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ABSTRACT

The ability to selectively target disease-causing mutations in proteins, such as onco-
genic mutations in cancer or pathogenic mutations in neurodegenerative diseases, is
crucial for developing precise therapeutics that minimize off-target effects. Current
approaches often lack the specificity required to distinguish between mutant and
wildtype proteins, particularly in the absence of detailed structural information.
In this work, we introduce muPPIt, a mutant-specific PPI targeting algorithm
designed for the de novo generation of mutant-specific peptide binders based
solely on mutant and wildtype sequences. At the core of muPPIt is MutBind,
an attention-based model that differentiates between mutant and wildtype pro-
tein language model embeddings, achieving over 70% test accuracy in predicting
binding probabilities. Additionally, we present PepUDLM, a uniform diffusion
language model that generates diverse and biologically plausible peptides. By
integrating MutBind’s predictions into PepUDLM’s sampling process, muPPIt effi-
ciently designs peptides that specifically bind to mutant proteins. We demonstrate
muPPIt’s effectiveness in computationally designing mutant-specific binders for a
range of targets, including disease-related protein variants. In total, muPPIt serves
as a powerful tool for developing highly specific peptide therapeutics, enabling
precise targeting of mutant proteins without relying on structural information or
structure-dependent latent spaces.

1 INTRODUCTION

Mutant-specific targeting of protein-protein interactions (PPIs) offers a promising strategy for devel-
oping therapeutics that can precisely target disease-causing mutations without affecting the wildtype
protein. Designing binders that selectively recognize mutations that drive disease can provide a new
pathway for treating conditions where conventional therapies fall short. For instance, in sickle cell
anemia, the E6K mutation in HBB leads to the production of abnormal hemoglobin that causes red
blood cells to sickle Pauling et al. (1949); Eaton & Bunn (2017); Abraham & Tisdale (2021); binders
targeting this specific mutation could prevent sickling without interfering with normal hemoglobin
function. In cancers, the G12V mutation in H-Ras results in constitutive activation of signaling
pathways that drive tumor growth Prior et al. (2012); Simanshu et al. (2017); mutant-specific binders
could inhibit the oncogenic activity of mutant H-Ras while leaving the wildtype protein unaffected.
Similarly, in ALS, the A4V mutation in SOD1 causes toxic protein aggregation, but designing binders
that selectively stabilize or clear the mutant SOD1 could help prevent neurodegeneration, providing a
more targeted treatment approach Rosen et al. (1993); Bruijn et al. (2004); Saccon et al. (2013).

While experimental methods for generating mutant-specific binders, such as phage display, yeast dis-
play, and high-throughput screening, are often costly and labor-intensive, computational approaches
offer a promising avenue for more efficient binder design Chen et al. (2023). Although recent
advances have improved the prediction of mutation-induced changes in binding free energy (∆∆G)
caused by mutations Wu et al. (2024); Cheng et al. (2024); Jemimah et al. (2020), existing computa-
tional framework provides an end-to-end solution for designing binders specifically targeting mutant
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proteins. Furthermore, while generative models have made significant strides in de novo design within
discrete data spaces and property-guided generation Sahoo et al. (2024) Schiff et al. (2024), these
methods have not yet been focused on generating binders with a specific mutant-targeting property,
leaving a significant gap in our ability to design mutant-specific therapeutics.

To address this gap, in this work, we develop a mutant-specific PPI targeting algorithm, termed
muPPIt, that enables the design of mutant-specific peptide binders. To enable muPPIt-based
generation, we develop MutBind, attention-based model differentiating the joint protein language
model (pLM) embeddings of binder-mutant and binder-wildtype to predict the relative probabilities
of a binder binding to the mutant (p) and to the wildtype (1 − p). Considering the limited size
of the public SKEMPI dataset Jankauskaitė et al. (2019), we constructed a large dataset, PPIMut,
containing binders, mutant proteins, wildtype proteins, and the binding affinities of binder-mutant and
binder-wildtype complexes. Trained on the combination of PPIMut and SKEMPI dataset, MutBind
achieves an over 70% test accuracy. We further trained PepUDLM that generates diverse and
biologically plausible peptides, a uniform diffusion language model trained on a custom dataset,
comprising peptides from the PepNN, BioLip2, and PPIRef dataset Abdin et al. (2022); Zhang et al.
(2024); Bushuiev et al. (2023). muPPIt integrates MutBind into PepUDLM’s sampling process,
where MutBind’s predictions guide PepUDLM to generate binders specifically targeting mutant
proteins. We demonstrate muPPIt’s efficacy on a diverse set of targets with various mutation levels,
as well as disease-related protein variants. Using a combination of AlphaFold3, PyRosetta, and
AlphaFold-Multimer, we computationally validate the specificity of muPPIt-designed peptides to the
mutants Abramson et al. (2024); Chaudhury et al. (2010); Kim et al. (2024). Our comprehensive
approach allows muPPIt to efficiently design highly selective peptide binders that specifically target
mutated proteins, paving the way for novel therapeutic strategies.

2 METHODS AND RESULTS

2.1 MUTBIND PREDICTS BINDING PREFERENCES FOR WILDTYPE AND MUTANT PROTEINS

To enable the generation of mutant-specific binders, we developed MutBind, a model designed to
predict the binding preference of a binder between wildtype and mutant proteins (Figure 1A-B).
Specifically, MutBind takes as input a binder sequence, a wildtype protein sequence, and a mutant
protein sequence, and outputs the binding probability p for the binder interacting with the wildtype
protein and 1− p for the binder interacting with the mutant protein. The three input sequences are
first embedded using the pre-trained ESM-2-650M model Lin et al. (2022). These embeddings are
then concatenated with VHSE8 embeddings, which encode essential physical and chemical properties
critical for biomolecular interactions Mei et al. (2005). A multi-head cross-attention module is
employed to capture interaction information between the binder and both the wildtype and mutant
proteins. The difference between the resulting representations is mapped to binding probabilities via
a linear layer. To validate the contribution of VHSE8 embeddings, we trained an ablated version of
the model without VHSE8 embeddings, which demonstrated inferior performance compared to the
full model (Figure 1C).

Given that the publicly available SKEMPI dataset contains only 1,058 entries after processing,
which is insufficient for training MutBind, we constructed a novel, large-scale dataset, PPIMut,
comprising 19,704 entries. This dataset includes binder, wildtype, and mutant sequences, along with
binding affinities between the binder and both wildtype and mutant proteins Jankauskaitė et al. (2019)
(Appendix A.1). Trained on the combined PPIMut and SKEMPI datasets, MutBind demonstrated
strong performance on the test set, achieving an accuracy exceeding 0.7. This is particularly notable
given that over 50% mutants in the test data only have less than 15% amino acid difference relative to
the total sequence length compared with the wildtype proteins.

2.2 PEPUDLM GENERATES DIVERSE AND BIOLOGICALLY PLAUSIBLE PEPTIDES

To enable the efficient generation of peptide binders, we developed an unconditional peptide generator,
PepUDLM, based on the Uniform Diffusion Language Model (UDLM) Schiff et al. (2024). UDLMs
can reverse random token perturbations and continuously edit discrete data, making them highly
suitable for guided generation. We trained PepUDLM on a custom dataset that includes all peptides
from the PepNN and BioLip2 datasets, as well as sequences from the PPIRef dataset with lengths
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Figure 1: (A) Overview of the architecture of MutBind. MutBind predicts the relative probabilities of a binder
interacting with the wildtype protein versus the mutant protein. (B) Schematic of muPPIt. muPPIt employs
a pre-trained PepUDLM model to sample peptides that bind specifically to the mutant protein in a diffusion
process guided by MutBind. (C) Performance comparison of MutBind with and without VHSE8 embedding.
(D) Test performance metrics of PepUDLM and an auto-regressive model trained on the same dataset.

ranging from 6 to 49 amino acids Abdin et al. (2022); Zhang et al. (2024); Bushuiev et al. (2023).
PepUDLM demonstrates superior performance compared to autoregressive generators across multiple
evaluation metrics, including lower Bits Per Dimension (BPD), reduced Negative Log-Likelihood
(NLL), and significantly improved perplexity (PPL) (Figure 1D). Furthermore, PepUDLM generates
peptides with substantially high Hamming distances from the test set, indicating a great degree of
diversity and novelty in the generated sequences (Figure 3). Additionally, the Shannon entropy of the
generated peptides closely matches that of the test set, highlighting the model’s capability to produce
biologically plausible peptides with diverse sequence lengths (Figure 3).

2.3 MUPPIT GENERATES MUTANT-SPECIFIC BINDERS

With MutBind for predicting mutant-binding probabilities and PepUDLM for peptide generation,
we developed the mutant-specific PPI targeting algorithm (muPPIt) to generate mutant-specific
peptide binders based solely on mutant and wildtype protein sequences. Instead of filtering random
sequences through PepUDLM, we adopted a classifier-guided diffusion approach, where mutant-
binding probabilities predicted by MutBind guide PepUDLM to generate binders specific to the
mutant protein (Figure 1B).

muPPIt begins with a randomly initialized peptide sequence of a defined length. Applying a classifier-
guided diffusion approach, it iteratively refines the sequence by sampling from a tempered distribution:

pγ(zs|zt, y) ∝ pϕ(y|zs)γpθ(zs|zt), (1)
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Figure 2: Comparison of the Local Interaction Area (LIA) and Local Interaction Score (LIS) between binder-
mutant and binder-wildtype complexes of the SOD1 protein. The LIA map, LIS heatmap, contact LIA map, and
contact LIS heatmap are presented for both complexes.

where pθ(zs|zt) represents the pre-trained PepUDLM diffusion prior, and pϕ(y|zs) is the pre-trained
MutBind providing mutant-specific guidance which is the probability of the binder binding with the
user-defined mutant protein. The parameter γ controls the strength of classifier guidance. From Eq1,
the guidance is derived as:

∇zs
log pγ(zs | y, zt) = γ∇zs

log pϕ(y | zs) +∇zs
log pθ(zs | zt). (2)

This ensures that mutant-binding specificity is reinforced throughout the diffusion process. By
iteratively refining sequences under this framework, PepUDLM generates peptide binders that are
highly likely to interact with the mutant protein, but not with the wildtype protein.

To evaluate muPPIt in a well-controlled setting, we designed binders for eight mutant proteins
randomly selected from the SKEMPI dataset, each differing by a single amino acid from their
wildtype counterparts (Table 3). Using AlphaFold3, we calculated the ipTM scores which represent
confidence in interface formation for the predicted peptide-protein complexes, comparing binder-
wildtype and binder-mutant complexes Abramson et al. (2024). We observed that muPPIt-designed
binders formed complexes with superior ipTM scores for mutant proteins than for wildtype proteins,
indicating greater stability with mutant targets. We further assessed the free energy of both binder-
wildtype and binder-mutant complexes using PyRosetta, which reflects the binding affinities between
molecules Chaudhury et al. (2010). All muPPIt-designed binders exhibited improved free energy
when interacting with mutant proteins, confirming high mutant-binding specificity. Additionally,
we analyzed local interaction areas (LIA) and local interaction scores (LIS) based on the complex
structures using AlphaFold-Multimer Kim et al. (2024). Most binder-wildtype complexes displayed
low LIA and LIS, indicating weak interactions, while high LIA and LIS scores for binder-mutant
complexes further underscored the binders’ mutant-specificity.

To further assess muPPIt’s performance, we designed peptide binders for four mutant proteins
randomly selected from the PPIMut dataset, each with more amino acid differences compared to their
wildtype counterparts (Table 4). These mutants were derived from wildtype proteins in the PPIRef
dataset by replacing all binding site residues with those possessing the most distinct properties,
thereby increasing the challenge of designing mutant-specific binders (Appendix A.1). Remarkably,
we observed comparable improvements in AlphaFold3 ipTM scores and PyRosetta free energy when
muPPIt-designed binders interacted with mutant proteins versus wild-type proteins. Moreover, binder-
wildtype complexes exhibited very low local interaction areas (LIA) and local interaction scores
(LIS), while binder-mutant complexes showed significantly higher LIA and LIS, further validating
the mutant-specificity of muPPIt-designed binders.
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Table 1: muPPIt-designed binders specifically target disease-related mutant proteins, exhibiting higher ipTM
scores, LIA (Local Interaction Area), and LIS (Local Interaction Score), as well as lower free energy compared
to their binding with wildtype counterparts. ’WT’ denotes binding to the wildtype, ’MUT’ denotes binding to
the mutant, and ’# muts’ indicates the number of mutations in the wildtype sequence.

UniProt Name Type ipTM score free energy LIA LIS # muts

P68871 HBB
WT 0.54 -446.99 1309 0.351

1
MUT 0.63 -456.98 1631 0.4

P00441 SOD1
WT 0.31 -476.94 336 0.092

2
MUT 0.6 -497.52 1135 0.332

P01112 H-Ras
WT 0.54 -519.45 2134 0.25

2
MUT 0.63 -610.24 2536 0.308

Q99497 PARK7
WT 0.56 -621.05 1858 0.243

2
MUT 0.59 -635.28 2283 0.273

The mission of muPPIt is to design highly specific therapeutics targeting disease-related mutations.
To this end, we applied muPPIt to design mutant-specific binders for HBB (associated with sickle
cell anemia), H-Ras (linked to various cancers), SOD1 (implicated in amyotrophic lateral sclerosis,
ALS), and PARK7 (associated with Parkinson’s disease) (Table 1). Specific mutations on these
wildtype proteins and their corresponding muPPIt-designed binders are detailed in Table 2. All
binders exhibited superior performance in ipTM scores, free energy, local interaction areas (LIA),
and local interaction scores (LIS) when interacting with their mutant targets, achieving maximum
improvements of 0.29 in ipTM score, over 90 in free energy, 799 in LIA, and 0.24 in LIS. These
results underscore the exceptional mutant-specificity of muPPIt-designed binders.

To further illustrate this specificity, we visualized the LIA maps and LIS heatmaps for SOD1 binder-
mutant and binder-wildtype complexes (Figure 2). Each map is divided into four quadrants: the
upper left and lower right show intra-molecular interactions, while the upper right and lower left
depict binder-target interactions. The binder-wildtype complex showed minimal contact in the
inter-molecular interaction quadrants in the LIA map, whereas the binder-mutant complex exhibited
extensive interactions. The LIS heatmaps further confirmed stronger interactions between the binder
and mutant, with scores of 0.461 and 0.204, compared to 0.087 and 0.097 for the binder-wildtype
complex. Additionally, the contact LIA map and contact LIS heatmap highlighted more residue
contact points with stronger interactions in the binder-mutant complex compared to the binder-
wildtype complex. These findings demonstrate muPPIt’s robust capability to design mutant-specific
binders, particularly for disease-related mutations.

3 DISCUSSION

Designing highly mutant-specific peptide binders for targets driven by single-point mutations or
complex mutational landscapes has long posed a significant challenge in therapeutic development. In
this work, we have presented muPPIt, a purely sequence-based approach that tackles this challenge
by enabling the design of mutant-specific binders independent of the mutation’s complexity. Lever-
aging attention-based deep learning and conditional uniform discrete diffusion, muPPIt generates
peptides that exhibit strong binding specificity to a broad range of mutant proteins while minimizing
interactions with their wildtype counterparts.

We believe muPPIt has the potential to be effective across a broad spectrum of protein targets. To prove
this, our next steps will include a comprehensive experimental validation of muPPIt, evaluating the
specificity of designed binders to the mutant proteins. This will involve biochemical binding affinity
assays and leveraging our chimeric peptide-E3 ubiquitin ligase ubiquibody (uAb) architecture for
target degradation studies Bushuiev et al. (2023); Chen et al. (2024); Bhat et al. (2025). Importantly,
muPPIt’s capability to target mutants specifically could be particularly valuable in developing active
and safe therapeutics by only targeting related protein variants, thus minimizing off-target effects and
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maximizing treatment efficacy. Overall, these capabilities could prove invaluable for both detection
and therapeutic applications. As we move forward with experimental validation, we anticipate that
muPPIt will contribute significantly to advancing the field of precision biotherapeutics.
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MEANINGFULNESS STATEMENT

We present a novel method to design mutant-specific peptide binders. By combining MutBind’s
accurate prediction of binding preference with a diffusion-based peptide generator, muPPIt reliably
designs binders with high mutant specificity. muPPIt provides a tangible framework for developing
mutation-specific therapeutics with the potential to reduce off-target effects, demonstrating clear,
data-driven progress in precision biotherapeutics.
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A SUPPLEMENTARY MATERIAL

A.1 DATASET CURATION

PPIMut Curation. We randomly selected around 19000 data from the PPIRef dataset, a large
protein-protein interaction dataset containing interacting sequences and binding interface positions
Bushuiev et al. (2023). For each selected entry, we created two data for MutBind training by selecting
binder or target and mutating all the residues on the binding sites into their least likely counterparts
according to the BLOSUM62 matrix, thus creating the mutant sequence Henikoff & Henikoff (1992).
All binder-wildtype and binder-mutant complex structures are predicted by ESMFold and their
binding affinities are predicted by PRODIGY Lin et al. (2022); Xue et al. (2016).

SKEMPI Processing. The SKEMPI dataset was rigorously processed by removing the following data:
duplicate entries, entries containing N/A values, entries where the mutant and wildtype sequences
differed in length, entries with negative binding affinities for either the mutant or wildtype, and
entries with sequences containing ambiguous amino acids (’X’, ’Z’, or ’B’). Additionally, entries
with conflicting binding affinities for cases where the same binder had switched wildtype and mutant
sequences were excluded. Following this comprehensive filtering process, the refined SKEMPI
dataset comprises 1058 entries.

Training Set Curation. We combined the PPIMut dataset with the filtered SKEMPI dataset to
construct the complete dataset for MutBind training. The merged dataset was split into training,
validation, and test sets at an 80/10/10 ratio. Additionally, we recorded the indices of the SKEMPI
data within the training set for use in MutBind’s curriculum training.

Since both datasets provide only binding affinities for binder-mutant and binder-wildtype interactions,
we converted these affinities into binding probabilities for MutBind training using the following
equations:

Pwt =
log(Awt)

log(Amut) + log(Awt)
, (3)

Pmut =
log(Amut)

log(Amut) + log(Awt)
, (4)

where Awt and Amut represent the binding affinities of the binder to the wildtype and mutant,
respectively, Pwt and Pmut denote the corresponding binding probabilities. A base-10 logarithm was
applied to the binding affinities to normalize their magnitudes.

A.2 MUTBIND ARCHITECTURE

MutBind takes three sequences as input: binder, mutant, and wildtype sequences. These sequences
will first be transformed into embeddings using a pre-trained ESM-2-650M model with its weights
fixed. These embeddings will then be concatenated with VHSE8 embeddings. Then the binder and
mutant embeddings, so as the binder and wildtype embeddings, will go through a multi-head cross
attention module, where binder embeddings are used as the query and mutant/wildtype embeddings
are used as key and value. The attention results, namely the joint embedding of binder-mutant and
binder-wildtype will be input into a layer normalization module before computing their difference. A
linear model comprises of a linear layer which maps down half of the model dimension, followed by
a SiLU layer and another linear layer mapping down another half of the dimension with SiLU layer,
and a linear layer that finally maps the joint embedding difference to two classes. A final softmax
layer converts the predicted logits to probabilities.

A.3 MUTBIND TRAINING

Loss Function. In each training step, two forward passes are executed, with the mutant and wildtype
inputs swapped in the second pass. The loss function is designed to incorporate the Kullback-Leibler
(KL) divergence between the predicted and true probabilities for each pass, as well as a symmetry-
enforcing term that ensures consistency when the mutant and wildtype inputs are interchanged.

8



Published at the LMRL workshop, ICLR 2025

Specifically, the loss function is defined as:

L = L1 + L2 + Ldiff , (5)

where

L1 = KL([Pred1wt, P red1mut] || [Pwt, Pmut]), (6)

L2 = KL([Pred2wt, P red2mut] || [Pmut, Pwt]), (7)

Ldiff = |Pred1wt − Pred2mut|. (8)

Here, Predi represents the predicted probability of wildtype/mutant in the ith forward pass.

Curriculum Training. While PPIMut dataset comprises of mutants with multiple amino acid
differences from the wildtype proteins, most mutants in the SKEMPI dataset only differ from their
wildtypes with one amino acid. And due to the different size between PPIMut and SKEMPI dataset,
we employed curriculum training to support gradual and effective model training. Specifically, we
evenly split the SKEMPI data in the training set into 27 batches. For the first 3 training epochs, we
trained muPPIt only using the PPIMut data in the training set. In the following epochs, we gradually
add one batch to the training data. This curriculum training enabled MutBind gradually learn to
differentiate binder-mutant and binder-wildtype joint embeddings.

Hyper-parameter configurations. MutBind was trained on one H100 NVIDIA NVL GPU system
with 94 GB of VRAM for 30 epochs. The learning rate was set to 1e-3, batch size to 4, model
dimension to 32, number of attention heads to 4, and gradient accumulation steps to 4. The AdamW
optimizer was used with weight decay of 1e-5, beta1 of 0.9, beta2 of 0.99. A learning rate scheduler
with linear warming up and cosine decay was employed to optimize training, where the minimum
learning rate was set to 1e-4 and warm-up epochs was set to 3 epochs.

A.4 PEPUDLM TRAINING AND EVALUATION

Dynamic Batching. To enhance computational efficiency and manage variable-length token se-
quences, we implemented dynamic batching. Drawing inspiration from ESM-2’s approach Lin et al.
(2023), input peptide sequences were sorted by length to optimize GPU memory utilization, with a
maximum token size of 100 per GPU.

Hyper-parameter Configurations. PepUDLM employed a DDIT backbone model with a hidden
layer size of 768, 12 blocks, 12 attention heads, and a dropout rate of 0.1. Training was conducted on
a 2xH100 NVIDIA NVL GPU system with 94 GB of VRAM for 100 epochs. The AdamW optimizer
was employed with a learning rate of 1e-5, weight decay of 1e-4, beta1 of 0.9, beta2 of 0.999, and
epsilon of 1e-8. Gradient clipping was set to 1, and a learning rate scheduler with 10 warm-up epochs
and cosine decay was used, with initial and minimum learning rates of 1e-5 and 1e-6, respectively.

Evaluation Settings. To evaluate the Hamming distance and the Shannon entropy of PepUDLM’s
unconditionally sampled peptides to the peptides in the test set, we randomly sampled 1000 peptides
from PepUDLM for each length ranging from 6 to 49. The random seed was set to 42. The Hamming
distance and Shannon entropy were evaluated based on each peptide length (Figure 3).

A.5 MUTANT-SPECIFIC BINDER SAMPLING DETAILS

The pre-trained MutBind model with VHSE8 embeddings and pre-trained PepUDLM were used in
muPPIt to sample peptide candidates for in-silico benchmarking. The gamma hyper-paramerter that
controls the guidance strength was set to 2.0 during sampling. The total sampling steps was set to 128.
Various peptide lengths and random seeds were tried to generate optimal mutant-specific binders.
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Figure 3: (A) The Hamming distance of sampled peptides of different lengths to the peptides of the same length
in the test set. (B) The Shannon Entropy of sampled peptides of different lengths to the peptides of the same
length in the test set.

Table 2: Specific mutations on the wildtype proteins and the muPPIt-designed binder sequences are presented
for each disease-related protein.

UniProt Name mutations binder

P68871 HBB E6K VGTVSAEKSQAQPD

P00441 SOD1 A4V, H46R EAAADAEAMQAE

P01112 H-Ras G12V, Q61L RAAKKAEAQQAEYDEAQNV

P37840 PARK7 M26I, L166P GSLEKPLTAMTLLFSISPVLLR

10
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Table 3: muPPIt-designed binders specifically target mutants from SKEMPI, exhibiting higher ipTM scores,
LIA (Local Interaction Area), and LIS (Local Interaction Score), as well as lower free energy compared to
their binding with wildtype counterparts. ’WT’ denotes binding to the wildtype, ’MUT’ denotes binding to the
mutant, and ’# muts’ indicates the number of mutations in the wildtype sequence.

SKEMPI ID Type ipTM score free energy LIA LIS # muts

1BRS_A_D
WT 0.3 -306.33 680 0.248

1
MUT 0.53 -343.96 1243 0.333

1CBW_FGH_I
WT 0.37 -350.19 349 0.083

1
MUT 0.47 -353.69 822 0.221

1A4Y_A_B
WT 0.53 -478.39 917 0.28

1
MUT 0.68 -480.20 1171 0.41

4UYQ_A_B
WT 0.55 -227.8 922 0.442

1
MUT 0.67 -231.7 1085 0.538

2B0U_AB_C
WT 0.45 -778.26 1749 0.157

1
MUT 0.56 -796.78 2480 0.202

3BT1_A_U
WT 0.48 -60.82 656 0.447

1
MUT 0.53 -72.66 498 0.498

1R0R_E_I
WT 0.37 -150.35 550 0.34

1
MUT 0.63 -151.06 597 0.595

1FCC_A_C
WT 0.38 -212.82 669 0.365

1
MUT 0.55 -218.06 827 0.539

Table 4: muPPIt-designed binders specifically target mutants from PPIMut, exhibiting higher ipTM scores, LIA
(Local Interaction Area), and LIS (Local Interaction Score), as well as lower free energy compared to their
binding with wildtype counterparts. ’WT’ denotes binding to the wildtype, ’MUT’ denotes binding to the mutant,
and ’# muts’ indicates the number of mutations in the wildtype sequence.

PPIMut ID Type ipTM score free energy LIA LIS # muts

4Q2P_A_B
WT 0.54 -306.81 710 0.318

9
MUT 0.61 -316.64 799 0.453

7KBE_A_E
WT 0.24 -228.84 5 0.032

15
MUT 0.41 -233.16 715 0.195

2X83_C_D
WT 0.48 -450.33 583 0.188

17
MUT 0.57 -470.65 825 0.319

6U3A_A_B
WT 0.24 -430.83 37 0.052

23
MUT 0.73 -443.76 422 0.389
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