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Abstract

Hierarchical text classification aims at catego-001
rizing texts into multi-tiered tree-like label hier-002
archy. Existing methods pay more attention to003
capture hierarchy-aware text feature by exploit-004
ing explicit parent-child relationships, while in-005
teractions between peer labels are rarely taken006
into account, resulting in severe label confu-007
sions within each layer. In this work, we008
propose a novel Dual Prompt Tuning (DPT)009
method, which emphasizes to identify discrim-010
ination among peer labels by performing con-011
trastive learning on each hierarchical layer. We012
design an innovative hand-crafted prompt con-013
taining slots for both positive and negative la-014
bel predictions to cooperate with contrastive015
learning. In addition, we introduce a label hi-016
erarchy self-sensing auxiliary task to ensure017
cross-layer label consistency. Extensive exper-018
iments demonstrate that DPT achieves signifi-019
cant improvements and outperforms the current020
state-of-the-art methods on BGC and RCV1-021
V2 benchmark datasets.022

1 Introduction023

As a sub-task of text classification, hierarchical text024

classification (HTC) has broader applications in the025

realistic scenes, such as intent recognition in dia-026

logue system, commodity and book management027

(Cevahir and Murakami, 2016; Aly et al., 2019),028

where a large number of categories are organized029

into a hierarchical tree structure. The ultimate goal030

of HTC task is to classify texts or documents from031

the top to bottom level through the hierarchical032

label tree. Due to the challenges of large-scale, im-033

balanced and complex label hierarchy (Mao et al.,034

2019), simply transferring flat multi-label text clas-035

sification algorithms to HTC often fails to achieve036

sufficient performance.037

Full use of the hierarchical structure of labels038

is the key to achieving well-performing classifi-039

cation in HTC tasks, which enables the model to040

(a) Dual-Encoder (b) Prompt Tuning

(c) Dual Prompt Tuning (Ours)

Figure 1: Architecture comparisons among existing
methods and our proposed Dual Prompt Tuning.

predict labels that match the hierarchical relation- 041

ship. Existing methods (Zhou et al., 2020; Deng 042

et al., 2021; Chen et al., 2021; Zhu et al., 2023) 043

apply dual-encoders framework to model the text 044

and hierarchical structure separately, and then fu- 045

sion them to obtain hierarchical label-wise text fea- 046

ture. Wang et al. (2022b) first proposes a hierarchy- 047

aware prompt-tuning method, which incorporates 048

the label hierarchy encoded by the Graph Attention 049

Network into a soft prompt to bridge hierarchy and 050

flat gap, as shown in Figure 1. 051

However, most studies pay close attention to 052

exploit relations that explicitly displayed in the hi- 053

erarchy, while interactions between "peer labels" 054

which refer to a group of labels at the same hierar- 055

chical level are often neglected. PeerHTC (Song 056

et al., 2023) recently tries to explore latent rele- 057

vancy among peer labels with a complicated two- 058

stage training procedure in which peer and adja- 059

cent level-wise feature are separately extracted by 060

Graph Convolutional Neural Networks. Neverthe- 061
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less, alleviating confusion within peer labels, es-062

pecially fine-grained ones at lower level that share063

the same parent node, still remains challenging and064

highly valued.065

To this end, we propose a novel Dual Prompt066

Tuning (DPT) method, aimed at alleviating label067

confusion between peer labels. We put forward068

Hierarchy-aware Peer-label Contrastive Learning069

(HierPCL) approach to extract discriminative pair-070

wise representations. In detail, we create an origi-071

nal dual prompt template containing both positive072

and negative label slots, and then perform label-073

wise contrastive learning on the embeddings of074

both two slots. Dual prompt is multi-functional,075

targeted for predicting positive labels and recogniz-076

ing incorrect but confused negatives at each hierar-077

chical layer. Moreover, we design an adaptive hard078

negative sampling strategy and hierarchy-injected079

label representation method to further boost the080

performance of HierPCL.081

Besides, we introduce a simple auxiliary Label082

Hierarchy Self-sensing task to keep our model in083

the best sense of holistic hierarchical structure. In-084

stead of injecting label hierarchy into text seman-085

tics, we perform multi-task learning collaborating086

with label prediction to identify the correctness of087

each candidate label path. The basic idea of this088

task is to internalize structural hierarchy knowl-089

edge to ensure the cross-layer consistency of the090

final path prediction and improve the classification091

accuracy.092

Our contributions are summarized as follows:093

• We propose a Dual Prompt Tuning (DPT)094

method for HTC tasks to address label confu-095

sion between peers at each hierarchical layer,096

magnifying the power of prompts.097

• We put forward Hierarchy-aware Peer-label098

Contrastive Learning approach based on DPT,099

which contributes to obtaining aligned and100

discriminative representation.101

• We evaluate our proposed method on four pop-102

ular benchmark datasets against the strong103

baselines. Experimental results demonstrate104

the advantage of our proposal.105

2 Related Work106

2.1 Hierarchical Text Classification107

The HTC algorithms can generally be divided into108

local and global approaches (Zangari et al., 2023).109

Local approaches construct multiple classifiers for 110

different partitions of the label hierarchy tree usu- 111

ally in a "top-down" flow, for example, each node 112

or each hierarchical level. Although there is a cer- 113

tain degree of connection between multiple classi- 114

fiers, it is inevitable to lose the holistic structure 115

information of label hierarchy. Global approaches 116

use a single classifier to classify all labels with hier- 117

archical dependencies simultaneously. Early works 118

simplify the HTC task into a flat multi-label classi- 119

fication task, discarding all hierarchical features im- 120

plicit in taxonomic label set. Later on, specialized 121

hierarchy-aware methods are proposed. HiAGM 122

(Zhou et al., 2020), HTCInfoMax (Deng et al., 123

2021), HiMatch (Chen et al., 2021), and HiTIN 124

(Zhu et al., 2023) employ dual-encoders frame- 125

work, which applies the text encoder and structure 126

encoder to learn the representations of texts and 127

labels respectively, and then fuse them to obtain 128

enhanced text embeddings. Current state-of-the-art 129

methods leverage the capabilities of deep learn- 130

ing techniques to improve HTC’s performance, i.e., 131

sequence generative manners (Zhao et al., 2022; 132

Ning et al., 2023; Huang et al., 2022) to mitigate 133

label inconsistency phenomenon, data generation 134

strategies (Wang et al., 2023) to rich text diver- 135

sity, contrastive learning methods (Wang et al., 136

2022a; Ji et al., 2023) to enhance semantic ex- 137

pression and prompt-tuning paradigm (Wang et al., 138

2022b; Ji et al., 2023) to tap into the potential of 139

pre-trained language models (PLMs) (Devlin et al., 140

2019; Brown et al., 2020; Raffel et al., 2023). 141

2.2 Prompt Tuning 142

Prompt Tuning (Schick and Schütze, 2021; Liu 143

et al., 2023a) refers to tuning pre-trained language 144

model by reconstructing downstream task into 145

cloze test which bridges the gap in goals between 146

fine-tuning and pre-training stages. It involves two 147

key steps: (1) template construction which gen- 148

erates a template containing special tokens, and 149

(2) label word verbalizer design which defines a 150

function from token embedding to answer words. 151

There are two types of template construction meth- 152

ods. Hard prompt methods (Shin et al., 2020; Gao 153

et al., 2021a; Han et al., 2022) directly concatenate 154

explicit discrete tokens with the original text and 155

maintain them unchanged throughout entire train- 156

ing process, which do not introduce any parameters. 157

Soft prompt methods (Qin and Eisner, 2021; Lester 158

et al., 2021; Gu et al., 2022; Liu et al., 2023b) con- 159

vert the template into a group of continuous vectors 160
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as the template and update the vector parameters161

based on specific contextual semantics and task ob-162

jectives during training. Prompt-based HPT (Wang163

et al., 2022b) adopts a soft prompt for HTC tasks,164

inserting a fixed number of learnable virtual la-165

bel words to the input text. As for verbalizer, Hi-166

erVerb (Ji et al., 2023) proposes Multi-verbalizer167

(Multi-Verb) framework which integrates the hier-168

archical information, bringing notable performance169

improvement under few-shot settings.170

2.3 Contrastive Learning171

Contrastive learning (He et al., 2020; Chen et al.,172

2020) aims to pull anchor sample close to its posi-173

tive samples while push it apart from negative sam-174

ples, which has been proven to elevate the align-175

ment and uniformity of feature space. Contrastive176

learning has various forms, typically differing in177

the construction of positive and negative pairs and178

loss formulas. Under self-supervised settings, pos-179

itive samples are usually obtained through data180

augmentations and repeating twice dropout mask181

(Gao et al., 2021b) operation. Under supervised182

settings, positives are other samples of the same183

category (Khosla et al., 2020). Negative samples184

are regularly selected from other samples or sam-185

ples of other categories within a batch. Prototypical186

Contrastive Learning (Li et al., 2021) is proposed187

to enhance semantic discrimination and balance.188

Different from instance-level contrastive learning,189

it encourages instance to be closer to their assigned190

prototypes. The prototype of a class can set as the191

label semantics (Ma et al., 2022), the average of192

all embeddings of the same category (Xiao et al.,193

2021) and learnable parameters (Cui et al., 2022).194

3 Methodology195

In this section, we present a detailed description of196

our proposed DPT model to address HTC tasks.197

As shown in Figure 2, our model is based on198

prompt-tuning framework with Multi-verbalizer (Ji199

et al., 2023). The principal innovations of DPT200

are twofold, including (1) the implementation of201

Hierarchy-aware Peer-label Contrastive Learning202

to obtain rich discriminative features, and (2) the203

incorporation of Label Hierarchy Self-sensing aux-204

iliary task to enhance encoder’s ability for an in-205

depth understanding of label hierarchy structure.206

3.1 Preliminary207

Given a set of inputs D = {t1, t2, ..., tN} where208

ti = {xj}nj=1 denotes a text composed of n words,209

and a predefined hierarchical label set Y which is 210

commonly organized as a tree-like taxonomy struc- 211

ture G, the goal of HTC is to select labels for ti 212

at each layer starting from the root label node of 213

G. Assuming L is the maximum depth of G, the 214

labels {y1, y2, ...} of an input text correspond to 215

single or multiple paths of the label tree, each of 216

which typically consists of no more than L continu- 217

ous individual labels with hierarchical relationship 218

within G. 219

3.2 Dual Prompt Tuning 220

For the given text ti, a prompt template is utilized 221

to wrap the original text to generate a new form 222

of model input. For example, ti is converted to 223

"[CLS] It was 1 level: [MASK] 2 level: [MASK] ... 224

L level: [MASK]. ti [SEP]." (Ji et al., 2023). Differ- 225

ent from vanilla prompt tuning methods, we utilize 226

a dual prompt template to reserve two types of slot 227

positions, instead of only formulating positive la- 228

bel slots. For instance, a common dual prompt is 229

formulated as follow: 230

T = {[CLS] ti [SEP] It belongs to [MASK] -...[MASK]
rather than [MASK]-...[MASK][SEP]}

(1)
231

The number of [MASK] repetitions of positive or 232

negative slots is equal to the depth of the label hier- 233

archy L. In this paper, we define [MASK] tokens 234

inserted in the prompt template at the position of 235

label slots as "label mask tokens". In the above ex- 236

ample, positive label mask tokens locate between 237

"It belongs to" and "rather than", while negative 238

label mask tokens are behind "rather than". 239

Consistent with other competing methods, we 240

employ BERT (Devlin et al., 2019) as the backbone 241

of our model to encode input texts and obtain all 242

token embeddings: 243

V = BERT(T (ti)) (2) 244

Let {vpl }
L
l=1 and {vnl }Ll=1 respectively represent 245

the embeddings of l-th positive label mask token 246

and l-th negative label mask token. We inherit 247

HierVerb (Ji et al., 2023) to adopt a depth-oriented 248

Multi-verbalizer framework mapping label token 249

embeddings {vpl }
L
l=1 to label words. Probability 250

distribution of ti can be expressed as: 251

Z = {zl}Ll=1

= {V1(v
p
1), ..., VL(v

p
L)}

(3) 252
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Figure 2: Model architecture of Dual Prompt Tuning (DPT) based on a multi-verbalizer framework. DPT is
composed of two modules, including Hierarchy-aware Peer-label Contrastive Learning and Label Hierarchy Self-
sensing task. Label token embeddings and label representations are encoded in the unified embedding space,
and contrastive loss are calculated according to their affiliation and hierarchical relationship. Label Hierarchy
Self-sensing task is used to simultaneously restrain path predictions with correctness and consistency. Note that the
figure only depicts the Hierarchy-aware Peer-label Contrastive learning between the first and second levels.

where the l-th verbalizer Vl acts in predicting l-253

level labels. More details about Multi-verbalizer254

framework can be found in Ji et al. (2023).255

3.3 Hierarchy-aware Peer-label Contrastive256

Learning257

To extract hierarchy-aware dicriminative feature258

on the basic of dual prompt tuning, the ideal em-259

beddings at label mask tokens should satisfy the260

following intents: (1) Token embeddings of the pos-261

itive label mask tokens should be close to represen-262

tations of their positive labels, and far away from263

negative labels in the feature space. The same de-264

sire applies to token embeddings of negative label265

mask tokens. (2) The semantic similarity between266

high-level label and its ground truth sub-label is ex-267

pected to be greater than that with other sub-labels,268

further greater than sub-labels of other nodes at the269

same hierarchical layer. Based on the above, we270

propose a Hierarchy-aware Peer-label Contrastive271

Learning (HierPCL) method to capture latent se-272

mantic relevancy between peer labels as well as273

parent-child labels.274

Objective of HierPCL The objective function275

of HierPCL consists of three components: posi-276

tive label contrastive learning, negative label con-277

trastive learning and cross-hierarchical rank loss.278

The basic idea of HierPCL is to encourage the em-279

beddings of the label mask tokens encoded by PLM280

closer to the representations of their positive labels 281

which should be filled in the label slots of the tem- 282

plate. 283

(1) Positive label contrastive learning is per- 284

formed on positive label mask tokens. The target 285

positives are ground truth labels while the negatives 286

are the sampled K negative labels and negative la- 287

bel mask token. The loss function is formulated 288

as: 289

Lp
CL = − 1

L

L∑
l=1

log

∑M
m=1 exp(s(v

p
l , r

p
l,m)/τ)∑

u∈Ap exp(s(v
p
l , u)/τ)

(4) 290

where rpl,m and rnl,k respectively denote the rep- 291

resentation vectors of m-th positive labels and 292

the k-th negative label in l-th level of sentence 293

ti, and s(·) represents cosine similarity function. 294

All participants above are denoted as Ap := 295

{{rpl,m}Mm=1, {rnl,k}Kk=1, v
n
l }. 296

(2) Negative label contrastive learning is per- 297

formed on negative label mask tokens. Opposite 298

to Lp
LC , the target positives are negative labels 299

of this instance while the negatives are ground 300

truth labels and positive label mask token. Let 301

An := {{rpl,m}Mm=1, {rnl,k}Kk=1, v
p
l }, the loss func- 302

tion is formulated as: 303

Ln
CL = − 1

L

L∑
l=1

log

∑K
k=1 exp(s(v

n
l , r

n
l,k)/τ)∑

u∈An exp(s(vnl , u)/τ)
(5) 304
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(3) Cross-hierarchical rank loss aims to align305

label token embeddings with the representations306

of their sub-labels. In other words, high-level la-307

bels tend to have higher semantic similarities with308

positive child-labels, compared to negative peer309

child-labels. The loss function is formulated as:310

LR =

L−1∑
l=1

( M∑
m=1

K∑
k=1

max(0, s(vpl , r
n
l+1,k)− s(vpl , r

p
l+1,m))

+
∑

rn
c,l+1

∑
rn
o,l+1

max(0, s(vpl , r
n
o,l+1)− s(vpl , r

n
c,l+1))

)
(6)

311

where rnc,l+1 denotes the representation vector of312

(l + 1)-th negative label which belongs to child-313

labels of l-th ground truth label, and rno,l+1 denotes314

that doesn’t belong to child-labels.315

Finally, the objective function of HierPCL is316

formulated as follow:317

L1 = αLp
CL + (1− α)Ln

CL + βLR (7)318

where α and β are hyper-parameters used for319

balancing the relative weights of three components.320

Hard Negative Sampling The selection strat-321

egy of negative samples is critical to contrastive322

learning. Since the estimated label predictions can323

be considered a reliable source for generating hard324

negatives, we design an adaptive self-produced325

hard negative sampling strategy under the guid-326

ance of predictions during training. It adopts the327

top K hard negative labels according to confidence328

scores in descending order output by the Verbalizer329

at each hierarchical level. In our experiment, K is330

set to 10% of the number of labels, which achieves331

a balance between performance and memory con-332

sumption. The effects of different settings of K are333

described in Appendix B for detail.334

Hierarchy-injected Label Representation335

Label representation vectors are learned through336

the shared PLM without prior statistics. To avoid337

the side impact of the overlapping interaction be-338

tween label names and text words, we assign an339

unique fabricated symbol for each label, like "L0",340

and add them to the vocabulary list used in model341

training. To incorporate hierarchy information to342

label representation, we flatten the parent-child hi-343

erarchy of the label to form a label sequence, as344

follow:345

Q = {[CLS] W [SEP] W f [SEP] {W c} [SEP]} (8)346

where W f means the parent label symbol of W ,347

{W c} is on behalf of all children labels. "Root"348

and "None" are used as fictitious tokens when par- 349

ent label or child label doesn’t exist. We use the 350

embedding on W enriched with hierarchical depen- 351

dencies as the label representation r. 352

3.4 Label Hierarchy Self-sensing Task 353

For the purpose of elevating the model’s perceptual 354

ability of label hierarchical structure, we introduce 355

a Label Hierarchy Self-sensing task as an auxiliary 356

task consisting of two sub-tasks: (1) determining 357

whether the label nodes at each level can form a 358

valid path, and (2) determining whether the ground 359

truth path exists in the prediction. A simple base 360

unit of feed-forward module is utilized on the top 361

of [CLS] token after PLM. The consistency and 362

correction loss functions are respectively designed 363

based on Binary Cross Entropy (BCE) (De Boer 364

et al., 2005): 365

Lcon = BCE(ȳcon, p̄con) (9) 366
367

Lcor = BCE(ȳcor, p̄cor) (10) 368

where p̄con represents the probability of that the 369

predictions can form the label paths, and p̄cor rep- 370

resents the probability of that predictions are the 371

ground truth label paths. We retrieve all label paths 372

from the label nodes of the sentence. ȳcon = 1 373

if all predicted label nodes can exactly form label 374

paths. ȳcor = 1 if all combined label paths are the 375

ground truth labels of the sentence. Otherwise, the 376

value of ȳcon or ȳcor is 0. 377

Finally, the loss function of the auxiliary task is 378

formulated as: 379

L2 = Lcon + Lcor (11) 380

3.5 Multi-task Training 381

Overall, multi-task training objective is to mini- 382

mize the weighted combination of classification 383

loss, Peer-label contrastive learning loss, label hi- 384

erarchy self-sensing loss and MLM loss retaining 385

from the original BERT pre-training. The choice 386

of classification loss function can be contingent 387

upon given circumstances. For the sake of univer- 388

sality, the standard Binary Cross-Entropy function 389

is employed: 390

LCLS =
L∑
l=1

BCE(yl, zl) (12) 391

Final joint loss can be formulated as: 392

L = LMLM + LCLS

+ λ1L1 + λ2L2
(13) 393

where λ1 and λ2 are hyper-parameters. 394
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Dataset WoS RCV1 BGC NYT
L 2 4 4 8
|Y | 141 103 146 166
Avg(|Yi|) 2.0 3.24 3.01 7.6
#Train 30070 20833 58715 23345
#Val 7518 2316 14785 5834
#Test 9397 781265 18394 7292

Table 1: Statistics of HTC datasets. L, |Y | and Avg(|Yi|)
represent the maximum depth, total number of cate-
gories and the average number of labels respectively.

4 Experiment395

4.1 Experiment Setup396

Datasets We conduct experiments on 4 bench-397

mark datasets: Web-of-Science (WoS) (Kowsari398

et al., 2017), NYTimes (NYT) (Sandhaus, 2008),399

RCV1-V2 (Lewis et al., 2004) and Blurb Genre400

Collection (BGC) 1 (Aly et al., 2019) . Note that401

taxonomic of WoS is single-path while the rest402

three datasets are for multi-path HTC. The detailed403

statistics of these datasets are list in Table 1.404

Evaluation Metrics The performance of our405

model is evaluated by popular Micro-F1 and Macro-406

F1 metrics, together with path-constrained metrics407

proposed by Yu et al. (2022), including C-MicroF1408

and C-MacroF1, in which a prediction is consid-409

ered as correct only when all its ancestor nodes are410

predicted accurately. The hierarchical path consis-411

tency is taken into account as well as the accuracy412

of label nodes to the comprehensive metrics of413

HTC.414

Implementation Details The backbone of415

DPT is initialized with bert-base-uncased2. The416

batch size is set to 32 for BGC and 16 for other417

datasets. The AdamW optimizer is used with the418

learning rate of 2e-5 for WoS and 3e-5 for others.419

We apply the early stopping strategy with 5 patient420

epochs. For fair comparison, we perform the same421

data processing and spliting method as HPT. The422

reported results of our main experiments are the423

average score of 5 runs over different random seeds.424

Experimental settings of all hyper-parameters are425

described in Appendix A.426

Baselines We compare our methods with fol-427

lowing advanced HTC methods:428

• HGCLR (Wang et al., 2022a) incorporates429

label hierarchy into text encoder through430

1https://www.inf.uni-hamburg.de/en/inst/ab/lt/
resources/data/blurb-genre-collection.html

2https://huggingface.co/bert-base-uncased

hierarchy-guided contrastive learning between 431

text and its generated positive samples with 432

the most closest label paths. 433

• Seq2Tree (Yu et al., 2022) and PAAM-HiA- 434

T5 (Huang et al., 2022) treat HTC as the se- 435

quence generation task. Seq2Tree designs 436

a constrained decoding strategy with dy- 437

namic vocabulary to ensure label consistency. 438

PAAM-HiA-T5 proposes a multi-level sequen- 439

tial label generative T5 model with a path- 440

adaptive attention mechanism to focus on la- 441

bel dependency prediction. 442

• HPT (Wang et al., 2022b) exploits the effects 443

of prompt-tuning by a dynamic virtual tem- 444

plate and a zero-bounded multi-label cross en- 445

tropy loss, which achieves the state-of-the-art 446

performances on most of datasets. 447

• HiTIN (Zhu et al., 2023) introduces the struc- 448

tural entropy to construct a coding tree for the 449

label hierarchy and then build a novel struc- 450

ture Encoder to enhance text representations. 451

4.2 Main Result 452

Experimental results are shown in Tabel 2. Our 453

model consistently outperforms previous advanced 454

approaches across 3 datasets except for WoS. On 455

WoS dataset with label depth of 2, our proposed 456

DPT achieves comparable results with HPT but de- 457

creased performance compared to PAAM-HiA-T5 458

model. Our model establishes state-of-the-art re- 459

sults on RCV1-V2 and BGC datasets. It improves 460

0.5% and 0.76% absolute Micro-F1 and Macro-F1 461

on RCV1-V2 dataset comparing to the current best 462

results. The performance boost of Micro-F1 and 463

Macro-F1 on BGC reaches 0.53% and 1.52% over 464

the SoTA HPT model. The notable advancements 465

on Macro-F1 indicate that our model performs well 466

on sparse labels. On NYT dataset, our model sur- 467

passes them on Micro-F1 by 0.14% but slightly 468

lower than HPT on Macro-F1. 469

Without introducing any additional network pa- 470

rameters to extract the semantics of labels and 471

their hierarchical structures, our model surprisingly 472

outperforms previous methods of encoding label 473

names and label hierarchies using GNNs. Com- 474

pared to HGCLR which use instance-level con- 475

trastive learning with complex positive sample gen- 476

eration operation, DPT makes impressive perfor- 477

mances progress over all datasets. 478
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Model
WoS RCV1-V2 BGC NYT

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

BERT(Wang et al., 2022a) 85.63 79.07 85.65 67.02 - - 78.24 66.08
BERT+HiAGM(Wang et al., 2022a) 86.04 80.19 85.58 67.93 - - 78.64 66.76
BERT+HTCInfoMax(Wang et al., 2022a) 86.30 79.97 85.53 67.09 - - 78.75 67.31
BERT+HiMatch(Chen et al., 2021) 86.70 81.06 86.33 68.66 78.89 63.19 76.79 63.89

HGCLR(Wang et al., 2022a) 87.11 81.20 86.49 68.31 - - 78.86 67.96
Seq2Tree(Yu et al., 2022) 87.20 82.50 86.88 70.01 79.72 63.96 - -
PAAM-HiA-T5(Huang et al., 2022) 90.36 81.64 87.22 70.02 - - 77.52 65.97
HPT(Wang et al., 2022b) 87.16 81.93 87.26 69.53 81.32† 66.69† 80.42 70.42
HiTIN(Zhu et al., 2023) 87.19 81.57 86.71 69.95 - - 79.65 69.31

DPT (Ours) 87.25 81.51 87.76 70.78 81.85 68.21 80.56 70.28

Table 2: Experimental results on four HTC datasets. The best results are in bold format. The result of
BERT+HiMatch on NYT dataset is reported by Huang et al. (2022). The result of BERT+HiMatch on BGC
is reported by Yu et al. (2022). ‡ means the results are reproduced upon the release project by ourselves.

Model
RCV1-V2 BGC NYT

C-MiF1 C-MaF1 C-MiF1 C-MaF1 C-MiF1 C-MaF1

HPT 86.80 68.71 80.88 65.36 79.33 68.80
DPT (Ours) 87.47 70.20 81.43 66.97 79.77 68.70

Table 3: Evaluation results of label consistency. MiF1
and MaF1 are abbreviations for Micro-F1 and Macro-
F1, respectively.

4.3 Results on Label Consistency479

For HTC tasks, cross-layer label consistency is also480

an important metric, which signifies the fact that481

each layer label predicted by the model should con-482

form to the hierarchical relationship. Table 3 illus-483

trates the label consistency performance of the pro-484

posed DPT and the SoTA model HPT. Our model485

improves consistency of label hierarchy on RCV1-486

V2 and BGC by a large margin, respectively ex-487

ceeding HPT by 1.49% and 1.61% on C-MacroF1488

metric. Although our model focuses more on the489

interaction between peer labels at each layer, the490

knowledge of label hierarchy has also been internal-491

ized. The accuracy of both individual label nodes492

and label paths has been improved, indicating that493

our methods are reasonable and efficient.494

4.4 Results on Imbalanced Hierarchy495

To further clarify the superiority of our methods,496

we intent to explore the performance on imbalanced497

hierarchy. Following long-tailed learning setting,498

we sort the test set in descending order based on the499

quantity of class instances and evenly cluster the500

dataset into head, middle, and tail groups. The visu-501

alization Macro-F1 results are shown in Figure 3 3.502

It’s evident that DPT comprehensively outperforms503

3We drew this picture in the website https://www.
chiplot.online/.

HPT in RCV1-V2 and BGC datasets and shows 504

significant improvements on tail classes with few 505

training samples, demonstrating the effectiveness 506

of our methods in eliminating the impact resulting 507

from imbalanced distribution.

(a) RCV1-V2 (b) BGC

Figure 3: Macro-F1 score on head, medium and tail
class groups

508

4.5 Ablation Study 509

To investigate the effects of each component of 510

our proposed model, we implement different vari- 511

ants on BGC and RCV1-V2 dataset, and results 512

are shown in Table 4 and Tabel 5 respectively. 513

Upon only employing the HierPCL module, the 514

performances in all metrics realize considerable 515

enhancement and are superior to current state-of- 516

the-art models, confirming its significant effective- 517

ness and reliability. By removing negative con- 518

trastive part, the scores undergo sharp declines, 519

which demonstrates that negative label contrastive 520

learning plays a prominent role in HierPCL. As a 521

strong contrast, we replace our self-produced hard 522

negative sampling with random sampling, result- 523

ing in marked decrease in metrics, which validates 524

the advantages of our negative sampling strategy. 525

Cross-hierarchical Rank Loss in HierPCL and label 526
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hierarchy self-sensing auxiliary task also improve527

gains of our methods, further boosting the model528

performance especially in terms of Macro-F1 met-529

ric.530

Ablation Models
BGC

MiF1 MaF1 C-MiF1 C-MaF1

Multi-Verb(Baseline) 81.38 66.74 80.92 65.58

DPT(Ours) 81.85 68.21 81.43 66.97
r.m. L2 81.71 68.09 81.27 66.56
r.m. Ln

LC 81.62 67.35 81.35 66.11
r.m. LR 81.83 67.99 81.40 66.50
r.m. LR & Ln

LC 81.36 67.41 80.97 66.26
r.p. Random Sampling 81.48 67.46 81.03 66.59

Table 4: Ablation study on BGC dataset.

Ablation Models
RCV1-V2

MiF1 MaF1 C-MiF1 C-MaF1

Multi-Verb(Baseline) 87.19 69.16 86.68 68.31

DPT(Ours) 87.76 70.78 87.47 70.20
r.m. L2 87.34 70.28 87.01 69.45
r.m. Ln

LC 87.14 70.05 86.61 69.32
r.m. LR 87.47 70.35 87.11 69.52
r.m. LR & Ln

LC 87.22 69.52 86.79 68.73
r.p. Random Sampling 87.26 69.55 86.94 68.93

Table 5: Ablation study on RCV1-V2 dataset.

4.6 Insight into case effects531

In order to gain insight into the practical effects of532

our model, we conduct detailed case studies on the533

test set. We define 3 types of label errors from the534

perspective of multi-label classification, as follows:535

• Misjudged, which means the label is mistak-536

enly identified by the model as one of the537

ground truth labels of the instance while the538

instance actually belongs to another labels.539

• Excess, which means the label is unnecessar-540

ily identifies as one label for the instances.541

• Missing, which means the ground truth label542

which the model has failed to recall.543

We separately calculate the distribution of label544

error types for baseline model (prompt-tuning with545

Multi-Verb framework) and our improved model546

on the test set. As shown in Figure 4, we find that547

optimization effects of our model in cases are man-548

ifested in recalling missing labels, correcting mis-549

judged labels and removing excess labels, respec-550

tively accounting for 44.69%, 40.21% and 15.10%551

of the proportion. It demonstrates the strong power552

Figure 4: Proportion of error types corrected by our
method.

of DPT to capture discrimination representation 553

and then relieve label confusion. Some specific 554

cases are illustrated in Appendix C. 555

5 Conclusion 556

In this paper, we present a novel Dual Prompt Tun- 557

ing method for HTC tasks. Firstly, we propose a 558

Hierarchy-aware Peer-label Contrastive Learning 559

approach to alleviate confusion between peer labels. 560

An original dual prompt template is created with 561

slots for both positive and negative label, on which 562

the contrastive learning is performed at each layer. 563

Secondly, to further strengthen knowledge of label 564

hierarchy structure, we design a Label Hierarchy 565

Self-sensing auxiliary task to identify consistency 566

and correctness of model predictions. Experimen- 567

tal results illustrate that our proposed DPT model 568

achieves significant improvements on popular HTC 569

datasets. Particularly, DPT exhibits outstanding 570

efficacy in preserving label path consistency and 571

addressing imbalanced hierarchy challenge. It ex- 572

cels in the accurate recognition of negative labels 573

and contributes to obtaining hierarchy-aware dis- 574

criminative features. 575

6 Limitations 576

In our work, hierarchical labels serve as supple- 577

mentary instances. Both positive labels and the 578

sampled K negative labels are input into PLM to 579

calculate the representation vector, which brings ad- 580

ditional memory consumption during model train- 581

ing. Besides, There is still room for improvement 582

in hand-craft prompt design. It’s worth exploring 583

in depth. Combined with large language models to 584

enhance discriminative ability for HTC is one of 585

the development directions of our future work. 586
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A Hyper-parameters Setting851

We list the hyper-parameter settings of all datasets852

in Table 6 for reproducibility.853

Params WoS RCV1 BGC NYT
α 0.2 0.6 0.6 0.2
β 0.1 0.2 0.1 0.1
λ1 0.5 1.0 0.5 0.1
λ2 0.6 0.5 0.2 0.2

Table 6: Hyper-parameter settings.

B Performance of Different Negative854

Sampling Ratio855

To explain the rationality of selecting 10% negative856

labels from label sets for HierPCL, we compare857

the effects of negative sampling ratio of 10% and858

100%. From Table 7 and Table 4, it’s obvious that859

10% negative labels are sufficient, retaining the vast 860

majority of accuracy on RCV1-V2 and even sur- 861

passing the performance of using all negatives on 862

BGC dataset, which indicates that blindly increas- 863

ing the number of negative samples is not always 864

effective. We will explore the impact of positive 865

and negative label ratios in future work. 866

ratio MiF1 MaF1 C-MiF1 C-MaF1
0.1 87.76 70.78 87.47 70.20
1 87.81 70.01 87.50 69.24

Table 7: Results of different negative sampling ratio on
RCV1-V2 dataset.

ratio MiF1 MaF1 C-MiF1 C-MaF1
0.1 81.85 68.21 81.43 66.97
1 81.75 67.95 81.41 66.62

Table 8: Results of different negative sampling ratio on
BGC dataset.

C Case Study 867

DPT performs Peer-label Contrastive Learning at 868

each level, which enhances the model’s represen- 869

tation and discrimination abilities. Introduction of 870

cross-hierarchical rank loss and label hierarchy self- 871

sensing auxiliary task improve label consistency. 872

To look into the practical effects, we conduct ade- 873

quate case studies on the BGC dataset. Compared 874

to the baseline model, main improvements of DPT 875

are reflected in recalling missing labels, correct- 876

ing misjudged labels, removing excess labels, and 877

further correcting label inconsistencies. Table 9 878

provides some examples. Note that labels output 879

by DPT model in the Table 9 are consistent with 880

the ground truth labels. 881
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DPT (Ours) Teen & Young Adult-Teen & Young Adult Mystery & Suspense, Teen & Young
Adult-Teen & Young Adult Fiction, Teen & Young Adult-Teen & Young Adult
Social Issues

Multi-Verb (Baseline) Teen & Young Adult-Teen & Young Adult Mystery & Suspense, Teen & Young
Adult-Teen & Young Adult Fiction

Text Secret, Silent Screams: For fans of Gillian Flynn, Caroline Cooney, and R.L. Stine comes Secret, Silent Screams from
four-time Edgar Allen Poe Young Adult Mystery Award winner Joan Lowery Nixon. Is Barry’s death the latest tragedy
in a string of suicides at Farrington Park High School? Or is it murder? Marti is sure her friend Barry didn’t take his
own life, but no one will believe her except Police Officer Prescott. But opening an investigation takes time, and Marti
is determined to find her friend’s killer soon. Because even now he could be planning his next crime. . . “Enthralling
suspense. . . satisfying[,]. . . [and an] intricate plot.” –Publishers WeeklyFrom the Paperback edition.

DPT (Ours) Fiction-Romance-Contemporary Romance, Fiction-Romance-Suspense Ro-
mance, Fiction-Women’s Fiction

Multi-Verb (baseline) Fiction-Romance-Contemporary Romance

Text Summer in Eclipse Bay: A special message from Jayne Ann KrentzDear Reader:Summer has arrived in Eclipse Bay and
things are definitely heating up between the Hartes and the Madisons. It seems that the mysterious new gallery owner,
Octavia Brightwell, is thinking about having a scandalous fling with that rogue Nick Harte before she leaves town. As
far as Nick is concerned, a short-term affair sounds perfect. But it isn’t going to be easy.One big obstacle is Mitchell
Madison. For reasons of his own, Mitchell has taken it upon himself to play guardian to Octavia. He’s made it clear that
if Nick fools around with her, there will be a price to pay. And then there’s Nick’s young son, Carson, who has his own
agenda where Octavia is concerned. He doesn’t want his father messing up his plans.Summer in Eclipse Bay is going to
be eventful this year. Some long-buried secrets from the infamous Harte-Madison feud are about to surface. The past and
the present are on a collision course. I hope you’ll join me to watch the fireworks.Happy reading . . .Jayne Ann Krentz.

DPT (Ours) Fiction-Graphic Novels & Manga

Multi-Verb (Baseline) Fiction-Mystery &Suspense

Text Corto Maltese: Beyond The Windy Isles: The second volume in the definitive English language edition of Hugo Pratt’s
masterpiece, Corto Maltese, presented in the original oversized B&amp;W format and with new translations made from
Pratt’s original Italian scripts. “Mushroom Heads” begins in Maracaibo, Venezuela, where Corto Maltese and Professor
Steiner lead an expedition on the trail of the legendary El Dorado, financed by the antiquarian Levi Colombia. In “Banana
Conga,” Corto has his first and nearly fatal encounter with the beautiful yet dangerous mercenary Venexiana Stevenson.
Within this framework of adventure, Hugo Pratt weaves themes dealing with the exploitation of indigenous people, the
noble struggle to gain freedom and independence, and how cowardice can poison men of all classes. The action, set in
1917, takes Corto Maltese from the Mosquito Coast to Barbados to a deadly struggle among Jivaro head-hunters in the
Peruvian Amazon

DPTL (Ours) Fiction-Women’s Fiction

Multi-Verb (Baseline) Fiction-Romance

Text Nappily Ever After: SOON TO BE A NETFLIX ORIGINAL FILM STARRING SANAA LATHANWhat happens when
you toss tradition out the window and really start living for yourself? Venus Johnston has a great job, a beautiful home,
and a loving live-in boyfriend named Clint, who happens to be a drop-dead gorgeous doctor. She also has a weekly
beauty-parlor date with Tina, who keeps Venus’s long, processed hair slick and straight. But when Clint–who’s been
reluctant to commit over the past four years–brings home a puppy instead of an engagement ring, Venus decides to give
it all up. She trades in her long hair for a dramatically short, natural cut and sends Clint packing. It’s a bold declaration
of independence–one that has effects she never could have imagined. Reactions from friends and coworkers range from
concern to contempt to outright condemnation. And when Clint moves on and starts dating a voluptuous, long-haired
beauty, Venus is forced to question what she really wants out of life. With wit, resilience, and a lot of determination, she
finally learns what true happiness is–on her own terms. Told with style, savvy, and humor, Nappily Ever After is a novel
that marks the debut of a fresh new voice in fiction.

DPT (Ours) Nonfiction-Religion & Philosophy-Philosophy

Multi-Verb (Baseline) Nonfiction-Religion & Philosophy-Philosophy,
Nonfiction-Religion & Philosophy- Religion

Text Malice: Despite our tendencies to separate the mind and body, good and evil, Flahault argues that both stem from
the same source within us. This knot, inherent to the human condition, is the tension between our desire for absolute
self-affirmation and the fact that each of us can only exist through mediation by others. The dependence on others weighs
heavy on our shoulders, hampering our very existence.Malice, then, is not merely a result of our biological constitution,
but is also a response to our feelings. These can often resemble those of Milton’s and Shelley’s monsters, stories the
author calls upon to understand features of the nature of evil that reason alone cannot grasp.From the Preface:‘By
combining several disciplines—philosophy, anthropology and literary criticism, as well as psychoanalysis—Flahault
scrutinizes the origin of malevolence and reveals that, contrary to the view presented by moral philosophy, it is within us
that the roots of wickedness are to be found . . . Taking issue with the widely accepted view that monotheism constitutes
moral progress, he argues that by instigating a dualism between good and evil, monotheism has in fact foreclosed the
possibility of acknowledging the ambivalence of our fascination with the limitless and infinity.’ Chantal Mouffe.

DPT (Ours) Humor

Multi-Verb (Baseline) Humor-Graphic Novels & Manga (Label inconsistency)

Text Garfield Caution: Wide Load: Indulge the Bulge Garfield believes that a full belly is a happy belly—and he intends to
keep his stomach ecstatic. Fans of the fat cat will gleefully fill up on this latest smorgasbord of fun!

Table 9: Case Studies on BGC dataset.
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