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ABSTRACT

We revisit the “dataset classification” experiment suggested by Torralba & Efros
(2011) a decade ago, in the new era with large-scale, diverse, and hopefully less
biased datasets as well as more capable neural network architectures. Surprisingly,
we observe that modern neural networks can achieve excellent accuracy in classify-
ing which dataset an image is from: e.g., we report 84.7% accuracy on held-out
validation data for the three-way classification problem consisting of the YFCC,
CC, and DataComp datasets. Our further experiments show that such a dataset
classifier could learn semantic features that are generalizable and transferable,
which cannot be explained by memorization. We hope our discovery will inspire
the community to rethink issues involving dataset bias.

1 INTRODUCTION

In 2011, Torralba & Efros (2011) called for a battle against dataset bias in the community, right before
the dawn of the deep learning revolution (Krizhevsky et al., 2012). They introduced the “Name That
Dataset” experiment, where images are sampled from each of several datasets and a model is trained
on the union of these images to classify which dataset an image is taken. Remarkably, datasets at that
time could be classified with high accuracy. They also found that a model trained on one dataset can
only perform well on that dataset but fails to generalize to others.

In response to this, over the decade that followed, progress on building diverse, large-scale, com-
prehensive, and hopefully less biased datasets (Lin et al., 2014; Russakovsky et al., 2015; Thomee
et al., 2016; Kuznetsova et al., 2020; Schuhmann et al., 2022) has been an engine powering the deep
learning revolution, especially in the pre-training era. In parallel, advances in algorithms, particularly
neural network architectures, have achieved unprecedented levels of ability on discovering concepts,
abstractions, and patterns—including bias—from data.

In this work, we take a renewed “unbiased look at dataset bias” (Torralba & Efros, 2011) after the
decade-long battle. Our study is driven by the tension between building less biased datasets versus
developing more capable models—the latter was less prominent at the time of Torralba & Efros
(2011). While efforts to reduce bias in data may lead to progress, the development of advanced
models could better exploit dataset bias and thus counteract the promise.

Our study is based on a fabricated task we call dataset classification, which is the “Name That
Dataset” experiment designed in Torralba & Efros (2011) (Figure 1). The datasets we experiment
with are presumably among the most diverse, largest, and uncurated datasets in the wild, collected
from the Internet. For example, a typical combination we study, referred to as “YCD”, consists of
images from YFCC (Thomee et al., 2016), CC (Changpinyo et al., 2021), and DataComp (Gadre
et al., 2023) and presents a 3-way dataset classification problem.

To our (and many of our initial readers’) surprise, modern neural networks can achieve excellent
accuracy on such a dataset classification task. Trained in the aforementioned YCD set that is
challenging for human beings (Figure 1), a model can achieve >84% classification accuracy on the
held-out validation data, vs. 33.3% of chance-level guess. This observation is highly robust, over a
large variety of dataset combinations and across different generations of architectures (Krizhevsky
et al., 2012; Simonyan & Zisserman, 2015; He et al., 2016; Dosovitskiy et al., 2021; Liu et al., 2022),
with very high accuracy (e.g., over 80%) achieved in most cases.

For such a dataset classification task, we have a series of observations that are analogous to those
observed in semantic classification tasks (e.g., object classification). For example, we observe that
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Figure 1: The “Name That Dataset” game (Torralba & Efros, 2011) in 2024: These images are
sampled from three modern datasets: YFCC (Thomee et al., 2016), CC (Changpinyo et al., 2021),
and DataComp (Gadre et al., 2023). Can you specify which dataset each image is from? While these
datasets appear to be less biased, we discover that neural networks can easily accomplish this “dataset
classification” task with surprisingly high accuracy on the held-out validation set.
Answer: YFCC: 1, 4, 7, 10, 13, 16, 19; CC: 2, 5, 8, 11, 14, 17, 20; DataComp: 3, 6, 9, 12, 15, 18, 21

training the dataset classifier on more samples, or using stronger data augmentation, can improve
accuracy on held-out validation data, even though the training task becomes harder. This is similar
to the generalization behavior in semantic classification tasks. This behavior suggests that the
neural network attempts to discover dataset-specific patterns—a form of bias–to solve the dataset
classification task. Further experiments suggest that the representations learned by classifying datasets
carry some semantic information that is transferrable to image classification tasks.

As a comparison, if the samples of different datasets were unbiasedly drawn from the same distribution,
the model should not discover any dataset-specific bias. To check this, we study a pseudo-dataset
classification task, in which the different “datasets” are uniformly sampled from a single dataset. We
observe that this classification task quickly becomes intractable, as the only way for the classifier to
approach this task is to memorize every single instance and its subset identity. As a result, increasing
the number of samples, or using stronger data augmentation, makes memorization more difficult or
intractable in experiments. No transferability is observed. These behaviors are strikingly contrary to
those of the real dataset classification task.

More surprisingly to us, we observe that self-supervised learning models are also highly capable of
capturing certain bias among different datasets. Specifically, we pre-train a self-supervised model
on the union of different datasets, without using any dataset identity as the labels. Then with the
pre-trained representations frozen, we train a linear classifier for the dataset classification task.
Although this linear layer is the only layer that is tunable by the dataset identity labels, the model can
still achieve a high accuracy (e.g., 78%) for dataset classification. This transfer learning behavior
resembles the behaviors of typical self-supervised learning methods (e.g., for image classification).

In summary, we report that modern neural networks are surprisingly capable of discovering hidden
bias from different datasets. This observation is true even for modern datasets that are very large,
diverse, less curated, and presumably less biased. The neural networks can solve this task by
discovering generalizable patterns (i.e., generalizable from training data to validation data, or to
downstream tasks), exhibiting behaviors analogous to those observed in semantic classification tasks.
Comparing with the game of “Name That Dataset” in Torralba & Efros (2011) a decade ago, this game
even becomes way easier given today’s capable neural networks. In this sense, the issue involving
dataset bias has not been relieved. There is still a question about how representative our current
pre-training datasets are of the real world, and furthermore, how much more generalizable models
could become by building more diverse and less biased training datasets. We hope our discovery will
stimulate discussions in the community regarding dataset bias in this new era.

2 A BRIEF HISTORY OF DATASETS

Pre-dataset Eras. The concept of “datasets” did not emerge directly out of the box in the history
of computer vision research. Before the advent of computers (e.g., see Helmholtz’s book of the
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1860s (Von Helmholtz, 1867)), scientists had already recognized the necessity of “test samples”,
often called “stimuli” back then, to examine their computational models about the human vision
system. The stimuli often consisted of synthesized patterns, such as lines, stripes, and blobs. The
practice of using synthesized patterns was followed in early works on computer vision.

Immediately after the introduction of devices for digitizing photos, researchers were able to validate
and justify their algorithms on one or very few real-world images (Roberts, 1963). For example, the
Cameraman image (Schreiber, 1978) has been serving as a standard test image for image processing
research since 1978. The concept of using data (which was not popularly referred to as “datasets”) to
evaluate computer vision algorithms was gradually formed by the community.

Datasets for Task Definition. With the introduction of machine learning methods into the computer
vision community, the concept of “datasets” became clearer. In addition to the data for the validation
purpose, the application of machine learning introduced the concept of training data, from which the
algorithms can optimize their model parameters.

As such, the training data and validation data put together inherently define a task that is of interest.
For example, the MNIST dataset (LeCun et al., 1998) defines a 10-digit classification task; the
Caltech-101 dataset (Fei-Fei et al., 2004) defines an image classification task of 101 object categories;
the PASCAL VOC suite of datasets (Everingham et al., 2010) define a family of classification,
detection, and segmentation tasks of 20 object categories.

To incentivize more capable algorithms, more challenging tasks were defined. The most notable
example of this kind, in today’s context, is the ImageNet dataset (Deng et al., 2009). ImageNet
has over one million images defined with 1000 classes (many of them being fine-grained animal
species), which is nontrivial even for normal human beings to recognize (Karpathy, 2014). At the
time when ImageNet was proposed, algorithms for solving this task appeared to be cumbersome—
e.g., the organizers provided SIFT features (Lowe, 2004) pre-computed to facilitate studying this
problem, and typical methods back then may train 1000 SVM classifiers, which in itself is a nontrivial
problem (Vedaldi & Zisserman, 2012). Hypothetically, if ImageNet was to remain as a task on its own,
like many previous popular datasets, we wouldn’t be able to witness the deep learning revolution.

But a paradigm shift awaited.

Datasets for Representation Learning. Right after the deep learning revolution in 2012 (Krizhevsky
et al., 2012), the community soon discovered that the neural network representations learned on
large-scale datasets like ImageNet are transferrable (Donahue et al., 2014; Girshick et al., 2014;
Yosinski et al., 2014). The discovery brought in a paradigm shift in computer vision: it became a
common practice to pre-train representations on ImageNet and transfer them to downstream tasks.

As such, the ImageNet dataset was no longer a task of its own; it became a pinhole of the universal
visual world that we want to represent. Consequently, the used-to-be cumbersome aspects became
advantages of this dataset: it has a larger number of images and more diversified categories than most
(if not all) other datasets at that time, and empirically it turned out that these properties are important
for learning good representations.

Encouraged by ImageNet’s enormous success, the community began to pursue more general and
ideally universal visual representations. Tremendous effort has been paid on building larger, more
diversified, and hopefully less biased datasets. Examples include YFCC100M (Thomee et al., 2016),
CC12M (Changpinyo et al., 2021), and DataComp-1B (Gadre et al., 2023)—the main datasets we
study in this paper—among many others (Sun et al., 2017; Desai et al., 2021; Srinivasan et al., 2021;
Schuhmann et al., 2022). It is intriguing to notice that the building of these datasets does not always
define a task of interest to solve; actually, many of these large-scale datasets do not provide a split of
training/validation sets. It is with the goal of pre-training in mind that these datasets were built.

3 ON DATASET BIAS

Given the increasing importance of datasets, the bias introduced by datasets has drawn the commu-
nity’s attention. Torralba & Efros (2011) presented the dataset classification problem and examined
dataset bias in the context of hand-crafted features with SVM classifiers. Tommasi et al. (2015)
studied the dataset classification problem using neural networks, specifically focusing on linear

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

classifiers with pre-trained ConvNet features (Donahue et al., 2014). The datasets they studied are
smaller in scale and simpler comparing with today’s web-scale data.

The concept of classifying different datasets has been further developed in domain adaption meth-
ods (Tzeng et al., 2014; Ganin et al., 2016). These methods learn classifiers to adversarially distinguish
features from different domains, where each domain can be thought of as a dataset. The problems
studied by these methods are known to have significant domain gaps. On the contrary, the datasets
we study are presumably less distinguishable, at least for human beings.

Another direction on studying dataset bias is to replicate the collection process of a dataset and
examine the replicated data. ImageNetV2 (Recht et al., 2019) replicated the ImageNet validation
set’s protocol. It observed that this replicated data still clearly exhibits bias as reflected by accuracy
degradation. The bias is further analyzed in (Engstrom et al., 2020).

Many benchmarks (Hendrycks & Dietterich, 2018; Zendel et al., 2018; Koh et al., 2021; Hendrycks
et al., 2021) have been created for testing models’ generalization under various forms of biases, such
as common corruptions and hazardous conditions. There is also a rich line of work on mitigating
dataset bias. Training on multiple datasets (Lambert et al., 2020; Nguyen et al., 2022) can potentially
mitigate dataset bias. Methods that adapt models to data with different biases at test time (Sun et al.,
2020; Wang et al., 2021) have also gained popularity recently.

Different Notions of Bias. It is worth noting that this study’s focus is the bias among multiple
datasets (hence “dataset” bias, instead of “data” bias). This mostly concerns the proper coverage of
concepts and objects, or in other words, how representative the dataset is for the real world. It is not
to be confused with another common notion of bias in data - social and stereotypical bias. This notion
concerns more on algorithmic fairness (Mitchell et al., 2021) and could be found within a single
dataset, e.g., gender or race bias. These two notions are related but emphasize different aspects. For
example, a simple dataset of indoor furnitures is mostly free of social bias, but is extremely biased in
terms of representativeness of the world.

Addressing social bias in data is an active area of research. Several well-known datasets have
been identified with biases in demographics (Buolamwini & Gebru, 2018; Yang et al., 2020) and
geography (Shankar et al., 2017). They also contain harmful societal stereotypes (van Miltenburg,
2016; Prabhu & Birhane, 2021; Birhane et al., 2021; Zhao et al., 2021). Addressing these biases is
critical for fairness and ethical considerations. Tools like REVISE (Wang et al., 2022) and Know
Your Data (Google People + AI Research, 2021) offer automatic analysis for potential bias in datasets.
Debiasing approaches, such as adversarial learning (Zhang et al., 2018a) and domain-independent
training (Wang et al., 2020), have also shown promise in reducing the effects of dataset bias.

4 DATASET CLASSIFICATION

The dataset classification task (Torralba & Efros, 2011) is defined like an image classification task, but
each dataset forms its own class. It creates an N -way classification problem where N is the number
of datasets. The accuracy is evaluated on a held-out validation set sampled from these datasets.

4.1 ON THE DATASETS WE USE

We intentionally choose the datasets that can make the dataset classification task challenging. We
choose our datasets based on the following considerations: (1) They are large in scale. Smaller
datasets might have a narrower range of concepts covered, and they may not have enough training
images for dataset classification. (2) They are general and diversified. We avoid datasets that are
about a specific scenario (e.g., cities (Cordts et al., 2016), scenes (Zhou et al., 2017)) or a specific
meta-category of objects (e.g., flowers (Nilsback & Zisserman, 2008), pets (Parkhi et al., 2012)).
(3) They are collected as with the intension of pre-training generalizable representations, or have
been used with this intension. We emphasize the difference between the “pre-training” datasets
and “benchmark” datasets here, as it is more accepted that the evaluation benchmark datasets are
often unique and biased (Raji et al., 2021; Koch et al., 2021). Based on these criteria, we choose the
datasets listed in Table 1.
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dataset description
YFCC (Thomee et al., 2016) 100M Flickr images
CC (Changpinyo et al., 2021) 12M Internet image-text pairs
DataComp (Gadre et al., 2023) 1B image-text pairs from Common Crawl
WIT (Srinivasan et al., 2021) 11.5M Wikipedia images-text pairs
LAION (Schuhmann et al., 2022) 2B image-text pairs from Common Crawl
ImageNet (Deng et al., 2009) 14M images from search engines

Table 1: Datasets used in our experiments.

Although these datasets are supposedly more diverse, there are still differences in their collection
processes that potentially contribute to their individual biases. For example, their sources are
different: Flickr is a website where users upload and share photos, Wikipedia is a website focused
on knowledge and information, Common Crawl is an organization that crawls the web data, and the
broader Internet involves a more general range of content than these specific websites. Moreover,
different levels of curation have been involved in the data collection process: e.g., LAION was
collected by reverse-engineering the CLIP model (Radford et al., 2021) and reproducing its zero-shot
accuracy (Schuhmann et al., 2022).

Despite our awareness of these potential biases, a neural network’s excellent ability to capture them
is beyond our expectation. In particular, we note that we evaluate a network’s dataset classification
accuracy by applying it to each validation image individually, which ensures that the network has no
opportunity to exploit the underlying statistics of several images.

4.2 MAIN OBSERVATION

We observe surprisingly high accuracy achieved by neural networks in this dataset classification
task. This observation is robust across different settings. By default, we randomly sample 1M and
10K images from each dataset as training and validation sets, respectively. We train a ConvNeXt-T
model (Liu et al., 2022) following common practice of supervised training (implementation details
are in Appendix B).

YFCC CC DataComp WIT LAION ImageNet accuracy
✓ ✓ ✓ 84.7
✓ ✓ ✓ 83.9
✓ ✓ ✓ 85.0
✓ ✓ ✓ 92.7
✓ ✓ ✓ 85.8
✓ ✓ ✓ 72.1
✓ ✓ ✓ 90.2
✓ ✓ ✓ 86.6
✓ ✓ ✓ 86.7
✓ ✓ ✓ 91.9

✓ ✓ ✓ 83.6
✓ ✓ ✓ 62.8
✓ ✓ ✓ 82.8
✓ ✓ ✓ 84.3
✓ ✓ ✓ 91.3
✓ ✓ ✓ 84.1

✓ ✓ ✓ 71.5
✓ ✓ ✓ 88.9
✓ ✓ ✓ 68.2

✓ ✓ ✓ 90.7

✓ ✓ ✓ 84.7
✓ ✓ ✓ ✓ 79.1
✓ ✓ ✓ ✓ ✓ 67.4
✓ ✓ ✓ ✓ ✓ ✓ 69.2

Table 2: Dataset classification yields high accuracy in all combinations. Top panel: all 20
combinations that involve 3 datasets out of all 6. Bottom panel: combinations with 3, 4, 5, or 6
datasets. All results are with 1M training images sampled from each dataset.
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We observe the following behaviors in our experiments:

High accuracy is observed across dataset combinations. In Table 2 (top panel), we enumerate all
20 (C3

6 ) possible combinations of choosing 3 out of the 6 datasets listed in Table 1. In summary,
in all cases, the network achieves >62% dataset classification accuracy; and in 16 out of all 20
combinations, it even achieves >80% accuracy. In the combination of YFCC, CC, and ImageNet, it
achieves the highest accuracy of 92.7%. Note that the chance-level guess gives 33.3% accuracy.

In Table 2 (bottom panel), we study combinations involving 3, 4, 5, and all 6 datasets. As expected,
using more datasets leads to a more difficult task, reflected by the decreasing accuracy. However, the
network still achieves 69.2% accuracy when all 6 datasets are included.

High accuracy is observed across model architectures. Table 3 shows the results on YCD using
different generations of models: AlexNet (Krizhevsky et al., 2012), VGG (Simonyan & Zisserman,
2015), ResNet (He et al., 2016), ViT (Dosovitskiy et al., 2021), and ConvNeXt (Liu et al., 2022).

model accuracy
AlexNet 77.8
VGG-16 83.5
ResNet-50 83.8
ViT-S 82.4
ConvNeXt-T 84.7

Table 3: Different model architectures all
achieve high accuracy. Results are on the YCD
combination with 1M images each.

We observe that all architectures can solve the
task excellently: 4 out of the 5 networks achieve
excellent accuracy of >80%, and even the clas-
sical AlexNet achieves a strong result of 77.8%.

This result shows the neural networks are ex-
tremely good at capturing dataset biases, regard-
less of their concrete architectures. There has
been significant progress in network architec-
ture design after the AlexNet paper, including
normalization layers (Ioffe & Szegedy, 2015;
Ba et al., 2016), residual connections (He et al., 2016), self-attention (Vaswani et al., 2017; Dosovit-
skiy et al., 2021). The “inductive bias” in network architectures can also be different (Dosovitskiy
et al., 2021). Nevertheless, none of them appears to be indispensable for dataset classification (e.g.,
VGG (Simonyan & Zisserman, 2015) has none of these components): the ability to capture dataset
bias may be inherent in deep neural networks, rather than enabled by specific components.

High accuracy is observed across different model sizes. By default, we use ConvNeXt-Tiny (27M
parameters) (Liu et al., 2022). The term “Tiny” is with reference to the modern definition of ViT
sizes (Touvron et al., 2020; Dosovitskiy et al., 2021) and is comparable to ResNet-50 (25M) (He et al.,
2016). In Figure 2, we report results of models with different sizes by varying widths and depth.

To our further surprise, even very small models can achieve strong accuracy for the dataset classi-
fication task. A ConvNeXt with as few as 7K parameters (3/10000 of ResNet-50) achieves 72.4%
accuracy on classifying YCD. This suggests that neural networks’ structures are very effective in
learning the underlying dataset biases. Dataset classification can be done without a massive number
of parameters, which is often credited for deep learning’s success in conventional visual recognition.

We also observe that larger models get increasingly better, although the return becomes diminishing.
This is consistent with observations on conventional visual recognition tasks. Moreover, we have not

7K 120K 470K 3M 8M 27M 87M
model parameters
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y 72.4 76.0 79.7 83.083.6 84.7 85.0

ConvNeXt variants

Figure 2: Models of different sizes all achieve
very high accuracy, while they can still be sub-
stantially smaller than the sizes of typical mod-
ern networks. Here the models are variants of
ConvNeXt (Liu et al., 2022), whose “Tiny” size
has 27M parameters. Results are on YCD com-
bination with 1M training images from each set.
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Figure 3: Dataset classification accuracy in-
creases with the number of training images.
This behavior suggests that the model is learn-
ing certain patterns that are generalizable, which
resembles the behavior observed in typical se-
mantic classification tasks. Results are on YCD.
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observed overfitting behaviors to the extent of the model sizes and dataset scales we have studied. This
implies that there may exist generalizable patterns that help the models determine dataset identities
and the model is not trying to memorize the training data. More investigations on generalization and
memorization are presented next.

Dataset classification accuracy benefits from more training data. We vary the number of training
images for YCD classification and present results in Figure 3.

Intriguingly, models trained with more data achieve higher validation accuracy. This trend is
consistently observed in both the modern ConvNeXt and the classical AlexNet. While this behavior
appears to be natural in semantic classification tasks, we remark that this is not necessarily true in
dataset classification: in fact, if the models were focusing on memorizing the training data, their
generalization performance on the validation data might decrease. The observed behavior—i.e., more
training data improves validation accuracy—suggests that the model is learning certain semantic
patterns that are generalizable to unseen data, rather than memorizing or overfitting the training data.

Dataset classification accuracy benefits from data augmentation. Data augmentation (Krizhevsky
et al., 2012) is expected to have similar effects as increasing the dataset size (which is the rationale
behind its naming). Our default training setting uses random cropping (Szegedy et al., 2015),
RandAug (Cubuk et al., 2020), MixUp (Zhang et al., 2018b), and CutMix (Yun et al., 2019) as data
augmentations. Table 4 shows the results of using reduced or no data augmentations.

augmentation / training images per dataset 10K 100K 1M
no aug 43.2 71.9 76.8
w/ RandCrop 66.1 74.5 84.2
w/ RandCrop, RandAug 70.2 78.0 85.0
w/ RandCrop, RandAug, MixUp/CutMix 72.4 80.1 84.7

Table 4: Data augmentation improves dataset classification accuracy, similar to the behavior of
semantic classification tasks. Results are on the YCD combination.

Adding data augmentation makes it more difficult to memorize the training images, while we observe
that using stronger data augmentation consistently improves the dataset classification accuracy.
This behavior remains largely consistent regardless of the number of training images per dataset.
Again, this behavior mirrors that observed in semantic classification tasks, suggesting that dataset
classification is approached not through memorization, but by learning patterns that are generalizable
from the training set to the unseen validation set.

Summary. In sum, we have observed that neural networks are highly capable of solving the dataset
classification task with good accuracy. This observation holds true across a variety of conditions,
including different combinations of datasets, various model architectures, different model sizes,
dataset sizes, and data augmentation strategies. In comparison, we report human performance on a
similar task in Appendix A.

5 ANALYSIS

In this section, we analyze the model behaviors in different modified versions involving the dataset
classification task. This reveals more intriguing properties of neural networks for dataset classification.

5.1 LOW-LEVEL SIGNATURES?

There is a possibility that the high accuracy is simply due to low-level signatures, which are less
noticeable to humans but are easily identifiable by neural networks. Potential signatures could involve

JPEG compression artifacts (e.g., different datasets may have different compression quality factors)
and color quantization artifacts (e.g., colors are trimmed or quantized depending on the individual
dataset). We design a set of experiments that help us preclude this possibility.

Specifically, we apply a certain type of image corruption to both the training and validation sets, on
which we train and evaluate our model. In other words, we perform the dataset classification task
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original color jitter noise blur low res.

Figure 4: Different corruptions for suppressing low-level signatures. We apply a certain type of
corruption to both the training and validation sets, on which we train and evaluate our model.

on corrupted data.1 We consider four types of image corruption: (i) color jittering (Krizhevsky
et al., 2012), (ii) adding Gaussian noise with a fixed standard deviation; (iii) blurring the image by a
fixed-size Gaussian kernel; and (iv) reducing the image resolution. Figure 4 shows examples for each
corruption. Note that we apply one type of corruption each time.

Table 5 shows the dataset classification results for each image corruption. As expected, corruption
reduces the classification accuracy, as both training and validation sets are affected. Despite degrada-
tion, strong classification accuracy can still be achieved, especially when the degree of corruption is
weaker. Introducing these different types of corruption should effectively disrupt low-level signatures,
such as JPEG or color quantization artifacts. The results imply that the models attempt to solve the
dataset classification task beyond using low-level biases.

corruption (on train+val) accuracy
none 84.7
color jittering (strength: 1.0) 81.1
color jittering (strength: 2.0) 80.2
Gaussian noise (std: 0.2) 77.3
Gaussian noise (std: 0.3) 75.1
Gaussian blur (radius: 3) 80.9
Gaussian blur (radius: 5) 78.1
low resolution (64×64) 78.4
low resolution (32×32) 68.4

Table 5: High accuracy are achieved on dif-
ferent corrupted versions of the dataset clas-
sification task. This suggests that low-level
signature is not a main responsible factor. Re-
sults are on the YCD combination.

imgs per set w/o aug w/ aug
100 100.0 100.0
1K 100.0 100.0

10K 100.0 fail
100K fail fail

Table 6: Training accuracy on a pseudo-
dataset classification task. Here we create 3
pseudo-datasets, all of which are sampled with-
out replacement from the same source dataset
(YFCC). This training task is more difficult for
the network to solve if given more training im-
ages and/or stronger data augmentation. Val-
idation accuracy is ∼33% as no transferrable
pattern is learned.

5.2 MEMORIZATION OR GENERALIZATION?

In Sec. 4.2, we have shown that the models learned for dataset classification behave like those learned
for semantic classification tasks (Figure 3 and Table 4), since they exhibit generalization behaviors.
This behavior is in sharp contrast with memorization behavior, as we discuss in the next comparison.

We consider a pseudo-dataset classification task. In this scenario, we manually create multiple
pseudo-datasets, all of which are sampled without replacement from the same source dataset. We
expect this process to give us multiple pseudo-datasets that are truly unbiased.

1This is different from data augmentation, which applies random image corruption to the training data.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 6 reports the training accuracy of a model trained for this pseudo-dataset classification task,
using different numbers of training images per set, without vs. with data augmentation. When the task
is relatively simple, the model achieves 100% training accuracy; however, when the task becomes
more difficult (more training images or stronger augmentation), the model fails to converge, as
reflected by unstable, non-decreasing loss curves.

This phenomenon implies that the model attempts to memorize individual images and their labels to
accomplish this pseudo-dataset classification task. Because the images in these pseudo-datasets are
unbiased, there should be no shared patterns that can be discovered to discriminate these different
sets. As a result, the model is forced to memorize the images and their random labels, similar to the
scenario in Zhang et al. (2016). But memorization becomes more difficult when given more training
images or stronger augmentation, which fails the training process after a certain point.

This phenomenon is unlike what we have observed in our real dataset classification task (Figure 3
and Table 4). This again suggests that the model attempts to capture shared, generalizable patterns in
the real dataset classification task.

Although it may seem evident, we note that the model trained for the pseudo-dataset classification task
does not generalize to validation data (which is held out and sampled from each pseudo-dataset). Even
when the training accuracy is 100%, we report a chance-level accuracy of ∼33% in the validation set.

5.3 SELF-SUPERVISED LEARNING

Thus far, all our dataset classification results are presented under a fully-supervised protocol: the
models are trained end-to-end with full supervision. Next, we explore a self-supervised protocol,
following the common protocol used for semantic classification tasks in self-supervised learning.

Formally, we pre-train a self-supervised learning model MAE (He et al., 2022) without using any
labels. Then we freeze the features extracted from this pre-trained model, and train a linear classifier
using supervision for the dataset classification task. This is referred to as the linear probing protocol.
We note that in this protocol, only the linear classifier layer is tunable under the supervision of the
dataset classification labels. Linear probing presents a more challenging scenario.

Table 7 shows the results under the self-supervised protocol. Even with MAE pre-trained on standard
ImageNet (which involves no YCD images), the model achieves 76.2% linear probing accuracy for
dataset classification. In this case, only the linear classifier layer is exposed to the classification data.

Using MAE pre-trained on the same YCD training data, the model achieves higher accuracy of 78.4%
in linear probing. Note that although this MAE is pre-trained on the same target data, it has no prior
knowledge that the goal is for dataset classification. Nevertheless, the pre-trained model can learn
features that are more discriminative (for this task) than those pre-trained on the different dataset of
ImageNet. This transfer learning behavior again resembles those seen in semantic classification tasks.

case accuracy
fully-supervised 82.9
linear probing w/

MAE trained on IN-1K 76.2
MAE trained on YCD 78.4

Table 7: Self-supervised pre-training, fol-
lowed by linear probing, achieves high ac-
curacy for dataset classification. Here, we
study MAE (He et al., 2022) as our self-
supervised pre-training baseline, which uses
ViT-B as the backbone. The fully-supervised
baseline for dataset classification is with the
same ViT-B architecture (82.9%). Results are
on the YCD combination.

case transfer acc
random weights 6.7
Y+C+D 27.7
Y+C+D+W 34.2
Y+C+D+W+L 34.2
Y+C+D+W+L+I 34.8
MAE (He et al., 2022) 68.0
MoCo v3 (Chen et al., 2021) 76.7

Table 8: Features learned by classifying
datasets can achieve nontrivial results un-
der the linear probing protocol. Transfer
learning (linear probing) accuracy is reported
on ImageNet-1K, using ViT-B as the backbone
in all entries. The acronyms follow Table 2.
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5.4 FEATURES LEARNED BY CLASSIFYING DATASETS

We have shown that models trained for dataset classification can well generalize to unseen validation
data. Next we study how well these models can be transferred to semantic classification tasks. To this
end, we now consider dataset classification as a pretext task, and perform linear probing on the frozen
features on a semantic classification task (ImageNet-1K classification). Table 8 shows the results of
our dataset classification models pre-trained using different combinations of datasets.2

Comparing with the baseline of using random weights, the dataset classification models can achieve
non-trivial ImageNet-1K linear probing accuracy. Importantly, using a combination of more datasets
can increase the linear probing accuracy, suggesting that better features are learned by discovering
the dataset biases across more datasets.

As a reference, it should be noted the features learned by dataset classification are significantly worse
than those learned by self-supervised learning methods, such as MAE (He et al., 2022) and MoCo
v3 (Chen et al., 2021), which is as expected. Nevertheless, our experiments reveal that the dataset bias
discovered by neural networks is relevant to semantic features that are useful for image classification.

5.5 CROSS-DATASET GENERALIZATION

Torralba & Efros (2011) observed that models often struggle to generalize across different datasets.
For instance, a model trained on dataset A to recognize cars may perform well on hold-out images
from dataset A but poorly on a dataset B. We revisit this cross-generalization experiment using the
modern and large-scale datasets we study. Due to the lack of a common task defined on them, we use
masked autoencoding (MAE) (He et al., 2022) as a surrogate task and report their validation losses.

train / eval YFCC CC DataComp WIT LAION ImageNet average
YFCC 0.419 0.394 0.320 0.434 0.332 0.397 0.383

CC 0.423 0.386 0.311 0.433 0.320 0.395 0.378
DataComp 0.428 0.393 0.306 0.437 0.317 0.394 0.379

WIT 0.423 0.394 0.317 0.427 0.328 0.396 0.381
LAION 0.429 0.392 0.306 0.439 0.314 0.395 0.379

ImageNet 0.425 0.395 0.312 0.437 0.325 0.389 0.380
combined 0.422 0.388 0.306 0.430 0.317 0.391 0.376

Table 9: Cross-dataset generalization with MAE validation losses. Bold indicates the lowest for
each evaluation dataset (column). A clear diagonal indicates that cross-dataset transfer always has a
gap with training on the same dataset. Combining all datasets yields the best result when averaged.

Table 9 shows the results. We can see a clear diagonal with the lowest validation loss in each column.
This indicates that on any particular validation dataset, only pre-training on the same training dataset
can achieve the best generalization performance. Therefore, despite larger and more diversified
datasets, cross-dataset generalization remains a problem. Interestingly, simply combining all datasets
(controlling the total number of images by taking 1/6 images from each) yields the best overall result,
while also achieving the second best for each individual evaluation dataset. This suggests combining
datasets may be a simple strategy to reduce dataset bias.

6 CONCLUSION

We revisit the dataset classification problem in the context of modern neural networks and large-scale
datasets. We observe that the datasets bias can still be easily captured by modern neural networks.
This phenomenon is robust across models, dataset combinations, and many other settings.

It is worth pointing out that the concrete forms of the bias captured by neural networks remain largely
unclear. We have discovered that such bias may contain some generalizable and transferrable patterns,
and that it may not be easily noticed by human beings. We hope further effort will be devoted to this
problem, which would also help build datasets with less bias in the future.

2In this comparison, we search for the optimal learning rate, training epoch, and the layer from which the
feature is extracted, following the common practice in the self-supervised learning community.
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Reproducibility Statement: We document our training recipe and hyper-parameter selections
in detail in Appendix B. Our code could be found in the anonymous GitHub repository:
https://github.com/21esdf3/dataset-bias. It is also included in the supplementary material.
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A USER STUDY

To have a better sense of the dataset classification task, we further conduct a user study to assess how
well humans can do this task and to learn their experience.

Settings. We ask our users to classify individual images sampled from the YCD combination.
Because users may not be familiar with these datasets, we provide an interface for them to unlimitedly
browse the training images (with ground-truth labels of their dataset identities) when they attempt to
predict every validation image. We ask each user to classify 100 validation images, which do not
overlap with the training set provided to them. We do not limit the time allowed to be spent on each
image or on the entire test. More details about user study can be found in Appendix ??.

Users. A group of 20 volunteer participants participated in our user study. All of them are researchers
with machine learning background, among which 14 have computer vision research experience.

User study results. Figure 5 shows the statistics of the user study results on the dataset classification
task. In summary, 11 out of all 20 users have 40%-45% accuracy, 7 users have 45%-50%, and only 2
users achieve over 50%. The mean is 45.4% and the median is 44%.

The human performance is higher than the chance-level guess (33.3%), suggesting that there exist
patterns that humans can discover to distinguish these datasets. However, the human performance is
much lower than the neural network’s 84.7%.

35 40 45 50 55 60 65
accuracy (%)

2
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10
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Figure 5: User study results on humans per-
forming the dataset classification task. Humans
generally categorize images from YCD with 40-
60% accuracy.

We also report that the 14 users who have com-
puter vision research experience on average per-
form no better than the other users. Among
these 14 users, we also ask the question “What
accuracy do you expect a neural network can
achieve for this task?” The estimations are 60%
from 2 users, and 80% from 6 users, and 90%
from 1 user; there were 5 users who chose not
to answer. The users made these estimations
before becoming aware of our work.

There are 15 participants who describe the difficulty of the task as “difficult”. No participant describes
the task as “easy”. 2 participants commented that they found the task “interesting”.

We further asked the users what dataset-specific patterns they have used to solve this task. We
summarize their responses below, in which brackets indicate how many users mentioned each pattern:

• YFCC: people (6), scenery (3), natural lighting, plants, lifestyle (2), real-world, sport, wedding,
high resolution (2), darker, most specific, most new, cluttered;

• CC: cartoon (2), animated, clothing sample, product, logo, concept, explanatory texts, geography,
furniture, animals, low resolution, colorful, brighter, daily images, local images, single person,
realistic, clean background;

• DataComp: white background (3), white space, transparent background, cleaner background,
single item (2), product (2), merchandise, logo-style, product showcase, text (2), lots of words,
artistic words, ads, stickers, animated pictures (2), screenshots, close-up shot, single person,
people, non-realistic icons, cartoon, retro;

In these user responses, there are some simple types of bias that can be exploited (e.g., “white
background” for DataComp), which can help increase the user prediction accuracy over chance-
level guess. However, many types of the bias, such as the inclusion of “people” in images, are not
meaningful for identifying the images (e.g., all datasets contain images with people presented).

B IMPLEMENTATION DETAILS

For image-text datasets (CC, DataComp, WIT, LAION), we only use their images. The LAION
dataset was filtered before usage. We uniformly sample the same number of images from each dataset
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to form the train / val sets for dataset classification. If a dataset already has pre-defined train / val
splits, we only sample from its train split. 1M images for each dataset is used as the default unless
otherwise specified. This is not a small collection, yet it still only represents a tiny portion of images
(e.g., <10%) for most datasets we study. To speed up image loading, the shorter side of each image is
resized to 500 pixels if the original shorter side is larger than this. We observe this has minimal effect
on the performance of models.

We train the models for the same number of samples seen as in a typical 300-epoch supervised
training on ImageNet-1K classification (Liu et al., 2022), regardless of the number of training images.
This corresponds to the same number of iterations as in Liu et al. (2022) since the same batch size is
used. The complete training recipe is shown in Table 10.

config value
optimizer AdamW
learning rate 1e-3
weight decay 0.3
optimizer momentum β1, β2=0.9, 0.95
batch size 4096
learning rate schedule cosine decay
warmup epochs 20 (ImageNet-1K)
training epochs 300 (ImageNet-1K)
randomaug (Cubuk et al., 2020) (9, 0.5)
label smoothing 0.1
mixup (Zhang et al., 2018b) 0.8
cutmix (Yun et al., 2019) 1.0

Table 10: Training settings for dataset classification.

For the linear probing experiments on ViT-B in Section 5.3 and 5.4, we follow the settings used in
MAE (He et al., 2022). For Section 5.4, we use the checkpoint from epoch 250, and sweep for a base
learning rate from {0.1, 0.2, 0.3}, and a layer index for extracting features from {8, 9, 10}.

During inference, an image is first resized so that its shortest side is 256 pixels, maintaining the aspect
ratio. Then the model takes its 224×224 center crop as input. Therefore, the model cannot directly
exploit the different distributions of resolutions and/or aspect ratios for different datasets as a shortcut
for predicting images’ dataset identities. The model takes randomly augmented crops of 224×224
images as inputs in training.

C ADDITIONAL RESULTS

Training Curves. We plot the training loss and validation accuracy for ConvNeXt-T YCD classifica-
tion in Figure 6. The training converges quickly to a high accuracy level in the initial phases. This
again demonstrates neural networks’ strong capability in capturing dataset bias.
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Figure 6: Training curves for YCD classification. The model converges quickly.

ImageNet vs. ImageNetV2. ImageNetV2 (Recht et al., 2019) attempts to create a new validation set
trying to follow the exact collection process of ImageNet-1K’s validation set. As such, the images
look very much alike. We find a classifier could reach 81.8% accuracy classifying ImageNetV2
and ImageNet-1K’s validation set, substantially higher than 50%, despite only using 8K images for
training from each. This again demonstrates how powerful neural networks are at telling differences
between seemingly close image distributions.
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Figure 7: Confusion matrix for the 6-way classification in Table 2.

Confusion Matrix. We plot the confusion matrix for the 6-way dataset classification. We observe
there exists a high confusion between DataComp and LAION. This is likely because they (Schuhmann
et al., 2022; Gadre et al., 2023) both source from Common Crawl (Com) and apply filtering to select
images that align closely with their captions in the CLIP (Radford et al., 2021) embedding space.

D LIMITATIONS

While we have discovered that modern neural networks can achieve an excellent accuracy in classify
which dataset an image is from, it is still unclear what are the exact forms of bias captured by neural
networks. This warrants future research on understanding and interpreting the concrete forms of
bias. In addition, this work examines a limited set of six large-scale image datasets, while leaving out
many other popular image datasets, as well as datasets on other domains like videos and language.
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