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ABSTRACT

Although large language models (LLMs) have tremendous utility, trustworthiness
is still a chief concern: models often generate incorrect information with high
confidence. While contextual information can help guide generation, identifying
when a query would benefit from retrieved context and assessing the effectiveness
of that context remains challenging. In this work, we operationalize interpretability
methods to ascertain whether we can predict the correctness of model outputs from
the model’s activations alone. We also explore whether model internals contain
signals about the efficacy of external context. We consider correct, incorrect, and
irrelevant context and introduce metrics to distinguish amongst them. Experiments
on six different models reveal that a simple classifier trained on intermediate layer
activations of the first output token can predict output correctness with about 75%
accuracy, enabling early auditing. Our model-internals-based metric significantly
outperforms prompting baselines at distinguishing between correct and incorrect
context, guarding against inaccuracies introduced by polluted context. These
findings offer a lens to better understand the underlying decision-making processes
of LLMs.

1 INTRODUCTION

Large language models (LLMs) have shown tremendous utility in many domains, including those that
require accurately answering factual queries (Scao et al., 2023; Grattafiori et al., 2024; Groeneveld
et al., 2024). However, trustworthiness remains a chief concern: LLMs often generate convincing,
but thoroughly incorrect and non-factual responses, termed hallucinations (Bang et al., 2023; Huang
et al., 2025; Guerreiro et al., 2023).

Recently, retrieval-augmented generation (RAG) has been proposed to mitigate this problem (Lewis
et al., 2020). Although RAG is effective, two challenges remain: confidence estimation to identify
uncertain examples where an LLM requires external context and efficacy evaluation to score the
utility of the retrieved external context. Confidence estimation is challenging as LLMs are poorly
calibrated: models often assign high probabilities to incorrect generations, making it difficult to detect
when retrieval is needed (Jiang et al., 2021; Mielke et al., 2022a; Kadavath et al., 2022a; Yin et al.,
2023a). However, existing approaches either rely on fragile self-evaluation (Yin et al., 2023b; Chen
et al., 2024) or focus on narrow tasks and require complex setups (Azaria & Mitchell, 2023; Burns
et al., 2024).

For context evaluation, although there exist methods to estimate efficacy of retrieved context such as
SelfRAG (Asai et al., 2023), they rely on fine-tuning models and prompting external models to gauge
the utility of external context. A lightweight way to judge efficacy directly from model internals
remains missing. Instead, we look at these questions using our LLM microscope, through the lens of
mechanistic interpretability, and study whether model internals contain signals about the correctness
of responses and the efficacy of specific auxiliary context when answering a query. Concretely, we
study the following research questions:

1. RQ1: Can we estimate the correctness of a model generation from its model internals alone?
2. RQ2: Can we estimate the efficacy of a given context directly from model internals?
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<System prompt> <Context (for RQ2)>

Query: When was the World Scrabble 
Championship first held?

Model’s answer
1991 

Prediction
Will the model 
get it correct?

Embedding

Unembedding

Decode

Self attention

Feed-forward

Self attention

Feed-forward

Self attention

Feed-forward

Unembedding 
Logit / Tuned lens

Unembedding 
Logit / Tuned lens

Hidden states

PKS (Sec 2.4)

PKS (Sec 2.4)

Logit / Tuned 
lens features

Random forest

classifier

...

Correct & relevant
The World Scrabble Championship 
started in 1991.

Incorrect & relevant
The World Scrabble Championship 
has been held since 1965.

Irrelevant
Monopoly is a game about 
buying and selling assets.

ECS (Sec 3.2)

We introduce a 
new metric to 
separate out 

context types.

(Sec 3.2)

2 
RQ

1 
RQ

Figure 1: Overview of our framework. For RQ1, we use model internals, including hidden states,
Logit/Tuned Lens-based features, and parametric knowledge score (PKS) to train classifiers that
predict the correctness of a model’s output when answering a question. For RQ2, we analyze how
internal signals like external context score (ECS) and PKS respond to different types of external
context (correct, incorrect, irrelevant) in order to assess the model’s sensitivity to context when
generating answers.

To answer these questions, we study six LLMs across three model families and sizes in
an open-domain factual question-answering setting on the TriviaQA (Joshi et al., 2017) and
MMLU (Hendrycks et al., 2021) datasets. We train classifiers on model internals to predict generation
correctness and context relevance. To operationalize contextual relevance, we introduce two novel
measures: contextual log-likelihood gain and contextual relative utility and study whether model
internals can discriminate between contexts across two axes: correctness and relevance. We find that:

1. We can estimate correctness of a model generation to open-domain questions from model internals
alone with over 75% accuracy and 70% AUC-ROC.

2. Using our model internals-based contextual log-likelihood gain metric, we can effectively discrim-
inate between contexts across both the axes of correctness and relevance.

2 RELATED WORK

Confidence Estimation Confidence estimation methods are typically categorized as closed-box or
open-box. Closed-box methods prompt the model to assess its own correctness, either by estimating
the likelihood that its answer is correct or by judging whether it knows the answer (Kadavath et al.,
2022b; Tian et al., 2023; Yin et al., 2023b; Huang et al., 2024). Some use linguistic cues (Mielke
et al., 2022b) or generation consistency (Manakul et al., 2023; Zhang et al., 2023; Chen et al., 2024).
Open-box methods instead analyze the model’s internals, either through logit-based uncertainty
estimates (Murray & Chiang, 2018; Kadavath et al., 2022b; Huang et al., 2023; Vazhentsev et al.,
2023) or by probing hidden activations directly (Li et al., 2023; Orgad et al., 2024; Burns et al., 2024;
Subramani et al., 2025).

Our work builds on this line of open-box internal-state approaches but differs in several key ways.
First, we focus on predicting the correctness of generated answers across both open-domain QA
and multiple-choice settings (Azaria & Mitchell, 2023; Burns et al., 2024). Second, we evaluate
whether a model’s internals can predict the correctness of its own generations, establishing a direct,
on-policy evaluation setting (Azaria & Mitchell, 2023; Servedio et al., 2025). We use a simple random
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forest classifier to both preserve feature interpretability and avoid entangling effects of classifier
complexity (Kadavath et al., 2022b; Orgad et al., 2024; Ashok & May, 2025). This simple yet
effective setup allows us to demonstrate that a variety of internal-state features derived from diverse
interpretability techniques can support robust confidence estimation in generative tasks. 1

Parametric and Contextual Knowledge The activation spaces of LLMs encode structured, editable
knowledge through mechanisms like induction heads (Elhage et al., 2021), knowledge neurons (Dai
et al., 2022), and feed-forward layers (Geva et al., 2022). Probing tools such as Logit-Lens (nostal-
gebraist, 2020), Tuned-Lens (Belrose et al., 2023), Future-Lens (Pal et al., 2023), and Backward-
Lens (Katz et al., 2024), and methods like causal tracing (Meng et al., 2022), attention analysis (Geva
et al., 2023; Yuksekgonul et al., 2023), and steering (Subramani & Suresh, 2020; Subramani et al.,
2022; Turner et al., 2023), reveal how predictions evolve across layers. Additionally, different layers
of transformer-based language models encode different linguistic properties (Tenney et al., 2019;
Ethayarajh, 2019; Li & Subramani, 2025). To improve factuality, retrieval-augmented approaches
incorporate external context (Roller et al., 2020; Shuster et al., 2021; Ravichander et al., 2025).
Recent work (Wu et al., 2024; Wadhwa et al., 2024; Sun et al., 2025; Li et al., 2025) examine
clashes between internal and retrieved knowledge, identify model over-reliance on retrieved context,
and develop metrics to diagnose and treat that reliance. We address this gap by moving beyond
prompting-based approaches to context helpfulness measurement; to our knowledge, we are the
first to apply interpretability techniques to study how models utilize contextual versus parametric
knowledge (Huang et al., 2024).

3 RQ1: ESTIMATING CORRECTNESS

To study RQ1, we formulate a binary classification task to predict whether a generated answer is
correct. Each instance in this task consists of a factual question Q, the ground-truth answer A∗,
an LLM-generated answer A, and all activations and outputs HQ,A produced by a model M when
attempting to answer Q. We train a simple classifier f that takes Q, A, and HQ,A as input and
predicts I[A = A∗]. The classifier does not have access to the ground-truth answer A∗ or any external
knowledge source; A∗ is only used to create the ground-truth label for training. We explore several
choices for HQ,A as input features, which we describe below.

3.1 ASKING LLMS DIRECTLY

We explore two prompting strategies to measure how well LLMs can express their confidence in an
answer: Prompting without Answers and Prompting with Answers. In Prompting without Answers, the
model M is given a question Q, and asked to output a confidence score between 0 and 100 indicating
how confident it is about answering the question without actually generating an answer. In Prompting
with Answers, M first generates a candidate answer A for Q and then is asked to output a confidence
score based on how certain it is about the generated answer (see §B.1 for prompting setup details).

3.2 DECODING FROM INTERMEDIATE LAYERS

To test whether model internals contain signals for estimating answer correctness, we look at
two techniques that facilitate decoding from intermediate hidden states: Logit Lens and Tuned
Lens (nostalgebraist, 2020; Belrose et al., 2023). Both of these methods convert intermediate hidden
states into the vocabulary space. We obtain the following input features HQ,A from these probability
distributions. These features are computed per layer and sequence position and provided at once to
the classifier. See §B.2 and §B.3 for additional details on Logit/Tuned Lens and these features.

• The Shannon’s entropy measures the uncertainty in the model’s probability distribution over the
next token at each layer and sequence position (Shannon, 1948).

• The output token rank is the position, in descending order of log-probability, of the token selected
by the model at each layer. While this rank is related to probability, it serves as a more direct proxy
for the token a decoding algorithm is likely to generate.

1See Geng et al. (2024) for a broader overview.
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• The top-p presence of the output token is a binary indicator of whether the token generated by
the model appears in the top-p nucleus set at each layer (p ∈ {0.5, 0.9, 0.95, 0.99} Holtzman et al.
(2019)).

• The cross-entropy quantifies how similar model predictions are across layers and is computed as
the negative log probability of the generated token under the distribution at each layer.

3.3 HIDDEN STATES

Rather than transforming the hidden states and decoding from them, we experiment with using the
model’s hidden states directly as input features to f . Formally, we use h ∈ Rd at layer ℓ ∈ {1, ..., L}
from the first token position of the forward pass that generated A in response to Q to train f .
Since activations could have different scales due to differences in parameter norms throughout
training (Merrill et al., 2021), we convert the value in every dimension d of the activation h to a
z-score using means and variances computed from an auxiliary dataset.

3.4 PARAMETRIC KNOWLEDGE SCORES (PKS)

We expect the amount of parametric knowledge used to answer a question Q positively correlates
with the confidence the model has about its generated answer A. In other words, the more parametric
knowledge used to answer the question the more confidence it should have about that answer. To
quantify the utilization of parametric knowledge, we use the Parametric Knowledge Score (PKS)
from Sun et al. (2025), which measures how much the feedforward networks (FFN) contribute to the
activations. For each token at layer ℓ, the activations before and after the FFN layer are transformed
into a probability distribution over the vocabulary via Logit Lens. PKS is the Jensen-Shannon
divergence (JSD) between these two distributions, loosely capturing the amount of information
imparted by FFN weights into the activations. Formally, the token-level PKS is given by Pℓ =
JSD (q(xbefore,ℓ) ∥ q(xafter,ℓ)), where q(·) = softmax(LogitLens(·)).

4 RQ2: ESTIMATING EFFICACY OF CONTEXT

Our goal is to see whether we can measure the efficacy of a given context C from either internal
(via model internals) or external (via prompting) features. We look at two attributes of context:
correctness and relevance and define three types of context C:

• Correct and relevant (Ccorrect): aligns with the gold answer and has essential information.
• Incorrect but relevant (Cincorrect): structurally similar and topically aligned, but contains incorrect

or misleading information.
• Irrelevant (Cirrelevant): topically unrelated to and unhelpful for answering the question.

We define two lenses with which we can observe the effect of contexts: contextual log-likelihood
gain and contextual relative utility.

Contextual log-likelihood gain measures how much incorporating a context C improves (positive) or
degrades (negative) the model’s confidence in generating the correct answer. In RAG, it quantifies the
utility of the retrieved context to the model to generate the correct answer. For a question Q, context
C, and ground-truth answer tokens y = (y1, . . . , yT ), the contextual log-likelihood gain is defined
as:

LL(Q,C) =

T∑
t=1

log p(yt | y<t, Q,C)−
T∑

t=1

log p(yt | y<t, Q) (1)

Contextual relative utility compares two different contexts C1 and C2 and measures whether C1 is
more helpful (positive) or harmful (negative) than C2 for a model to produce the correct answer. We
formally define contextual relative utility as ∆LL(Q,C1, C2) = LL(Q,C1)− LL(Q,C2).

4.1 PROMPTING-BASED CONFIDENCE ESTIMATION

We analyze whether prompting-based methods can approximate the model’s contextual log-likelihood
gain through asking the model to generate confidence scores. For each question Q, we prompt the
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model to output a confidence score on a 0–100 scale under the two different context conditions
discussed in §3.1: Prompting without Answers and Prompting with Answers.

Let Conf(Q,C) denote the model’s confidence score when answering Q with context C, and Conf(Q)
denote its confidence when answering without any context. We define the prompting-based contextual
gain as:

Ω(Q,C) = Conf(Q,C)− Conf(Q). (2)
To compare two contexts C1 and C2, we define the prompting-based relative utility as
∆Ω(Q,C1, C2) = Ω(Q,C1)− Ω(Q,C2), which estimates the relative helpfulness of C1 over C2. If
the model can accurately distinguish context quality, we expect: ∆Ω(Q,Ccorrect, Cincorrect) > 0, and
∆Ω(Q,Ccorrect, Cirrelevant) > 0.2

4.2 INTERNALS-BASED CONFIDENCE ESTIMATION

To measure how well additional context can affect question-answering ability along the two axes of
external context utilization and internal parametric knowledge reliance, we use external context score
(ECS) and parametric knowledge score (PKS) from Sun et al. (2025). External Context Score (ECS)
captures the extent to which a language model relies on external context during generation. For each
output token tn, ECS is computed as the cosine similarity between the token’s final-layer hidden state
xL
n and the mean-pooled embedding e of the top-k% most attended context tokens, selected based on

attention weights. The token-level ECS is defined as:

ECSl
h(tn) =

e · xL
n

∥e∥∥xL
n∥

(3)

We can obtain the ECS score across a multi-token generation by simply averaging token-wise ECS
scores over all output tokens. A higher ECS indicates stronger alignment between the generated
output and the retrieved context, suggesting that the model is effectively utilizing external information.

In our setting, parametric knowledge and external context can be thought of as orthogonal. We define
a proxy for contextual log-likelihood gain using model internals as:

Ψ(Q,C) = ECS(Q,C)− λ · PKS(Q,C), (4)

where ECS(Q,C) measures the model’s reliance on external context, PKS(Q,C) quantifies the
effect of parametric knowledge in the presence of context, and λ is a scaling factor that rescales
PKS to match ECS. In our experiment, we choose the value of λ for each dataset such that the mean
PKS score is rescaled to match the mean ECS score, computed across all examples and all context
types. This normalization ensures that per-example differences in Ψ(Q,C) reflect shifts in context
reliance without introducing category-specific bias. To compare two contexts C1 and C2, we define
internals-based relative utility as:

∆Ψ(Q,C1, C2) = Ψ(Q,C1)−Ψ(Q,C2) (5)

Our formulation reflects the tradeoff between contextual and parametric knowledge: higher values
of Ψ(Q,C) suggest stronger reliance on external context, while lower values indicate dominance of
parametric knowledge or potential confusion from misleading context.

In addition, we directly compute contextual relative utility using the actual log-likelihood, denoted
as ∆Ψ(log likelihood). Specifically, we apply the log softmax over the vocabulary to obtain token-level
log probabilities, average these over the ground-truth answer tokens, and then take the difference
between two context types.

5 EXPERIMENTAL SETUP

Datasets We use factual short-question-answering datasets TriviaQA (Joshi et al., 2017) and
MMLU (Hendrycks et al., 2021) for our experiments. We report results on both datasets for RQ1.
As TriviaQA is open-ended while MMLU is multiple-choice, this ensures generalizability of our
results across question types. As RQ2 requires accompanying context, we only use TriviaQA for this

2See §C.2 for the reasoning, and §C.1 for details on the prompting setup.
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Dataset Context Type LLaMA 3 8B LLaMA 2 13B LLaMA 2 7B Gemma 2 9B Qwen 2.5 7B Qwen 2.5 3B

TriviaQA

None 0.708 0.591 0.611 0.749 0.558 0.435
Correct 0.888 0.833 0.845 0.906 0.856 0.815
Incorrect 0.358 0.340 0.314 0.406 0.332 0.301
Irrelevant 0.579 0.516 0.465 0.727 0.488 0.293

MMLU None 0.611 0.484 0.462 0.709 0.693 0.634

Table 1: Model accuracies on TriviaQA and MMLU datasets with no context and with varying context
conditions. MMLU does not contain context or evidence documents.

research question as MMLU does not provide context passages or evidence documents. To ensure
our experiments remain computationally viable, we only consider the validation subset of TriviaQA,
from which we retain 6,557 examples after quality filtering (see §D.1 for details). These are split
80%-20% for training and testing our classifiers. To account for possible variations in referring to the
same entity, we use GPT-4o (OpenAI et al., 2024) as an LLM-judge to evaluate the correctness of
model-generated answers against all the ground-truth answer variations present in TriviaQA. We use
the 14,042 test examples of the “all” subset of MMLU as our training set and the 1,531 validation
examples as our test set. As MMLU questions are multiple-choice, we use regex-based answer
extraction and verification.

External Context: We use the original evidence document provided by TriviaQA, or a summarized
version if the original exceeds 500 tokens, as the correct context. We then construct incorrect and
irrelevant contexts by modifying or substituting these documents in controlled ways: for incorrect
context, we ask an LLM to replace all references to the ground-truth answers with incorrect alterna-
tives; for irrelevant context, we sample the correct context of a different example with low textual
similarity (see §D.1 for details and examples).

Models: We experiment with 6 models across families and sizes: LLaMA-3-8B-Instruct (Grattafiori
et al., 2024), LLaMA-2-7B-Chat-HF and LLaMA-2-13B-Chat-HF (Touvron et al., 2023), Qwen-2.5-
3B-Chat and Qwen-2.5-7B-Chat (Yang et al., 2024), and Gemma-2-9B-It (Team et al., 2024).

Methodology Details: We choose random forest classifiers for their interpretability, which facili-
tates feature importance analysis, while also capturing non-linear patterns in the data. These classifiers
are trained on the features discussed in §3 (see §D.2 for hyper-parameters and training speifications).
For RQ2, we estimate contextual log-likelihood gain using ECS and PKS using equation (4). For
ECS, we average across both attention heads and output tokens and for PKS, we average across
output tokens to capture the overall effect of parametric knowledge on the entire output. PKS and
ECS are calculated per layer and then averaged across layers. We present a layer-wise analysis in
§7.2. We calculate one λ for each model by rescaling the relative magnitudes of PKS and ECS,
averaged over all examples and context types in the training set.

6 RESULTS

We present the accuracies of our six LLMs on both TriviaQA and MMLU in Table 1. All models
achieve moderate accuracy in the default no-context setting, with the larger and more recent models
generally performing better. As expected, accuracy on TriviaQA increases with correct context and
drops with incorrect or irrelevant context, highlighting that models are indeed sensitive to external
context. We focus on the no-context setting to study RQ1 in §6.1 and examine different context types
for RQ2 in §6.2.

6.1 RQ1: CAN WE ESTIMATE CORRECTNESS FROM MODEL INTERNALS ALONE?

Table 2 shows that prompting-based baselines perform poorly across all models, barely outperforming
the majority-class baseline, even when given access to its own generated answer. This is particularly
evident in the LLaMA models, suggesting that such prompting strategies fail to estimate correctness
accurately and highlight that LLMs are poorly calibrated.

6
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Estimator LLaMA 3 8B LLaMA 2 13B LLaMA 2 7B Gemma 2 9B Qwen 2.5 7B Qwen 2.5 3B

A
cc

ur
ac

y

Majority 0.699 0.591 0.621 0.735 0.567 0.565
Prompt w/ A 0.789 0.599 0.634 0.762 0.727 0.652

Prompt w/o A 0.699 0.611 0.621 0.768 0.637 0.605
Logit lens 0.782∗‡ 0.779∗†‡ 0.776∗†‡ 0.774∗ 0.751∗‡ 0.729∗†‡

Tuned lens 0.779∗‡ 0.775∗†‡ 0.775∗†‡ - - -
Hidden states (Best) 0.759∗‡ 0.679∗†‡ 0.702∗†‡ 0.785∗ 0.782∗†‡ 0.749∗†‡

PKS 0.733 0.725∗†‡ 0.709∗†‡ 0.743 0.650∗ 0.695∗†‡

A
U

C
-R

O
C

Majority 0.500 0.500 0.500 0.500 0.500 0.500
Prompt w/ A 0.783 0.512 0.537 0.592 0.736 0.687

Prompt w/o A 0.591 0.582 0.542 0.742 0.653 0.631
Logit lens 0.790∗‡ 0.847∗†‡ 0.835∗†‡ 0.747∗† 0.826∗†‡ 0.812∗†‡

Tuned lens 0.782∗‡ 0.846∗†‡ 0.829∗†‡ - - -
Hidden states (Best) 0.647∗‡ 0.631∗†‡ 0.647∗†‡ 0.616∗ 0.774∗‡ 0.735∗†‡

PKS 0.729∗‡ 0.768∗†‡ 0.743∗†‡ 0.723∗† 0.715∗‡ 0.752∗†‡

(a) TriviaQA

Estimator LLaMA 3 8B LLaMA 2 13B LLaMA 2 7B Gemma 2 9B Qwen 2.5 7B Qwen 2.5 3B

A
cc

ur
ac

y

Majority 0.604 0.538 0.548 0.717 0.692 0.627
Prompt w/ A 0.603 0.497 0.547 0.718 0.705 0.627

Prompt w/o A 0.605 0.535 0.529 0.718 0.704 0.629
Logit lens 0.705∗†‡ 0.692∗†‡ 0.699∗†‡ 0.769∗†‡ 0.815∗†‡ 0.673∗†‡

Tuned lens 0.695∗†‡ 0.671∗†‡ 0.684∗†‡ - - -
Hidden states (Best) 0.744∗†‡ 0.686∗†‡ 0.672∗†‡ 0.801∗†‡ 0.777∗†‡ 0.746∗†‡

PKS 0.605 - 0.543 0.705 0.691 0.618

A
U

C
-R

O
C

Majority 0.500 0.500 0.500 0.500 0.500 0.500
Prompt w/ A 0.590 0.501 0.560 0.557 0.562 0.629

Prompt w/o A 0.497 0.538 0.492 0.513 0.544 0.519
Logit lens 0.798∗†‡ 0.771∗†‡ 0.767∗†‡ 0.843∗†‡ 0.939∗†‡ 0.711∗†‡

Tuned lens 0.770∗†‡ 0.752∗†‡ 0.760∗†‡ - - -
Hidden states (Best) 0.740∗†‡ 0.684∗†‡ 0.576∗‡ 0.736∗†‡ 0.728∗†‡ 0.733∗†‡

PKS 0.537‡ - 0.543∗‡ 0.555∗‡ 0.541∗ 0.538

(b) MMLU

Table 2: Performance of various classifiers on the test sets using our proposed methods and baseline
approaches. We include two prompting baselines: Prompt w/ A (prompting with answers) and Prompt
w/o A (prompting without answers) and a simple majority class baseline (Majority). For Logit Lens,
Tuned Lens, and PKS methods, we use all values across layers as input features, while for Hidden
States, we choose the best layer. Hidden states are normalized using z-score normalization. Tuned
Lens results are omitted for models whose weights are not publicly available (Belrose et al., 2023).
PKS scores are not available for LLaMA 2 13B on MMLU due to computational constraints. ∗, †, and
‡ indicate statistical significance compared to Majority, Prompt w/ A, and Prompt w/o A, respectively
(p-value < 0.05, two-sided permutation test).

(a) TriviaQA (b) MMLU

Figure 2: Area under ROC curve for random forest classifiers trained on z-score normalized hidden
states of each layer. Performance increases with layer depth, suggesting that later layers refine and
consolidate decision-relevant signals.
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Context Comparison Differentiator LLaMA 3 8B LLaMA 2 7B Qwen 2.5 7B Qwen 2.5 3B Average

Correct > Incorrect ∆Ω(prompt w/ A) 19.7 10.9 32.7 16.4 19.9
∆Ω(prompt w/o A) 20.8 11.3 30.0 23.6 21.4
∆Ψ(log likelihood) 83.9†‡ 89.5†‡ 82.6†‡ 83.3†‡ 84.8†‡
∆Ψ(model internals) 85.5†‡ 70.2†‡ 85.2†‡ 75.9†‡ 79.2†‡

Correct > Irrelevant ∆Ω(prompt w/ A) 83.2 39.7 52.2 88.5 65.9
∆Ω(prompt w/o A) 93.6 68.4 79.9 72.4 78.6
∆Ψ(log likelihood) 76.7 74.7†‡ 74.5† 80.6‡ 76.6†

∆Ψ(model internals) 86.3† 90.5†‡ 89.6†‡ 70.6 84.3†‡

Table 3: Proportion of examples where ∆LL successfully distinguishes context quality us-
ing prompting-based and internal-based confidence estimators on TriviaQA. We compute
∆LL(Q,Ccorrect, Cincorrect) and ∆LL(Q,Ccorrect, Cirrelevant) separately for each example and report
the fraction for which the result is greater than zero. † and ‡ indicate statistical significance compared
to Prompt w/ A and Prompt w/o A, respectively (p-value < 0.05, two-sided permutation test).

In contrast, the classifier trained on features extracted with the Logit Lens show strong performance,
yielding the highest AUC-ROC scores on both datasets for most models. Tuned Lens performs
comparably to Logit Lens, despite being developed to improve upon Logit Lens by better aligning
intermediate hidden states with the output distribution through affine transformations. We hypothesize
that the only distinction between the Tuned Lens and the Logit Lens is the affine transformation,
and thus the corresponding scaling and shifting of activations do not contribute additional predictive
information.

Surprisingly, classifiers trained directly on hidden states perform nearly as well as those based on
Logit Lens features on both datasets. This finding indicates that the vanilla activations already encode
information about the correctness of the model’s output. In Figure 2, we observe that performance
improves with depth, suggesting that later layers refine and consolidate decision-relevant signals.
This result implies that intermediate decoding methods may not be necessary to predict correctness
and the strong performance of classifiers trained on first token hidden states across models may allow
for correctness auditing of model responses early in the generation process.

Lastly, we find that PKS alone is strongly predictive of correctness on TriviaQA, despite being explic-
itly designed to just measure the influence of feedforward networks on token representations. This
indicates that the feedforward layers of an LLM impart information onto the activations differently
based on how in-distribution a given query is. However, PKS performs close to random chance for
MMLU, suggesting that its discriminatory power may be limited to open-ended question answering
and not extend to single-token multiple choice questions.

6.2 RQ2: CAN WE ESTIMATE CONTEXT EFFICACY DIRECTLY FROM MODEL INTERNALS?

Table 3 shows that internals-based confidence estimation significantly outperforms prompting-based
methods when distinguishing between correct and incorrect contexts. This result is striking: while
models fail to express higher confidence when generating answers conditioned on correct context,
their internal activations nonetheless reflect this difference. All models exceed the 50% random
baseline by a wide margin. We do not include results for LLaMA 2 13B due to computational
constraints, nor for Gemma 2 9B due to the inapplicability of ECS to its architecture. Further
explanation is provided in §F.1.

When comparing correct and irrelevant contexts, Prompting without Answer performs well, often on
par with internal-based estimation and consistently outperforms the Prompting with Answer baseline.
This suggests that including the model’s own answer in the prompt may mislead it, especially
when the answer is incorrect due to misleading context. Without the generated answer, however,
models appear better able to distinguish irrelevant contexts. This is paradoxical: despite being
able to differentiate between relevant and irrelevant contexts, the underlying LLM remains strongly
influenced by irrelevant context (see Table 1), suggesting that recognition alone is insufficient to steer
the model towards an accurate answer. We suspect that during training, the model is rarely given
irrelevant context and learns to implicitly trust contextual information.
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7 DISCUSSION

7.1 RQ1

Prompting Baselines Here, we look at how well calibrated the prompting-based approaches
are by looking at a reliability diagram and measuring smooth expected calibration error (Smooth
ECE) (Błasiok & Nakkiran, 2023). In our reliability diagrams, we plot the confidence (x-axis) vs.
accuracy (y-axis) and plot the line y = x indicating a perfectly calibrated system. Figures 3–6 in
our Appendix show that all prompting baselines for all LLMs for both TriviaQA and MMLU are
systematically overconfident (i.e., predictions with x% confidence yield < x% accuracy).

Logit Lens vs. Tuned Lens In addition to the comparison presented in Table 2, we further train
separate classifiers on logit lens and tuned lens features of each individual layer to assess performance
across layers on TriviaQA (see Figure 7 in Appendix). The performance of the two methods
varies across layers without a consistent trend and neither consistently outperforms the other. We
observe that earlier layers are also highly predictive of generation correctness, achieving performance
comparable to later layers. This strengthens our finding that information about output correctness is
available early on in the models’ activations, underscoring the potential of early auditing.

Logit/Tuned Lens: Feature Importance We analyze feature importance scores from random
forest classifiers for TriviaQA in Figure 8 in the Appendix. Entropy and cross-entropy from the
final layer emerge as the most important features across all models. This is intuitive: output token
logits and distributions directly capture the model’s confidence when generating the correct answer.
Additionally, features from the last ∼ 5 layers generally exhibit higher importance.

Logit/Tuned Lens: AUC-ROC Curves of Features from External vs. Internal Layers To
examine whether features from non-final layers (denoted as Internal) are as predictive as those from
the final layer alone (denoted as External), we train separate classifiers using each feature set and
compare their AUC-ROC curves, as shown in Figure 9 for TriviaQA and Figure 10 for MMLU.
Interestingly, across all models, classifiers trained on internal layers achieve higher AUC scores
than those using only the final layer. This suggests that intermediate representations can carry more
information than the final layer alone for predicting generation correctness. See §E for other analyses.

7.2 RQ2

Example Analysis We visualize ECS and PKS values across model layers and output tokens for
selected TriviaQA examples in Figures 12, 13, and 14 in the Appendix. While PKS scores show
only small variations across tokens and layers, later layers show noticeably higher values. Here,
initial output tokens have higher PKS values than later ones. These patterns suggest that parametric
knowledge accumulated in later layers has a stronger influence on the output distribution, particularly
at the beginning of generation.

In contrast, ECS scores vary more across tokens, reflecting the model’s selective use of context
depending on the importance and influence of the context on each output token. Uninformative tokens
tend to exhibit lower ECS scores. Across layers, ECS shows relatively little variation, indicating that
attention to external context is distributed broadly across the network rather than being isolated to
specific layers. While features continue to evolve across layers, the degree to which tokens attend to
one another’s features appears relatively stable.

8 CONCLUSION

Our experiments demonstrate that we can indeed predict the correctness of a model generation from
model internals alone. In fact, with just the activations of first output token, we can predict correctness
with about 75% accuracy, hinting that early auditing could be possible. Prompting, on the other hand,
is poorly calibrated and thus has little utility. Additionally, using model internals based contextualized
log-likelihood, we can estimate the efficacy of external context along two axis: correctness and
relevancy. Taken together, our results suggest that deciphering model internals could provide valuable
insight into making language models more trustworthy.

9
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REPRODUCIBILITY STATEMENT

We provide the dataset details, training details, model specifications, and prompts used in the main text
or the Appendix to ensure our experiments are reproducible. We use mainstream and commonly-used
software libraries, datasets, and models for our experiments. We publicly release our code.

ETHICS STATEMENT

Large language models carry significant potential for misuse, both intentional and accidental. Our
work aims to advance understanding of the decision-making processes in LLMs and to identify
hallucinations in model generations, thereby helping to mitigate some of the harms associated with
the spread of inaccurate, model-generated content. Nevertheless, our methods should not be seen as a
substitute for careful usage and verification; all model outputs must be independently checked for
accuracy, particularly in domains where correctness is critical.

We emphasize that all datasets and models used in this study are available under permissive licenses
for research purposes. We rely on instruction-tuned models, which have already undergone safety-
related training. At the same time, we acknowledge that probing or intervening in model internals
may alter or undermine this safety tuning. Understanding and exposing hidden mechanisms inside
LLMs can yield valuable scientific insight, but it also carries risks: such methods could, in principle,
be adapted to bypass alignment safeguards or weaken safety behaviors.

We therefore caution that techniques for manipulating internal representations should be applied with
care and with an awareness of their broader implications. Our intention in presenting this work is to
promote transparency, accountability, and safer deployment of LLMs, not to provide tools that could
be used to compromise alignment or safety constraints.

REFERENCES

Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif Rasul, Stefan Schweter, and Roland Vollgraf.
FLAIR: An easy-to-use framework for state-of-the-art NLP. In NAACL 2019, 2019 Annual
Conference of the North American Chapter of the Association for Computational Linguistics
(Demonstrations), pp. 54–59, 2019.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Learning to
retrieve, generate, and critique through self-reflection. In The Twelfth International Conference on
Learning Representations, 2023.

Dhananjay Ashok and Jonathan May. Language models can predict their own behavior. arXiv
preprint arXiv:2502.13329, 2025.

Amos Azaria and Tom Mitchell. The internal state of an LLM knows when it‘s lying. In
Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the Association for Com-
putational Linguistics: EMNLP 2023, pp. 967–976, Singapore, December 2023. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.68. URL https:

//aclanthology.org/2023.findings-emnlp.68/.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan Wilie, Holy Lovenia,
Ziwei Ji, Tiezheng Yu, Willy Chung, Quyet V. Do, Yan Xu, and Pascale Fung. A multitask,
multilingual, multimodal evaluation of ChatGPT on reasoning, hallucination, and interactiv-
ity. In Jong C. Park, Yuki Arase, Baotian Hu, Wei Lu, Derry Wijaya, Ayu Purwarianti, and
Adila Alfa Krisnadhi (eds.), Proceedings of the 13th International Joint Conference on Natural
Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 675–718, Nusa Dua, Bali, November
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.ijcnlp-main.45. URL
https://aclanthology.org/2023.ijcnlp-main.45/.

Nora Belrose, Zach Furman, Logan Smith, Danny Halawi, Igor Ostrovsky, Lev McKinney, Stella
Biderman, and Jacob Steinhardt. Eliciting latent predictions from transformers with the tuned lens,
2023. URL https://arxiv.org/abs/2303.08112.

10

https://aclanthology.org/2023.findings-emnlp.68/
https://aclanthology.org/2023.findings-emnlp.68/
https://aclanthology.org/2023.ijcnlp-main.45/
https://arxiv.org/abs/2303.08112


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jarosław Błasiok and Preetum Nakkiran. Smooth ece: Principled reliability diagrams via kernel
smoothing. arXiv preprint arXiv:2309.12236, 2023.

Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt. Discovering latent knowledge in language
models without supervision, 2024. URL https://arxiv.org/abs/2212.03827.

Chao Chen, Kai Liu, Ze Chen, Yi Gu, Yue Wu, Mingyuan Tao, Zhihang Fu, and Jieping Ye.
Inside: Llms’ internal states retain the power of hallucination detection, 2024. URL https:

//arxiv.org/abs/2402.03744.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons in
pretrained transformers, 2022. URL https://arxiv.org/abs/2104.08696.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal
Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris
Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread, 2021.
https://transformer-circuits.pub/2021/framework/index.html.

Kawin Ethayarajh. How contextual are contextualized word representations? Comparing the ge-
ometry of BERT, ELMo, and GPT-2 embeddings. In Kentaro Inui, Jing Jiang, Vincent Ng, and
Xiaojun Wan (eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pp. 55–65, Hong Kong, China, November 2019. Association for Computational
Linguistics. doi: 10.18653/v1/D19-1006. URL https://aclanthology.org/D19-1006/.

Jiahui Geng, Fengyu Cai, Yuxia Wang, Heinz Koeppl, Preslav Nakov, and Iryna Gurevych. A survey
of confidence estimation and calibration in large language models. In Kevin Duh, Helena Gomez,
and Steven Bethard (eds.), Proceedings of the 2024 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies (Volume 1:
Long Papers), pp. 6577–6595, Mexico City, Mexico, June 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.naacl-long.366. URL https://aclanthology.org/2024.

naacl-long.366/.

Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav Goldberg. Transformer feed-forward layers
build predictions by promoting concepts in the vocabulary space. arXiv preprint arXiv:2203.14680,
2022.

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir Globerson. Dissecting recall of factual
associations in auto-regressive language models. arXiv preprint arXiv:2304.14767, 2023.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Dirk Groeneveld, Iz Beltagy, Evan Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord, Ananya
Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, Shane Arora, David Atkinson, Russell
Authur, Khyathi Chandu, Arman Cohan, Jennifer Dumas, Yanai Elazar, Yuling Gu, Jack Hessel,
Tushar Khot, William Merrill, Jacob Morrison, Niklas Muennighoff, Aakanksha Naik, Crystal
Nam, Matthew Peters, Valentina Pyatkin, Abhilasha Ravichander, Dustin Schwenk, Saurabh
Shah, William Smith, Emma Strubell, Nishant Subramani, Mitchell Wortsman, Pradeep Dasigi,
Nathan Lambert, Kyle Richardson, Luke Zettlemoyer, Jesse Dodge, Kyle Lo, Luca Soldaini,
Noah Smith, and Hannaneh Hajishirzi. OLMo: Accelerating the science of language models. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 15789–15809,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.acl-long.841. URL https://aclanthology.org/2024.acl-long.841/.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen,
Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. arXiv preprint arXiv:2411.15594,
2024.

11

https://arxiv.org/abs/2212.03827
https://arxiv.org/abs/2402.03744
https://arxiv.org/abs/2402.03744
https://arxiv.org/abs/2104.08696
https://aclanthology.org/D19-1006/
https://aclanthology.org/2024.naacl-long.366/
https://aclanthology.org/2024.naacl-long.366/
https://aclanthology.org/2024.acl-long.841/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Nuno M. Guerreiro, Duarte M. Alves, Jonas Waldendorf, Barry Haddow, Alexandra Birch, Pierre
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A LIMITATIONS

This study has the following limitations. Several of our analyses are performed either in aggregate
across token positions or only at the first output token. It may be valuable to study variations across
token positions, especially in settings with longer model outputs. Although the TriviaQA and MMLU
datasets cover diverse domains, we restrict our analysis to short-answer factual question-answering
for computational feasibility. It is valuable to study the generalizability of our results to different
tasks and domains; we leave this for future work. Second, we only experiment with instruction-tuned
models. Investigating how pre-trained models differ from our analysis may reveal how post-training
processes affect models’ confidence estimates. In addition, experiments with larger models (> 32B)
may yield more generalizable results.
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B METHODOLOGY DETAILS FOR RQ1

B.1 PROMPTING

Below are the prompts used for RQ1 to elicit confidence estimates from the model. We explore two
prompting formats: Prompting without Answer and Prompting with Answer.

Prompting without Answer In this setting, the model is asked to estimate its confidence in being
able to answer the question correctly, without actually providing an answer. The prompt is as follows:

For the question below, output your confidence in your ability to generate
the correct answer as an integer between 0 and 100, where 0 means complete
uncertainty and 100 means complete certainty. Provide only the confidence
score, without answering the question or including any explanations or
additional text.

Question:
```
{Question}
```

Prompting with Answer This format uses a multi-turn chat interaction. First, the model generates
an answer. Then, in a second turn, it is asked to provide a confidence score for the generated answer.

Turn 1:

Answer the following question with a single word or phrase. Do not provide
explanations or additional context:

{Question}

Turn 2:

Please output your confidence in the correctness of the answer as an
integer between 0 and 100, where 0 means complete uncertainty and 100
means complete certainty. Output only the confidence score with no
explanations or additional text.

B.2 LOGIT LENS AND TUNED LENS

Logit Lens: Logit Lens projects the intermediate hidden states directly into the vocabulary space
via the unembedding matrix or final linear layer of the model (nostalgebraist, 2020). Concretely,
given a hidden state hℓ ∈ Rd at layer ℓ, and the unembedding matrix WU ∈ RV×d (where V is the
vocabulary size and d is the hidden size), the layer-wise logits under the logit lens are computed as:
z(LL)
ℓ = WUhℓ. For decoding, these logits are passed through a softmax as normal to produce a

probability distribution over the vocabulary: p(LL)
ℓ = softmax(z(LL)

ℓ ).

Tuned Lens: Tuned Lens first learns an affine transformation or translator for each layer and
then projects the transformed hidden state directly to the vocabulary space via the unembedding
matrix (Belrose et al., 2023). Since pretrained language models are typically not trained to project
from intermediate hidden states to the unembedding matrix, there is often a mismatch. Tuned
Lens remediates this by post-hoc training these translators at each layer, improving intermediate
hidden states alignment in both magnitude and direction to the unembedding matrix. For each
layer ℓ, the learned affine map (Aℓ,bℓ) transforms the hidden state hℓ before multiplying with the
unembedding matrix: z(TL)

ℓ = WU (Aℓhℓ+bℓ). The resulting logits can be passed through a softmax
producing a probability distribution over the vocabulary: p(TL)

ℓ = softmax(z(TL)
ℓ ). The translators are

trained to minimize the KL divergence between p(TL)
ℓ and the model’s final output distribution on

general-purpose pretraining data.
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B.3 INPUT FEATURE DETAILS FOR LOGIT LENS AND TUNED LENS

Input Feature 1: Entropy Entropy measures the uncertainty in a probability distribution. For
us, entropy estimates how peaky (or uniform) the distribution over the vocabulary is at each token
position at each layer. Given a distribution over the vocabulary using either Logit Lens (LL) or Tuned
Lens (TL), p(LL—TL)

ℓ = {p(LL—TL)
ℓ (i)}Vi=1 at layer ℓ, the entropy Hℓ is defined as:

Hℓ = −
V∑
i=1

p(LL—TL)
ℓ (i) log p(LL—TL)

ℓ (i) (6)

Note: these estimates are computed independently for each layer and sequence position.

Input Feature 2: Rank of Output Token A probability of 0.01 in certain token positions may
reflect the highest rank token if the preceding context is ambiguous (e.g. The ¡next word¿), whereas
could reflect a much lower rank token if the context is less ambiguous (e.g. Harriet Tub¡next word¿)
The rank of the output next token at intermediate layers loosely correlates with the probability,
but can offer a more direct signal towards what token a decoding algorithm may likely generate.
At layer ℓ, we compute either the Logit Lens (LL) or Tuned Lens (TL) distribution p(LL—TL)

ℓ . Let
ϕℓ(t) := log p(LL—TL)

ℓ (t) denote the log-probability of token t under this distribution. We sort the
vocabulary tokens by descending log-probability:

ϕℓ

(
σ(1)

)
≥ ϕℓ

(
σ(2)

)
≥ · · · ≥ ϕℓ

(
σ(V )

)
(7)

Then, the rank rℓ(y) of the target token y is the index k such that σ(k) = y. A rank of 1 indicates the
model considers y the most likely token at that layer. This is computed per layer and position.

Input Feature 3: Top-p Presence Nucleus-sampling is one of the most common decoding al-
gorithms for language models (Holtzman et al., 2019), where rather than considering the entire
distribution over the vocabulary, one considers only the highest probability tokens until a top-p
cumulative probability. This eliminates the chances of randomly sampling a very low probability
token in the long-tail. Motivated by this, we compute a binary indicator of whether the target token
appears within the top-p nucleus set at each layer. Let p(LL—TL)

ℓ be sorted in descending order as
p(1) ≥ p(2) ≥ · · · . The top-p nucleus set Vp is the smallest set such that:

k∑
i=1

p(i) ≥ p (8)

The top-p presence indicator Ip,ℓ(y) is defined as:

Ip,ℓ(y) =

{
1 if y ∈ Vp

0 otherwise
(9)

Input Feature 4: Cross-Entropy Cross-entropy quantifies how well the intermediate predictions
match the output next token. At each layer ℓ, it is computed using the log probability assigned to the
target token y under the logit lens or tuned lens distribution:

CEℓ(y) = − log p(LL—TL)
ℓ (y) (10)

This value is lower when the model assigns higher confidence to the output token. It is evaluated per
layer and token position.

C METHODOLOGY DETAILS FOR RQ2

C.1 PROMPTING

Below are the prompts used for RQ2 to elicit confidence estimates from the model. We explore two
prompting formats: Prompting without Answer and Prompting with Answer.
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Prompting without Answer In this setting, the model is provided with context and is asked to
estimate its confidence in answering the question correctly, without actually generating an answer.
The prompt used is as follows:

For the question below, output your confidence in your ability to generate
the correct answer as an integer between 0 and 100, where 0 means complete
uncertainty and 100 means complete certainty. Provide only the confidence
score, without answering the question or including any explanations or
additional text.

Context:
```
{context}
```

Question:
```
{question}
```

Prompting with Answer This format uses a multi-turn chat interaction. In the first turn, the model
is provided with context and asked to generate an answer to the question. In the second turn, it is
asked to estimate its confidence in the answer it just provided.

Turn 1:

Using the following context, answer the question that follows with a
single word or phrase. Do not provide explanations or additional context:

> Context:
{Context}

> Question:
{Question}

Turn 2:

Please output your confidence in the correctness of the answer as an
integer between 0 and 100, where 0 means complete uncertainty and 100
means complete certainty. Output only the confidence score with no
explanations or additional text.

C.2 REASONING FOR CONTEXT COMPARISON

Correct vs. Incorrect Context A correct and relevant context (Ccorrect) directly supports the correct
answer with accurate factual information. This should increase the model’s confidence, especially
when its parametric knowledge alone is insufficient. In contrast, an incorrect but relevant context
(Cincorrect) may appear plausible but contains factual errors. While it may influence the model’s output,
it should not increase confidence as much—especially if the model can detect inconsistencies or is
sensitive to contradiction. Thus, we expect higher confidence in the presence of Ccorrect than Cincorrect.

Correct vs. Irrelevant Context An irrelevant context (Cirrelevant) is topically unrelated to the
question and provides no useful information for answering it. Ideally, the model should recognize its
lack of utility and ignore it, leading to little or no increase in confidence compared to the no-context
baseline. In contrast, Ccorrect provides directly useful information, so the model should become
more confident in its answer. Therefore, the confidence gain should be higher with Ccorrect than with
Cirrelevant.
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D EXPERIMENT SETUP DETAILS

D.1 DATASET DETAILS

Question Which island in Kent is the second largest of England’s isles?
Correct Answers ”Shurland Hall”, ”Isle of Sheppy”, ”Shurland House”, ”Isle of Sheppey”

Question Rita Coolidge sang the title song for which Bond film?
Correct Answers ”Kamal kahn”, ”List of Bond girls in Octopussy”, ”Magda (James Bond)”,

”List of James Bond allies in Octopussy”, ”Vijay (James Bond)”, ”Bond 13”,
”Octopussy (character)”, ”Penelope Smallbone”, ”Octopussy”, ”General
Orlov”, ”Kamal Khan”, ”Octopussy (film)”, ”List of James Bond villains in
Octopussy”, ”Jim Fanning (James Bond)”

Question What was invented by Jonas Hanway in the late 1750s?
Correct Answers ”Umbrella”, ”Umbrela”, ”History of the umbrella”, ”Unbrella”, ”Beach

umbrella”, ”Parasols”, ”Windproof umbrella”, ”Beach parasol”, ”Parasol”,
”History of the Umbrella”, ”Umbrellas”

Table 4: Examples from the TriviaQA dataset.

Question Which of the following bones develop by endochondral ossification?
Choices A: ”The ribs”, B: ”The ribs and sternum”, C: ”The ribs, sternum and clavicle”,

D: ”The ribs, sternum, clavicle and vertebrae”
Correct Answer B

Question Which of the following gives the total spin quantum number of the electrons
in the ground state of neutral nitrogen (Z = 7)?

Choices A: ”1/2”, B: ”1”, C: ”3/2”, D: ”5/2”
Correct Answer C

Question The Hawthorn Studies are most associated with which writer?
Choices A: ”Mary Parker Follett”, B: ”Elton Mayo”, C: ”Lillian Gilbreth”, D: ”Fred-

erick Taylor”
Correct Answer B

Table 5: Examples from the MMLU dataset.

Quality Filtering: TriviaQA includes multiple retrieved Wikipedia or web documents as evidence
for each example, which we repurpose to serve as (correct) context for RQ2 experiments. While the
documents are generally of high quality, manual inspection reveals a small percentage of examples
where the documents do not contain enough information to answer the question. As a result, we
exclude any example where no retrieved document contains one of the ground-truth answers and at
least 60% of entities extracted from the question.3 This yields a final set of 6,557 examples, which we
use for all our experiments. No quality filtering is necessary for MMLU. Table 4 and Table 5 present
example questions along with their corresponding ground-truth answers from TriviaQA and MMLU.

External Context Construction: Concatenating multiple long documents and analyzing these is
challenging for interpretability methods that normally operate at the single-token or very few token
level. To address this, we select a single evidence document from TriviaQA that meets the quality
filtering criteria described above. If the selected document exceeds 500 tokens, we use GPT-4o to
summarize it down to 500 tokens, using the LLaMA-3-8B tokenizer for consistency. This summary
is termed the “correct” context for the experiments for RQ2. To generate “incorrect” contexts, we
take the “correct” context for a given question Q and prompt GPT-4o to replace all references to the
ground-truth answer with plausible but incorrect alternatives. Crucially, we keep the rest of the text
unchanged, which makes the surrounding context relevant to Q. We also obtain “irrelevant” contexts
by sampling “correct” contexts from a different question such that the context has no lexical overlap
with the ground-truth answer. Additionally, we require that the SentenceBERT (Reimers & Gurevych,

3We use the FLAIR Sequence Tagger for entity extraction (Akbik et al., 2019).
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2019) embeddings using all-MiniLM-L6-v2 of the candidate context have a cosine similarity < 0.3
with the “correct” context for that question Q. This context construction process is grounded in the
original “correc” context, and the LLM is used solely for straightforward tasks such as summarization
and term replacement.

Prompting Formats: Below are the prompt formats used to generate answers from models on
TriviaQA questions, either with or without supporting context.

Without context:

Answer the following question with a single word or phrase. Do not provide
explanations or additional context:

{Question}

With context:

Using the following context, answer the question that follows with a
single word or phrase. Do not provide explanations or additional context:

> Context:
{Context}

> Question:
{Question}

We use the following prompt format to generate answers from models for MMLU questions.

The following is a multiple-choice question. Please choose the most
suitable one among A, B, C and D as the answer to this question. Only
output the choice identifier (A, B, C, or D) and nothing else. Do not
provide explanations or additional context.

{Question}

Evaluation: While the TriviaQA evaluation framework relies on exact match after text normaliza-
tion between the candidate answer and one of the ground-truth answers, this rule-based approach
can result in significant false negatives when the answer is correct but not phrased in exactly the
same wording as the ground-truth answers. We use GPT-4o to assess correctness when exact match
is not found due to its performance in factual QA evaluation (Zheng et al., 2023; Gu et al., 2024).
Specifically, if the generated answer does not exactly match any of the ground-truth answers, we
prompt GPT-4o with the question Q, the ground-truth answers A∗, and the generated answer A and
ask it to judge correctness. Unattempted questions are marked incorrect. This improves robustness,
especially because LLMs can phrase answers in slightly different but equivalent ways and may
not exactly follow a given output format, especially when minimally post-trained. Since MMLU
questions are multiple-choice, we ask the model to only output the choice identifier and rely on
regex-based answer extraction and verification.

D.2 RQ1 SETUP DETAILS

Logit-Lens and Tuned-Lens We include all top-p values from the set {0.5, 0.9, 0.95, 0.99} as input
features when training our classifier using Logit-Lens and Tuned-Lens representations. We extract
the statistics described in §B.3 (entropy, rank of the correct token, top-p presence, and cross-entropy
loss) from the decoded logits for each model layer. We then train our classifier f using these features
to predict whether a generated answer is correct or not.

Hidden States We train a separate classifier on the hidden states extracted from each transformer
layer during the generation of the first answer token. We focus on the first token because, due to the
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autoregressive nature of transformer models, the output at this initial step is conditioned solely on the
input prompt and is unaffected by previously generated tokens (Zhao et al., 2024). For each example,
per-dimension mean and standard deviation values used for calculating z-scores are obtained by
collecting the first-output-token hidden states from each layer for questions from an unused split of
the TriviaQA and MMLU datasets. This avoids any sharing of information across examples.

Classifier: In practice, one could use any classifier here. Subramani et al. (2025) show that
random forests are best able to recalibrate tool-using agents when using model internals as features
in comparison to other simple classifiers such as logistic regression. In our experiments, we use a
random forest due to its efficacy, simplicity, and interpretability. We use grid search and five-fold
cross-validation over a small subset (1024 examples) of our training set to set hyperparameters for
the random forest classifier.

During hyperparameter tuning, a grid search was conducted over the following parameters for the
Random Forest classifier: the number of estimators (n estimators ∈ {100, 200, 300}), maxi-
mum tree depth (max depth ∈ {None, 10, 20, 30}), minimum number of samples required to
split an internal node (min samples split ∈ {2, 5}), minimum number of samples required at a
leaf node (min samples leaf ∈ {1, 2}), the number of features considered for splitting at each
node (max features ∈ {“sqrt”, “log2”, None}), and class weighting strategies (class weight ∈
{“balanced”, “balanced subsample”, None}). The hyperparameters were set to the following for ran-
dom forest classifiers trained on Logit Lens, Tuned Lens, and PKS features: n estimators = 300,
max depth = None, max features = “log2”, min samples leaf = 1, min samples split
= 2, class weight = “balanced”. The hyperparameters were set to the following for ran-
dom forest classifiers trained on hidden state features: n estimators = 300, max depth = 10,
max features = “sqrt”, min samples leaf = 1, min samples split = 2, class weight =
“balanced subsample”.

E ADDITIONAL RESULTS FOR RQ1

E.1 PROMPTING

For prompting, we evaluate all integer threshold values from 0 to 100 and select the one that yields
the highest accuracy. Accordingly, the performance reported for prompting methods reflects the
best-performing threshold. Figure 3 and Figure 5 present the Smooth ECE scores of various models
using prompting with answers on TriviaQA and MMLU respectively, while Figure 4 and Figure 6
show the scores for prompting without answers.

E.2 LOGIT LENS

Logit Lens VS. Tuned Lens Figure 7 shows the layerwise AUC-ROC performance of the Logit
Lens and Tuned Lens on LLaMA 3 8B, LLaMA 2 13B, and LLaMA 2 7B. We do not observe a
consistent trend in the relative performance that would clearly indicate which method is superior.
However, both the Logit Lens and Tuned Lens exhibit predictive capability from very early layers.

Feature Importance We present the Logit Lens feature importance heatmaps for all six models
in Figure 8 based on the trained classifiers. Top-k features are omitted due to their consistently low
importance across all layers and models.

ROC Curve: External VS. Internal Figure 9 shows the ROC curve comparisons between clas-
sifiers trained solely on last-layer features (“external”) and those trained on internal-layer features
(“internal”) across all six models. The internal classifier achieves performance comparable to using
features from all layers, while consistently outperforming the external classifier across all tested
models.

E.3 HIDDEN STATES

Hidden States: Effect of Z-Score Normalization To evaluate the impact of z-score normalization
on classifier performancewe obtain means and variances per hidden state dimension for z-score
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LLaMA 3 8B LLaMA 2 13B LLaMA 2 7B Gemma 2 9B Qwen 2.5 7B Qwen 2.5 3B

Averaged ACC 0.778 0.710 0.729 0.770 0.737 0.734
Averaged AUC ROC 0.774 0.772 0.804 0.741 0.790 0.803
First token ACC 0.782 0.779 0.776 0.774 0.751 0.729
First token AUC ROC 0.790 0.847 0.835 0.747 0.826 0.812

Table 6: TriviaQA results for LogitLens comparing averaged vs. first token features.

LLaMA 3 8B LLaMA 2 13B LLaMA 2 7B

Averaged ACC 0.780 0.703 0.736
Averaged AUC ROC 0.777 0.768 0.808
First token ACC 0.779 0.775 0.775
First token AUC ROC 0.782 0.846 0.829

Table 7: TriviaQA results for TunedLens comparing averaged vs. first token features.

normalization on auxiliary subsets of TriviaQA and MMLU to ensure the distribution remains similar
to the train and test examples while avoiding leakage of information across examples. To evaluate the
impact of z-score normalization on classifier performance, we compare models trained on hidden
state features with and without normalization and find virtually identical performance (see Figure 11).
This suggests that the classifier is relatively insensitive to the absolute magnitude of hidden state
feature values across different dimensions and examples.

E.4 FIRST TOKEN FEATURES VS. AVERAGING ACROSS ALL OUTPUT TOKENS

We use first token features for all classifier training in RQ1. We study whether interpretability features
are computed using only the first generated token or averaged across all generated tokens. First
token features provide the practical benefit of enabling early auditing before the model produces
a full response. At the same time, aggregating features across all tokens may capture additional
signal present throughout the generation process. To evaluate these two approaches, we conduct an
ablation across multiple models and multiple internal feature extraction methods, including LogitLens,
TunedLens, hidden states, and PKS.

Across most models and datasets, averaging features over all generated tokens performs similarly or
slightly better than using only the first token. The differences are most pronounced for LogitLens and
TunedLens on MMLU, where full token averaging provides consistent improvements. On TriviaQA,
both approaches achieve comparable performance with small method dependent variations. These
findings suggest that while full token averaging can offer moderate gains, first token features remain
competitive and are particularly useful when early auditing is desired for efficiency.

TriviaQA Results TriviaQA results for all methods are in Tables 6–9.

MMLU Results MMLU results are shown in Tables 10–12. Here, averaging across tokens provides
more consistent benefits, particularly for LogitLens and TunedLens.

E.5 MLP CLASSIFIER VS. RANDOM FOREST CLASSIFIER

This section investigates whether more expressive classifiers can further improve correctness pre-
diction. Our main experiments use a random forest classifier due to its simplicity, robustness, and
low tuning requirements. To assess whether a more flexible model can extract additional signal from
interpretability features, we train a multi layer perceptron (MLP) classifier across all models and
datasets. The MLP has two hidden layers with 256 and 64 units, uses ReLU activations, applies L2
regularization with coefficient 0.001, and is optimized with Adam using adaptive learning rates and
early stopping.

The results reveal that the MLP achieves performance comparable to or better than the random
forest classifier across most settings. Improvements are especially pronounced on MMLU, where the
MLP consistently reaches higher accuracy and AUC ROC. These findings indicate that correctness
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LLaMA 3 8B LLaMA 2 13B LLaMA 2 7B Gemma 2 9B Qwen 2.5 7B Qwen 2.5 3B

Averaged ACC 0.739 0.714 0.707 0.773 0.782 0.768
Averaged AUC ROC 0.611 0.670 0.633 0.584 0.769 0.754
First token ACC 0.759 0.679 0.702 0.785 0.782 0.749
First token AUC ROC 0.647 0.631 0.647 0.616 0.774 0.735

Table 8: TriviaQA results for Hidden States comparing averaged vs. first token features.

LLaMA 3 8B LLaMA 2 7B Gemma 2 9B Qwen 2.5 7B Qwen 2.5 3B

Averaged ACC 0.733 0.709 0.743 0.650 0.695
Averaged AUC ROC 0.729 0.743 0.723 0.715 0.752
First token ACC 0.737 0.668 0.733 0.659 0.684
First token AUC ROC 0.740 0.741 0.642 0.702 0.731

Table 9: TriviaQA results for PKS comparing averaged vs. first token features.

prediction can benefit from more expressive classifiers, although both approaches remain competitive
depending on the method and dataset.

TriviaQA Results Full TriviaQA results are shown in Table 13.

MMLU Results MMLU results appear in Table 14. Compared to the random forest classifier, the
MLP achieves large gains for Logit Lens and Tuned Lens and modest gains for Hidden States and
PKS.

F ADDITIONAL RESULTS FOR RQ2

F.1 NON-APPLICABILITY OF ECS ON GEMMA 2 9B

Gemma 2 9B employs sliding-window attention on every even-numbered layer, which makes it
infeasible to implement ECS in a way that correctly tracks the top-k attention scores. Consequently,
we exclude Gemma 2 9B from our analysis for RQ2.

F.2 EXAMPLES WITH PKS AND ECS SCORES

We illustrate how PKS and ECS scores evolve as the model generates output tokens across layers,
using several examples shown in Figures 12, 13, and 14.

G COMPUTATIONAL COSTS

All experiments were conducted using two A6000 GPUs, with a total compute time of under 1,000
hours.
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LLaMA 3 8B LLaMA 2 13B LLaMA 2 7B Gemma 2 9B Qwen 2.5 7B Qwen 2.5 3B

Averaged ACC 0.836 0.717 0.684 0.814 0.822 0.803
Averaged AUC ROC 0.941 0.789 0.757 0.904 0.945 0.908
First token ACC 0.705 0.692 0.699 0.769 0.815 0.673
First token AUC ROC 0.798 0.771 0.767 0.843 0.939 0.711

Table 10: MMLU results for LogitLens comparing averaged vs. first token features.

LLaMA 3 8B LLaMA 2 13B LLaMA 2 7B

Averaged ACC 0.826 0.728 0.680
Averaged AUC ROC 0.928 0.815 0.768
First token ACC 0.695 0.671 0.684
First token AUC ROC 0.770 0.752 0.760

Table 11: MMLU results for TunedLens comparing averaged vs. first token features.

LLaMA 3 8B LLaMA 2 7B Gemma 2 9B Qwen 2.5 7B Qwen 2.5 3B

Averaged ACC 0.605 0.543 0.705 0.691 0.618
Averaged AUC ROC 0.537 0.543 0.555 0.541 0.538
First token ACC 0.588 0.529 0.708 0.694 0.615
First token AUC ROC 0.524 0.510 0.526 0.565 0.542

Table 12: MMLU results for PKS comparing averaged vs. first token features.

Method Source Metric LLaMA 3 8B LLaMA 2 13B LLaMA 2 7B Gemma 2 9B Qwen 2.5 7B Qwen 2.5 3B

Logit Lens Table 2 ACC 0.782 0.779 0.776 0.774 0.751 0.729
Logit Lens Table 2 AUC ROC 0.790 0.847 0.835 0.747 0.826 0.812
Logit Lens MLP ACC 0.788 0.778 0.760 0.770 0.711 0.686
Logit Lens MLP AUC ROC 0.790 0.844 0.820 0.758 0.764 0.755

Tuned Lens Table 2 ACC 0.779 0.775 0.775 - - -
Tuned Lens Table 2 AUC ROC 0.782 0.846 0.829 - - -
Tuned Lens MLP ACC 0.780 0.770 0.748 - - -
Tuned Lens MLP AUC ROC 0.784 0.827 0.808 - - -

Hidden States Table 2 ACC 0.739 0.714 0.707 0.773 0.782 0.768
Hidden States Table 2 AUC ROC 0.611 0.670 0.633 0.584 0.769 0.754
Hidden States MLP ACC 0.759 0.679 0.702 0.785 0.782 0.749
Hidden States MLP AUC ROC 0.647 0.631 0.647 0.616 0.774 0.735

PKS Table 2 ACC 0.733 0.725 0.709 0.743 0.650 0.695
PKS Table 2 AUC ROC 0.729 0.768 0.743 0.723 0.715 0.752
PKS MLP ACC 0.728 0.691 0.675 0.729 0.667 0.658
PKS MLP AUC ROC 0.715 0.744 0.722 0.595 0.731 0.730

Table 13: TriviaQA results comparing the random forest classifier (Table 2) with an MLP classifier
across all methods and models.

Method Source Metric LLaMA 3 8B LLaMA 2 13B LLaMA 2 7B Gemma 2 9B Qwen 2.5 7B Qwen 2.5 3B

Logit Lens Table 2 ACC 0.705 0.692 0.699 0.769 0.815 0.673
Logit Lens Table 2 AUC ROC 0.798 0.771 0.767 0.843 0.939 0.711
Logit Lens MLP ACC 0.901 0.858 0.834 0.940 0.974 0.729
Logit Lens MLP AUC ROC 0.961 0.933 0.914 0.975 0.990 0.796

Tuned Lens Table 2 ACC 0.705 0.692 0.699 - - -
Tuned Lens Table 2 AUC ROC 0.798 0.771 0.767 - - -
Tuned Lens MLP ACC 0.901 0.858 0.834 - - -
Tuned Lens MLP AUC ROC 0.961 0.933 0.914 - - -

Hidden States Table 2 ACC 0.744 0.686 0.672 0.801 0.777 0.746
Hidden States Table 2 AUC ROC 0.740 0.684 0.576 0.736 0.728 0.733
Hidden States MLP ACC 0.748 0.679 0.664 0.779 0.770 0.730
Hidden States MLP AUC ROC 0.753 0.676 0.585 0.736 0.741 0.723

PKS Table 2 ACC 0.605 - 0.543 0.705 0.691 0.618
PKS Table 2 AUC ROC 0.537 - 0.543 0.555 0.541 0.538
PKS MLP ACC 0.596 - 0.530 0.709 0.694 0.617
PKS MLP AUC ROC 0.524 - 0.518 0.507 0.534 0.546

Table 14: MMLU results comparing the random forest classifier (Table 2) with an MLP classifier
across all methods and models.
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Figure 3: Smooth ECE scores for prompting with answer on TriviaQA. Predicted confidence f is
the model’s stated probability of being correct, and E[y|f ] is the actual accuracy observed at that
confidence level.
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Figure 4: Smooth ECE scores for prompting without answer on TriviaQA. Predicted confidence f is
the model’s stated probability of being correct, and E[y|f ] is the actual accuracy observed at that
confidence level.
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Figure 5: Smooth ECE scores for prompting with answer on MMLU. Predicted confidence f is
the model’s stated probability of being correct, and E[y|f ] is the actual accuracy observed at that
confidence level.
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Figure 6: Smooth ECE scores for prompting without answer on MMLU. Predicted confidence f is
the model’s stated probability of being correct, and E[y|f ] is the actual accuracy observed at that
confidence level.
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Figure 7: Layerwise AUC-ROC for Logit Lens (solid lines) and Tuned Lens (dashed lines).
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Figure 8: Impurity-based random forest feature importance scores for Logit Lens features from each
layer across six models on TriviaQA. Top-p features contribute minimally and are therefore excluded.
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Figure 9: ROC curves comparing classifiers trained on last-layer features (external) versus internal-
layer features, across six models on TriviaQA.
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Figure 10: ROC curves comparing classifiers trained on last-layer features (external) versus internal-
layer features, across six models on MMLU.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

(a) TriviaQA, with z-score normalization (b) TriviaQA, without normalization

(c) MMLU, with z-score normalization (d) MMLU, without normalization

Figure 11: Area under ROC curve for random forest classifiers trained on z-score normalized hidden
states of each layer. Performance increases with layer depth, suggesting that later layers refine and
consolidate decision-relevant signals. Normalization has virtually no effect on performance.
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Figure 12: Heatmap example 1 from TriviaQA of PKS and ECS scores for LLaMA-3-8B, illustrating
layer-wise token importance. Question: ”Which musical featured the song The Street Where You
Live?” Context: ””On the Street Where You Live” is a song with music by Frederick Loewe and lyrics
by Alan Jay Lerner from the 1956 Broadway musical My Fair Lady. It is sung in the musical by
the character Freddy Eynsford-Hill, originally portrayed by John Michael King. In the 1964 film
version, the song was performed by Bill Shirley, dubbing for Jeremy Brett. The most popular single
was recorded by Vic Damone in 1956, reaching #4 on the Billboard charts and #6 on Cash Box
magazine’s chart, and it was a #1 hit in the UK in 1958.In 1955, Damone had one song on the charts,

”Por Favor,” which peaked at #73, but he starred in Hit the Deck and Kismet. In 1956, he moved to
Columbia Records, achieving success with hits like ”On the Street Where You Live” from My Fair
Lady and ”An Affair to Remember.” His albums on Columbia included That Towering Feeling, Angela
Mia, Closer Than a Kiss, This Game of Love, On the Swingin’ Side, and Young and Lively. Lyrics
describe the narrator’s thrill on the street where a loved one lives, highlighting the emotional impact
of such proximity. The content is administered by SME and used here for educational purposes under
fair use. If concerns arise about unauthorized use, contact the poster. This adheres to the Copyright
Act’s fair use principles for criticism, comment, news reporting, teaching, scholarship, and research,
emphasizing non-profit, educational intentions.”
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Figure 13: Heatmap example 2 from TriviaQA of PKS and ECS scores for LLaMA-3-8B, illustrating
layer-wise token importance. Question: ”Who directed the classic 30s western Stagecoach?” Context:
”Stagecoach, directed by John Ford (1895-1973), is a quintessential Western notable for its complex
characters and Monument Valley setting. John Wayne, portraying ”The Ringo Kid,” catapulted to
stardom in this film. The narrative follows a diverse group of travelers on a stagecoach from Tonto to
Lordsburg, facing dangers from an Apache uprising led by Geronimo. Central characters include a
falsely accused outlaw Ringo Kid, played by Wayne—seeking to avenge his family’s murder—and
a prostitute named Dallas, portrayed by Claire Trevor. Other passengers include a drunken doctor
(Thomas Mitchell, whose performance won an Academy Award), a gentleman gambler, an embezzling
banker, a pregnant army wife, and others, each contributing to a microcosm of society. Ford’s
direction, coupled with Dudley Nichols and Ben Hecht’s script, ensures tight plotting and memorable
character arcs, many based on Ernest Haycox’s short story ”Stage to Lordsburg” and Guy de
Maupassant’s ”Boule de Suif.” Ford’s handling allowed for minimal screen time yet deep character
development. The film features an intense climax with a chase/fight scene that includes Yakima
Canutt’s pioneering stunts, echoing Spielberg’s Raiders of the Lost Ark years later. Stagecoach is
celebrated for blending mythic Western landscapes with a poignant social allegory, reflecting on
issues like prejudice and redemption. While technical aspects, like some cinematography, show their
age, the film remains a paragon from the era, emblematic of Ford’s work and establishing recurring
Western motifs. It earned seven Oscar nominations, securing wins for Best Supporting Actor and
Best Score. Stagecoach’s impact persists, marking a pivotal moment in film history and solidifying
John Ford’s legacy as a master director, influencing numerous directors and films in subsequent years.
Whether or not it is perceived as a perfect film, it stands as a significant cultural artifact and vital
viewing for any student of cinema.”
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Figure 14: Heatmap example 3 from TriviaQA of PKS and ECS scores for LLaMA-3-8B, illustrating
layer-wise token importance. Question: ”Who was born first, Kiefer Sutherland or Christian Slater?”
Context: ”Young Guns II (1990) follows Billy the Kid and his gang as wanted outlaws. The story
unfolds with Pat Garrett, a former partner of Billy’s, being paid to kill him by cattle baron John
Chisum. The movie, directed by Christopher Cain, explores themes of betrayal and redemption as
Pat Garrett, who has plans to go respectable, is conflicted about turning against his former friend.
Garrett seizes the opportunity to become Sheriff offered by the Governor, who believes in hiring a
thief to catch one. This decision to capture Billy opens up great western adventure, with Pat grappling
between loyalty and duty. The nuanced performance of William Petersen as Garrett contrasts well
with Emilio Estevez reprising his role as the charismatic Billy the Kid. Lou Diamond Phillips elevates
his role as Chavez, delivering a performance that is more spiritual and wise than in the first Young
Guns film. The talented cast also includes Kiefer Sutherland, Christian Slater, Balthazar Getty, and
Alan Ruck. Though depicted as close friends, the real-life association between Pat Garrett and Billy
the Kid was less intimate; their familiarity stemmed from mutual patronage of a saloon. Despite this
inaccuracy, the film presents an engaging exploration of the dynamics between Garrett and Billy.
Young Guns II is a remarkable sequel to 1988’s Young Guns, offering a compelling mix of action
and moral questions. The film’s strong character portrayals, particularly by Estevez and Phillips,
enhance its rich narrative of western adventure and friendship against a backdrop of historical myth.
It’s an exciting film experience that shouldn’t be missed.”
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