
SATURN: SAT-based Reinforcement Learning to
Unleash Language Model Reasoning

Huanyu Liu
Peking University

huanyuliu@stu.pku.edu.cn

Ge Li∗
Peking University
lige@pku.edu.cn

Jia Li
Tsinghua University

jia_li@mail
.tsinghua.edu.cn

Hao Zhu
Peking University

zhuhao@stu.pku.edu.cn

Kechi Zhang
Peking University

zhangkechi@pku.edu.cn

Yihong Dong
Peking University

dongyh@stu.pku.edu.cn

Abstract

How to design reinforcement learning (RL) tasks that effectively unleash the
reasoning capability of large language models (LLMs) remains an open question.
Existing RL tasks (e.g., math, programming, and constructing reasoning tasks)
face three key limitations: ❶ Scalability. They rely heavily on human annotation
or expensive LLM synthesis to generate sufficient training data. ❷ Verifiability.
LLMs’ outputs are hard to verify automatically and reliably. ❸ Controllable
Difficulty. Most tasks lack fine-grained difficulty control, making it challenging to
train LLMs from easy to hard and progressively develop reasoning capability.
To address these limitations, we propose SATURN, a SAT-based RL framework
that uses Boolean Satisfiability (SAT) problems to train and evaluate LLM rea-
soning. SATURN enables scalable task construction, rule-based verification, and
precise difficulty control. SATURN designs a curriculum learning pipeline that
continuously improves LLMs’ reasoning capability by constructing SAT tasks
of increasing difficulty and training LLMs from easy to hard. To ensure stable
training, we design a principled mechanism to control difficulty transitions.
We introduce SATURN-2.6k, a dataset of 2,660 SAT problems with varying
difficulty. It supports the evaluation of how LLM reasoning changes with problem
difficulty. We apply SATURN to DeepSeek-R1-Distill-Qwen and obtain SATURN-
1.5B and SATURN-7B. We achieve several notable results: ❶ On SAT problems,
SATURN-1.5B and SATURN-7B achieve average pass@3 improvements of +14.0
and +28.1, respectively. ❷ On math and programming tasks, SATURN-1.5B
and SATURN-7B improve average scores by +4.9 and +1.8 on benchmarks (e.g.,
AIME, LiveCodeBench). ❸ Compared to the state-of-the-art (SOTA) approach in
constructing RL tasks, SATURN achieves further improvements of +8.8%. We
release the source code, data, and models to support future research at https:
//github.com/gtxygyzb/Saturn-code.

1 Introduction

Recently, reinforcement learning (RL) has become a promising paradigm for unleashing the reasoning
capability of large language models (LLMs), particularly in math, programming, and logical reasoning
(e.g., OpenAI-o1 [21], DeepSeek-R1 [11], Kimi-k1.5 [37]). During the RL training process, the

∗Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/gtxygyzb/Saturn-code
https://github.com/gtxygyzb/Saturn-code

design of RL tasks plays a critical role [14, 31, 32]. A well-designed RL task should elicit LLMs’
reasoning capability, fostering behaviors such as hesitation, reflection, backtracking, summarization,
and verification [28, 31, 43, 44, 53].

However, how to design RL tasks that can continuously enhance LLMs’ reasoning capability remains
an open question. We think a well-designed RL task for reasoning should satisfy the following three
criteria: ❶ Scalability. RL training requires large-scale data. RL tasks should support scalable data
without human annotation or expensive LLMs’ synthesis. ❷ Verifiability. RL rewards must be
unambiguously correct. The outputs of LLMs for the task should be easy to verify. ❸ Controllable
Difficulty. Reasoning capability emerges progressively [42]. RL tasks should support the difficulty
control to enable curriculum learning, allowing LLMs to gradually develop more complex reasoning
skills [16].

Table 1: The comparison between existing RL tasks and SATURN.

Tasks Scalability Verifiability Controllable Difficulty

ScaleQuest [12] ✗ ✗ ✗
GSM8K (Math) [9] ✗ ✓ ✗
LiveCodeBench [22] ✗ ✓ ✗
Game Werewolf [45, 48] ✗ ✗ ✗
LMRL Gym [4] ✗ ✓ ✓
SPAG [7] ✗ ✓ ✗
Knights&Knaves [46] ✓ ✓ ✗

SATURN (Ours) ✓ ✓ ✓

Table 1 shows the features of current mainstream RL tasks. None of them satisfy all three criteria.
Existing RL tasks can be divided into two categories: (1) One category of RL tasks requires LLMs
to solve math or programming problems, with rewards based on the correctness of the final answer
or code [5, 6, 9, 27]. However, these tasks rely on human annotation for ground-truth solutions or
test cases, suffer from a lack of high-quality problems, and offer only coarse control over reasoning
difficulty [23, 26]. (2) Another category focuses on manually designed reasoning tasks [12, 45, 46, 48].
For instance, Logic-RL [47] leverages natural language logic K&K puzzles to improve LLMs’
reasoning capability through RL. However, they also present limitations, such as hard to scale
up due to reliance on sampling from LLMs [7, 12], hard to verify despite relying on LLMs for
cross-validation [12, 41, 51], and hard to control difficulty [45, 48].

In this paper, we aim to answer the following research question:

Key Question

Can we design an RL task that supports scalability, verifiability, controllable difficulty, and
enhances the reasoning capability of LLMs?

To this end, we propose Boolean Satisfiability (SAT) problem as the task for RL. Figure 1 shows
an illustration of SAT problems and corresponding features. SAT satisfies all three desiderata we
outlined earlier: ❶Scalability. SAT instances can be generated programmatically at scale without
human annotation or LLM synthesis, allowing for virtually unlimited training data. ❷ Verifiability.
SAT is a well-established NP-complete problem in theoretical computer science [10]. The correctness
of a solution can be easily verified in linear time. But solving SAT problems requires complex
reasoning. ❸ Controllable Difficulty. The difficulty of SAT instances can be precisely adjusted (e.g.,
number of variables, clauses), making it suitable for curriculum learning. What’s more, SAT serves as
a universal substrate for limited forms of logical reasoning, as many problems in propositional logic,
finite-domain first-order logic, and modal logic can be systematically reduced to SAT [17, 24, 36].

Building on these advantages, we propose SAT-based reinforcement learning to Unleash LLMs
ReasoNing, or SATURN. SATURN is a multi-stage curriculum learning-based RL framework that
continuously improves the reasoning capability of LLMs. SATURN efficiently constructs SAT tasks
with controllable difficulty and organizes them into progressive stages from easy to hard, allowing
LLMs to develop reasoning skills step by step. To ensure training stability and effective progression,
we design a principled mechanism to control difficulty transitions based on LLMs’ performance.
SATURN enables smooth curriculum advancement and steady enhancement of reasoning capability.

2

Figure 1: An illustration of SAT problems and its corresponding features.

We introduce the SATURN-2.6k dataset, consisting of 1,500 training instances, 160 test instances at
the same difficulty as the training set, and 1,000 test instances from 10 harder unseen difficulty levels.
The test set serves as a benchmark for systematically evaluating how LLMs’ reasoning capability
varies with increasing SAT task difficulty. We release SAT construction scripts alongside the dataset,
which enable the creation of virtually unlimited SAT instances.

We apply SATURN to DeepSeek-R1-Distill-Qwen-1.5B and 7B [11], obtaining SATURN-1.5B and
SATURN-7B. Experiments show that SATURN effectively enhances LLMs’ reasoning capability in
generalizable scenarios:

• SATURN-1.5B and SATURN-7B achieve strong performance on SATURN-2.6k benchmarks. On
unseen harder test set, two models achieve pass@3 improvements of +14.0 and +28.1 respectively.

• The reasoning capability learned from SATURN transfers well to math and programming tasks,
bringing average improvements of +4.9 and +1.8 on popular benchmarks such as AIME [2], AMC
[1], MATH-500 [19], GPQA Diamond [35], and LiveCodebench [22] for two SATURN models.

• Compared to the prior SOTA approach (e.g., Logic-RL), SATURN achieve average improvements
of +8.8% on math and programming tasks.

2 SATURN

Figure 2: The overall framework of SATURN. It alternates between two interconnected loops: (1)
Curriculum Estimation Loop. (2) LLMs Training Loop. The two loops iterate until the maximum
number of curriculum stages is reached.

2.1 SATURN Learning Loop Framework

We introduce SATURN, a multi-stage RL framework that leverages SAT tasks to unleash LLMs’
reasoning via curriculum learning. As illustrated in Figure 2, SATURN alternates between two inter-
connected loops: Curriculum Estimation Loop dynamically constructs SAT instances of adjustable
difficulty and evaluates LLMs’ performance to determine whether to advance the curriculum stage;
LLMs Training Loop employs RL to optimize LLMs on current difficulty SAT tasks. The curriculum
loop presented in Algorithm 1 proceeds as follows:

Step 1: Curriculum Estimation Loop. Given initial SAT difficulty, SAT_Construction generates
a validation set of SAT instances. The LLM is evaluated on this set using the pass@1 metric. If
the performance exceeds a predefined threshold ϵ, the curriculum controller advances to a harder
configuration with an increased estimated difficulty. Otherwise, SATURN process enters Step 2
LLMs training loop at the current SAT difficulty. This adaptive loop ensures that the LLM is always
trained at the frontier of its reasoning capability, neither too easy nor too hard.

3

Step 2: LLMs Training Loop. For the current difficulty, SAT_Construction generates a set of
training instances that are different from the validation set. These samples are then used to train LLMs
with GRPO. The reward function encourages outputs that are both logically correct and properly
formatted. The training loop proceeds until pass@1 > ϵ on the validation set. After that, the process
backs to Step 1 to reassess and potentially advance the curriculum.

The two loops iterate jointly. SATURN process terminates when a predefined total number of
iterations is reached. Importantly, SATURN is not designed to replace math or programming tasks,
but to serve as a complementary strategy for enhancing LLMs’ reasoning. In practice, SATURN can
be integrated with math and programming tasks to enable a stronger training framework.

SATURN learning loop raises three core challenges: ❶ Section 2.2 introduces how to construct
scalable and controllable SAT instances. ❷ Section 2.3 presents how to estimate instance difficulty
for curriculum learning. ❸ Section 2.4 explains how to train LLMs on SAT tasks with RL.

2.2 SAT Instances Construction

In this subsection, we formalize the construction of SAT instances. A SAT problem determines
whether a propositional formula can be satisfied by a Boolean truth assignment. Formally, we define
a (n, k, l)-SAT instance in conjunctive normal form (CNF) as:{

Φ =
(
xa1,1

∨ ¬xa1,2
∨ · · · ∨ xa1,n

)
∧ · · · ∧

(
xal,1

∨ · · · ∨ ¬xal,n

)
where ai,j ∈ {1, . . . , k}, i ∈ [1, l]Z, j ∈ [1, n]Z

(1)

where each clause contains exactly n variables (literals), each being either xi or its negation ¬xi, k is
the total number of variables, and l is the total number of clauses. Based on the definition, we design
a SAT instance constructor, SAT_Construction(n, k, l,m), which uniformly samples m SAT in-
stances from the space of (n, k, l)-SAT. By adjusting the parameters (n, k, l,m), SAT_Construction
enables the scalable and controllable construction of SAT instances. The design details of the con-
structor algorithm are provided in Appendix B. All generated SAT instances are guaranteed to be
satisfiable.

2.3 Estimation of Task Difficulty

In this subsection, we present the estimation of SAT task difficulty for LLMs. This estimation also
serves as the foundation for curriculum learning in LLMs.

As a canonical NP-complete problem [10], SAT admits a polynomial-time reduction from any other
NP problem [25]. SAT exhibits a known phase transition phenomenon: when the clause-to-variable
ratio αc = l/k approaches a critical threshold (typically near 4.26 for 3-SAT), the probability of
satisfiability drops sharply, and problem difficulty peaks. This phenomenon probably stems from
replica symmetry breaking (RSB) [54]: near αc, the solution space fractures into disconnected clusters
separated by energy barriers. Beyond αc, the space collapses, reducing complexity.

However, RSB theory is designed for heuristic SAT solvers. For humans or LLMs solving SAT
problems through logical steps such as trial, verification, and reasoning, such solver-like phase
transitions are hardly observable in human-like thinking processes. While any n-SAT (n > 3) can be
reduced to 3-SAT [25], they differ significantly for LLMs in terms of solution space size and token
length.

Prior work [18] on SAT tasks for LLMs typically categorized difficulty based on phase transition
points. To systematically estimate task difficulty, we define an analytical estimator of the expected
solution space size. Given a (n, k, l) SAT instance, its difficulty for LLMs can be approximately
estimated by:

D(n, k, l) = log2(k) + 2 log2(l)− n+
k

n
(2)

Eq. (2) provides a more controllable, fine-grained estimation of SAT task difficulty. The detailed
derivation is provided in Appendix C. To further validate Eq. (2), we evaluate LLMs’ performance on
SAT instances with varying difficulty levels. As shown in Figure 3, each point represents a LLM’s

4

average pass@3 on the same estimated difficulty instances. Pass@3 generally decreases as D(n, k, l)
increases, suggesting that our estimation aligns with the solvability trends observed in practical
LLMs. Stronger LLMs maintain higher pass@3, while weaker LLMs exhibit lower scores overall.
The validity of the estimation in Eq. (2) is further confirmed by ablation experiments, as detailed in
Appendix C.

9 10 11 12
Difficulty (D)

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Pa

ss
@

3
(%

)

(6,7,40)

(4,7,20)

(3,5,20) (3,6,20)
(5,8,40)

(3,5,25)

(3,7,20)

(4,7,40)
(4,8,40)

(3,7,40)

(6,7,40)

(4,7,20)

(3,5,20)

(3,6,20)

(5,8,40)
(3,5,25)

(3,7,20)

(4,7,40)
(4,8,40)

(3,7,40)

SAT Problem Solving: Difficulty vs. Pass@3
DeepSeek-R1-Distill-Qwen-1.5B: pass@3=-0.06·D+0.71
DeepSeek-R1-Distill-Qwen-7B: pass@3=-0.15·D+1.91

Figure 3: Scatter plots of pass@3 versus estimated difficulty D(n, k, l) for different LLMs, with
linear regression fits. The linear regression for two models achieve R2 values of 0.707 and 0.724
respectively, suggesting a reasonably strong linear relationship between difficulty and pass@3.

2.4 Reinforcement Learning with GRPO

In this subsection, we introduce the single-stage RL training for given (n, k, l)-difficulty tasks. RL can
further improve LLMs’ generalization by directly optimizing policy gradients over diverse reasoning
trajectories [11]. Given the SAT tasks, we then train LLMs using the original sample-level GRPO to
optimize the policy πθ with KL divergence penalty. The GRPO objective function is defined as:

LGRPO(θ) =E[q ∼ P (Q), {oi}Gi=1 ∼ πθold(O|q)]

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

{
min

[
ri,t(θ)Âi,t, clip (ri,t(θ), 1− ϵ, 1 + ϵ) Âi,t

]
− βDKL [πθ ∥ πref]

}
where ri,t(θ) =

πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
, Âi,t =

ri − mean(r)
std(r)

(3)

where q denotes a SAT instance, oi is the reasoning trajectory generated by the policy πθ, and G
groups SAT instances with identical (n, k, l) parameters. A simple yet effective reward scheme [11] is
designed that combines a format reward and a correctness reward. Specifically, ri = −1 if an output
is invalid (i.e., missing the \boxed{} wrapper); ri = 0 for well-formatted but incorrect answers; and
ri = 1 only when both the format and the answer are correct. Here, an answer is considered correct if
it passes a verifier and represents a full satisfying assignment. Training schedule and hyperparameter
settings are detailed in Appendix D. And the SAT prompt template is shown in Appendix F.

3 Experiments

We apply SATURN to DeepSeek-R1-Distill-Qwen-1.5B and 7B, obtaining SATURN-1.5B and
SATURN-7B. To evaluate the effectiveness of SATURN, we conduct a large-scale study to evaluate
both models. In this section, we introduce our research questions (RQs), benchmarks, baselines, and
evaluation metrics. For each RQ, we present the corresponding experimental design, results, and
analysis in separate subsections.

5

3.1 Research Questions

Our study aims to answer the following research questions:

RQ1: How much improvement does SATURN achieve in solving SAT tasks? We evaluate
SATURN-1.5B and SATURN-7B performance on SATURN-2.6k with different difficulty levels.

RQ2: How effectively does SATURN generalize to math and programming tasks? To evaluate
the transferability of reasoning capabilities learned by SATURN, we evaluate the performance of
LLMs on math and programming benchmarks and compare them with current SOTA LLMs.

RQ3: How does SATURN compare to prior RL tasks? To explore the relationship between SAT-
URN and existing RL tasks, RQ3 investigates whether SATURN can (1) serve as a complementary
task to math and programming, and (2) outperform other constructing RL tasks.

RQ4: How does SATURN affect LLMs reasoning trajectory? RQ4 explores whether SATURN
influences the reasoning patterns of LLMs, particularly in terms of response length and the capability
of verification. We investigate whether the reasoning improvements observed in SAT tasks generalize
to math and programming.

3.2 Experimental Setup

SATURN Hyperparameters For SATURN-1.5B and SATURN-7B, we set the initial SAT instance
parameters (n, k, l) to (3, 5, 5) and (3, 5, 13), respectively. In Curriculum Estimation Loop, the ϵ
threshold is set to 0.5 for the 1.5B model and 0.75 for the 7B model. In LLMs Training Loop, we
evaluate the pass@kwith a step size of 250 training samples. The total number of curriculum iterations
is set to 2. Detailed hyperparameters are provided in Appendix A. Ablation studies in Appendix H
demonstrate the necessity of curriculum learning and the effectiveness of hyperparameters on SAT
difficulty, thresholds, step sizes, etc.

Benchmarks. ❶ Building upon SAT_Construction tool and difficulty estimation, we release
SATURN-2.6k, a curated benchmark designed to evaluate LLMs’ reasoning capability across varying
complexity. SATURN-2.6k consists of 1,500 training instances and 160 test instances that share the
same estimated difficulty level. To assess performance under increasing task complexity, SATURN-
2.6k further includes 1,000 test instances from 10 unseen harder difficulty levels, with 100 instances
per level. These levels are selected based on our difficulty estimation D(n, k, l), enabling a systematic
analysis of how LLM performance changes as problem difficulty increases. Additionally, custom
datasets of desired difficulty can be constructed using our open-sourced SAT_Construction tool.
❷ For math and programming tasks, following DeepSeek-AI [11], we use AIME 24/25 [2], AMC
22/23 [1], MATH-500 [19], GPQA Diamond [35], and LiveCodeBench v4_v5 subset [22].

Baseline Model. We conduct evaluations against several 1.5B and 7B parameter reasoning models
as the baselines, which include DeepSeek-R1-Distill-Qwen-1.5B & 7B [11], Still-3-1.5B-Preview
[40], s1.1-1.5B & 7B [31], z1-7B [50], OpenThinker-7B [38], and DeepScaleR-1.5B-Preview [29].
In addition, we include a supervised fine-tuning (SFT)-only baseline trained on the Math training
dataset [19], which provides step-by-step problem reasoning trajectories. We randomly select the
most difficult Level-5 1,000 problems from training set for one epoch of SFT, following the same
training template as DeepSeek-R1-Distill-Qwen. With the same dataset size, our setup enables a fair
comparison between SFT and RL on SAT tasks.

Evaluation Metrics. Following DeepSeek-AI [11], we use pass@k as the evaluation metric.
Pass@k assesses the probability that at least one correct solution is generated within k attempts. For
SAT problems, we evaluate pass@k ∈ {1, 3, 5, 7, 10} and sample 12 times per problem. For math
and programming benchmarks, we use pass@1, following a context length of 32,768 and temperature
= 0.6. More evaluation hyperparameters are provided in Appendix E. All experiments are conducted
on NVIDIA 8×A100 (40GB) GPUs. Specific prompts are detailed in Appendix F.

3.3 RQ1: SATURN Substantially Improves Performance on SAT Tasks

We evaluate the performance of SATURN-1.5B and SATURN-7B on SAT tasks using SATURN-2.6k
test set. Specifically, the evaluation involves unseen SAT instances that were not included in the

6

training data. The results, presented in Table 2, 10–14, and detailed in Appendix G, demonstrate the
performance of LLMs across different SAT difficulties.

Table 2: Performance (pass@k, in %) on SATURN-2.6k test set across different difficulty levels.

Model SAT-(3,5,5) SAT-(3,5,8)
@1 @3 @5 @7 @10 @1 @3 @5 @7 @10

DeepSeek-R1-Distill-Qwen-1.5B 36.7 71.7 85.4 91.7 96.2 20.3 47.6 63.6 73.4 81.9
SATURN-1.5B-Iteration-1 59.7 90.4 97.1 99.1 99.8 41.0 74.0 85.6 91.1 95.6
SATURN-1.5B-Iteration-2 70.3 95.9 99.0 99.7 99.9 47.0 82.6 93.9 98.0 99.8

Model SAT-(3,5,13) SAT-(3,5,15)
@1 @3 @5 @7 @10 @1 @3 @5 @7 @10

DeepSeek-R1-Distill-Qwen-7B 53.9 86.2 94.2 97.3 99.3 39.3 74.9 88.3 94.3 98.3
SATURN-7B-Iteration-1 73.0 96.1 98.9 99.7 99.9 65.7 91.8 96.8 98.7 99.7
SATURN-7B-Iteration-2 89.5 99.0 99.9 100.0 100.0 85.4 98.3 99.8 99.9 100.0

SATURN substantially improves LLM performance on SAT tasks across varying difficulty
levels. On the difficulty SAT-(3,5,5), SATURN-1.5B improves pass@1 from 36.7 to 59.7 at Iteration-
1, and further to 70.3 at Iteration-2, achieving a total gain of +33.6. On the unseen harder test
set (Table 11), SATURN-1.5B improves average pass@3 from 10.1 to 24.2, while SATURN-7B
improves from 36.1 to 64.2. On average, these models achieve pass@3 improvements of +14.0 and
+28.1 respectively, confirming that SATURN effectively enhances LLM reasoning across both seen
and unseen SAT difficulties.

3.4 RQ2: SATURN Demonstrates Strong Generalization to Math and Programming

We assess whether the reasoning capability learned by SATURN generalizes to math and program-
ming tasks. We evaluate SATURN-1.5B and SATURN-7B on a range of reasoning benchmarks. The
results shown in Table 3 provide a detailed comparison.

Table 3: Performance comparison on math and programming Benchmarks

Model AIME 24/25 AMC 22/23 Math500 GPQA-D LiveCodeBench Avg.
GPT-4o (Aug’24) 11.7 - 79.5 52.1 31.7 -
Claude 3.5 Sonnet (Oct ’24) 15.7 - 77.1 59.9 38.1 -

s1.1-1.5B 1.7 25.3 42.2 29.3 2.2 20.1
Still-3-1.5B-Preview 23.3 74.7 84.6 34.8 17.1 46.9
DeepSeek-R1-Distill-Qwen-1.5B 21.6 65.1 83.6 30.3 16.4 43.4

+ SFT 25.0 68.7 82.0 34.3 14.6 44.9
SATURN-1.5B 28.3 73.5 84.6 37.4 17.4 48.2
z1-7B 8.3 39.8 74.2 35.4 19.3 35.4
s1.1-7B 21.7 61.4 80.8 43.4 12.8 44.0
OpenThinker-7B 26.7 53.0 88.6 42.9 21.5 46.5
DeepSeek-R1-Distill-Qwen-7B 50.0 80.7 93.2 49.0 35.4 61.7
SATURN-7B 48.3 85.5 95.0 50.5 37.7 63.4

❶ SATURN shows strong generalization to math and programming tasks. On the AIME 24/25
benchmark, SATURN-1.5B outperforms z1-7B by 8.3 and s1.1-7B by 21.7. Similarly, SATURN-
7B achieves a strong improvement on the Math500 dataset, increasing from 93.2 to 95.0. On
LiveCodeBench, it improves from 35.4 to 37.7. On average, SATURN-1.5B improves by +4.9,
and SATURN-7B improves by +1.8 across these benchmarks. These results highlight that SAT-
URN enhances the reasoning performance of LLMs across various math and programming tasks,
demonstrating strong generalization of the learned reasoning capabilities from SAT.

❷ SATURN outperforms SFT on broader benchmarks. Consistent with the observations in SFT
Memorizes, RL Generalizes [8], SFT improves performance on math-focused benchmarks (AIME,
AMC, and Math500) that are similar to its supervised training domain. However, on LiveCodeBench,
SFT drops from 16.4 to 14.6, exhibiting an alignment tax [33], where specializing on a narrow
domain compromises performance on other tasks. In contrast, SATURN improves performance
across all benchmarks, with SATURN-1.5B reaching 17.4 on LiveCodeBench. Averaging across all

7

benchmarks, SATURN-1.5B outperforms the SFT counterpart by 3.3, demonstrating that SATURN
generalizes effectively.

3.5 RQ3: SATURN Serves as a Complement and Further Enhances LLM Reasoning

RQ3 studies the relationship between SATURN and existing RL tasks. Beyond the DeepSeek-R1-
Distill-Qwen-7B, we introduce two additional models: Qwen2.5-7B-Instruct-1M [39, 49] following
Logic-RL [47] settings, and DeepScaleR-1.5B-Preview [29], which is further RL trained on 40k math
and programming examples from DeepSeek-R1-Distill-Qwen-7B. We compare SATURN against
several prior constructing RL task approaches, including Logic-RL [47], SPGA [7], and ScaleQuest
[12], which represent strong baselines. Each approach is applied to different models for comparison.
Results are summarized in Table 4.

Table 4: Comparison of SATURN and prior approaches across various LLMs.

Model AIME 24/25 AMC 22/23 Math500 GPQA-D LiveCodeBench Avg.
SPGA-3 (82k) 0.0 3.6 7.2 24.7 0.0 7.1
ScaleQuest (25k) 6.7 45.8 74.6 31.3 7.9 33.3
Qwen2.5-7B-Instruct-1M 5.0 41.0 74.4 32.3 9.8 32.5

+ Logic-RL (5k) 6.7 49.4 72.0 29.3 9.0 33.3
+ Saturn (1k) 10.0 47.0 74.8 37.9 11.3 36.2

DeepSeek-R1-Distill-Qwen-7B 50.0 80.7 93.2 49.0 35.4 61.7
+ Logic-RL (5k) 50.0 80.7 93.4 52.0 35.7 62.4
+ Saturn (1k) 48.3 85.5 95.0 50.5 37.7 63.4

DeepScaleR-1.5B-Preview 30.0 74.7 87.8 37.4 19.8 49.9
+ Logic-RL (5k) 28.3 77.1 86.4 35.9 20.7 49.7
+ Saturn (0.5k) 35.0 73.5 88.6 43.4 21.0 52.3

❶ SATURN serves as a strong complement to math and programming. On DeepScaleR-1.5B-
Preview—despite being further RL trained with 40k math and programming examples—SATURN
still brings additional improvements, raising the average score from 49.9 to 52.3. Notably, it improves
AIME by +5.0 and GPQA-D by +6.0. ❷ SATURN outperforms prior constructing RL task
approaches across multiple models. On Qwen2.5-7B-Instruct-1M, SATURN uses only 1k training
examples but improves the average score from 32.5 to 36.2, achieving a relative improvement of
+8.8% over Logic-RL trained with 5k examples. These results indicate that SATURN not only
complements math and programming tasks, but also provides greater improvements compared to
other constructing RL task approaches.

3.6 RQ4: SATURN Enhances Self-verification in LLMs’ Reasoning Trajectories

RQ4 investigates whether SATURN affects LLMs’ reasoning behavior. On Qwen2.5-7B-Instruct-1M,
we observe a gradual increase in response length during training, as illustrated in Figure 4, replicating
the lengthening phenomenon reported in the R1 and Logic-RL [11, 47].

Figure 4: Response length trend during SATURN training on Qwen2.5-7B-Instruct-1M.

8

Figure 5: Comparison of reasoning trajectories on Math 500 Question No.402 between two models.

To examine whether such reasoning patterns generalize, we present case studies across SAT and
math domains. Figure 12 shows that solving SAT variables requires rechecking all clauses, naturally
encouraging self-verification. In Figure 5, SATURN-7B verifies intermediate conclusions within a
small scenario and successfully chooses the correct solution path. In contrast, the baseline model
reaches a wrong answer and skips verification, even when inconsistencies are detected.

Recent studies [15, 20] identify core behaviors shared by expert human reasoners and LLMs, such
as verification and backtracking. These behaviors are domain-agnostic and provide fundamental
reasoning patterns applicable to a wide range of tasks. In line with these findings, SATURN reinforces
similar behaviors during SAT solving, leading to more structured reasoning trajectories. More
reasoning trajectories are provided in Appendix J to illustrate how SATURN works. These results
suggest that the self-verification patterns learned from SAT transfer well to math and programming
tasks, improving reasoning robustness and reliability.

4 Discussion

4.1 Limitations of Reasoning Capability Learned from SATURN

During curriculum learning, we observed that as the number of training iterations increases, the
improvements in math and programming tasks tend to plateau, which is consistent with the findings
in Logic-RL. Detailed evaluation results are provided in Table 5. This plateau may stem from several
factors: ❶ Knowledge limitations. SATURN improves formal logical reasoning but does not provide
domain-specific knowledge supervision. This limits its effectiveness in tasks requiring mathematical
or algorithmic knowledge. ❷ Context window bottlenecks. SAT problems are NP-complete tasks,
and the required reasoning length grows exponentially with increasing problem difficulty. This leads
to bottlenecks in the model’s capability to handle increasingly complex tasks. ❸ Limited plasticity
and forgetting. Model plasticity and catastrophic forgetting are known limitations that hinder further
improvements with additional training stages [3, 13].

4.2 Potential of SATURN on Stronger Models

To explore the potential of SATURN to stronger models, we evaluate frontier LLMs on SAT tasks
using the extended SAT instances. Results are shown in Appendix I. Although these LLMs exhibit
stronger performance, they still make common errors such as hallucinating clauses, confidently
committing to incorrect decisions, or failing to apply basic logical rules. Even more advanced LLMs
still struggle to solve complex SAT problems. We believe SATURN remains a promising approach for
enhancing reasoning in stronger LLMs. With sufficient computation, SATURN can offer a scalable,
verifiable, and controllable path to further improve reasoning capabilities.

9

Table 5: Performance of multi-Stage SATURN iterations on math and programming benchmarks

Model AIME 24/25 AMC 22/23 Math500 GPQA-D LiveCodeBench Avg.
DeepSeek-R1-Distill-Qwen-1.5B 21.6 65.1 83.6 30.3 16.4 43.4
SATURN-1.5B-Iteration-1 26.7 68.6 85.0 33.3 16.9 46.1
SATURN-1.5B-Iteration-2 28.3 73.5 84.6 37.4 17.4 48.2
SATURN-1.5B-Iteration-3 28.3 66.3 85.8 36.9 16.7 46.9

DeepSeek-R1-Distill-7B 50.0 80.7 93.2 49.0 35.4 61.7
SATURN-7B-Iteration-1 48.3 83.1 94.6 50.5 36.6 62.6
SATURN-7B-Iteration-2 48.3 85.5 95.0 50.5 37.7 63.4
SATURN-7B-Iteration-3 46.7 87.9 93.2 58.1 38.1 64.8

5 Related Work

5.1 Constructing Reasoning Tasks for Reinforcement Learning

Several works have explored constructing reasoning tasks to improve the reasoning capability of
LLMs. Logic-RL [47] and LMRL Gym [4] train LLMs on natural language logic puzzles but
lack scalability due to their limited puzzle set. ScaleQuest [12], Entity-Deducing Game [52], and
K&K [46] propose automatic generation of constructing questions, but rely on LLM sampling or
handcrafted templates, making large-scale generation costly and hard to verify. CodeDPO [51]
and PuzzBench [41] employ LLM-based verification, which may fail silently and cannot ensure
correctness. Wolf Game [45, 48] focus on multi-step logic reasoning but offer no control over task
difficulty, limiting their support for curriculum learning. Overall, these tasks fall short in scalability,
verifiability, or controllable difficulty. See Appendix K for detailed comparisons.

5.2 SAT-Based Evaluation of LLM Reasoning Capability

Recent studies have evaluated the reasoning capability of LLMs on SAT problems. Most of these
works focus on analyzing model behavior around the SAT phase transition [18, 30, 34], where
problem hardness peaks. However, the phase transition theory is originally designed for heuristic
SAT solvers and does not align well with the reflective and verification-based reasoning processes of
humans or LLMs. These studies also lack a fine-grained scalable difficulty framework and typically
divide difficulty based on the phase transition threshold. They are further limited to supervised
fine-tuning and do not consider large reasoning models with long-CoT reasoning capability trained
via RL. Our work addresses these limitations by building a progressive evaluation and curriculum
learning pipeline, enabling precise difficulty control and the generalization of LLMs.

6 Conclusion and Future Work

We present SATURN, a SAT-based RL framework for unleashing and evaluating the reasoning
capability of LLMs. By leveraging SAT’s scalability, verifiability, and controllable difficulty,
SATURN addresses key limitations of existing RL tasks. It constructs a multi-stage curriculum to
gradually enhance reasoning, and introduces the SATURN-2.6k benchmark for controlled evaluation.
Applied to DeepSeek-R1-Distill-Qwen, SATURN produces SATURN-1.5B and SATURN-7B, which
show strong gains on unseen SAT tasks and generalize well to math and programming benchmarks.

In future work, we plan to: (1) apply SATURN to larger-scale LLMs, (2) break the existing paradigm’s
reliance on human-annotated data and explore new paths toward building LLMs with continuous
self-evolution capabilities.

Acknowledgements

This research is supported by the National Key R&D Program under Grant No. 2023YFB4503801,
the National Natural Science Foundation of China under Grant No. 62192733, 62192730, 62192731,
the Major Program (JD) of Hubei Province (No.2023BAA024), and the Beijing Natural Science
Foundation under Grant No. 4264107.

10

References
[1] 2022–2023. AMC Datasets. https://artofproblemsolving.com/wiki/index.php/

AMC_12_Problems_and_Solutions

[2] 2024–2025. AIME Datasets. https://artofproblemsolving.com/wiki/index.php/
AIME_Problems_and_Solutions

[3] Zaheer Abbas, Rosie Zhao, Joseph Modayil, Adam White, and Marlos C. Machado. 2023. Loss
of Plasticity in Continual Deep Reinforcement Learning. In CoLLAs (Proceedings of Machine
Learning Research, Vol. 232). PMLR, 620–636.

[4] Marwa Abdulhai, Isadora White, Charlie Snell, Charles Sun, Joey Hong, Yuexiang Zhai, Kelvin
Xu, and Sergey Levine. 2023. LMRL Gym: Benchmarks for Multi-Turn Reinforcement
Learning with Language Models. CoRR abs/2311.18232 (2023).

[5] Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. 2021. Program
Synthesis with Large Language Models. CoRR abs/2108.07732 (2021).

[6] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert,
Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol,
Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William
Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra,
Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer,
Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. 2021. Evaluating Large Language Models Trained on Code. CoRR abs/2107.03374
(2021).

[7] Pengyu Cheng, Tianhao Hu, Han Xu, Zhisong Zhang, Yong Dai, Lei Han, Nan Du, and Xiaolong
Li. 2024. Self-playing Adversarial Language Game Enhances LLM Reasoning. In Advances
in Neural Information Processing Systems 38: Annual Conference on Neural Information
Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024,
Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M.
Tomczak, and Cheng Zhang (Eds.). http://papers.nips.cc/paper_files/paper/2024/
hash/e4be7e9867ef163563f4a5e90cec478f-Abstract-Conference.html

[8] Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans,
Quoc V. Le, Sergey Levine, and Yi Ma. 2025. SFT Memorizes, RL Generalizes: A Comparative
Study of Foundation Model Post-training. CoRR abs/2501.17161 (2025).

[9] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. 2021. Training Verifiers to Solve Math Word Problems. CoRR abs/2110.14168
(2021).

[10] Stephen A. Cook. 1971. The Complexity of Theorem-Proving Procedures. In STOC. ACM,
151–158.

[11] DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin
Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F.
Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang,
Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong
Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo,
Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang,
Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei
Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang,
Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang,

11

https://artofproblemsolving.com/wiki/index.php/AMC_12_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AMC_12_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
http://papers.nips.cc/paper_files/paper/2024/hash/e4be7e9867ef163563f4a5e90cec478f-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/e4be7e9867ef163563f4a5e90cec478f-Abstract-Conference.html

Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang,
Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan
Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang,
Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou,
Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, and
S. S. Li. 2025. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement
Learning. CoRR abs/2501.12948 (2025).

[12] Yuyang Ding, Xinyu Shi, Xiaobo Liang, Juntao Li, Qiaoming Zhu, and Min Zhang. 2024.
Unleashing Reasoning Capability of LLMs via Scalable Question Synthesis from Scratch.
CoRR abs/2410.18693 (2024).

[13] Shibhansh Dohare, J. Fernando Hernandez-Garcia, Qingfeng Lan, Parash Rahman, A. Rupam
Mahmood, and Richard S. Sutton. 2024. Loss of plasticity in deep continual learning. Nat. 632,
8026 (2024), 768–774.

[14] Ahmed El-Kishky, Alexander Wei, Andre Saraiva, Borys Minaiev, Daniel Selsam, David Dohan,
Francis Song, Hunter Lightman, Ignasi Clavera Gilaberte, Jakub Pachocki, Jerry Tworek, Lorenz
Kuhn, Lukasz Kaiser, Mark Chen, Max Schwarzer, Mostafa Rohaninejad, Nat McAleese, o3
contributors, Oleg Mürk, Rhythm Garg, Rui Shu, Szymon Sidor, Vineet Kosaraju, and Wenda
Zhou. 2025. Competitive Programming with Large Reasoning Models. CoRR abs/2502.06807
(2025).

[15] Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D. Goodman.
2025. Cognitive Behaviors that Enable Self-Improving Reasoners, or, Four Habits of Highly
Effective STaRs. CoRR abs/2503.01307 (2025).

[16] Yifan Gao, Lidong Bing, Wang Chen, Michael R. Lyu, and Irwin King. 2019. Difficulty
Controllable Generation of Reading Comprehension Questions. In IJCAI. ijcai.org, 4968–4974.

[17] Enrico Giunchiglia, Armando Tacchella, and Fausto Giunchiglia. 2002. SAT-Based Decision
Procedures for Classical Modal Logics. J. Autom. Reason. 28, 2 (2002), 143–171. doi:10.
1023/A:1015071400913

[18] Rishi Hazra, Gabriele Venturato, Pedro Zuidberg Dos Martires, and Luc De Raedt. 2024. Can
Large Language Models Reason? A Characterization via 3-SAT. CoRR abs/2408.07215 (2024).

[19] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. 2021. Measuring Mathematical Problem Solving With the MATH
Dataset. In NeurIPS Datasets and Benchmarks.

[20] Zhiyuan Hu, Yibo Wang, Hanze Dong, Yuhui Xu, Amrita Saha, Caiming Xiong, Bryan Hooi,
and Junnan Li. 2025. Beyond ’Aha!’: Toward Systematic Meta-Abilities Alignment in Large
Reasoning Models. CoRR abs/2505.10554 (2025).

[21] Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low,
Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko,
Alex Tachard Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam,
Ally Bennett, Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew
Kondrich, Andrey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph,
Behrooz Ghorbani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys
Minaiev, Botao Hao, Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman,
Camillo Lugaresi, Cary Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss,
Chen Shen, Chong Zhang, Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer,
Clive Chan, Dan Roberts, Daniel Kappler, Daniel Levy, Daniel Selsam, David Dohan, David
Farhi, David Mely, David Robinson, Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman,
Eddie Zhang, Edmund Wong, Elizabeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace,
Erik Ritter, Evan Mays, Fan Wang, Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos
Tsimpourlas, Francis Song, Fred von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista
Parascandolo, Gildas Chabot, Grace Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman,
Haiming Bao, Hao Sheng, Hart Andrin, Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman,
Hyung Won Chung, Ian Kivlichan, Ian O’Connell, Ian Osband, Ignasi Clavera Gilaberte, and
Ilge Akkaya. 2024. OpenAI o1 System Card. CoRR abs/2412.16720 (2024).

12

https://doi.org/10.1023/A:1015071400913
https://doi.org/10.1023/A:1015071400913

[22] Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang,
Armando Solar-Lezama, Koushik Sen, and Ion Stoica. 2024. LiveCodeBench: Holistic and
Contamination Free Evaluation of Large Language Models for Code. CoRR abs/2403.07974
(2024).

[23] Siyuan Jiang, Jia Li, He Zong, Huanyu Liu, Hao Zhu, Shukai Hu, Erlu Li, Jiazheng Ding, Yu
Han, Wei Ning, Gen Wang, Yihong Dong, Kechi Zhang, and Ge Li. 2024. aiXcoder-7B: A
Lightweight and Effective Large Language Model for Code Completion. CoRR abs/2410.13187
(2024).

[24] Mark Kaminski and Tobias Tebbi. 2013. InKreSAT: Modal Reasoning via Incremental
Reduction to SAT. In Automated Deduction - CADE-24 - 24th International Conference
on Automated Deduction, Lake Placid, NY, USA, June 9-14, 2013. Proceedings (Lecture
Notes in Computer Science, Vol. 7898), Maria Paola Bonacina (Ed.). Springer, 436–442.
doi:10.1007/978-3-642-38574-2_31

[25] Richard M. Karp. 1972. Reducibility Among Combinatorial Problems. In Complexity of
Computer Computations (The IBM Research Symposia Series). Plenum Press, New York,
85–103.

[26] Jia Li, Hao Zhu, Huanyu Liu, Xianjie Shi, He Zong, Yihong Dong, Kechi Zhang, Siyuan Jiang,
Zhi Jin, and Ge Li. 2025. aiXcoder-7B-v2: Training LLMs to Fully Utilize the Long Context in
Repository-level Code Completion. CoRR abs/2503.15301 (2025).

[27] Yujia Li, David H. Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy,
Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes
Welbl, Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland
Robson, Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. 2022.
Competition-Level Code Generation with AlphaCode. CoRR abs/2203.07814 (2022).

[28] Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee,
Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. 2024. Let’s Verify Step by Step. In
ICLR. OpenReview.net.

[29] Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin
Cai, Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. 2025. DeepScaleR: Surpassing
O1-Preview with a 1.5B Model by Scaling RL. https://github.com/agentica-project/
rllm. Notion Blog.

[30] Raffaele Marino. 2024. Fast Analysis of the OpenAI O1-Preview Model in Solving Random
K-SAT Problem: Does the LLM Solve the Problem Itself or Call an External SAT Solver?
CoRR abs/2409.11232 (2024).

[31] Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi,
Luke Zettlemoyer, Percy Liang, Emmanuel J. Candès, and Tatsunori Hashimoto. 2025. s1:
Simple test-time scaling. CoRR abs/2501.19393 (2025).

[32] OpenAI. 2024. OpenAI o3-mini. https://openai.com/index/openai-o3-mini/

[33] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano,
Jan Leike, and Ryan Lowe. 2022. Training language models to follow instructions with human
feedback. In NeurIPS.

[34] Leyan Pan, Vijay Ganesh, Jacob D. Abernethy, Chris Esposo, and Wenke Lee. 2024. Can
Transformers Reason Logically? A Study in SAT Solving. CoRR abs/2410.07432 (2024).

[35] David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. 2023. GPQA: A Graduate-Level Google-Proof
Q&A Benchmark. CoRR abs/2311.12022 (2023).

13

https://doi.org/10.1007/978-3-642-38574-2_31
https://github.com/agentica-project/rllm
https://github.com/agentica-project/rllm
https://openai.com/index/openai-o3-mini/

[36] Roberto Sebastiani and Adolfo Villafiorita. 1998. SAT-Based Decision Procedures for Normal
Modal Logics: A Theoretical Framework. In Artificial Intelligence: Methodology, Systems, and
Applications, 8th International Conference, AIMSA ’98, Sozopol, Bulgaria, September 21-13,
1998, Proceedings (Lecture Notes in Computer Science, Vol. 1480), Fausto Giunchiglia (Ed.).
Springer, 377–388. doi:10.1007/BFB0057460

[37] Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li,
Chenjun Xiao, Chenzhuang Du, Chonghua Liao, Chuning Tang, Congcong Wang, Dehao Zhang,
Enming Yuan, Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda Wei, Guokun Lai, Haiqing
Guo, Han Zhu, Hao Ding, Hao Hu, Hao Yang, Hao Zhang, Haotian Yao, Haotian Zhao, Haoyu
Lu, Haoze Li, Haozhen Yu, Hongcheng Gao, Huabin Zheng, Huan Yuan, Jia Chen, Jianhang
Guo, Jianlin Su, Jianzhou Wang, Jie Zhao, Jin Zhang, Jingyuan Liu, Junjie Yan, Junyan Wu,
Lidong Shi, Ling Ye, Longhui Yu, Mengnan Dong, Neo Zhang, Ningchen Ma, Qiwei Pan,
Qucheng Gong, Shaowei Liu, Shengling Ma, Shupeng Wei, Sihan Cao, Siying Huang, Tao
Jiang, Weihao Gao, Weimin Xiong, Weiran He, Weixiao Huang, Wenhao Wu, Wenyang He,
Xianghui Wei, Xianqing Jia, Xingzhe Wu, Xinran Xu, Xinxing Zu, Xinyu Zhou, Xuehai Pan, Y.
Charles, Yang Li, Yangyang Hu, Yangyang Liu, Yanru Chen, Yejie Wang, Yibo Liu, Yidao Qin,
Yifeng Liu, Ying Yang, Yiping Bao, Yulun Du, Yuxin Wu, Yuzhi Wang, Zaida Zhou, Zhaoji
Wang, Zhaowei Li, Zhen Zhu, Zheng Zhang, Zhexu Wang, Zhilin Yang, Zhiqi Huang, Zihao
Huang, Ziyao Xu, and Zonghan Yang. 2025. Kimi k1.5: Scaling Reinforcement Learning with
LLMs. CoRR abs/2501.12599 (2025).

[38] OpenThoughts Team. 2025. Open Thoughts. https://open-thoughts.ai.

[39] Qwen Team. 2025. Qwen2.5-1M: Deploy Your Own Qwen with Context Length up to 1M
Tokens. https://qwenlm.github.io/blog/qwen2.5-1m/

[40] RUCAIBox STILL Team. 2025. STILL-3-1.5B-Preview: A 1.5B slow-thinking reasoning model
continuously evolving through RL. https://github.com/RUCAIBox/Slow_Thinking_
with_LLMs

[41] Yongqi Tong, Sizhe Wang, Dawei Li, Yifan Wang, Simeng Han, Zi Lin, Chengsong Huang,
Jiaxin Huang, and Jingbo Shang. 2024. Optimizing Language Model’s Reasoning Abilities
with Weak Supervision. CoRR abs/2405.04086 (2024).

[42] Xin Wang, Yudong Chen, and Wenwu Zhu. 2022. A Survey on Curriculum Learning. IEEE
Trans. Pattern Anal. Mach. Intell. 44, 9 (2022), 4555–4576.

[43] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. 2022. Chain-of-Thought Prompting Elicits Reasoning in Large
Language Models. In NeurIPS.

[44] Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He, Shengping Liu, Bin Sun, Kang Liu,
and Jun Zhao. 2023. Large Language Models are Better Reasoners with Self-Verification. In
EMNLP (Findings). Association for Computational Linguistics, 2550–2575.

[45] Shuang Wu, Liwen Zhu, Tao Yang, Shiwei Xu, Qiang Fu, Yang Wei, and Haobo Fu. 2024.
Enhance Reasoning for Large Language Models in the Game Werewolf. CoRR abs/2402.02330
(2024).

[46] Chulin Xie, Yangsibo Huang, Chiyuan Zhang, Da Yu, Xinyun Chen, Bill Yuchen Lin, Bo Li,
Badih Ghazi, and Ravi Kumar. 2024. On Memorization of Large Language Models in Logical
Reasoning. CoRR abs/2410.23123 (2024).

[47] Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou,
Kai Qiu, Zhirong Wu, and Chong Luo. 2025. Logic-RL: Unleashing LLM Reasoning with
Rule-Based Reinforcement Learning. CoRR abs/2502.14768 (2025). doi:10.48550/ARXIV.
2502.14768 arXiv:2502.14768

[48] Yuzhuang Xu, Shuo Wang, Peng Li, Fuwen Luo, Xiaolong Wang, Weidong Liu, and Yang Liu.
2023. Exploring Large Language Models for Communication Games: An Empirical Study on
Werewolf. CoRR abs/2309.04658 (2023).

14

https://doi.org/10.1007/BFB0057460
https://qwenlm.github.io/blog/qwen2.5-1m/
https://github.com/RUCAIBox/Slow_Thinking_with_LLMs
https://github.com/RUCAIBox/Slow_Thinking_with_LLMs
https://doi.org/10.48550/ARXIV.2502.14768
https://doi.org/10.48550/ARXIV.2502.14768

[49] An Yang, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoyan Huang, Jiandong Jiang,
Jianhong Tu, Jianwei Zhang, Jingren Zhou, Junyang Lin, Kai Dang, Kexin Yang, Le Yu, Mei Li,
Minmin Sun, Qin Zhu, Rui Men, Tao He, Weijia Xu, Wenbiao Yin, Wenyuan Yu, Xiafei Qiu,
Xingzhang Ren, Xinlong Yang, Yong Li, Zhiying Xu, and Zipeng Zhang. 2025. Qwen2.5-1M
Technical Report. arXiv preprint arXiv:2501.15383 (2025).

[50] Zhaojian Yu, Yinghao Wu, Yilun Zhao, Arman Cohan, and Xiao-Ping Zhang. 2025. Z1:
Efficient Test-time Scaling with Code. arXiv preprint arXiv:2504.00810 (2025).

[51] Kechi Zhang, Ge Li, Yihong Dong, Jingjing Xu, Jun Zhang, Jing Su, Yongfei Liu, and Zhi Jin.
2024. CodeDPO: Aligning Code Models with Self Generated and Verified Source Code. CoRR
abs/2410.05605 (2024).

[52] Yizhe Zhang, Jiarui Lu, and Navdeep Jaitly. 2024. Probing the Multi-turn Planning Capabilities
of LLMs via 20 Question Games. In ACL (1). Association for Computational Linguistics,
1495–1516.

[53] Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, Heng-Tze Cheng, Ed H. Chi, Quoc V.
Le, and Denny Zhou. 2024. Take a Step Back: Evoking Reasoning via Abstraction in Large
Language Models. In ICLR. OpenReview.net.

[54] Haijun Zhou. 2004. Long Range Frustrations in a Spin Glass Model of the Vertex Cover
Problem. CoRR cond-mat/0411077 (2004).

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the main contributions, including
the curriculum learning framework SATURN and the SATURN-2.6k dataset. All supported
by experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of SATURN in Section 4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

15

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Any informal proof provided in the core of the paper is complemented by
formal proofs in the appendix, including the rigorous derivation of SAT estimation.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We release all code, models, datasets, and experimental results to ensure full
reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same

16

dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We release all code, models, datasets, and experimental results, along with
detailed information on the execution environment to ensure full reproducibility.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Justification: We provide all important parameters needed to understand the results in the
appendix, and the code scripts include complete training and test details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Following current evaluation practices in recent large model benchmarks,
we report the unbiased estimator of the pass@k metric. This expectation-based metric is
designed to reflect statistical significance across multiple samples and inherently captures
sampling variability. Although we do not report explicit error bars, pass@k inherently
reflects statistical reliability. Further details are provided in Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide details on the GPU resources used for experiments as well as
information on all data storage.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.

18

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed and ensured that all research conducted in this paper fully
conforms to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper focuses on improving LLMs’ reasoning capability through SAT-
URN curriculum learning framework, without direct deployment or application, and thus
does not raise societal impacts concerns.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no foreseeable risks of misuse, as it does not involve the
release of high-risk models or datasets.

19

https://neurips.cc/public/EthicsGuidelines

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly credit all used assets in the paper and appendix, including code,
datasets, and models. Licenses and terms of use are explicitly stated and respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release new code, datasets, and models. All new assets are thoroughly
documented, including usage instructions and data format specifications, which are provided
alongside the release.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

20

paperswithcode.com/datasets

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve any form of crowdsourcing or research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects,
so IRB approval is not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This paper does not involve the use of LLMs as an important, original, or
non-standard component of the core methodology.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

Appendix

Table of Contents

• Appendix A: Pseudocode of SATURN Algorithm

• Appendix B: Procedure of SAT Constructor

• Appendix C: Derivation and Validity of the SAT Difficulty Estimation

• Appendix D: Training Schedule for SATURN-1.5B and SATURN-7B

• Appendix E: Evaluation Hyperparameters

• Appendix F: Prompt Templates

• Appendix G: Detailed Performances of SATURN Models on SATURN-2.6k
• Appendix H: Ablation Details for SATURN
• Appendix I: Behavior of Stronger LLMs on SATURN Tasks

• Appendix J: Examples of LLMs Reasoning Trajectories

• Appendix K: Comparisons of Existing Reasoning Tasks

• Appendix L: SATURN-7B Word Cloud on GPQA Diamond

A Pseudocode of SATURN Algorithm and Hyperparameters

Algorithm 1 presents the complete algorithmic workflow of SATURN.

Algorithm 1 SATURN Learning_Loop(n, k, l, πθ) # LLM represents πθ

def Increase_difficulty(n, k, l, step =1):
"""
Increments by D_step to increase SAT difficulty.
"""
return n, k, l + D_step

def SATURN_learning_loop(n, k, l, LLM):
for t in range (2): # Max total curriculum iterations

Step 1: Curriculum Estimation Loop
Generate validation set
Val_set = SAT_Construction(n, k, l, Val_size)
pass_at_1 = evaluate(Val_set , LLM) # Evaluate pass@1

if pass_at_1 >= epsilon:
n, k, l = Increase_difficulty(n, k, l)

else:
Step 2: LLM Training Loop (only if pass_at_1 < epsilon)
for i in range (10): # Max GRPO steps per level

Generate training set
D_train = SAT_Construction(n, k, l, Train_size)
LLM = GRPO(LLM , D_train)

Re -generate validation set
Val_set = SAT_Construction(n, k, l, Val_size)
pass_at_1 = evaluate(Val_set , LLM) # Evaluate pass@1
if pass_at_1 >= epsilon:

break

return LLM

Table 6 shows all SATURN hyperparameters.

22

Table 6: SATURN Hyperparameters

Parameter SATURN-1.5B SATURN-7B
Initial (n, k, l) (3, 5, 5) (3, 5, 13)
pass@k threshold ϵ 0.5 0.75
Training set size per step (Train_size) 250 250
Validation set size per step (Val_size) 40 40
Difficulty increment (D_step) 1 2
Curriculum iterations 2 2
Max GRPO steps per level 10 10

B Construction Procedure of SAT Instances

This appendix describes the implementation details of the SAT_Construction algorithm introduced
in Section 2.1. The goal is to generate m satisfiable (n, k, l)-SAT instances in conjunctive normal
form (CNF), each constructed to be consistent with a known Boolean solution. The algorithm ensures
diversity and uniformity across sampled instances.

The construction procedure is outlined in Algorithm 2 and consists of the following steps:

1. A Boolean solution is randomly generated for the k variables.
2. The constructor randomly selects n variables from the k variables to form a clause.
3. Under the constraint of satisfying the solution, the n variables are randomly negated,

resulting in 2n − 1 satisfiable clauses per variable set. From these steps, we uniformly
obtain a large number of single-clause samples from the total of 2k ·

(
k
n

)
· (2n − 1) valid

(solution, clause) pairs, with an upper bound set to 100,000.
4. These (solution, clause) pairs are grouped into clusters based on the same solution.
5. Within each cluster, we randomly select l clauses and shuffle their order to construct a full

SAT instance that satisfies the corresponding solution.
6. Finally, we uniformly sample across clusters and remove duplicates to obtain a total of m

diverse SAT instances.

C Derivation and Validity of Difficulty Estimation for SAT Tasks on LLMs

As stated in Section 2.2, we propose a composite difficulty function Eq. (2) to estimate the reasoning
difficulty of SAT problems for LLMs. This difficulty score combines a sparsity-based estimate of
solution density with a structural complexity adjustment.

Step 1: Sparsity-Based Estimate (D1)

We first estimate task difficulty by measuring the ratio between symbolic search cost and expected
solution space size.

The symbolic search cost is approximately proportional to the number of variable-symbol combina-
tions across decoding steps. For a problem with k variables and l decoding steps, we estimate:

Search Cost ∝ k · l (4)

For Boolean constraint problems like SAT, the number of satisfying assignments is sparse. Assuming
a random clauses, the expected number of valid solutions is:

Expected Solutions ≈ 2n − 1 ≈ 2n (5)

where we approximate 2n − 1 by 2n for analytical simplicity.

Taking the ratio and applying a logarithmic transform yields:

D1(n, k, l) = log2(k · l)− log2(2
n) = log2(k) + log2(l)− n (6)

23

Algorithm 2 SAT_Construction(n, k, l,m)

def SAT_Construction(n, k, l, m):
V = [x_1 , x_2 , ..., x_k] # k Boolean variables
P = set() # pool of (solution , clause) pairs

Step 1-3: Generate (solution , clause) pairs
while len(P) < 100000: # max number of single -clause samples

vars = sample_variables(V, n) # select n vars from V
e.g., [x_2 , x_4 , ...]

solution = random_assign(vars) # assign 0/1 to vars
e.g., {x_2:1, x_4:0, ...}

clause = generate(vars , solution) # create clause
e.g., {x_2 or !x_4 ...}

P.add((solution , clause)) # store pair

Step 4: Group by solution
clusters = group_by_solution(P) # solution -> list of clauses

Step 5-6: Construct m SAT instances
instances = set()
while len(instances) < m:

solution , clauses = sample_cluster(clusters) # select a group
if len(clauses) < l:

continue
selected_clauses = sample_clauses(clauses , l) # pick l clauses
shuffle(selected_clauses)
instances.add((solution , selected_clauses))

return instances

Step 2: Structural Complexity Adjustment (D2)

In addition to solution sparsity, symbolic reasoning difficulty also depends on the structural properties
of the input formula. We construct a structure-aware term D2(n, k, l) based on two contributing
factors.

First, consider the symbolic reuse density: when k variables are reused across n clauses, each variable
is, on average, involved in n/k constraints. This increases the interdependency between clauses.
Since higher reuse leads to greater symbolic entanglement, making factorization more challenging
for the model, we define the inverse ratio k

n as a proxy for the structural cost:

Variable Interaction Cost =
k

n
(7)

Second, the clause length l determines the number of symbols that each clause contains. Longer
clauses introduce more intra-clause dependencies, increasing local reasoning complexity. We approx-
imate this with:

ClauseWidth Cost = log2(l) (8)

These two components affect reasoning difficulty independently—one globally through variable
sharing, and the other locally through clause complexity. We, therefore, combine them additively
into:

D2(n, k, l) =
k

n
+ log2(l) (9)

This additive form is justified as both terms grow monotonically with symbolic complexity and are
approximately aligned in scale, enabling stable and interpretable difficulty estimation.

24

Step 3: Final Composite Metric

Combining both components yields:
D(n, k, l) = D1(n, k, l) +D2(n, k, l) (10)

= log2(k) + log2(l)− n+
k

n
+ log2(l) (11)

= log2(k) + 2 log2(l)− n+
k

n
(12)

This final composite metric provides a stable and interpretable approximation of symbolic difficulty
for LLMs, taking into account both sparsity and structure.

Step 4: Ablation Study about estimation metric

To further validate the necessity and effectiveness of Eq. (12) composite metric, we conduct an
ablation study comparing alternative formulations. Table 7 reports the R2 correlation of each metric
with LLM performance (pass@3) across multiple model scales.

Table 7: Metric comparison across models.

Metric Formula R1-Qwen-1.5B Saturn-1.5B R1-Qwen-7B Saturn-7B Avg. Std. Dev.

−k − l · log2(1− 1
2n) 0.507 0.537 0.132 0.000 0.294 0.269

α · k
n + β · log2(l), α = 2, β = 1 0.428 0.478 0.568 0.508 0.496 0.059

α · k
n + β · log2(l), α = 1, β = 1 0.240 0.279 0.719 0.826 0.516 0.300

log2(k · l)− log2(2
n − 1) 0.875 0.893 0.451 0.157 0.594 0.356

log2(k) + 2 · log2(l)− n+ k
n 0.707 0.746 0.724 0.501 0.670 0.113

Simpler metrics that consider only sparsity or only structural complexity perform worse overall,
confirming that both components are essential for accurately capturing task difficulty. Our metric
log2(k) + 2 · log2(l) − n + k

n combines both solution sparsity and structural complexity, which
achieves the best overall correlation. The ratio between the solution space and the LLM’s search
space is the most crucial aspect. On SATURN-7B, the R2 value is about 0.5 because the LLM already
achieves over 90% accuracy on easy problems, which limits the observable linear correlation in that
range. The corresponding figures are shown in Figures 10 and 11.

D Training Schedule for SATURN-1.5B and SATURN-7B

This appendix provides additional details on the SATURN-1.5B and SATURN-7B training. We
conduct all experiments on 8 NVIDIA A100 40GB GPUs. We use the OpenRLHF framework2 for
GRPO training. The framework is designed to make RL training simple and user-friendly, which
works well in our experiments. The hyperparameters used in training are summarized in Table 8. All
other parameters not listed above consistently follow the default settings of OpenRLHF.

Figure 6 and Figure 7 illustrate the training curves of SATURN-1.5B and SATURN-7B. Both
models show a clear upward trend in the average reward during training, accompanied by early
fluctuations that gradually stabilize. The maximum reward curves quickly reach high values and
maintain them throughout most of the training process. These results indicate that both SATURN-
1.5B and SATURN-7B successfully learn to generate high-reward outputs, demonstrating effective
SAT reward-guided optimization.

E Evaluation Hyperparameters

This appendix provides additional details on the hyperparameters used in the evaluation. We use the
Hugging Face lighteval library3 for math and programming evaluations. It offers efficient bench-
marks, helping us assess LLMs’ performance across various tasks while ensuring both computational

2https://github.com/OpenRLHF/OpenRLHF
3https://github.com/huggingface/lighteval

25

https://github.com/OpenRLHF/OpenRLHF
https://github.com/huggingface/lighteval

Table 8: OpenRLHF Training Hyperparameters

Parameter SATURN-1.5B SATURN-7B

Actor learning rate 5× 10−7 5× 10−7

Initial KL coefficient 1× 10−3 1× 10−3

Batch size (train) 2 2
Batch size (rollout) 2 2
Samples per prompt 8 8
Prompt length (max) 1024 1024
Generation length (max) 10000 8192
Temperature 0.8 1.0
Zero redundancy stage 3 3
Use bf16 Yes Yes
KL estimator k3 k3
Advantage estimator GroupNorm GroupNorm
Use reward normalization Yes Yes

Figure 6: Training curves of various metrics for SATURN-1.5B.

efficiency and high-quality results. For the evaluation of the DeepSeek-R1 series distillation models,
we use lighteval with the Hugging Face-Open-R1 framework4. This framework effectively
reproduces the evaluation results of the R1 series models.

During the evaluation process, we follow the parameter settings from Hugging Face-Open-R1, as
shown in Table 9. Additionally, for LiveCodeBench, we also select the default v4_v5 version of

4https://github.com/huggingface/open-r1

Figure 7: Training curves of various metrics for SATURN-7B.

26

https://github.com/huggingface/open-r1

this framework. Due to the long inference budget required by LiveCodeBench, we set the maximum
response length to 16K and generate four samples per instance to estimate pass@1. All other
parameters not listed and mentioned above consistently follow the default settings of Hugging
Face-Open-R1.

For larger closed-source models, we report the benchmark results from a public benchmark website5.

Table 9: Evaluation Hyperparameters for Hugging Face-Open-R1

Hyperparameter Setting
Data type bfloat16
Maximum model length 32,768
Maximum new tokens 32,768
Temperature 0.6
Top-p (nucleus sampling) 0.95

F Prompt Templates

This appendix provides the prompt templates used for evaluation, ensuring consistency and repro-
ducibility across tasks. Figure 8 presents the format for SAT problem training and evaluation, while
Figure 9 shows the template used for math, programming, and GPQA Diamond tasks.

Figure 8: Prompt format used for SAT problem training and evaluation.

G Detailed Performances of SATURN models on SATURN-2.6k

This appendix provides additional details of SATURN-1.5B and 7B on SATURN-2.6k spanning 10
harder SAT difficulty levels. Experimental results are shown in Table 10–14, and Figures 10–11. We
summarize two key observations:

❶ The pass@3 accuracy correlates strongly with the estimated SAT difficulty D(n, k, l) across
models. Specifically, the linear regression R2 scores are 0.746 for SATURN-1.5B and 0.707 for
DeepSeek-R1-Distill-Qwen-1.5B (Figure 10), and 0.5011 for SATURN-7B and 0.724 for DeepSeek-
R1-Distill-Qwen-7B (Figure 11). These results indicate that our difficulty function effectively
captures problem hardness, supporting the design of a curriculum learning schedule based on it. They
also demonstrate that SAT is a reliable benchmark for evaluating reasoning capability.

5https://artificialanalysis.ai/models

27

https://artificialanalysis.ai/models

Figure 9: Prompt format used for math, programming, and GPQA Diamond problems evaluation.

❷ Although our models are trained only on relatively easier SAT problems, they show consistent
improvements on harder levels. As shown in Table 10–14, both SATURN-1.5B and SATURN-7B
generalize well to more challenging problems, highlighting the effectiveness of our curriculum-driven
training strategy.

Table 10: Full pass@1 results on SATURN-2.6k

Model (3,7,40) (3,5,25) (3,5,20) (3,6,20) (3,7,20) (4,7,40) (4,8,40) (4,7,20) (6,7,40) (5,8,40) Avg.
R1-Distill-1.5B 0.3 1.3 3.3 3.3 3.3 1.1 1.6 7.2 10.6 4.4 3.6
SATURN-1.5B 0.3 6.2 7.8 7.3 8.9 3.3 4.2 22.5 29.0 12.9 10.2
R1-Distill-7B 2.3 12.3 19.2 23.3 21.5 3.8 4.5 30.1 24.4 12.3 15.4
SATURN-7B 8.6 44.7 66.4 64.5 64.6 9.2 10.3 57.3 36.4 19.2 38.1

Table 11: Full pass@3 results on SATURN-2.6k

Model (3,7,40) (3,5,25) (3,5,20) (3,6,20) (3,7,20) (4,7,40) (4,8,40) (4,7,20) (6,7,40) (5,8,40) Avg.
R1-Distill-1.5B 1.0 3.8 9.4 9.1 9.3 3.3 4.7 19.3 28.9 12.5 10.1
SATURN-1.5B 0.8 15.8 19.5 18.5 21.6 9.5 11.3 50.3 62.5 31.7 24.2
R1-Distill-7B 6.5 31.2 45.6 52.8 49.9 10.4 11.8 65.6 56.2 31.3 36.1
SATURN-7B 22.9 78.2 94.1 93.5 93.3 24.3 26.5 91.0 72.4 45.7 64.2

Table 12: Full pass@5 results on SATURN-2.6k

Model (3,7,40) (3,5,25) (3,5,20) (3,6,20) (3,7,20) (4,7,40) (4,8,40) (4,7,20) (6,7,40) (5,8,40) Avg.
R1-Distill-1.5B 1.7 6.1 14.9 14.2 14.4 5.4 7.6 29.2 43.7 19.6 15.7
SATURN-1.5B 1.3 23.5 27.9 26.7 30.6 14.9 17.2 67.0 79.0 44.1 33.2
R1-Distill-7B 10.5 44.7 62.3 69.2 66.9 16.0 17.5 82.9 74.0 45.4 48.9
SATURN-7B 34.4 89.5 98.5 98.6 98.2 35.9 38.6 97.5 86.4 62.4 74.0

Table 13: Full pass@7 results on SATURN-2.6k

Model (3,7,40) (3,5,25) (3,5,20) (3,6,20) (3,7,20) (4,7,40) (4,8,40) (4,7,20) (6,7,40) (5,8,40) Avg.
R1-Distill-1.5B 2.3 8.1 19.9 18.9 18.9 7.6 10.1 37.4 55.7 25.8 20.5
SATURN-1.5B 1.8 30.1 34.2 32.8 37.5 19.8 22.1 78.2 87.8 52.5 39.7
R1-Distill-7B 14.3 54.6 73.6 78.7 77.8 20.9 22.2 91.6 84.3 56.3 57.4
SATURN-7B 43.7 94.2 99.6 99.7 99.5 45.0 47.6 99.2 92.2 73.5 79.4

28

Table 14: Full pass@10 results on SATURN-2.6k

Model (3,7,40) (3,5,25) (3,5,20) (3,6,20) (3,7,20) (4,7,40) (4,8,40) (4,7,20) (6,7,40) (5,8,40) Avg.
R1-Distill-1.5B 3.3 10.6 26.8 25.2 24.6 10.8 14.5 47.9 69.3 33.7 26.7
SATURN-1.5B 2.5 38.7 41.3 39.5 45.7 26.2 28.0 89.6 101.0 75.9 46.7
R1-Distill-7B 19.6 65.0 84.7 86.6 87.8 27.2 27.9 97.4 92.8 68.6 65.8
SATURN-7B 54.9 97.1 99.9 99.9 100.0 55.0 57.3 99.8 95.3 84.7 84.4

Figure 10: Scatter plots of pass@3 versus estimated difficulty D(n, k, l) for DeepSeek-R1-Distill-
Qwen-1.5B and SATURN-1.5B, with linear regression fits. The linear regression for two models
achieve R2 values of 0.707 and 0.746 respectively.

Figure 11: Scatter plots of pass@3 versus estimated difficulty D(n, k, l) for DeepSeek-R1-Distill-
Qwen-7B and SATURN-7B, with linear regression fits. The linear regression for two models achieve
R2 values of 0.724 and 0.5011 respectively.

29

H Ablation Studies for SATURN

This appendix presents the ablation studies for SATURN, as shown in Table 15 and Table 16. Each
training setting is denoted as (n, k, l) × Train_size, where (n, k, l) controls SAT construction
and Train_size is the number of training examples. Here, Train_size can also be written as
Train_size = D×num, where D is the number of difficulty levels and num is the number of samples
per level in SATURN-2.6k (Figure 11 and 10). These experiments validate the effectiveness of
curriculum learning and the design of various SAT training configurations.

Table 15: Ablation comparison on math and programming benchmarks

Training Setting AIME 24/25 AMC 22/23 Math500 GPQA-D LiveCodeBench Avg.
(3, 5, 10)× 500 45.0 84.3 93.2 53.5 35.1 62.2
(3, 5, 13)× 500 50.0 83.1 94.6 50.0 36.1 62.8
(3, 5, 15)× 500 35.0 68.7 86.6 46.0 31.3 53.5
(3, 5, 13)× 1000 51.7 81.9 94.0 47.5 37.2 62.5
((3, 5, 13) + (3, 5, 15))× 500 (one epoch) 43.3 86.7 93.0 49.5 35.8 61.7
(3, 5, 13)× 500 + (3, 5, 15)× 500 48.3 85.5 95.0 50.5 37.7 63.4

Table 16: Ablation Study with Different Sampling Strategies and Training Budgets

Training Setting AIME 24/25 AMC 22/23 Math500 GPQA-D LiveCodeBench Avg.
(n, k, l)× 100× 10 + shuffle 38.3 66.3 90.6 44.9 35.2 55.1
(n, k, l)× 100× 10 46.7 85.5 93.2 50.5 36.9 62.3
(n, k, l)× 200× 5 + shuffle 48.3 81.9 93.0 52.0 35.8 62.2
(n, k, l)× 200× 5 46.7 88.0 93.2 48.0 35.8 62.6
(3, 5, 13)× 500 + (3, 5, 15)× 500 48.3 85.5 95.0 50.5 37.7 63.4

In Table 15, we evaluate the impact of SAT difficulty, training budgets, and curriculum structure. We
draw two key conclusions:

❶ SATs that are too easy or too hard hinder model learning. Training solely on easy (3, 5, 10)×
500 or hard (3, 5, 15)× 500 instances results in lower average scores (62.2 and 53.5, respectively).
In contrast, moderate-difficulty SATs (3, 5, 13) × 500 yield a higher score of 62.8, showing that
balanced difficulty is essential for effective reasoning development.

❷ Multi-stage curriculum learning outperforms flat or mixed training. Curriculum learning
with progressively increasing SAT difficulty (3, 5, 13)× 500 + (3, 5, 15)× 500 achieves the highest
average score of 63.4. In contrast, one-epoch mixed training ((3, 5, 13) + (3, 5, 15)) × 500 only
reaches 61.7, despite using the same total number of examples. Furthermore, simply scaling up a
single-stage setting (3, 5, 13) × 1000 yields 62.5, which is also inferior to the curriculum. These
results indicate that progressive difficulty scheduling is more effective than either flat or mixed
training with the same or larger data budget.

Table 16 further investigates the impact of training thresholds and step sizes under a fixed total
training budget.

❸ Gradual difficulty progression outperforms random shuffling of difficulty levels. Both
(n, k, l)× 100× 10 and (n, k, l)× 200× 5 perform better when difficulty levels follow a gradual
progression (62.3 and 62.6), compared to random shuffling of difficulty levels (55.1 and 62.2). This
demonstrates that a curriculum learning approach with progressive difficulty scheduling is more
effective.

❹ Excessively fine-grained difficulty levels hinder performance. Training with overly fine-grained
difficulty levels, such as (n, k, l)×100×10, results in lower performance (55.1) compared to coarser
steps like (n, k, l)× 200× 5 (62.6). Both of these configurations perform worse than the two-stage
curriculum (3, 5, 13) × 500 + (3, 5, 15) × 500, which achieves the highest performance with an
average score of 63.4. This indicates that excessively fine-grained difficulty levels prevent the model
from effectively mastering each level before moving on to the next, hindering overall learning.

30

I Behavior of Stronger LLMs on Extended SATURN Tasks

This appendix demonstrates the performance of stronger LLMs on more challenging SAT tasks. The
experimental results are shown in Table 17. Even the strongest LLMs available today cannot solve
complex SAT tasks as effectively as humans using simple reflection and verification search. Due to
the long CoT involved, the full LLMs’ outputs are provided in the supplementary material.

Table 17: One-shot performance of stronger LLMs on extended SATURN tasks. Models with ✔
successfully solve the corresponding difficulty of SAT tasks. Kimi-1.5 solves the task but with
significantly longer reasoning chains.

SAT Task (n, k, length) GPT-4o O1-mini DeepSeek-V3 R1 Kimi-1.5
(3, 5, 30) ✗ ✔ ✗ ✔ ✔*
(4, 7, 80) ✗ ✗ ✗ ✗ ✗

To provide a baseline comparison, we also tested a CDCL SAT solver 6 on the SATURN-2.6k test set.
The results are as follows:

Table 18: CDCL SAT solver performance on SATURN-2.6k test set.

Metric Value

Total instances 1000
Satisfiable 1000
Unsatisfiable 0
Valid SAT Models 1000
Model Accuracy 100.00%
Total time taken (s) 0.14

Table 18 shows that the CDCL SAT solver significantly outperforms current LLMs like DeepSeek-R1,
both in terms of runtime and accuracy. SATURN applied to today’s strongest LLMs still has great
potential.

J Examples of Different LLMs’ Reasoning Trajectories

This appendix presents examples of different LLMs’ reasoning trajectories, as shown in Figures 5
and 12. The full LLMs’ outputs are provided in the supplementary material.

In the case of Math500-41 (Table 13), SATURN improves its ability to avoid unnecessary calculations
and dead-end reasoning paths. By leveraging the self-verification patterns learned from SAT tasks,
such as "I made a mistake earlier," SATURN-7B can better navigate through the problem, discarding
invalid paths earlier in the process.

In the case of Math500-402 (Table 5), SATURN-7B demonstrates a stronger ability to self-verify
intermediate conclusions in a smaller scenario (with 4 individuals). While DeepSeek-R1-Distill-
Qwen-7B also tries to identify a smaller scenario, it fails to recheck the result when an inconsistency
is found, instead stating, "perhaps I’m overcomplicating this." In contrast, SATURN-7B can identify
the error and re-verify the results within this small scenario, ultimately selecting the correct solution
from two possible candidates.

In conclusion, SATURN-7B exhibits enhanced self-verification capabilities. LLMs sometimes
confidently claim that a wrong answer is correct. Solving SAT tasks inherently involves frequent and
fine-grained clause verification, which trains LLMs to perform precise checking during reasoning. The
self-verification patterns learned from SAT tasks help LLMs solve math problems more effectively
by selecting correct solutions from multiple options. These results suggest that the self-verification
mechanisms developed during SAT learning (Table 12) generalize well to math and programming
tasks, improving the LLMs’ reasoning robustness and reliability.

6https://en.wikipedia.org/wiki/Conflict-driven_clause_learning

31

https://en.wikipedia.org/wiki/Conflict-driven_clause_learning

Figure 12: Case study of SATURN-7B’s reasoning trajectory on a SAT instance.

Figure 13: Comparison of reasoning trajectories on Math 500 Question No.41 between two models.

K Detailed Comparison of Constructed Reasoning Tasks

This appendix provides a detailed comparison between K&K logic puzzle and SAT problem. Illus-
trative examples of each type are shown in Figure 14. While both are designed to test reasoning
capability, they differ in construction cost, output format complexity, and difficulty control.

Construction Cost. K&K puzzles require translating symbolic logic into natural language. This
involves paraphrasing logical constraints into grammatically and semantically valid sentences, which
increases construction cost. In contrast, SAT problems are purely symbolic and follow a standard
format. As shown in [18], symbolic SAT and its natural language version yield similar reasoning
performance for LLMs, suggesting the symbolic form is sufficient.

Output Format Complexity. K&K puzzles require answers that list each character’s identity in
order, such as (1) A is a knight, (2) B is a knave. This format imposes strict requirements on structure,
making it harder for LLMs to follow instructions. In practice, we observe that models struggle to
learn this format in early training stages. SAT problems only require a fixed-length binary string
wrapped in \boxed{}, which simplifies output and improves consistency during training.

Difficulty Control. K&K puzzles use the number of characters to control difficulty, which is coarse-
grained. SAT problems allow fine-grained control via clause structure and variable interactions. We
further define an estimation of SAT task difficulty for LLMs as D(n, k, l) = log2(k) + 2 log2(l)−

32

Figure 14: Comparison of Knights and Knaves (K&K) logic puzzle and SAT problem.

n+ k
n . Adding a clause to a SAT formula never decreases its difficulty, for both humans and LLMs.

This makes SAT more suitable for curriculum learning.

In summary, while K&K puzzles provide linguistic diversity, SAT problems are more efficient in
construction, output consistency, and difficulty regulation, making them preferable for training LLMs
at scale.

L Word Cloud of SATURN-7B’s Outputs on GPQA Diamond

Figure 15: Word cloud of SATURN-7B’s generated answers on GPQA Diamond. Frequently used
tokens are shown in larger fonts.

Figure 15 shows the word cloud of SATURN-7B’s generated answers on GPQA Diamond, highlight-
ing its frequent use of self-verification patterns in reasoning.

33

	Introduction
	SATURN
	SATURN Learning Loop Framework
	SAT Instances Construction
	Estimation of Task Difficulty
	Reinforcement Learning with GRPO

	Experiments
	Research Questions
	Experimental Setup
	RQ1: SATURN Substantially Improves Performance on SAT Tasks
	RQ2: SATURN Demonstrates Strong Generalization to Math and Programming
	RQ3: SATURN Serves as a Complement and Further Enhances LLM Reasoning
	RQ4: SATURN Enhances Self-verification in LLMs' Reasoning Trajectories

	Discussion
	Limitations of Reasoning Capability Learned from SATURN
	Potential of SATURN on Stronger Models

	Related Work
	Constructing Reasoning Tasks for Reinforcement Learning
	SAT-Based Evaluation of LLM Reasoning Capability

	Conclusion and Future Work
	Pseudocode of SATURN Algorithm and Hyperparameters
	Construction Procedure of SAT Instances
	Derivation and Validity of Difficulty Estimation for SAT Tasks on LLMs
	Training Schedule for SATURN-1.5B and SATURN-7B
	Evaluation Hyperparameters
	Prompt Templates
	Detailed Performances of SATURN models on SATURN-2.6k
	Ablation Studies for SATURN
	Behavior of Stronger LLMs on Extended SATURN Tasks
	Examples of Different LLMs' Reasoning Trajectories
	Detailed Comparison of Constructed Reasoning Tasks
	Word Cloud of SATURN-7B’s Outputs on GPQA Diamond

