
Simulating Message Passing via Spiking Neural
Networks Using Logical Gates

Anonymous Author(s)
Affiliation
Address
email

Abstract

It is hypothesized that the brain functions as a Bayesian inference engine, continu-1

ously updating its beliefs based on sensory input and prior knowledge. Message2

passing is an effective method for performing Bayesian inference within graphical3

models. In this paper, we propose that the XOR and the Equality factor nodes,4

which are important components in binary message passing, can be realized through5

a series of logical operations within a spiking neural network framework. Spiking6

neural networks simulate the behavior of neurons in a more biologically plausible7

manner. By constructing these factor nodes with a series of logical operations,8

we achieve the desired results using a minimal number of neurons and synaptic9

connections, potentially advancing the development of biological neuron-based10

computation. We validate our approach with two experiments, demonstrating the11

alignment between our proposed network and the sum-product message-passing12

algorithm.13

1 Introduction14

The Bayesian brain hypothesis proposes that the brain functions as a Bayesian inference machine,15

continuously updating its beliefs about the world by integrating sensory input with prior knowl-16

edge (1). This concept aligns with the Free Energy Principle, which asserts that biological systems17

must minimize uncertainty by using internal models to predict and adapt to environmental changes (3).18

Experimental evidence supporting these principles can be observed in studies involving in-vitro bio-19

logical neurons cultured on Micro-Electrode Arrays (MEA). For instance, research by (8) highlights20

the computational capabilities of cultured neurons in a simulated game of Pong, while (7) investigates21

their application in blind source separation.22

A widely used technique for probabilistic inference under uncertainty is the sum-product message23

passing on a factor graph, also known as belief propagation. This method offers a structured approach24

for efficiently performing Bayesian inference in graphical models by exchanging information between25

factor nodes to update beliefs (12).26

Spiking Neural Networks (SNNs) are a class of artificial neural networks that emulate the behavior27

of biological neurons by using discrete spikes or action potentials for communication. SNNs encode28

information in the precise timing of these spikes (13). The biologically inspired nature of SNNs29

provides a more accurate simulation of neural processes, making them significant for advancements30

in computational neuroscience. In (10), the utility of SNNs is demonstrated by showing how Spike-31

Timing-Dependent Plasticity (STDP) can be leveraged to enable a self-learning spiking network to32

control a mobile robot. This study highlights the potential of SNNs in practical applications, where33

their ability to learn and adapt can enhance robotic control and autonomous decision-making34

Submitted to Workshop on Bayesian Decision-making and Uncertainty, 38th Conference on Neural Information
Processing Systems (BDU at NeurIPS 2024). Do not distribute.

In this paper, we propose SNN-based factor nodes for simulating Bernoulli message passing using35

logical nodes. We demonstrate that the proposed network, constructed with a minimal number36

of neurons and synaptic connections, yields results closely aligned with numerical sum-product37

rules. This approach represents a potential step toward exploring the use of biological neurons as38

computational functions.39

2 Background40

2.1 Sum-Product Message Passing on Forney-style Factor Graphs41

The belief propagation or sum-product message passing algorithm, applied to Forney-style Factor42

Graphs (FFGs), is a powerful method for performing Bayesian inference in probabilistic models (12).43

In an FFG, edges represent random variables, and nodes represent factors in a probabilistic model.44

An edge connects to a node if the variable on that edge is an argument of the node’s function. The45

sum-product algorithm works by iteratively passing "messages" along the edges of the graph. We46

denote the forward and backward messages using the notations −→µ (·) and ←−µ (·), respectively. In47

general, for any node f(y, x1, . . . , xn), the sum-product rule for an outgoing message over edge y is48

given by49

−→µ (y)︸ ︷︷ ︸
outgoing messages

=
∑

x1,...,xn

−→µ (x1)...
−→µ (xn)︸ ︷︷ ︸

incoming messages

f(y, x1, ..., xn)︸ ︷︷ ︸
node function

. (1)

This algorithm is particularly scalable because it exploits the graph’s structure to compute locally,50

significantly reducing the complexity compared to naive approaches that require summing over all51

possible configurations globally. The local and distributed nature of the sum-product algorithm allows52

it to handle large-scale problems efficiently, making it widely applicable. For example, in multi-agent53

trajectory planning (2) and active inference in complex environments (9).54

2.2 Leaky Integrate-and-Fire Neurons55

SNNs encompass several biophysical models that describe how neurons generate spikes to a varying56

degree of realism. Among these, the Leaky Integrate-and-Fire (LIF) model is one of the most widely57

used, and it is the one we employ here. In the LIF model, a neuron’s membrane potential accumulates58

with incoming synaptic inputs over time, which can be either excitatory or inhibitory. The membrane59

potential also ’leaks’ over time, gradually returning to the resting state in the absence of input,60

reflecting the neuron’s inherent electrical properties. When the membrane potential reaches a certain61

threshold, the neuron ’fires’ an action potential or spike, which propagates down the axon to stimulate62

other neurons.63

3 Simulations64

In this section, we start by implementing logical node diagrams using a small number of LIF neurons.65

We then utilize these diagrams to carry out message passing according to the sum-product rule with66

Bernoulli messages. Finally, we apply this method to a specific example and compare the results.67

To simulate neural activities we utilized the Brian toolbox (4). We set the threshold for neuron firing68

at 1.0, the resting state at 0.0, and we assumed dv/dt = −v/τ for τ = 1.0 ms for all neurons.69

3.1 Logical Gates70

We design the neurons’ synaptic connections so as to achieve the output described in the truth table 3.171

for each logical gate. This process is more straightforward for the AND, OR, and NOT gates, as we72

can determine appropriate synaptic weights to achieve the desired output. The proposed SNN gates73

are illustrated in figure 1. We restricted the input spikes to every 10 ms. A sample set of inputs and74

their corresponding outputs are illustrated in the figure 1. x1 spikes at times {10, 20, 40, 50, 70}, and75

x2 spikes at times {0, 20, 40, 60}. The outputs of each gate match the expected results.76

2

Figure 1: Synaptic weights for the AND, OR, and NOT gates. Each circle represents a single LIF
neuron. To implement the NOT gate, a consistent spike train with intervals of 10 ms is applied
throughout the simulation. For the AND gate, the output spike is generated only when both inputs
are present; otherwise, the voltage increases but does not reach the firing threshold.

Figure 2: SNN Diagram for XOR gate.

Table 1: Logical Gates Truth Table
x1 x2 OR AND NOT-x1 XOR Equality
0 0 0 0 1 0 0
0 1 1 0 1 1 Not Defined
1 0 1 0 0 1 Not Defined
1 1 1 1 0 0 1

77

The XOR gate is more complex to generate, meaning it cannot be implemented solely by adjusting78

synaptic weights, as was done for the gates in Fig 1. However, it can be constructed by combining79

the implemented gates, as outlined in Fig 2.80

3.2 Message Passing81

We consider −→µ (x1) = Ber(x1|p1) and −→µ (x2) = Ber(x2|p2) as the input messages, we sample82

from these distributions every 10 ms and use them as input spikes. For the XOR gate, we define the83

output message −→µ (y) = Ber(y| spike−count
spike−time), where spike− count is the total number of the output84

spikes according to the 2, and the spike− time is the total times we sample from the input messages.85

For example, if we run the simulation for 10000 ms and sample each 10 ms from the inputs, the86

spike− time is 1000 times.87

For the Equality node, it is more complicated. As we can see in the truth table, the output spikes of88

this node are similar to the AND gate, but the combinations of unequal inputs are not defined for89

this operation. So we can use the AND output for the spike− count and consider just the number90

of equal inputs for spike − time. This can be achieved by connecting the inputs to an XOR gate91

(which gives us the number of unequal inputs) followed by a NOT gate.92

3

Figure 3: Comparison of results from the proposed SNN nodes for passing Bernoulli messages.
X1 and X2 represent randomly selected parameters for the input Bernoulli messages. Each pair of
inputs was sampled every 10 ms over a period of 100 seconds. The firing rate of the SNN gates
was calculated as described in the text and is compared with those obtained using the sum-product
formula.

Figure 4: The FFG corresponding to the dis-
cussed example. Input messages are highlighted
with orange arrows.

Message Ground truth (11) Our result
−→µ (Y) Ber(0.18) Ber(0.174)
←−µ (Y) Ber(0.5) Ber(0.488)
←−µ (X1) Ber(0.5) Ber(0.526)
←−µ (X2) Ber(0.5) Ber(0.526)
←−µ (X3) Ber(0.024) Ber(0.022)
←−µ (X4) Ber(0.664) Ber(0.657)

Table 1: Comparison of the ground truth mes-
sages in the example with the results obtained
from our SNN-based factor nodes.

As calculated in the Appendix, the sum-product message according to Equation (1) follows93

−→µ (y) = Ber(y | p1 − 2p1p2 + p2) (2)
−→µ (y) = Ber(y |

p1p2
1− p1 + 2p1p2 − p2

) (3)

for the XOR and Equality nodes respectively. As shown in Fig. 3, the proposed SNNs yield results94

that closely match the numerical solution according to (2), and (3).95

3.3 An example96

We can now apply our proposed SNN-based message passing to solve an example. We used97

the problem introduced in (11). Consider the FFG depicted in Figure 4, which represents the98

binary code C = {(0, 0, 0, 0), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 0)}. In this example, the messages99

(−→µ (X1),
−→µ (X2),

−→µ (X3),
−→µ (X4)), indicated by orange arrows on the graph, serve as the inputs.100

Table 1 compares the other messages passed along the edges with the results obtained from our101

SNN-based approach, demonstrating that our method closely matches the expected outcomes.102

3.4 Conclusion103

In this paper we implemented SNN-based message passing with Bernoulli messages on XOR and104

Equality factor nodes using logical gates. This result also aligns with the model proposed in (15),105

where continuous sum-product message passing was implemented using a Liquid State Machine (14).106

While their approach involved hundreds of synaptic weights, our goal in this paper is to implement107

the process as simply as possible. This simplification is crucial for our next step, which focuses on108

using self-learning STDP algorithms like those described in (5) and (6), to set synaptic weights in a109

way that is more biologically plausible. The ultimate aim is to implement the entire system on an110

MEA chip, paving the way for the development of a hybrid bio-computational chip.111

4

Appendices112

We can derive the forward sum-product message −→µ (y) according to the XOR factor node, given113

Bernoulli input messages x1 and x2, as114

−→µ (y) =
∑
x1

∑
x2

−→µ (x1)
−→µ (x2) f(y, x1, x2)

=
∑
x1

∑
x2

Ber(x1|p1)Ber(x2|p2) f(y, x1, x2)

= Ber(0|p1)Ber(0|p2)f(y, 0, 0) + Ber(1|p1)Ber(0|p2)f(y, 1, 0)
+ Ber(0|p1)Ber(1|p2)f(y, 0, 1) + Ber(1|p1)Ber(1|p2)f(y, 1, 1)

= (1− p1)(1− p2)f(y, 0, 0) + p1(1− p2)f(y, 1, 0)

+ (1− p1)p2f(y, 0, 1) + p1p2f(y, 1, 1) .

Using the truth table, we can substitute y and evaluate the terms, such that115

−→µ (y) =

{
p1(1− p2) + (1− p1)p2 if y = 1

(1− p1)(1− p2) + p1p2 if y = 0
=

{
p1 − 2p1p2 + p2 if y = 1

1− p1 + 2p1p2 − p2 if y = 0

= Ber(y|p1 − 2p1p2 + p2) .

Since the XOR factor is symmetric according to their truth table forward and backward messages are116

equal. For instance, if we want the backward message←−µ (x1) given −→µ (x2) and←−µ (y), it is:117

←−µ (x1) = Ber(x1|p2 − 2pyp2 + py) .

So we don’t need any other gate for computing the backward messages and we can use the proposed118

gate but with the backward messages as the inputs.119

Similarly, we have the following computations for the equality factor node:120

−→µ (y) =

{
p1p2 if y = 1

(1− p1)(1− p2) if y = 0

= Ber(y| p1p2
1− p1 + 2p1p2 − p2

) .

References121

[1] Doya, K.: Bayesian brain: Probabilistic approaches to neural coding. MIT press (2007)122

[2] van Erp, B., Bagaev, D., Podusenko, A., İsmail, Ş., de Vries Bert: Multi-agent trajectory123

planning with NUV priors. American Control Conference (2024, in press)124

[3] Friston, K., Kilner, J., Harrison, L.: A free energy principle for the brain. Journal of physiology-125

Paris 100(1-3), 70–87 (2006)126

[4] Goodman, D.F., Brette, R.: Brian: a simulator for spiking neural networks in python. Frontiers127

in neuroinformatics 2, 350 (2008)128

[5] Hem, I.G., Ledergerber, D., Battistin, C., Dunn, B.: Bayesian inference of spike-time dependent129

learning rules from single neuron recordings in humans. bioRxiv pp. 2023–04 (2023)130

[6] Hu, Z., Wang, T., Hu, X.: An STDP-based supervised learning algorithm for spiking neural131

networks. In: International Conference on Neural Information Processing. pp. 92–100. Springer132

(2017)133

[7] Isomura, T., Kotani, K., Jimbo, Y.: Cultured cortical neurons can perform blind source separation134

according to the free-energy principle. PLoS Computational Biology 11(12), e1004643 (2015)135

5

[8] Kagan, B.J., Kitchen, A.C., Tran, N.T., Habibollahi, F., Khajehnejad, M., Parker, B.J., Bhat, A.,136

Rollo, B., Razi, A., Friston, K.J.: In vitro neurons learn and exhibit sentience when embodied137

in a simulated game-world. Neuron 110(23), 3952–3969 (2022)138

[9] Van de Laar, T.W., De Vries, B.: Simulating active inference processes by message passing.139

Frontiers in Robotics and AI 6, 20 (2019)140

[10] Lobov, S.A., Mikhaylov, A.N., Shamshin, M., Makarov, V.A., Kazantsev, V.B.: Spatial proper-141

ties of stdp in a self-learning spiking neural network enable controlling a mobile robot. Frontiers142

in Neuroscience 14, 88 (2020)143

[11] Loeliger, H.A.: An introduction to factor graphs. IEEE Signal Processing Magazine 21(1),144

28–41 (2004)145

[12] Loeliger, H.A., Dauwels, J., Hu, J., Korl, S., Ping, L., Kschischang, F.R.: The factor graph146

approach to model-based signal processing. Proceedings of the IEEE 95(6), 1295–1322 (2007)147

[13] Maass, W.: Networks of spiking neurons: the third generation of neural network models. Neural148

Networks 10(9), 1659–1671 (1997)149

[14] Maass, W.: Liquid state machines: motivation, theory, and applications. Computability in150

Context pp. 275–296 (2011)151

[15] Steimer, A., Maass, W., Douglas, R.: Belief propagation in networks of spiking neurons. Neural152

Computation 21(9), 2502–2523 (2009)153

6

	Introduction
	Background
	Sum-Product Message Passing on Forney-style Factor Graphs
	Leaky Integrate-and-Fire Neurons

	Simulations
	Logical Gates
	Message Passing
	An example
	Conclusion

	Appendices

