No.41 between two models.

K Detailed Comparison of Constructed Reasoning Tasks

This appendix provides a detailed comparison between K&K logic puzzle and SAT problem. Illus-
trative examples of each type are shown in Figure 14. While both are designed to test reasoning
capability, they differ in construction cost, output format complexity, and difficulty control.

Construction Cost. K&K puzzles require translating symbolic logic into natural language. This
involves paraphrasing logical constraints into grammatically and semantically valid sentences, which
increases construction cost. In contrast, SAT problems are purely symbolic and follow a standard
format. As shown in [18], symbolic SAT and its natural language version yield similar reasoning
performance for LLMs, suggesting the symbolic form is sufficient.

Output Format Complexity. K&K puzzles require answers that list each character’s identity in
order, such as (1) A is a knight, (2) B is a knave. This format imposes strict requirements on structure,
making it harder for LLMs to follow instructions. In practice, we observe that models struggle to
learn this format in early training stages. SAT problems only require a fixed-length binary string
wrapped in \boxed{}, which simplifies output and improves consistency during training.

Difficulty Control. K&K puzzles use the number of characters to control difficulty, which is coarse-
grained. SAT problems allow fine-grained control via clause structure and variable interactions. We
further define an estimation of SAT task difficulty for LLMs as D(n, k, l) = log2(k) + 2 log2(l)−

32



Figure 14: Comparison of Knights and Knaves (K&K) logic puzzle and SAT problem.

n+ k
n . Adding a clause to a SAT formula never decreases its difficulty, for both humans and LLMs.

This makes SAT more suitable for curriculum learning.

In summary, while K&K puzzles provide linguistic diversity, SAT problems are more efficient in
construction, output consistency, and difficulty regulation, making them preferable for training LLMs
at scale.

L Word Cloud of SATURN-7B’s Outputs on GPQA Diamond

Figure 15: Word cloud of SATURN-7B’s generated answers on GPQA Diamond. Frequently used
tokens are shown in larger fonts.

Figure 15 shows the word cloud of SATURN-7B’s generated answers on GPQA Diamond, highlight-
ing its frequent use of self-verification patterns in reasoning.
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