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Abstract

Machine unlearning removes certain training data points and their influence on AI models
(e.g. when a data owner revokes their decision to allow models to learn from the data). In
this position paper, we propose to lift data-tracing machine unlearning to knowledge-tracing
for foundation models (FMs). We support this position based on practical needs and insights
from cognitive studies. Practically, tracing data cannot meet the diverse unlearning requests
for FMs, which may be from regulators, enterprise users, product teams, etc., having no
access to FMs’ massive training data. Instead, it is convenient for these parties to issue an
unlearning request about the knowledge or capability FMs (should not) possess. Cognitively,
knowledge-tracing unlearning aligns with how the human brain forgets more closely than
tracing individual training data points.We further discuss the nontrivial challenges in the
knowledge-tracing machine unlearning paradigm. Finally, we provide a concrete case study
about a vision-language FM to illustrate how an unlearner might instantiate the knowledge-
tracing machine unlearning paradigm.

1 Introduction

“The brain is always trying to forget the information it has already learned” (Gravitz, 2019). The human
brain possesses the ability to selectively forget past experiences and knowledge (Davis & Zhong, 2017; Rizio &
Dennis, 2013; Ryan & Frankland, 2022) in response to environmental changes during the process of memory
and learning, which helps optimize cognitive resources. Forgetting is not a negative process but a natural
and indispensable part (Roediger III et al., 2010) of human memory and learning, supporting abstraction
and automation to acquire semantic and procedural knowledge (Nørby, 2015).

This work is about machine unlearning (Cao & Yang, 2015; Bourtoule et al., 2021; Triantafillou et al., 2024)
for foundation models (FMs) (Bommasani et al., 2021; Brown et al., 2020; Radford et al., 2021; OpenAI,
2023). Such models are trained on large-scale data and have achieved human-level performance across diverse
tasks. To enhance their adaptability and efficiency in dynamic environments, it is highly appealing that FMs
can learn continuously and selectively unlearn—akin to humans. To this end, a pivotal question naturally
arises: Can FMs achieve selective forgetting like humans?

Conventionally, the exploration of selective forgetting mechanisms in FMs (Eldan & Russinovich, 2023; Liu
et al., 2024b; Gandikota et al., 2023; Li et al., 2024c) has primarily been driven by privacy and safety concerns,
following the machine unlearning (MU) paradigm initially designed for task-specialized models rather than
general-purpose FMs. Under the regulation of the “right to be forgotten” (Regulation, 2016), users may
request to revoke their data and erase the influence from an AI model. MU, also known as data forgetting,
aims to handle such requests by removing the privacy-sensitive and undesirable information from models
while simultaneously preserving model utility. However, current efforts in MU predominantly trace training
data points, failing to handle similar requests at higher semantic levels (e.g., a product team might request
to remove all people signals from a model). This gap becomes especially significant for FMs because many
parties interact with FMs, such as data providers, legal and policy regulators, application developers, and
end users. Having no access to FMs’ training data, they may instead deliver their unlearning requests using
high-level semantic descriptions.
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Figure 1: A conceptual comparison between data-tracing and knowledge-tracing machine unlearning. While
data-tracing (bottom) focuses on removing specific training samples, the knowledge-tracing paradigm operates
at higher semantic levels. As illustrated by the red symbols, unlearning requests can target specific fine-grained
concepts (e.g., the dog breed Pointer) or broader visual concepts (e.g., or Dog) within a hierarchical knowledge
structure, independent of individual data points.

In this paper, we propose to lift data-tracing in foundation model unlearning (FMU) to knowledge-
tracing as an initial step towards closing that gap. Figure 1 shows an exemplar realization of this position
using a taxonomy of visual knowledge. It is a versatile interface between an unlearner and those who might
issue unlearning requests at various levels of knowledge granularity, being responsive to real-world applications
besides its strong analogy to how human brains forget. Suppose the request is to remove an FM’s visual
recognition capability about Pointer, a dog breed. The unlearner has sufficient flexibility to develop effective
algorithms for this request, e.g., by collecting data labeled as Pointer, designing regularizers to preserve the
model’s performance on other classes, especially Pointer’s parent class Dog, and so on. Table 1 summarizes
the key differences between the existing MU that traces data and the advocated knowledge-tracing FMU.

Table 1: Data-tracing machine unlearning vs. knowledge-tracing foundation model unlearning
Data-tracing machine unlearning Knowledge-tracing foundation model unlearning

Requester Users, data providers Anyone
Request to remove Certain training data points model’s knowledge or capability
Purpose Privacy, safety Privacy, safety, model capacity, human-like, etc.
Models of interest (often) Task-specialized models General-purpose foundation models
Retention set (often) ✔ (default) ✘

Oracle model Retrained over remaining training data ✘

Knowledge-tracing FMU is highly beneficial for both FM stakeholders and the development of more advanced
FMs. From a practical view, it meets the incredibly diverse unlearning requests, which may come from anyone
involved in the FM ecosystem, better than data-tracing MU. Indeed, many parties in the FM ecosystem
have no direct access to the original training data at all. Transitioning from data-tracing unlearning to
knowledge-tracing broadens FMU’s scope, moving beyond the deletion of data points. This is not to downgrade
the significance of existing data-tracing MU, which remains imperative for privacy considerations (e.g., a
user deauthorizes the use of their data by FMs), but only to showcase additional impacts of the advocated
knowledge-tracing FMU. Moreover, knowledge-tracing FMU aligns more closely with the human brain’s
forgetting process than data-level deletion, capturing how humans selectively retain and discard abstract
knowledge and experience. In return, FMs can likely benefit from this unlearning process by freeing up model
capacities for the efficient acquisition of new knowledge in the future.
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The transition from data-tracing to knowledge-tracing unlearning is nontrivial, given the inherent challenges
intrinsic to knowledge formulation. Unlike specific training samples, knowledge is abstract and difficult
to operationalize. Knowledge exists in heterogeneous forms ranging from specific semantic concepts and
knowledge graph entities to abstract relationships, making it hard to define a unified formulation for unlearning.
Furthermore, the boundaries of knowledge are inherently ambiguous. Removing knowledge about a subject
(e.g., a public figure) does not uniquely specify whether knowledge about that subject’s actions or related
events should also be removed. Consequently, quantifying the extent of unlearning remains an open challenge,
as the field currently lacks principled criteria or metrics to assess success at the knowledge level.

Following the proposed position, we conduct a concrete case study about unlearning fine-grained object
classes from a vision-language FM. Over time, humans tend to forget specific details while retaining abstract
concepts. Accordingly, we choose some fine-grained concepts as the unlearning targets, not any particular
training examples, and the goal is to effectively unlearn these concepts while maintaining the FM’s recognition
ability over coarse-level classes and the remaining fine-grained ones. We envision a scenario that an unlearner
source image examples for unlearning from hierarchical image classification datasets rather than the FM’s
original training set. We do not use any extra retention images in the experiments. Extensive experiments
demonstrate that existing data-tracing MU methods are applicable to the case study, but their performance
could be strengthened in the future work for more satisfactory unlearning results. We stress that this case
study is meant to support our position and spark discussion rather than provide a definitive solution to the
challenges. Finally, we complement the case study by discussing other scenarios beyond the vision-language
domain.

The structure of this paper is as follows. First, we provide a concise review of data-tracing MU, revisit a
prevalent formalization, and introduce its confluence with FMs, to offer readers the background of our position.
We then articulate our position driven by various unlearning requests from the FM community and highlight
the importance of knowledge-tracing unlearning from a cognitive science perspective. Next, we analyze the
key challenges of knowledge-tracing unlearning, clarifying why the problem remains under-specified at the
knowledge level. We subsequently present a detailed case study about a vision-language FM, analyzing it
from multiple perspectives. To broaden the discussion, we include more examples and the limitation of our
case study. We conclude the paper with discussions about more related work, alternative views, and potential
impacts to contextualize our position.

2 Existing MU traces training data points

This section reviews MU and focuses on how the research unrolls across security, machine learning, and
broader AI communities. We show that the existing MU works trace training data points (e.g., from a user
who decided to deauthorize the use of their data by machine learners).

2.1 Data-tracing MU: A concise review

The concept of MU was first introduced in a pioneering study by Cao & Yang (2015), who proposed to
transform learning algorithms into a summation form rapidly amendable to data deletion. In the ensuing
years, from 2015 to 2018, the studies about MU (Cao, 2017; Kwak et al., 2017; Cao et al., 2018) primarily
focused on the learning systems’ security and privacy aspects. MU started to gain traction in the machine
learning and broader AI communities (Guo et al., 2019; Thudi et al., 2022a) after an influential work that
applied an exact MU approach to deep neural networks for image classification (Bourtoule et al., 2021).
Between 2019 and 2023, numerous MU works emerged to enhance unlearning quality for task-specialized
neural networks (Golatkar et al., 2020; Chen et al., 2023; Lin et al., 2023; Wang et al., 2023). Moreover, a
competition (Triantafillou et al., 2024) hosted in conjunction with NeurIPS 2023 heightened extensive interest
in MU.

Notably, the works reviewed above are data-tracing because they operate on the data level, striving to remove
some training data points (e.g., deauthorized by their owners) and their influence on a learning system or
model.
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We can reiterate the formalization of MU in (Triantafillou et al., 2024) to give readers a concrete understanding
of MU’s data-tracing essence. The initial step is to train a model θ0 using a learning algorithm A on a given
training dataset Dtrain = {(xi, yi)}N

i=1. Then, the MU setup is to divide the training set into f orgetting set
Df and retention set Dr, where Df ∪ Dr = Dtrain and Df ∩ Dr = ∅. An unlearner attempts to remove the
influence of Df ⊂ Dtrain from the model θ0. Intuitively, the unlearner can retrain a new model θr ← A(Dr)
from scratch on the retention set, often viewed as an oracle model as a result of MU. However, retraining is
arguably resource-intensive and impractical, especially when multiple unlearning requests arrive sequentially.
To overcome this limitation, the key is to design an unlearning algorithm U that directly modifies the original
model θ0 for each unlearning request, denoted by θu ← U(θ0,Df ,Dr), such that the unlearned model θu is
as close to the oracle θr as possible. Measuring the difference between the two models is yet another heated
topic under discussion, along with the evaluation protocols for MU; We refer readers to (Thudi et al., 2022b;
Triantafillou et al., 2024; Liu et al., 2024b; Thaker et al., 2024) if they are interested in related works.

2.2 Data-tracing MU for FMs

The data-tracing momentum in MU carried over to the confluence of MU and FMs, or FMU in short. The
term FMs was coined by (Bommasani et al., 2021), referring to big models trained on broad data adaptable
to a wide range of downstream tasks. Eldan & Russinovich (2023) unlearned Harry Potter books from a
language FM (Touvron et al., 2023). Some studies explored MU to prevent text-to-image FMs from generating
harmful content and undesirable styles (Gandikota et al., 2023; Gong et al., 2025). Most recently, Cheng &
Amiri (2025); Li et al. (2024c); Poppi et al. (2025) made initial efforts on multimodal FMU.

Despite these early works and some new benchmarks (Maini et al., 2024; Li et al., 2024d;c), there remains no
satisfactory research playground when it comes to FMU. Thaker et al. (2024) experimentally showed that
one could game existing FMU benchmarks rather than making real progress. Liu et al. (2024b) pointed out
several challenges of MU for large language models, such as generality, authentication, and precision of an
unlearning algorithm and its outcome. We celebrate and welcome these studies and discussions, which are
much needed to formalize a reasonable research playground for FMU. This work adds to this discussion an
actionable proposal, as elaborated below.

3 Lifting data to knowledge for FMU

This work proposes to lift the focus on training data points to knowledge and capabilities for
foundation model unlearning (FMU). Take the knowledge hierarchy in Figure 1, for example. While
existing FMU accepts unlearning requests on the data point level only, we additionally allow one to request
FMU at the knowledge level (e.g., please unlearn Flat-Coated Retriever from a vision-language model without
hurting the model’s other capabilities). More concretely, an unlearning request for FMs consists of a forget set
Df ⊂ {data, knowledge} and nothing else, i.e., the retention set Dr is left unspecified, or Dr = ∅. We contend
that this request format is a user-friendly interface between unlearners and all relevant parties that might
issue unlearning requests to FMs. Meanwhile, it provides unlearners sufficient flexibility to develop practical
algorithms by translating the knowledge-level requests to data sets, constraints, and auxiliary models, to
name a few.

3.1 Who might request FMU?

As illustrated in Figure 2, FMs are not exclusive to model developers; they are also the focal point of
many other parties like data providers, product developers, legal and policy regulators, and researchers
in the community. Existing works on FMU mainly tried to remove the influence of some training ex-
amples from models, a scenario typically associated with data providers or model developers who pos-
sess direct access to the training data. Indeed, a common user could become a data provider to FMs
at a certain point, and yet they could also withdraw the authorization about the use of their data
at a later time, hence necessitating targeted unlearning of specific samples. For model developers, dis-
carding data that has become irrelevant or obsolete helps preserve the model’s accuracy and usability.
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Figure 2: The foundation model unlearning requests
may come from different members of the AI community.
Not all members have access to the training data. They
may instead issue unlearning requests as high-level
semantic descriptions.

Following legal and regulatory requirements, regu-
lators must ensure that FMs are free from harmful,
malicious, and undesirable content. These legisla-
tive entities often have no access to training data,
and instead, it is more convenient for them to de-
liver the regulations as requests to unlearn at the
knowledge level. Enterprise users may use FMs for
specialized tasks that require unlearning undesired
features.Finally, end users might dislike certain be-
haviors of an FM for cultural or personal reasons and
request the model to avoid/unlearn those. Overall,
the unlearning requests are extremely diverse from
different parties of the FM ecosystem, expressed at
both data and knowledge levels. In response to the
wide range of needs in the real world, FMU cannot
trace training data points only. Instead, we advocate

for knowledge-tracing FMU. Beyond this practical argument, we also draw inspiration from cognitive science.

3.2 Knowledge-tracing FMU akin to human forgetting

We reinforce the significance of knowledge-tracing FMU using insights from cognitive and psychology studies
about forgetting. Although forgetting is often perceived as harmful and frustrating in daily life (Averell &
Heathcote, 2011), it is, in fact, an essential part of the human cognition process (Nørby, 2015; Gravitz, 2019;
Ryan & Frankland, 2022). It plays a vital role in knowledge acquisition, serving as a foundation for developing
semantic and procedural understanding by enabling abstraction and automation (Nørby, 2015). With limited
cognitive capacity, humans excel at selectively forgetting at different levels, from instances to events to
abstract knowledge, allowing them to prioritize relevant knowledge and enhance future learning (Gravitz,
2019; Bjork & Bjork, 2019; Davis & Zhong, 2017).

Although one might argue that FMs do not necessarily need to learn from how human brains work to achieve
human-level intelligence, drawing ideas from cognitive findings has been beneficial for machine learning and
unlearning in general. Examples include unlearning for memory optimization (Sukhbaatar et al., 2021) and
the forget-and-relearn framework (Zhou et al., 2022). To this end, knowledge-tracing FMU is more akin to
human forgetting than the data-tracing formalization. If FMs could selectively unlearn irrelevant information
or abstract away unnecessary details — much like human development — they would become better at
acquiring new knowledge in a lifelong learning scheme (Wang et al., 2024d) efficiently and adaptively.

4 Challenges in knowledge-tracing FMU

4.1 How to formulate knowledge-tracing FMU?

Unlike data-tracing unlearning, which operates on well-defined training samples, the targets of knowledge-
tracing unlearning are often abstract and difficult to formalize. Knowledge targeted for unlearning may manifest
in diverse forms, ranging from visual concepts to structured factual knowledge or implicit reasoning patterns,
yet it lacks a unified representation space. This structural heterogeneity makes it computationally ambiguous
to operationalize a knowledge unlearning request, particularly when the stakeholder-provided description of the
target knowledge is vague or underspecified. Formally defining such abstract knowledge unlearning requests
and translating them into concrete, executable unlearning procedures remains a fundamental challenge.

4.2 How to decide the boundary of knowledge?

Determining the scope and boundaries of the knowledge to be unlearned presents a significant challenge. For
instance, a request to unlearn a specific public figure is often underspecified: it remains unclear whether this
implicitly necessitates removing knowledge of their historical actions, associated works, or broader societal
impact. This ambiguity is exacerbated by the high-level nature of stakeholder instructions, which typically
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lack the semantic granularity to define precisely where the target knowledge ends and retained knowledge
begins, risking either residual associations or the catastrophic erasure of useful, related capabilities.

4.3 How to quantify knowledge?

Quantifying the success of knowledge unlearning remains an challenge problem, as the field lacks principled
criteria to assess forgetting at the knowledge level. Current evaluation protocols are predominantly data-
centric, which serve as poor proxies for abstract knowledge states. A critical obstacle is distinguishing between
genuine erasure, where the underlying parametric capabilities are removed and mere surface-level suppression,
where the model learns to mask specific outputs while retaining the latent concept. For instance, a model
might refuse to generate an entity when prompted directly but still exhibit knowledge of it through indirect
reasoning or visual feature recognition.

5 Case Study
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Figure 3: Illustration of fine-grained vision-concept
forgetting. The unlearned model fails to recognize the
forgotten concepts, yet still identifies their correspond-
ing coarse-grained categories.

Following this work’s position, we provide a concrete
case study about Contrastive Language-Image Pre-
training (CLIP) (Radford et al., 2021) to bridge the
position with real-world applications and, in return,
explore the position in depth, spanning multiple fac-
tors and perspectives.

We envision that Oudi Inc., a car manufacturer and
an enterprise user of the CLIP model, has retired
their A1 sedan for some reason. Accordingly, Oudi’s
product team requests that the Oudi A1 concept be
unlearned from CLIP. An unlearner is equipped with
existing MU methods developed in the research com-
munity but realizes they all operate on the training
data points. The unlearner cannot access CLIP’s
training data; instead, they assemble a set of exemplar Oudi A1 images as the proxy forgetting set Df (but
no retention set for convenience). Figure 3 illustrates this envision, and we formalize it as follows.

5.1 FMU for visual recognition: Experiment setup

Denote by x, y an object image and its class label, respectively. We cast the class label to a knowledge
ontology and, for simplicity, we consider a taxonomy of two levels of object classes. Denote by yc the parent of
label y, i.e., the coarse-grained label of image x. Let C be the set of fine-grained classes, y ∈ C. The unlearning
request is at the fine-grained level, Df ⊆ C. Notably, the forgetting set is a subset of the fine-grained classes
rather than training data points. The unlearner then enhances the forgetting set with images and hierarchical
labels Dhf = {(xi, yi, yc

i )|yi ∈ Df}, aiming to remove CLIP’s visual recognition capacity for these requested
classes without impairing CLIP’s other usage.

5.1.1 Datasets for unlearning

We compile two fine-grained visual recognition datasets, CompCars-S and ImgnetDogs, of manmade and
natural objects, respectively. CompCars-S is a subset of CompCars (Yang et al., 2015), a large-scale fine-
grained car dataset with images from different viewpoints. It includes an extensive range of subcategories
and a unique hierarchical structure. The subset we selected is relatively balanced and, more importantly,
CLIP-friendly in that the CLIP model achieves high recognition accuracy. ImgnetDogs is a subset of
ImageNet-1K (Deng et al., 2009), consisting of 99 fine-grained breeds of dogs worldwide. We randomly select
200 training images for each dog breed and use the corresponding validation subset in ImageNet as our test
set. We use WordNet (Fellbaum, 1998) to find the coarse-grained labels for the dog breeds. Please see the
appendices for more details on the two datasets.
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5.1.2 Unlearning methods

While the unlearning requests in this case study happen at the class level, Df ⊆ C, we allow an unlearner to
enhance them by collecting data for the forgetting classes: Dhf = {(xi, yi, yc

i )|yi ∈ Df}. Hence, we are able to
experiment with state-of-the-art data-tracing MU methods: Gradient ascent (GA) (Jang et al., 2022; Thudi
et al., 2022a; Kurmanji et al., 2024) for the loss computed over the (enhanced) forgetting set, gradient difference
(GD) (Liu et al., 2022), KL minimization (Yao et al., 2023), random labeling (Relabeling) (Golatkar et al.,
2020), task vector (Ilharco et al., 2022), weight saliency unlearning (SalUn) (Fan et al., 2023), maximizing
entropy (ME+GD) (Yuan et al., 2024) and negative preference optimization (NPO) (Zhang et al., 2024b).
We refer readers to the appendices for more details of these methods.

A coarse-grained “retention set”. Some of these methods depend on a retention set, which our unlearner
does not have due to the inaccessibility of CLIP training data. Instead, we obtain an unconventional “retention
set”, Dr

Parent = {(xi, yc
i )|(xi, yi, yc

i ) ∈ Dhf}, consisting of the images in the unlearner-assembled forgetting
set, Dhf , and their coarse-grained class labels, {yc

i }, leveraging the fact that the unlearner is supposed to
preserve CLIP’s recognition performance over these labels, which are parents of the forgetting classes in the
object taxonomy.

A hinge loss for gradient ascent (GA). GA is the core of the above MU methods except task vectors
and relabeling, and yet GA is prone to over-forgetting (Wang et al., 2024b; Tian et al., 2024). We alleviate
this issue using a controllable and bounded hinge loss:

LHGA = max [0, m + sim(xi, yi)−maxy ̸=yi,y∈C sim(xi, y)] (1)

where sim(x,y) is the CLIP similarity between image x and label y, and m is the margin, a nonnegative
hyper-parameter controlling the magnitude of forgetting. A larger margin requires more unlearning efforts.
We can compare this hinge loss with NPO (Zhang et al., 2024b), another approach designed to avoid GA’s
overly forgetting. While NPO also bounds their loss, it suffers from the initial model’s mistakes as shown by
Fan et al. (2024) empirically. In contrast, our loss effectively mitigates excessive unlearning by 0-clipping; if
the initial model makes a mistake at a data point (xi, yi), the loss is 0 when m = 0. We note a concurrent
work (Cha et al., 2025) that applies the hinge loss to LLMs.

Regularization using the enhanced forgetting set Dhf . We find two intuitive regularization techniques
universally effective for all MU methods studied in this work. Both help maximize the use of the images in the
enhanced forgetting set Dhf . Given an input image xi, CLIP can return its similarities to all coarse-grained
labels. We normalize them into a valid distribution. The first regularizer is a KL-divergence between such
distributions induced by the original CLIP and the one to be unlearned, formulated as follows:

LKLc =
∑

(xi,yc
i

)∈Dhf

KL (pθ0(yc
i |xi)||pθ(yc

i |xi)) (2)

The second regularizer is defined similarly, except that the distributions are over the fine-grained classes not
covered by the forgetting set, which is formulated as follows:

LKLf
=

∑
(xi,yi)∈Dhf ∩y ̸=yi

KL(pθ0(y|xi)||pθ(y|xi)) (3)

Consequently, the full objective function combines a hinge loss for gradient ascent with two regularization
terms: L = LHGA + αfLKLf

+ αcLKLc
.

5.1.3 Evaluation

Noting that evaluation methodologies for MU remain a point of heated discussion in the community (Liu
et al., 2024b; Thaker et al., 2024), we design ours following both task-specialized MU (Triantafillou et al.,
2024) and MU for language FMs (Eldan & Russinovich, 2023). The former leads to a quality-utility trade-off
measure explained below, and the latter is about preserving CLIP’s general capabilities.
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Table 2: Fine-grained concept removal results on ImgnetDogs.

Df
test Dr

test Performance MetricsMethod coarse ↑ fine ↓ coarse ↑ fine ↑ Quality ↑ Utility ↑ Q-U ↑ Zero-shot ↑

Origin CLIP (Radford et al., 2021) 86.20 93.40 50.88 65.55 – – – 83.24
GA (Jang et al., 2022) 1.00 0.00 7.80 1.57 100.00 6.30 11.85 78.55
GDiff (Liu et al., 2022) 69.60 0.00 40.54 9.30 100.00 58.21 73.58 80.89

GA+KL (Yao et al., 2023) 77.40 3.00 41.28 35.96 96.79 75.26 84.68 81.66
Relabeling (Golatkar et al., 2020) 44.80 43.80 29.57 45.64 53.10 59.91 56.30 81.32

SaLUN(Fan et al., 2023) 47.80 34.80 30.49 46.52 62.74 62.12 62.43 81.77
ME+GD (Yuan et al., 2024) 95.20 53.20 45.12 46.79 43.04 88.69 57.52 81.70

Task vector (Ilharco et al., 2022) 79.60 36.60 44.58 62.38 60.81 91.71 73.13 82.57
NPO+KL (Zhang et al., 2024b) 88.00 8.00 49.33 53.91 91.43 93.06 92.24 82.20

HGA+KL(Ours) 88.20 2.00 48.23 54.56 97.86 92.68 95.20 82.53

Quality-utility trade-off. Given a dataset described above, the forgetting quality and utility are metrics
calculated within this dataset. Denote by θ0 and θu the CLIP models before and after unlearning, respectively.
We define forgetting quality as the model’s degradation in recognition accuracy for the forgetting classes
Df ⊆ C after unlearning:

Q = 1− Ā(Df ), Ā(·) = Acc(·; θu)/Acc(·; θ0)

where Ā(Df ) is the accuracy of the unlearned model θu, Acc(Df ; θu), over the forgetting classes Df scaled
by that of the original model θ0. The higher the forgetting quality, the better, as it indicates how much of
the targeted knowledge has been removed from CLIP.

The utility cares about the unlearned model’s preservation of visual recognition performance over the classes
other than the targeted forgetting ones. Importantly, we calculate utility using the full taxonomy of class
labels; for the two datasets in this work, the scope of interest includes both Dr = C \Df , the retention classes
at the same level as the forgetting ones, and their parent classes in the taxonomy, represented as Dr

Parent and
Df

Parent. Specifically, the utility of an unlearned model is U = (Ā(Dr) + Ā(Dr
Parents) + Ā(Df

Parents))/3, where
Ā is the same scaled accuracy function as used in defining the forgetting quality. We then define a Q-U score
as the harmonic mean of quality and utility, inspired by the F-score: Q-U = 2QU/(Q + U).

Preservation of general capabilities. Radford et al. (2021) demonstrated CLIP’s remarkable zero-shot
image classification performance over multiple datasets, which should not be impaired by the requested
unlearning as long as those class labels have no overlap with the forgetting set Df . To test this general ability
of unlearned CLIP, we follow (Radford et al., 2021; Khattak et al., 2023) to use several image classification
datasets (Krizhevsky et al., 2009; Fei-Fei et al., 2004; Nilsback & Zisserman, 2008; Krause et al., 2013; Parkhi
et al., 2012; Bossard et al., 2014) to assess the zero-shot classification performance of the model.

5.2 Results

Main comparison results. Table 2 shows the results of various MU baselines on the ImgnetDogs dataset.
GA-based methods achieve high forgetting quality but suffer from a significant drop in retained fine-grained
concept recognition accuracy due to their unbounded optimization loss. Without a regularization term, the
fine-grained accuracy on the retention set drops sharply to 1.57 %. Introducing a KL-divergence regularization
term on the forget set helps preserve utility, raising the retention set accuracy to 35.96 %. Relabeling
performs poorly in fine-grained unlearning, exhibiting low forgetting quality and model utility. The Q-U
score of SalUn is better than the relabeling method (62.43 % vs. 56.30 %). The ME method disrupts
the intrinsic relationships among fine-grained concepts, leading to a significant reduction in the accuracy
of the retained concepts. The task-vector struggles to unlearn fine-grained concepts, resulting in low
forgetting quality while maintaining high model utility. Unlike the unbounded loss in the GA-based method,
the unlearning optimization loss for NPO is bounded, avoiding catastrophic collapse and achieving better
unlearning performance. Our proposed method (HGA), incorporating KL divergence, attains a Q-U score of
95.20 %, nearly 3 % higher than the NPO method.
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Table 3: Fine-grained concept removal results vs. different difficulty levels on ImgnetDogs.

Difficulty Df
test Dr

test Performance Metrics
Level Method coarse ↑ fine ↓ coarse ↑ fine ↑ Quality ↑ Utility ↑ Q-U ↑

CLIP (Radford et al., 2021) 86.20 93.40 50.88 65.55 – – –Difficult HGA+KL(Ours) 88.20 2.00 48.23 54.56 97.86 92.68 95.20

CLIP (Radford et al., 2021) 75.00 82.80 52.13 66.74 – – –Medium HGA+KL(Ours) 6.00 0.40 50.29 58.29 99.52 94.61 97.00

CLIP (Radford et al., 2021) 60.73 75.82 53.66 67.42 – – –Easy HGA+KL(Ours) 64.36 0.73 52.21 63.09 99.04 96.95 97.98

Table 4: Coarse-grained concept removal results on ImgnetDogs.

Df
test Dr

test Performance Metrics
Method coarse ↓ fine ↓ coarse ↑ fine ↑ Quality ↑ Utility ↑ Q-U ↑ Zero-shot ↑

Origin CLIP (Radford et al., 2021) 76.75 80.25 53.45 67.32 – – – 83.24
GA (Jang et al., 2022) 0.00 0.00 10.33 29.07 100.00 31.25 47.62 80.52
GDiff (Liu et al., 2022) 0.00 0.00 10.66 28.46 100.00 31.11 47.46 81.20

GA+KL (Yao et al., 2023) 0.00 0.25 42.44 40.84 99.84 70.03 82.32 82.30
Relabeling (Golatkar et al., 2020) 14.75 16.00 41.65 43.64 80.42 71.37 75.63 81.02

SaLUN (Fan et al., 2023) 7.25 29.50 51.69 59.30 76.90 92.40 83.94 82.55
ME+GD (Yuan et al., 2024) 22.50 31.25 50.18 50.15 65.87 84.19 73.91 82.19

Task Vector (Ilharco et al., 2022) 8.75 28.00 55.45 63.70 76.85 99.18 86.60 82.64
NPO+KL (Zhang et al., 2024b) 8.25 24.50 55.03 63.03 79.36 98.29 87.82 83.14

HGA+KL (Ours) 10.50 8.00 52.35 60.09 88.18 93.60 90.81 82.99

We also report the average zero-shot classification accuracy of the unlearned model. The results indicate that
forgetting specific fine-grained concepts generally does not significantly impair the model’s generalizability,
except in the case of the GA method without regularization, which experiences notable degradation. Moreover,
models employing relabeling-based unlearning methods exhibit a more pronounced decline in generalizability.

Unlearning results for the fine-grained forgetting classes of various difficulty levels. Like humans,
FMs demonstrate varying degrees of memorization for concepts, leading to different difficulty levels for
unlearning. In our case study, we quantify concept memorization using the model’s confidence scores about
the concepts, offering a simpler alternative to traditional metrics (Zhao et al., 2024; Zhao & Triantafillou, 2024).
We conduct three sets of experiments under difficult, medium, and easy unlearning settings, corresponding to
decreasing average confidence scores of the concepts to be unlearned. As shown in Table 3, removing difficult,
high-confidence concepts causes a more substantial drop in model utility compared to easy, low-confidence
ones. This highlights the importance of avoiding excessive unlearning of low-confidence concepts and carefully
regulating the unlearning of high-confidence concepts to preserve utility in future work.

Unlearning results for the coarse-grained classes.We further evaluate coarse-grained classes unlearning
(e.g., Retriever and Setter), where unlearning requires removing both the coarse-grained classes and all
corresponding fine-grained classes. We observe that, when unlearning coarse-grained classes, balancing
unlearning quality and model utility is more challenging than for fine-grained classes, as reflected by a lower
Q–U metric for our proposed method, shown in Table 4. Importantly, the difficulty of unlearning is not
determined solely by concept granularity but also by the model’s degree of memorization. For example,
CLIP performs worse on coarse-grained categories than on fine-grained ones. As a result, for some methods,
unlearning fine-grained concepts under a coarse-grained class can require greater effort than unlearning the
coarse-grained concept itself, highlighting that unlearning difficulty depends jointly on concept granularity
and the target model’s idiosyncrasies.

Results with varying numbers of forgetting training samples. Table 5 illustrates the influence of
varying the number of forgetting training samples on the unlearning performance of our proposed method.
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Table 5: Unlearning performance with different numbers of
forgotten training samples per fine-grained class.

Samples Number Quality ↑ Utility ↑ Q-U ↑

10 70.02 95.58 80.83
20 80.09 94.97 86.89
30 93.36 94.20 93.78
50 94.65 93.69 94.17
100 95.72 92.58 94.12
150 96.15 93.19 94.65
200 97.86 92.68 95.20

When the number of forgetting training sam-
ples is too small—such as only 10 images per
category—achieving effective unlearning is chal-
lenging, resulting in lower forget quality (70%).
Unlearning quality improves as the number
of forgotten samples increases; however, this
comes at the cost of reduced model utility. No-
tably, the improvement in unlearning effective-
ness becomes less significant beyond 30 samples,
highlighting the sample efficiency of our pro-
posed unlearning method.

Table 6: Comparison of unlearning performance (Q-U met-
rics) on the OOD dataset.

Methods Quality ↑ Utility ↑ Q-U ↑

GDiff 87.57 77.02 81.96
GA+KL 85.24 84.50 84.87

NPO+KL 34.98 96.60 51.37
HGA+KL(Ours) 27.20 97.92 42.58

Limitation of data-tracing MU methods.
While we applied data-tracing MU methods
to the case study, we contend they exhibit sig-
nificant limitations for the knowledge-tracing
FMU. Most existing data-tracing MU methods
yield a subpar quality-utility trade-off and zero-
shot generalization in our case study. Although
NPO and our proposed method perform better
than others in the quality-utility trade-off, they
have poor robustness under the out-of-dataset test (Table 6), where models were unlearned on ImgnetDogs
and evaluated on OxfordPet. The results show that all data-tracing MU methods, including ours, fail to
tackle knowledge-tracing MU, which underscores the limitations of current data-tracing MU methods. We
expect that future techniques will be natively designed for knowledge-tracing FMU.

5.3 Discussions

Our case study uses a taxonomy to represent knowledge structures for its flexibility in lieu of its completeness.
We can extend it to higher abstraction levels, such as forgetting retriever while retaining dog. One can also
refined it further by subdividing golden retriever into finer-grained categories or attributes. In this structure,
each abstract concept corresponds to an inner node, and the granularity of the hierarchy determines the
specificity of knowledge encoded in the leaf nodes. We acknowledge that a real-world ontology should be
more complex than ours. A knowledge graph embedded in an LLM can be exponentially large. Exploring
alternative structural representations and unlearning setups, such as graph-based knowledge unlearning, is a
promising direction for future research on the knowledge-tracing FMU.

Finally, we present additional knowledge-tracing unlearning scenarios and some potential strategies for
constructing corresponding forgetting and retention datasets as follows. Retrieval: Forgetting targets are
visual concepts such as “Golden Retriever.” The forgetting dataset consists of image-text pairs related to the
target concepts, with images sourced from public datasets and captions generated by proprietary VLMs (,
2024) and verified by humans. The retention dataset includes semantically similar but distinct concepts (e.g.,
other dog breeds) to assess the specificity of forgetting. General vision-language benchmarks (Chen et al.,
2015) can be used to evaluate overall generalization. VQA: (e.g., LLaVA (Liu et al., 2023)). Forgetting
targets include visual entities such as “Donald Trump.” The forgetting dataset comprises images of the
target paired with QA examples—open-ended or multiple-choice—generated using GPT-4o (, 2024) and
verified manually. The retention dataset involves QA pairs about related but different concepts (e.g., other
public figures). General VQA benchmarks (Fu et al., 2023) assess broader reasoning abilities. Text QA:
(e.g., LLaMA (Touvron et al., 2023)). Forgetting targets are private entity-level facts, such as details about
“Harry Potter” characters. The forgetting dataset consists of QA pairs or passages explicitly referencing those
facts, generated or collected to ensure contextual diversity. The retention set includes text about similar but
untargeted entities. Evaluation relies on QA datasets such as Natural Questions (Kwiatkowski et al., 2019)
and TriviaQA (Joshi et al., 2017). We leave the specific implementation and study of these cases to future
work.
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6 Alternative Views

While we argue to prioritize the research on knowledge-tracing FMU, one might argue that the data-tracing
MU should remain the top priority even for FMs because the resulting methods are generally applicable.
Indeed, we anticipate that the unlearning methods in the proposed knowledge-tracing paradigm will still rely
on data for unlearning. One might also have a different view about the insights we draw from cognitive science.
Airplanes fly in a way different from how birds fly. Hence, it is not necessary to design FMU frameworks
following the human brain’s forgetting mechanism.

There could also be a wild alternative view that FMs do not need unlearning because the scaling law and
hardware innovation allow them to continually grow and learn new information without losing previously
acquired capabilities. Instead of prioritizing research on FMU, the focus should be on continual learning
of FMs, where selective forgetting could be a subtopic or natural property emerging in an FM’s continual
learning process.

Another research priority one would probably like to pursue is evaluation at MU. We have witnessed some
works on this topic already (Thaker et al., 2024; Thudi et al., 2022b; Shi et al., 2024), which call for more
comprehensive and solid benchmarks for MU research. In the data-tracing MU, one can obtain an oracle
model by retraining a model over the retention set. However, such a model is often not supplied with any
existing MU benchmarks, and it remains unclear how to leverage the oracle model to evaluate MU methods.
Currently, there is no widely accepted standard for evaluating knowledge-level unlearning. Through this
position paper, we hope to inspire future work that advances the evaluation criteria.

7 More related work

Besides the works reviewed in Section 2, our position and case study are also related to the following works.

MU on vision. The SISA framework (Bourtoule et al., 2021) has advanced MU in the classification task,
with subsequent efforts (Wu et al., 2020; Yan et al., 2022) enhancing retraining efficiency. Recent research
has shifted towards approximate MU that modifies trained models directly. Early approaches employing
Hessian approximations (Guo et al., 2019; Sekhari et al., 2021) faced high computation costs. More general
methods have been introduced for class-wise unlearning in deep neural networks (Chen et al., 2023; Lin et al.,
2023; Kurmanji et al., 2024; Fan et al., 2023; Liu et al., 2024a). The concept of MU has also been extended
to diffusion models (Gandikota et al., 2023; Park et al., 2024; Gong et al., 2025; Zhang et al., 2024c), aiming
to prevent generating harmful or unethical content.

MU for LLMs. How to remove the influence of undesirable data on the pre-trained LLMs (Liu et al., 2024b;
Shi et al., 2024; Huu-Tien et al., 2024; Li et al., 2024d; Jin et al., 2024; Qiu et al., 2024; Cha et al., 2025)
has received growing attention. Various unlearning methods have been proposed, including gradient ascent
(Jang et al., 2022), random relabeling (Yao et al., 2024; 2023), and regenerating desirable answers (Eldan
& Russinovich, 2023) or safe tokens (Ishibashi & Shimodaira, 2023), demonstrating effective unlearning
capabilities. Additionally, approaches combining gradient ascent with KL divergence (Wang et al., 2023;
Chen & Yang, 2023; Yao et al., 2024) or gradient descent (Yao et al., 2024; Chen & Yang, 2023) have been
widely adopted. Task-vector-based techniques (Zhang et al., 2023; Liu et al., 2024c; Hu et al., 2024) and
weight-importance strategies (Wu et al., 2023; Yu et al., 2023) further enhance unlearning precision while
preserving utility. Input-based unlearning methods (Pawelczyk et al., 2023; Huang et al., 2024c) have emerged
as a complementary solution for black-box LLMs unlearning.

Multi-modality MU. Compared to single modality MU, unlearning for multimodal vision-language models
(Cheng & Amiri, 2025; Li et al., 2024c; Ma et al., 2024; Yang et al., 2024; Poppi et al., 2025) remains largely
underexplored. SIU (Li et al., 2024c) proposed an efficient method for unlearning visual concepts in the
pre-trained LLaVA (Liu et al., 2023) using just one image during the training process. MMDelte (Cheng &
Amiri, 2025) proposed a multi-modality unlearning method for fine-tuned FMs on image-text and graph-text
datasets. CLIPErase (Yang et al., 2024) and Safe-CLIP (Poppi et al., 2025) explored machine unlearning on
the CLIP model. Inspired by TOFU (Maini et al., 2024), a new benchmark FIUBENCH (Ma et al., 2024),
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which contains fictitious facial identity data, has been proposed to evaluate the unlearning methods on the
fine-tuned VLM.

Model editing. Model editing, or knowledge editing (Mitchell et al., 2022; Huang et al., 2024b; Wang et al.,
2024c), shares similarities with unlearning, as both seek to modify the model while preserving its generalization
capabilities. However, the two processes differ fundamentally: model editing focuses on predefined updates
to address hallucinations in pre-trained models, whereas unlearning involves removing information without
predefined outputs. While much of the existing research has concentrated on editing large language models
(Mitchell et al., 2021; 2022; Wang et al., 2024c), recent efforts have introduced new benchmarks for editing
VLMs (Huang et al., 2024b; Zhang et al., 2024a; Huang et al., 2024a; Li et al., 2024b).

8 Conclusion

This position paper is on the confluence of MU and FMs, or FMU in short. We have provided a historical
review of MU and FMU, which exposes that existing works trace data — removing specific training examples’
influence from FMs. We argue that this setup is impractical for many FM users because they have no or
limited access to FMs’ massive training data. Instead, we advocate for a shift toward knowledge-tracing FMU
to meet diverse unlearning requests from all FM stakeholders. Besides this argument from a practical view,
we also draw insights from cognitive science, backing that knowledge-tracing FMU aligns with human-like
memory processes. We further discuss the nontrivial challenges inherent in the knowledge-tracing machine
unlearning paradigm. We have provided a detailed case study about CLIP, a visual-language FM, to explore
our position further. The learning requests are formalized about the removal of some specific fine-grained
object class recognition capabilities. We encourage the research community to pay attention to what to
unlearn (knowledge or data) when they expand investigations into MU and FMU.
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A Appendix

A.1 Further Details of Related Work

In this section, we provide more details on the unlearning setups of existing unlearning work. We systematically
categorize unlearning tasks, models, and targets of related papers in Table 7.

Table 7: Experiment setup details for existing machine unlearning work.
Related Work Task Unlearned Model/Target

Golatkar et al. (2020) Image classification All-CNN/Entire Class or a hundred images of the class

Jang et al. (2022) Unlearn Privacy Information GPT-Neo/Privacy Instances

Chen et al. (2023) Image classification All-CNN and Resnet/Entire Class

Lin et al. (2023) Image classification Resnet/Entire Class

Fan et al. (2023) Image classification and generation Resnet and DDPM/Random samples and Entire class

Chen & Yang (2023) Classification and Summarization Fine-tuned T5 and T3 model/Random Instances

Zhang et al. (2023) Reduce the toxicity GPT-2 Model/All instances

Gandikota et al. (2023) Text-to-Image generation Stable Diffusion Model/Predefine Concepts

Wang et al. (2024b) Synthetic author profiles QA Fine-tuned Llama-2-7B/Random Entities

Maini et al. (2024) Synthetic author profiles QA Fine-tuned Llama-2-7B/Random Entities

Zhang et al. (2024b) Synthetic author profiles QA Fine-tuned Llama-2-7B/Random Entities

Wu et al. (2023) Privacy information forgetting Fine-tuned BERT-base model/All instances

Eldan & Russinovich (2023) Unlearn the Harry Potter books Pre-trained Llama2-7b model/All instances

Yao et al. (2023) Unlearn the Harry Potter books Fine-tuned Llama model/All instances

Yao et al. (2024) Removing copyrighted data Pre-trained Yi-6B /Pre-training samples

Jin et al. (2024) Remove celebrity information Pre-trained LaMA3 and Phi-3/Predefined entities

Li et al. (2024c) Unlearn visual concepts Pre-trained LLaVA/Predefined visual concepts

Li et al. (2024d) Remove hazardous knowledge Pre-trained ZEPHYR-7B and YI-34B/Hazardous VQA

Poppi et al. (2025) Unlearn unsafe embeddings Pre-trained CLIP/Unsafe Images and Texts

A.2 More details of the Dataset

Table 8: Hierarchy Fine-grained Recognition Dataset Details
Dataset Coarse Num. Fine Num. Training Num. Testing Num.

CompCars-S 48 292 26,630 8,943
ImgnetDogs 14 99 19,800 4,950

CompCars-S. The original dataset comprises 161 coarse and 1687 fine classes; however, the classification
accuracy across these classes is notably low. Some coarse-grained categories may contain only one fine-grained
category, and some fine-grained categories have limited images. Consequently, we implemented a filtering
process on the original dataset. The process is as follows: Initially, at the coarse-grained level, each category
must include at least two fine-grained categories, and each fine-grained category must contain no fewer than
90 images; otherwise, the category would be removed. Subsequently, we utilized a pre-trained CLIP model
(ViT-L/14) to refine the dataset further. Those images and car models are retained if the accuracy of the fine
class is above 20%. Otherwise, the corresponding car model categories and images are removed. The details
of dataset information are presented in Table 8.

ImgnetDogs. The construction of the ImgnetDogs dataset is based on WordNet (Fellbaum, 1998). The
StanfordDog dataset, as introduced in (Khosla et al., 2011), is also a fine-grained dog breed recognition
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dataset, which forms a subset of ImageNet. However, some fine-grained dog categories in the StanfordDog
datasets are assigned to highly abstract coarse categories across different semantic levels. We selectively chose
fine-grained categories with clear, well-defined, higher-level coarse semantic information from the original
ImageNet dataset.

A.3 More Details of the Case Study Setting

Unlearning fine-grained concepts that the model initially fails to recognize or has low accuracy is meaningless.
Therefore, the selected concepts for unlearning should meet a predefined accuracy threshold. In our case
study, we focus on unlearning fine-grained classes with an accuracy above 90%. For the medium and easy
unlearning settings in ImgnetDogs, the overall accuracy of the unlearned fine-grained classes is 82% and 75%,
respectively. The specific fine-grained concepts unlearned for each dataset are detailed in Table 9.

Table 9: Unlearned fine-grained concepts for each dataset.
Dataset Unlearn Fine Classes

CompCars-S Acura MDX, Lexus RX, Jaguar XK, MINI CABRIO,
Audi A7, Audi A5 coupe, Cadillac SRX, Corvette,
Mustang

ImgnetDogs Difficult German short-haired pointer, Boston terrier, West
Highland white terrier, Labrador retriever, golden
retriever, German shepherd dog, keeshond, Samoyed,
Pomeranian, Border terrier

ImgnetDogs Medium Irish setter, Gordon setter, basset hound, Airedale
terrier, Shih-Tzu, miniature pinscher, Alaskan mala-
mute, flat-coated retriever, Chesapeake Bay retriever,
Sealyham terrier

ImgnetDogs Easy English setter, beagle, whippet, Ibizan hound, Dandie
Dinmont terrier, standard poodle, Border collie,
Blenheim spaniel, cairn terrier, Doberman, groenen-
dael

A.4 Baseline Machine Unlearning Methods

Gradient Ascent. Gradient Ascent (Jang et al., 2022; Thudi et al., 2022a; Kurmanji et al., 2024) is a
straightforward yet effective unlearning method applied to various unlearning settings. GA aims at maximizing
the predicted loss on the forgetting set, which can be formulated as follows:

LGA =
∑

(xi,yi)∈Df

[log(yi|xi, θ)]. (4)

Gradient Difference. Gradient Difference (Liu et al., 2022) introduces the regularization term on the
retaining dataset, which helps maintain the model ability on the retaining dataset. By incorporating the GA
loss alongside the GD loss, the GDiff objective can be formulated as:

LGD =
∑

(xi,yc
i

)∈Df

[− log(yc
i |xi, θ)] , (5)

LGDiff = LGA + LGD. (6)

KL Minimization. Different from GD, KL minimization (Yao et al., 2023) minimizes the KL divergence
between the prediction of the unlearned model and the origin model on the retaining dataset. The objective
is defined as:

LKL =
∑

(xi,yc
i

)∈Df

KL(pθ0(yc
i |xi)||pθ(yc

i |xi)). (7)
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Random Labeling. By fine-tuning the original model using relabeled labels (Golatkar et al., 2020) on the
forgetting dataset, the relabeling method overwrites the information associated with the original labels. The
optimization objective for relabeling is as follows:

LRelabel =
∑

(xi,.)∈Df

[−log(yrand|xi, θ)], (8)

where yrand is randomly chosen from the label set and yrand ̸= yf .

Negative Preference Optimization. To address the catastrophic collapse problem of GA, NPO (Zhang
et al., 2024b) has introduced the bounded optimization loss defined as

LNP O = − 2
β

∑
(xi,yi)∈Df

[logσ(−βlog
pθ(yi|xi)
pθ0(yi|xi)

]. (9)

Task Vectors. Task vector (Ilharco et al., 2022; Liu et al., 2024c) first computes the forgetting set-specific
vector defined as

τf = θtune − θ0, (10)

where θtune stands for the model tuned on the forgetting set Df and θ0 represent the origin trained model.
Subsequently, the task vector is negated and applied to the original model weights to compute the unlearned
model as follows

θu = θ0 − ατf . (11)

SalUn. SalUn (Fan et al., 2023) introduces a gradient-based weight saliency map to identify important
parameters for unlearning. The saliency map is defined as:

ms = I[∇θL(θ,Df )θ=θ0 > α], (12)

where I[·] denotes the indicator function and α is a predefined threshold controlling the selection. The method
selectively updates parameters with high gradient magnitudes using a relabeling strategy while freezing the
remaining parameters to preserve the model’s utility.

ME. ME (Yuan et al., 2024) minimizes the output distribution of the unlearned model between the uniform
distribution, which is defined as:

LME =
∑

(xi,yi)∈Df

KL(UK ||pθ(yi|xi)) (13)

where UK is the uniform distribution over the classes.

A.5 Training Details

We use a pre-trained ViT-L/14 CLIP model as the base model in all experiments. The prompts for each
dataset are provided in Table 10. The unlearning process is trained for 8 epochs using the Adam optimizer.
The batch size is set to 32 for the ImgnetDogs dataset and 16 for CompCars-S. For GA-based methods, the
initial learning rate (lr) is set to 8× 10−8, for SaLun, it is 2× 10−7, and for all other methods, it is 1× 10−7.
We save the checkpoint for evaluation when the unlearning accuracy on the training set stops decreasing. All
experiments are conducted on a single Nvidia RTX A6000 GPU. Additional training details for the baseline
methods are provided in Table 11. Since no retain set is used during training, KL divergence and gradient
ascent are applied solely to the forget set to preserve the model’s coarse recognition capabilities.

A.6 More results

A.6.1 More results on the ImgnetDogs dataset.

Details of zero-shot classification results are shown in Table 12. We evaluated several unlearning methods on
the OxfordPet dataset, regarded as an out-of-domain evaluation dataset. According to the results shown
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Table 10: Prompts of Compcars-S and ImagenetDog dataset.
Dataset Prompts
CompCars-S ‘a photo of a {}’, ‘a photo of the {}’, ‘a photo of my {}’,

‘i love my {}!’, ‘a photo of my dirty {}’, ‘a photo of my clean {}’,
‘a photo of my new {}’, ‘a photo of my old {}’

ImgnetDogs ‘a bad photo of a {}’, ‘a photo of many {}’, ‘a sculpture of a {}’,
‘a photo of the hard to see {}’, ‘a low resolution photo of the {}’, ’a rendering of a {}’,
‘graffiti of a {}’, ‘a bad photo of the {}’, ‘a cropped photo of the {}’,
‘a tattoo of a {}’, ‘the embroidered {}’, ‘a photo of a hard to see {}’,
‘a bright photo of a {}’, ‘a photo of a clean {}’, ‘a photo of a dirty {}’,
‘a dark photo of the {}’, ‘a drawing of a {}’, ‘a photo of my {}’,
‘the plastic {}’, ‘a photo of the cool {}’, ‘a close-up photo of a {}’,
‘a black and white photo of the {}’, ‘a painting of the {}’, ‘a painting of a {}’,
‘a pixelated photo of the {}’, ‘a sculpture of the {}’, ‘a bright photo of the {}’,
‘a cropped photo of a {}’, ‘a plastic {}’, ‘a photo of the dirty {}’,
‘a jpeg corrupted photo of a {}’, ‘a blurry photo of the {}’, ‘a photo of the {}’,
‘a good photo of the {}’, ‘a rendering of the {}’, ‘a {} in a video game’,
‘a photo of one {}’, ‘a doodle of a {}’, ‘a close-up photo of the {}’,
‘a photo of a {}’, ‘the origami {}’, ‘the {} in a video game’,
‘a sketch of a {}’, ‘a doodle of the {}’, ‘an origami {}’,
‘a low resolution photo of a {}’, ‘the toy {}’, ‘a rendition of the {}’,
‘a photo of the clean {}’, ‘a photo of a large {}’, ‘a rendition of a {}’,
‘a photo of a nice {}’, ‘a photo of a weird {}’, ‘a blurry photo of a {}’,
‘a cartoon {}’, ‘art of a {}’, ‘a sketch of the {}’,
‘an embroidered {}’, ‘a pixelated photo of a {}’, ‘itap of the {}’,
‘a jpeg corrupted photo of the {}’, ‘a good photo of a {}’, ‘a plushie {}’,
‘a photo of the nice {}’, ‘a photo of the small {}’, ‘a photo of the weird {}’,
‘the cartoon {}’, ‘art of the {}’, ‘a drawing of the {}’,
‘a photo of the large {}’, ‘a black and white photo of a {}’, ‘the plushie {}’,
‘a dark photo of a {}’, ‘itap of a {}’, ‘graffiti of the {}’,
‘a toy {}’, ‘itap of my {}’, ‘a photo of a cool {}’,
‘a photo of a small {}’, ‘a tattoo of the {}’

Table 11: Training details and hyper-parameters of the baselines.
Method Optimization Loss function Lr Hyper Parameters

GA LGA(xf , yf ) 8e-8 -
GDiff LGA(xf , yf ) + LGD(xf , yf

c ) 8e-8 -
ME+GD LME(xf , yf ) + LGD(xf , yf

c ) 1e-7 -
Task Vector LGD(xf , yf ) + 0.05 ∗ LGA(xf , yf

c ) 1e-7 α = 1.5
KL LGA(xf , yf )+ αcKL(xf , yf

c )+ αf KL(xf , yf ) 8e-8 αc = 5, αf = 20
NPO+KL LNP O(xf , yf )+ αcKL(xf , yf

c )+ αf KL(xf , yf ) 1e-7 β = 0.5, αc = 5, αf = 20
HGA+KL LHGA(xf , yf )+ αcKL(xf , yf

c )+ αf KL(xf , yf ) 1e-7 m = 2, αc = 10, αf = 20
Relabel LRelabel(xf , .) 1e-7 -
SalUn LRelabel(xf , .) 2e-7 α = 0.1

in Table 13, nearly all unlearning methods struggled to achieve high-quality forgetting, except for GA-
based methods. While GA-based methods demonstrated superior unlearning performance, they significantly
decreased performance on non-unlearned fine-grained concepts. Since the CLIP model is a non-generative
model, its classification evaluations are based on a closed set, requiring predefined class names for testing.
The limited number of categories in the OxfordPet dataset compared to the training set also impacts the
performance of these unlearning methods. Future work will improve the unlearning method further and
expand this case study to generative models (Li et al., 2024a; Wang et al., 2024a) with fine-grained recognition
capabilities.
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Table 12: Generalization performance across different baseline methods for the unlearned model.
Dataset Stanford Cars Food101 Flower102 Catech101 Cifar100 Avg ↑

Origin CLIP (Radford et al., 2021) 77.75 92.32 79.18 91.11 75.82 83.24
GA (Jang et al., 2022) 75.43 89.26 74.42 89.73 63.90 78.55
GDiff (Liu et al., 2022) 77.10 90.75 77.36 90.57 68.67 80.89

GA+KL(Yao et al., 2023) 76.59 91.47 78.08 90.78 71.40 81.66
NPO+KL (Zhang et al., 2024b) 77.07 91.90 78.26 90.65 73.12 82.20

Relabeling (Golatkar et al., 2020) 76.88 91.38 76.26 89.25 72.81 81.32
Task Vector (Ilharco et al., 2022) 77.15 92.05 78.53 90.28 74.85 82.57

SalUn (Fan et al., 2023) 77.50 91.56 76.66 89.31 73.83 81.77
ME+GD (Yuan et al., 2024) 77.14 91.56 76.48 89.50 73.80 81.70

HGA+KL(Ours) 77.24 92.00 78.81 90.68 73.94 82.53

Table 13: Comparison of fine-grained concept removal results across different baseline methods on the OOD
dataset.

Df
test Dr

test Performance MetricsSetting coarse ↑ fine ↓ coarse ↑ fine ↑ Quality ↑ Utility ↑ Q-U ↑

Origin CLIP (Radford et al., 2021) 92.18 99.10 73.98 91.54 – – –
GDiff (Liu et al., 2022) 85.77 12.32 54.77 58.59 87.57 77.02 81.96

GA+KL (Yao et al., 2023) 87.78 14.63 63.31 66.57 85.24 84.50 84.87
NPO+KL (Zhang et al., 2024b) 94.09 64.43 69.34 87.94 34.98 96.60 51.37

HGA+KL(Ours) 93.59 72.14 72.15 88.09 27.20 97.92 42.58

Additionally, we provide additional results for the medium and easy unlearning settings, as shown in Table 14
and Table 15. Across different memorization settings, our method consistently performs the best. Additionally,
the relabeling-based methods consistently show the poorest performance. The task-vector method performs
well in both medium and easy settings, indicating that it is unsuitable for high-memorization concept
unlearning. Furthermore, the NPO method’s forgetting quality is not very high in low memorization settings,
demonstrating its limitation.

A.6.2 More results on CompCars-S dataset.

The comparison results of different baseline methods on the CompCars-S dataset are presented in Table 16 and
Table 17. In this dataset, gradient ascent outperforms the KL divergence method. Additionally, relabeling-
based methods fail to achieve effective unlearning, similar to their performance on the ImagenetDogs dataset.
Notably, our proposed method significantly outperforms other unlearning techniques on the CompCars-S
dataset. Moreover, the generalizability of most unlearned models remains largely unaffected, except for
the relabeling-based method and the gradient ascent method without regularization, both of which exhibit
substantial degradation.
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Table 14: Comparison of fine-grained concept removal results across different baseline methods on ImgnetDogs
(Medium Unlearn).

Df
test Dr

test Performance MetricsMethod coarse ↑ fine ↓ coarse ↑ fine ↑ Quality ↑ Utility↑ Q-U ↑

Origin CLIP (Radford et al., 2021) 75.00 82.80 52.13 66.74 – – –
GA (Jang et al., 2022) 22.2 0.00 30.70 2.63 100.00 30.81 47.11
GDiff (Liu et al., 2022) 58.4 0.00 41.05 18.05 100.00 61.22 75.95

GA+KL (Yao et al., 2023) 69.00 1.20 49.01 40.38 98.55 82.18 89.62
NPO+KL (Zhang et al., 2024b) 74.6 4.40 50.20 57.30 94.69 93.88 94.28

Relabeling (Golatkar et al., 2020) 50.60 49.40 39.87 51.28 40.34 73.59 52.11
Task vector(Ilharco et al., 2022) 77.60 13.80 54.40 60.09 83.33 96.68 89.51

SalUn(Fan et al., 2023) 55.00 41.40 42.45 54.29 50.00 78.71 61.15
ME+GD (Yuan et al., 2024) 83.60 44.80 43.30 48.67 45.89 85.33 59.68

HGA+KL(Ours) 76.00 0.40 50.29 58.29 99.52 94.60 97.00

Table 15: Comparison of fine-grained concept removal results across different baseline methods on ImgnetDogs
(Easy Unlearn).

Df
test Dr

test Performance MetricsMethod coarse ↑ fine ↓ coarse ↑ fine ↑ Quality ↑ Utility ↑ Q-U ↑
Origin CLIP (Radford et al., 2021) 60.73 75.82 53.66 67.42 – – –

GA (Jang et al., 2022) 24.55 0.00 18.39 3.89 100.00 26.82 42.29
GDiff (Liu et al., 2022) 71.09 0.00 45.41 6.73 100.00 64.87 78.69

GA+KL (Yao et al., 2023) 63.82 0.36 49.5 26.23 99.52 77.05 86.85
NPO+KL (Zhang et al., 2024b) 64.55 6.55 54.02 60.66 91.38 96.65 93.94

Relabeling (Golatkar et al., 2020) 37.09 32.18 33.18 44.57 57.55 63.00 60.16
Task vector(Ilharco et al., 2022) 68.36 4.91 48.59 60.86 80.10 97.94 88.12

SalUn(Fan et al., 2023) 39.64 28.19 34.98 45.55 62.82 66.00 64.37
ME+GD (Yuan et al., 2024) 86.18 42.18 53.80 49.18 44.36 90.98 59.64

HGA+KL(Ours) 64.36 0.73 52.21 63.09 99.04 96.95 97.98

Table 16: Comparison of fine-grained concept removal results across different baseline methods on CompCars-S.

Df
test Dr

test Performance MetricsMethod coarse ↑ fine ↓ coarse ↑ fine ↑ Quality↑ Utility ↑ Q-U ↑
Origin CLIP (Radford et al., 2021) 92.78 92.10 73.29 71.04 – – –

GA (Jang et al., 2022) 0.00 0.00 3.27 1.28 100.00 2.09 4.09
GDiff (Liu et al., 2022) 88.66 2.75 69.75 18.62 97.02 72.31 82.86

GA+KL(Yao et al., 2023) 45.02 1.38 41.93 8.21 98.51 39.10 55.98
NPO+KL (Zhang et al., 2024b) 89.69 16.15 70.13 39.82 82.46 82.80 82.63

Relabeling (Golatkar et al., 2020) 59.11 25.43 58.70 43.22 72.39 68.21 70.24
Task vector(Ilharco et al., 2022) 82.82 28.52 68.48 60.91 69.03 89.48 77.94

SalUn(Fan et al., 2023) 64.26 23.71 57.69 43.37 74.25 69.67 71.89
ME+GD (Yuan et al., 2024) 99.66 28.18 77.83 37.96 69.40 84.47 76.20

HGA+KL(Ours) 87.97 2.41 68.68 59.04 97.39 90.54 93.84
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Table 17: Generalization performance across different baseline methods for the unlearned model.
Dataset Food101 Flower102 Caltech101 OxfodPet Cifar100 Avg ↑

Origin CLIP (Radford et al., 2021) 92.32 79.18 91.11 93.59 75.82 86.40
GA (Jang et al., 2022) 92.19 78.71 90.92 93.57 73.18 85.71
GDiff (Liu et al., 2022) 92.29 79.61 91.01 93.76 74.32 86.20

GA+KL(Yao et al., 2023) 92.32 79.17 91.05 93.62 74.07 86.05
NPO+KL (Zhang et al., 2024b) 92.26 78.91 90.95 93.10 75.61 86.34

Relabeling (Golatkar et al., 2020) 91.77 76.99 90.18 90.11 73.17 84.44
Task Vector (Ilharco et al., 2022) 92.30 78.74 91.02 93.16 75.45 86.13

SalUn(Fan et al., 2023) 91.52 76.35 90.07 88.14 73.51 83.92
ME+GD (Yuan et al., 2024) 91.22 75.05 90.28 86.26 73.21 83.20

HGA+KL(Ours) 92.26 78.91 90.95 93.10 75.61 86.17
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