
Under review as a conference paper at ICLR 2023

WHAT DOES VISION SUPERVISION BRING TO LAN-
GUAGE MODELS? A CASE STUDY OF CLIP

Anonymous authors
Paper under double-blind review

ABSTRACT

Vision-language (V+L) pre-training has shown promising performance in cross-
modal tasks such as image-text retrieval and image captioning. On the other hand,
these models surprisingly perform worse than text-only models (e.g., BERT) on
widely-used text-only understanding tasks. The conflicting results naturally raise
a question: What does vision supervision bring to language models? In this paper,
we investigate this under-explored problem with one representative cross-modal
model CLIP. We compare the text encoder of CLIP and widely-used text-only
models on a wide range of tasks. We design a suite of evaluation tasks across
three perception aspects, including the linguistic world featuring syntactic knowl-
edge (e.g., dependency labeling), the visual world examining visual-related com-
monsense knowledge (e.g., color), and the embodied world featuring physical-
related commonsense knowledge (e.g., mass). Experiments demonstrate that text-
only models are not always better than CLIP on these perception tasks. Although
the text encoder of CLIP falls far behind text-only models in linguistic-related
tasks, CLIP achieves better zero-shot results in visual and embodied worlds with
only 0.3% parameters compared to OPT-175B (one of the largest text-only mod-
els). This proves that CLIP can empower text encoders to learn rich visual and
embodied knowledge through vision-text pre-training. Furthermore, qualitative
studies show that CLIP pre-training yet restricts the text encoder from learning
fine-grained semantics, like understanding ambiguous texts. These results shed
light on future directions to improve V+L pre-training.

1 INTRODUCTION

Vision-language pre-training (V+L) has attracted increasing attention in recent years by jointly em-
bedding images and text (Chen et al., 2019; Li et al., 2019; 2020; Jia et al., 2021). For example,
CLIP (Radford et al., 2021), one of the representative V+L models, trains an image encoder and a
text encoder separately via a contrastive objective. These pre-trained vision-language models excel
at learning transferable visual and language representations and achieve promising results on down-
stream tasks such as image classification (Radford et al., 2021) and cross-modal retrieval (Li et al.,
2021). It indicates that language supervision can indeed improve visual representations.

However, recent work shows that introducing visual supervision does not bring clear improvements
on language tasks. Classical V+L models like VisualBERT (Li et al., 2019) and Oscar (Li et al.,
2020) even under-perform vanilla text-only models like BERT on the Natural Language Under-
standing (NLU) benchmark GLUE (Tan & Bansal, 2020; Wang et al., 2019a). Theoretically, the
vision-language models are expected to have greater potentials with the visual perception supervi-
sion (Bisk et al., 2020). In practice, they show worse performance than text-only models. These
conflicting results naturally raise a question: What do visual signals bring to language models?

To figure it out, we first build a suite of tasks covering different perception levels to evaluate lan-
guage models. Specifically, following the definition of Bisk et al. (2020), we define evaluation tasks
in three world scopes: (1) the linguistic world (W1) probing syntactic and semantic knowledge,
including tasks like dependency parsing and named entity recognition; (2) the visual world (W2),
examining visual-related knowledge, including tasks like color-related commonsense understand-
ing and material-related commonsense understanding; and (3) the embodied world (W3) evaluating
physical-related knowledge that can only be learned via interaction with the world such as the mass
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Figure 1: An overview of the unified probing framework, where we design evaluation prompts for
language model variants according to their pre-training characters. For BERT-like models with a
masked language head, we convert the knowledge fact to a question and perform prediction with the
head over yes or no. For the causal language model OPT, we evaluate the perplexity of different
assertions and take the one with lower perplexity as a valid fact. For CLIP, we devise a matching-
based probing framework, where a higher similarity of vectors with targeted attributes is adopted.

of objects. The tasks in the Linguistic world, the Visual world, and the Embodied world together
compose our LiVE benchmark, LiVE-bench for short.

We then compare the text-encoder of CLIP and text-only models on LiVE-bench to examine the
effects of visual signals on language models. We implement text-only model variants including
masked language models BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019b), and causal
language models OPT-family (Zhang et al., 2022b) with parameters ranging from 125M to 175B.
For W1, we adopt the widely-used edge probing framework (Tenney et al., 2019b) to investigate
how much linguistic knowledge has been captured. For W2 and W3, we adopt prompt probing
to evaluate how well language models understand visual and physical properties. In addition, we
also design a unified probing framework to evaluate various language model variants according
to their pre-training characters. More specifically, for masked language models, the visual and
embodied knowledge facts are first converted into sentences, then the models predict whether the
fact is valid by performing a cloze task (Schick & Schütze, 2021b). The causal language model OPT
is evaluated by comparing the perplexities of different knowledge assertions. To evaluate the text
encoder of CLIP which does not contain a language head, we design a matching-based framework,
which compares the similarities between the objects and candidate attributes. The whole evaluation
framework is illustrated in Figure 1.

Our key findings are: (1) In W1, CLIP and its enhanced variants with extra masked language mod-
eling objectives including DeCLIP (Li et al., 2022) still fall far behind the masked language models
BERT with the same configurations including model architecture and training corpus. (2) In W2,
CLIP significantly outperforms text-only models with similar model sizes. Interestingly, we find
that scaling OPT up to 175B can surpass CLIP on tasks like color and material recognition. (3) In
W3, CLIP achieves significantly better results than text-only models. Notably, it even outperforms
OPT-175B with few-shot demonstrations. Since previous work is limited to linguistic knowledge
evaluation, we are the first to show visual supervision is beneficial for learning embodied knowl-
edge. Finally, we provide some failure cases of CLIP under ambiguous text descriptions and discuss
future directions to improve vision-text pretraining.

2 THE LIVE BENCHMARK

In this section, we introduce a comprehensive benchmark for evaluating language models from dif-
ferent perception aspects. Our LiVE benchmark is motivated by the well-known work of Bisk
et al. (2020) that defines three-level perception abilities. We focus on the following three world
scopes: W1: the linguistic world focusing on the syntactic and semantic knowledge (e.g., depen-
dency parsing and named entity recognition), W2: the visual world covering the visual properties
of objects (e.g., the color of an apple), and W3: the embodied world targeting at physical properties
that can only be acquired via interaction with the world such as the mass of objects. The statistics
and illustration of the benchmark datasets can be found in Table 1.
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Table 1: Statistics and example illustrations of the proposed LiVE benchmark. For W1, we focus on
the syntactic or semantic labels of [text spans] and the relations between them. For knowledge facts
in W2 and W3, we design two forms of probing tasks. The former (Color, Shape and Material) asks
models to make a choice between two tail options for the given head object; and the latter (Size,
Height, and all W3 tasks) is to predict whether the relation is valid given the head and the tail.

Dataset Instance Label # Test Examples
Coref That, [he]1 says , is just fine with [him]2 . True 27,800
Deps. [Click]2 [here]1 To view it . advmod 25,049

W1 NER Back to [the Middle East] tonight . LOC 12,586
SRL [Four Palestinians]2 were shot and [killed]1 . ARG1 61,716
RC Seniors get much [joy]2 from [animals]1. Cause-effect 2,717

Color Head: melon, Tail1: green, Tail2: black green 574
Shape Head: lemon, Tail1: triangle, Tail2: round round 140

W2 Material Head: guitar, Tail1: wood, Tail2: glass wood 922
Size Head: ant, Rel: larger than, Tail: bird False 500
Height Head: bottle, Rel: shorter than, Tail: truck True 500

Mass Head: wooden spoon, Rel: heavier than, Tail: toaster False 654
W3 Temperature Head: water, Rel: colder than, Tail: frying oil True 422

Hardness Head: pearl, Rel: softer than, Tail: glass True 1,016

2.1 LINGUISTIC KNOWLEDGE

To avoid the confounding effect of fine-tuning on language models, we do not choose traditional
supervised evaluation benchmarks (e.g., GLUE). Instead, we evaluate the linguistic knowledge of
different language models by adopting the edge probing benchmark provided by Tenney et al.,
which covers linguistic knowledge ranging from syntax to semantics. Specifically, we probe the
model on various fundamental NLP tasks, including dependency labeling (Deps.), named entity
recognition (NER), semantic role labeling (SRL), coreference resolution (Coref), and relation clas-
sification (RC). Following Fayyaz et al. (2021), we adopt OntoNotes 5.0 (Weischedel et al., 2013)
for NER, SRL, and coreference prediction, the English Web Treebank of the Universal Dependen-
cies (Silveira et al., 2014) for dependency labeling, and SemEval 2010 Task 8 dataset (Hendrickx
et al., 2009) for relation classification.

2.2 VISUAL KNOWLEDGE

Perception is necessary for language learning because it forms the basis for many of our semantic
axioms (Bisk et al., 2020). Among the various types of perception, visual signals can provide abun-
dant information for modeling a vastness of experiences in the world that cannot be stated by text
alone (Harnad, 1990). In this work, we consider visual commonsense understanding to evaluate lan-
guage models. Specifically, we combine the recently proposed visual knowledge probing datasets,
including Spatial Commonsense (Liu et al., 2022) and ViComTe (Zhang et al., 2022a). The com-
bined dataset requires understanding various aspects of the visual world: including color, shape,
material, size, and height. According to the format of task definition, these visual-related tasks can
be divided into two categories. The former includes color understanding, shape understanding, and
material understanding. Given an object, it requires a model to answer which label the object is.
For example, the input is (The color of banana is [MASK]). The model is supposed to
make a correct choice between the ground-truth answer yellow and an alternative option such
as black. The latter includes size understanding and height understanding. These understanding
tasks require the model to perform the comparison between different objects. For example, the input
is (Ant is [mask] than table). The model is asked to compare the size of paired objects
and make choices between the ground-truth smaller and the antonym larger.

2.3 EMBODIED KNOWLEDGE

Understanding the physical realities is also an important aspect of perception. The embodied world
contains knowledge that revolves around physical realities (e.g., mass, temperature), which are held
by humans intuitively (Bisk et al., 2020). This kind of knowledge is the basis of intelligence and
enables agent models to explore challenging tasks in physical environments. Strictly speaking,
visual commonsense knowledge is also an important part of the physical world, which is evaluated
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in W2. In addition to visual knowledge, the connection between language and the multi-modal
world also relies on other interactions with the embodied environment (Thelen & Smith, 1994), like
tactile sensation. In this part, we focus on this interaction-related knowledge that cannot directly be
evaluated only according to visual signals. We are curious about whether current language models
can capture embodied knowledge such as the physical properties of objects. To explore this, as a
first step toward evaluating embodied knowledge, we construct evaluation datasets regarding basic
physical properties including mass, temperature, and hardness. The details of the construction of
embodied knowledge datasets are elaborated below.

Mass Dataset We use the Image2Mass dataset curated by Standley et al., which annotates common
objects with corresponding weights. The most light-weight object is a red lego brick, weighing 0.026
lbs, and the heaviest object is a 2.664 lbs drill. As directly asking the language model for the absolute
mass of objects can be challenging (Wallace et al., 2019), we define the task in a comparison format.
Specifically, each comparison pair contains two objects with a weight gap greater than 1 lbs.1 We
build 654 pairs like (hair dryer, heavier than, red lego brick) for evaluation.

Temperature Dataset We design a temperature probing dataset by collecting the temperature of
common objects from Wikipedia.2 For example, the ice is 0◦C and the temperature of water va-
por is 100◦C. We convert the object with temperature annotations into pairs, and each pair contains
two objects and the corresponding temperature relation. For example, (ice, colder than,
water vapor). The temperature gap between two objects is required to be greater than a differ-
ence threshold, which is loosely set to 10◦C for assurance of thermal perception for human (Jones,
2009). The final temperature dataset consists of 422 pairs in total.

Hardness Dataset Hardness (antonym: softness) is a measure of the resistance to localized plastic
deformation in material science. Different material differs in hardness, for example, hard metals
such as titanium are harder than soft mineral such as talc. Humans can perceive the hardness of dif-
ferent materials in interaction with the environment by using tactile organs like fingers (Gueorguiev
et al., 2016). To investigate whether language models can capture hardness knowledge, we build a
hardness dataset by collecting the Mohs hardness scores of different objects from Wikipedia.3. We
define the task in a comparison format. For example, (talc, softer than, titanium).
Each pair contains two objects. The gap between two objects is greater than the threshold for human-
level understanding. The final dataset contains 1, 016 pairs.

3 LIVE-BENCH: LANGUAGE MODEL EVALUATION

As different language models vary in pre-training paradigms, to faithfully examine the knowledge
learned during pre-training, we devise evaluation methods specific to different language models and
knowledge types. For W1, we adopt the edge probing method (Tenney et al., 2019b) by investigating
the linguistic information encoded in the representations of language models (§3.1). For W2 and
W3, we adopt the prompting (Schick & Schütze, 2021b) for models with language heads capable of
predicting words over a vocabulary, such as BERT and OPT. For CLIP models without a language
head, we design a matching-based prompting method to fit its pre-training objective (§3.2).

3.1 EDGE PROBING FOR LINGUISTIC KNOWLEDGE

Edge probing (Tenney et al., 2019b) is a commonly adopted technique for measuring linguistic
knowledge in contextualized representations of language models (Tenney et al., 2019a; Fayyaz et al.,
2021). It trains a probing classifier on top of the span representations specified by the dataset, and
the task performance metric is taken as the quality of the encoded information about the linguis-
tic tasks. As recent studies have shown that evaluation metrics like F1-score can be influenced
by the complexity of probing classifier and hyper-parameter settings (Hewitt & Liang, 2019; Be-
linkov, 2022), we adopt a more robust information-theoretic probing method, minimum description
length (MDL) Voita & Titov (2020). The idea behind MDL is to reformulate the probing task into
a data transmission problem, where the MDL metric measures the cost of transmitting the data, i.e.,

1The threshold is set according to the Weber–Fechner laws (Fechner, 1948) to guarantee that the mass
difference is perceivable for humans.

2https://en.wikipedia.org/wiki/Orders_of_magnitude_(temperature)
3https://en.wikipedia.org/wiki/Mohs_scale_of_mineral_hardness
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the codelength for encoding the data. Due to the space limit, we refer readers to Voita & Titov
(2020) for more details of MDL. In our study, following Voita & Titov (2020) and Fayyaz et al.
(2021), we report a derived metric of MDL, i.e., the compression ratio c, which further eliminates
the effect of the number of training examples. A higher compression c indicates the representations
contain richer information regarding the linguistic property.

3.2 ZERO-SHOT PROMPTING FOR VISUAL AND EMBODIED KNOWLEDGE

Different from linguistic knowledge in W1 which focuses on the syntactic and semantics within
sentences, our evaluation tasks in W2 and W3 consist of knowledge facts about the visual and
embodied environment. Inspired by recent studies showing that prompting methods are effective
for probing the knowledge that language models acquire during pre-training (Petroni et al., 2019;
Schick & Schütze, 2021b), we propose to evaluate the knowledge in W2 and W3 with prompts for
models with language model heads. For the language model of CLIP without a language model
head, we develop a matching-based prompt framework for probing its learned knowledge.

Prompting Masked Language Models Following PET (Schick & Schütze, 2021b;a), we probe the
masked language models by converting the knowledge fact into a question-answering form. For
example, a size knowledge fact (coin, smaller than, table) is converted into a sen-
tence with a special mask token: Question: is a coin smaller than a table?
Answer: [MASK]. We also implement other diverse prompts, like Is a coin [MASK]
than table? Experiments show that such a question-answering form can better induce mod-
els to generate answers. Given masked inputs, the model is asked to predict the probabilities of the
mask token over two choices, i.e., yes for confirming the knowledge fact is valid or no for an unrea-
sonable assertion. Zhao et al. (2021) found that the prediction can be biased towards some answers.
we calibrate the prediction by normalizing the probabilities of the two option tokens according to
the estimated biased probability distribution given empty queries.

Prompting Causal Language Models Different from BERT, there is no special [MASK] token
during the pre-training of causal language models like GPT (Radford et al., 2019). Therefore, intro-
ducing a special token would result in inconsistency between pre-training and evaluation. To remedy
this, for each knowledge fact, we state it in natural sentences and evaluate the sentence perplexity
as the proxy metric for its validity. Specifically, for the size-property evaluation, we convert it into
a valid knowledge assertion s1 = A coin is smaller than a table, and an invalid one
by replacing the size relation with the antonym adjective s2 = A coin is larger than a
table. The sentence with lower perplexity is then chosen as the prediction. To better extract
knowledge from language models, we design diverse prompt templates in this work. We evaluate
the perplexity of each sentence s = (w0, w1, · · · , wn) as:

PPL(s) = PM(s)−
1
n = n

√√√√ n∏
k=1

1

PM (wk | w0, w1, . . . , wk−1)
, (1)

where PM denotes the conditional word probability of the causal language model to be probed and
n is the number of tokens in s. We compare the perplexity PPL(s1) and PPL(s2) and choose the
sentence with lower PPL as a more valid assertion and calculate the prediction accuracy accordingly.

Prompting CLIP Models Unlike masked and causal language models with language head that
supports diverse prompting templates, the text encoder in CLIP only has one sentence representation
without any pre-trained language heads. To probe the learned knowledge of CLIP language models,
we design a matching-based prompting method. In more detail, for the size fact stated before, we
first obtain two object descriptions o1 = a photo of a coin, and o2 = a photo of a
table. These two sentences are encoded to get the corresponding object vectors via the CLIP
language encoder:

o1,o2 = CLIP(o1),CLIP(o2). (2)
We then derive an attribute sentence a = a photo of a small object, and encode it to an
attribute adjective vector with the language encoder:

a = CLIP(a). (3)

The prediction is then performed by comparing the cosine similarity cos(o1,a) and cos(o2,a). The
object with higher similarity with the attribute description is adopted as the answer, i.e., a coin is
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smaller than a table, if cos(o1,a) > cos(o2,a). Otherwise, we assume that the model thinks the
reversed relation holds. We can also adopt the antonym adjective large for getting the attribute
vectors. The results of the best performing adjective words for CLIP are reported and we discuss the
influence of adjective options in (§4.3).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Compared Models In W1, directly comparing the CLIP and BERT can be unfair due to the differ-
ence in the model architecture and the training corpus. To remedy this, we train CLIP and BERT
models from scratch with an identical transformer architecture on the same text corpus, the captions
in the YFCC-15M dataset, for the 32 epochs. We further add two variants of CLIP, i.e., DeCLIP (Li
et al., 2022) and DeFILIP (Yao et al., 2021), to investigate the effect of extra language modeling su-
pervision and fine-grained matching, respectively. The only difference between these models is the
pre-training objective. In W2 and W3, we evaluate the original models for investigating the learned
knowledge during large-scale pre-training. Text-only pre-trained language models includes BERT-
base and BERT-large (Devlin et al., 2019), RoBERTa-base and RoBERTa-large (Liu et al., 2019b)
for masked language models, and OPT models with parameters ranging from 125M to 175B for ca-
sual language models. For CLIP-like models, we adopt CLIP-ViT-B/32 and CLIP-ViT-L/14 (Rad-
ford et al., 2021) as a base and a large version, respectively. We also include an enhanced CLIP
model with masked language modeling as self-supervision, DeCLIP-ViT-B/32 (Li et al., 2022) for a
more comprehensive evaluation. Detailed parameters of these models are listed in Appendix A.

Prompts For each task in W2 and W3, we manually write 10 prompts to eliminate the side-effect of
the variations of expression. For OPT models, we observe its high sensitivity to the prompts, where
some prompts would results in significantly worse performance than random guessing. We discard
those prompts for OPT and report the averaged performance over multiple prompts for all models.
All prompts used can be found in Appendix B.

Figure 2: Linguistic probing results of BERT and CLIP-like models trained with YFCC15M data.
(Left) Radar chart of the maximum compression ratio of different models in all layers. Higher scores
represent richer linguistic knowledge. (Right) Layer-wise alignment score of text and visual features
on CIFAR100. Lower alignment scores indicate better alignments between modalities.

4.2 FINDINGS

In W1, CLIP falls far behind the text-only counterparts in linguistic-related tasks, even with
the help of text modeling objectives. The linguistic probing results are illustrated in the left of
Figure 2. Detailed performance and compression results of all layers in each model can be found
in Appendix C. We find that the vanilla CLIP falls far behind the BERT model, regarding all the
evaluated linguistic tasks. Besides, even though DeCLIP enhances the original contrastive learning
objective with extra mask language modeling, it still performs worse than the vanilla BERT, and De-
FILIP trained with fine-trained matching objective yields no clear improvements. This phenomenon
is consistent with previous studies which observe that V+L pre-training results in language models
with inferior language understanding ability (Tan & Bansal, 2020; Yun et al., 2021). We speculate
the behind reason is that the learned representations of CLIP language models become more special-
ized for image-text matching, hindering the learning of linguistic knowledge. To examine this, we
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Table 2: Zero-shot probing accuracy of visual-related different tasks. Results are averaged over
different prompts. The best results are shown in bold.

Model (# of Param.) Color Shape Size Height Material Avg.

BERT-base (110M) 49.29 ± 1.60 52.14 ± 4.22 49.94 ± 0.80 50.56 ± 0.59 48.08 ± 2.74 50.00
BERT-large (340M) 49.36 ± 1.88 51.21 ± 5.06 49.26 ± 1.60 49.08 ± 2.34 49.72 ± 0.58 49.73
RoBERTa-base (125M) 49.07 ± 1.62 49.36 ± 3.52 50.32 ± 0.57 49.58 ± 0.49 49.86 ± 1.44 49.64
RoBERTa-large (355M) 49.66 ± 0.54 50.68 ± 1.48 50.54 ± 1.46 50.14 ± 0.45 50.00 ± 0.14 50.20

OPT (125M) 70.02 ± 9.59 57.32 ± 6.46 45.98 ± 4.23 56.76 ± 1.36 82.43 ± 2.20 62.50
OPT (1.3B ) 76.92 ± 5.97 65.00 ± 6.12 51.12 ± 2.66 57.82 ± 4.46 85.63 ± 3.49 67.30
OPT (13B) 79.62 ± 5.28 62.50 ± 6.44 57.56 ± 6.60 54.58 ± 4.53 88.38 ± 3.14 68.53
OPT (175B) 83.10 ± 3.13 65.71 ± 7.54 59.18 ± 9.05 55.84 ± 5.33 85.49 ± 2.01 69.87

CLIP-ViT/B-32 (63M) 80.07 ± 2.57 84.43 ± 2.57 61.40 ± 6.02 62.28 ± 6.40 80.07 ± 2.57 73.94
DeCLIP-ViT/B-32 (63M) 81.48 ± 2.63 84.07 ± 2.34 76.92 ± 1.81 68.12 ± 2.15 81.48 ± 2.63 78.35
CLIP-ViT/L-14 (123M) 80.33 ± 3.61 85.00 ± 4.03 63.96 ± 6.10 60.72 ± 5.56 80.33 ± 3.61 74.21

compute the layer-wise alignment score (Wang & Isola, 2020) of the learned textual representations
with the visual representations on CIFAR100 (Krizhevsky et al., 2009) following Ren et al. (2022).
As shown in the right of Figure 2, the alignment score decreases in deeper layers, indicating that
learned language representations are fusing with the visual features more deeply in higher layers.

In W2, CLIP outperforms text-only models with similar model sizes on visual tasks, yet scaling
the text-only models can overturn the game. The results of W2 are shown in Table 2. We observe
that CLIP-like models achieve the overall best average performance on five tasks related to visual
properties, which indicates that visual supervision introduced by CLIP helps the model learn visual
knowledge better. Besides, adding extra self-supervision like DeCLIP and scaling up the model
size are both beneficial. It is worth noting that the text-only casual language model OPT performs
relatively well. Most surprisingly, when the model scales to 175B, the pure text-based model can
even outperform CLIP models on visual properties like color and material. We speculate that the
co-occurrence statistics of color and material as modifiers for objects are well captured by large
language models. To figure it out, we need more rigorous investigation for future work.

Table 3: Zero-shot prediction accuracy of dif-
ferent tasks in the embodied world. We report
the average performance associated with stan-
dard deviation over multiple prompts. The best
results are shown in bold.

Model (# of Param.) Mass Temperature Hardness Avg.

BERT-base (110M) 50.35 ± 0.56 49.67 ± 0.56 50.20 ± 0.43 50.07
BERT-large (340M) 49.97 ± 1.31 49.83 ± 0.50 49.98 ± 0.06 49.93
RoBERTa-base (125M) 49.65 ± 0.51 50.00 ± 0.00 48.04 ± 2.04 49.23
RoBERTa-large (355M) 50.08 ± 0.23 50.07 ± 0.19 49.95 ± 0.15 50.03

OPT (125M) 50.00 ± 0.00 54.53 ± 4.33 46.16 ± 2.45 50.23
OPT (1.3B) 50.05 ± 0.10 50.90 ± 5.08 53.03 ± 2.69 51.33
OPT (13B) 50.14 ± 0.36 51.85 ± 6.34 52.38 ± 3.09 51.46
OPT (175B) 50.21 ± 0.24 59.83 ± 8.68 57.33 ± 3.41 55.79

CLIP-ViT/B-32 (63M) 65.20 ± 4.75 60.28 ± 6.83 59.43 ± 2.00 61.64
DeCLIP-ViT/B-32 (63M) 54.95 ± 2.00 68.58 ± 3.08 61.10 ± 4.14 61.54
CLIP-ViT/L-14 (123M) 73.15 ± 6.34 65.88 ± 2.31 69.57 ± 2.26 69.53
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Figure 3: Few-shot prediction accuracy of OPT-
175B with 16 instances as a demonstration on
probing tasks.

In W3, CLIP performs the best on the embodied tasks, even outperforming the largest OPT-
175B model with few-shot demonstrations. As shown in Table 3, CLIP-like models perform
consistently better than pure text models, while text-based models like the OPT models struggle
in W3. Besides, we notice that scaling up the model (CLIP-ViT/L-14) instead of adding extra
language-size supervision (DeCLIP) is more effective for improving performance in the embodied
world. We further conduct a few-shot prompt evaluation for OPT models by constructing the inputs
with k = 16 randomly sampled instances, and the results are illustrated in Figure 3. We find
that while the performance is boosted, the average results are still worse than the best-performing
CLIP-ViT/L-14 model, which only utilizes 0.7% parameters of OPT-175B. These findings draw a
conclusion that visual supervision is very beneficial for learning knowledge in the embodied world,
and its role is irreplaceable by massive text data and billion-level parameters.
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Figure 4: The comparison between the best-performing models and human annotators on sampled
subsets of the visual and embodied tasks.

Compared with human annotators, CLIP and OPT achieve competitive performance in W2,
while exhibiting great gaps in W3. We conduct a human evaluation to better understand the per-
formance of different models. Specifically, we randomly sample 100 examples for each task and
ask three annotators to label these examples. The comparison with best performing models, i.e.,
OPT-175B, CLIP-ViT/L-14 and DeCLIP is illustrated in Figure 4. We find that (1) In W2, both OPT
and CLIP-like models perform closely to human annotators. CLIP and DeCLIP even outperform the
human annotators on the shape task, which is potentially due to the noise introduced by the auto-
matic construction of the dataset (Zhang et al., 2022a). Overall, the close-to-human results indicate
that visual knowledge can be effectively acquired by large-scale cross-modal pre-training or even
text-only pre-training with sufficient parameters. (2) In W3, the best-performing CLIP-ViT-L/14
model has an absolute 18.5% accuracy gap with the humans. The clear performance gaps reveal that
there is still a long way to go in equipping language models with embodied knowledge.

4.3 ANALYSIS

Embodied Knowledge in Image Representations We are interested in how the CLIP text encoder
learns embodied knowledge. A potential answer is that the images contain some embodied knowl-
edge like the heat of the object, and the knowledge can be propagated to the text encoder via the
contrastive learning objective. To examine this, we perform a case study by calculating the attribute
similarities over the images. We first take clips from a video of heating a pile of ice and then per-
form a binary classification by calculating the cosine similarities with text prompts a photo of a hot
object. and a photo of a cold object for each frame. The left of Figure 5 shows that the probability
of a hot object increases during the heating procedure. Similarly, we perform a binary classification
over heavy and light-weight objects ranging from an elephant to a feather, and the illustration in the
right of Figure 5 shows that the image representations are aware of the mass of different objects.
This qualitative study shows clues that the learned embodied knowledge of CLIP’s language model
can be propagated from the image representations during the contrastive matching pre-training.
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Figure 5: Case study showing that the image representations in CLIP exhibit embodied knowledge.
(Left): The probability of being a hot object of clips taken from a video of heating ice in a boiler
is increasing as the ice melts. (Right): The probability of being a heavy object of common objects
with corresponding mass annotations.

Performance deterioration of CLIP with ambiguous attribute adjectives. During our prelimi-
nary study in W3, we observe that CLIP performs relatively worse for specific adjectives like hard.
We further investigate this issue by checking the retrieved images with prompts with different at-
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A photo of a soft object.
59.43% (std: 2.00%) 

A photo of a hard object.
44.00% (std: 1.26%)

A photo of a light-weight object.
35.63% (std: 2.68%)

A photo of a heavy object.
65.20% (std: 4.75%)

Figure 6: Top-5 retrieved images with different attribute prompts and the corresponding prediction
accuracy. The accuracy of CLIP drops significantly when the text inputs contain ambiguous words
and compound words, as the retrieved images are biased toward specific meanings.

tribute adjectives, on the CC12M dataset (Changpinyo et al., 2021). The results are illustrated in
Figure 6. We find that for the text a photo of a hard object, the retrieved images are mostly about
learning materials that are abstract and difficult, with only one rock image related to the hardness.
Besides, for the text with the compound adjective word light-weight, the retrieved images are bi-
ased to the meanings related to lighting-bulb and light-toned color instead. Accordingly, the results
with ambiguous texts are much lower. Possible remedies include devising better prompting meth-
ods like adaptively adjusting the prompts to eliminate ambiguity and developing better pre-training
objectives taking the variations of text into consideration can also be promising.

5 RELATED WORK

Vision-Language Pre-training The interest has grown recently in V+L pre-training for unifying
cross-modal representations. Pilot studies adopt masked reconstruction to learn shared representa-
tions across modalities from a mixed sequence of visual region features and language token em-
beddings (Li et al., 2019; Tan & Bansal, 2019; Su et al., 2020; Chen et al., 2019; Li et al., 2020).
CLIP (Radford et al., 2021) introduces a contrastive language-image pre-training framework, which
utilizes language as supervision for learning transferable image representations with 400M image-
text pairs. The ALIGN (Jia et al., 2021) utilizes more noisy image-text pairs up to 1.8B and achieves
better performance. Further variants enhance the learned representations of CLIP by investigating
self-supervision and data augmentation (Li et al., 2022), introducing fine-grained matching objec-
tives (Yao et al., 2021), and modeling deep interactions between the modalities (Li et al., 2021).

Probing Language Models Understanding what language models know after large-scale pre-
training is an active research area (Rogers et al., 2020). Various probing methods have been devel-
oped (Tenney et al., 2019b; Petroni et al., 2019), and investigations show that pre-trained language
models like BERT capture linguistic (Tenney et al., 2019a; Liu et al., 2019a), factual (Petroni et al.,
2019; Roberts et al., 2020; Dai et al., 2022), commonsense knowledge (Wang et al., 2019b; Forbes
et al., 2019), and even learn complex reasoning ability (Srivastava et al., 2022). For V+L pre-trained
models, studies demonstrate their potential in acquire spatial commonsense (Zhang et al., 2022a; Liu
et al., 2022), yet performing worse on NLU tasks (Tan & Bansal, 2020) and achieving no significant
on lexical grounding (Yun et al., 2021). We observe similar results in our LiVE benchmark when
evaluating other V+L models such as Vokenization (Tan & Bansal, 2020) in Appendix D.

6 CONCLUSION

In this paper, we investigate what vision supervision brings to language models with CLIP as a rep-
resentative V+L model. We build a comprehensive evaluation benchmark named LiVE, covering
linguistic, visual and embodied knowledge. Comparative experiments between CLIP and text-only
models show that, while CLIP falls far behind regarding linguistic knowledge, CLIP performs sig-
nificantly better in the visual and the embodied world, even outperforming OPT-175B with only
0.3% parameters. The evaluation proves that visual signals are beneficial for language models to ac-
quire knowledge beyond the linguistic world. The further qualitative analysis demonstrates that the
learned embodied knowledge is potentially from the image representations and CLIP struggles when
dealing with ambiguous text inputs, shedding light on future directions for further improvements.
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A MODEL CONFIGURATIONS

We provide the detailed configurations of models we evaluated in our main paper. Specifically,
for the evaluation in W1, we train identical Transformer (Vaswani et al., 2017) language models
configured with 12 Transformer layers and 512 hidden units with 8 attention heads, from scratch on
the YFCC15M dataset. These models only differ in the pre-training objectives, as shown in Table 4.

Table 4: Pre-training objectives comparison of models evaluated in W1.

Model Training Objective
BERT (Devlin et al., 2019) Masked Language Modeling (MLM)
CLIP (Radford et al., 2021) Contrastive Image-text Matching (CIM)
DeCLIP (Li et al., 2022) MLM + CIM
DeFILIP (Yao et al., 2021) MLM + Contrastive Token-Patch Matching

For tasks in W2 and W3, we evaluate the vanilla models for investigating the knowledge learned
during the original pre-training. The detailed model architecture configurations of these models can
be found in Table 5.

Table 5: Detailed configuration of models evaluated in W2 and W3.

Model Hidden Layers Hidden Size Attention Heads Total # of Parameters
BERT-base 12 768 12 110M
BERT-large 24 1,024 16 340M
RoBERTa-base 12 768 12 125M
RoBERTa-large 24 1,024 16 355M

OPT-125M 12 768 12 125M
OPT-1.3B 24 2,048 32 1.3B
OPT-13B 40 5,120 40 13B
OPT-175B 96 12,288 96 175B

CLIP-ViT/B-32 12 512 8 63M
DeCLIP-ViT/B-32 12 512 8 63M
CLIP-ViT/L-14 12 768 12 123M

B DETAILS OF PROMPTS

We provide the used prompts for evaluating different models based on their pre-training objectives.
Examples of Head, Rel and Tail of each dataset is shown in Table 1. Due to the sensitivity of
language models to prompts, we provide diverse prompts for each model on each task.

Prompts for Masked Language Models A [MASK] token is placed in the prompt and the models
are asked to predict the probabilities of the [MASK] token. To avoid multiple mask tokens in
prompts, we follow Schick & Schütze to convert knowledge fact into a cloze-question. For example,
a temperature fact (water, colder than, frying oil) can be converted into Q: is
the water colder than frying oil? A: [MASK]!. The models need to choose the
token yes or no to fill the mask.

Prompts for Causal Language Models As there is no special [MASK] token during the pre-
training of causal language models, we do not use [MASK] tokens in prompts for causal language
models. For Color, Shape and Material datasets in W2, we construct two prompts for (Head, Tail1)
and (Head, Tail2); while for other datasets in W2 and W3, we construct two prompts for (Head, Rel,
Tail) and (Head, Rel′, Tail) where Rel′ is the antonym relation of Rel. The prediction is based on the
prompt with lower perplexity.

Prompts for CLIP We follow Radford et al., to use prompts like a photo of ... here. As
the language encoder of CLIP encodes sentences to a vector and can evaluate similarities between
sentences. We use an attribute prompt like a photo of a cold object and construct same
prompts for objects (water and frying oil) in the knowledge fact. We can determine the colder object
if the prompt of this object has a higher similarity to the attribute prompt.
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Table 6: Prompts for Masked Language Models

Model Task Prompt

BERT & RoBERTa

Size, Height, Temperature, Weight, Hardness

is the [Head] [Rel] than the [Tail]? [MASK]!
is the [Head] [Rel] than the [Tail]? [MASK].
is [Head] [Rel] than [Tail]? [MASK]!
is [Head] [Rel] than [Tail]? [MASK].
is [Head] [Rel] compared with [Tail]? [MASK].
is [Head] [Rel] compared with [Tail]? [MASK]!
compared with [Tail], is [Head] [Rel]? [MASK].
compared with [Tail], is [Head] [Rel]? [MASK]!
is [Head] usually [Rel] than [Tail]? [MASK].
is [Head] usually [Rel] than [Tail]? [MASK]!

Color

can [Head] be of color [Tail]? [MASK]!
can [Head] be of color [Tail]? [MASK].
is the color of a [Head] [Tail]? [MASK]!
is the color of a [Head] [Tail]? [MASK].
is [Head] [Tail]? [MASK].
is [Head] [Tail]? [MASK]!
is [Head] typically in [Tail]? [MASK].
is [Head] typically in [Tail]? [MASK]!
Q: is [Head] of color [Tail]? A: [MASK].
Question: is [Head] of color [Tail]? Answer: [MASK].

Shape

can [Head] be the shape of [Tail]? [MASK].
can [Head] be the shape of [Tail]? [MASK]!
does the [Head] have a shape of [Tail]? [MASK].
does the [Head] have a shape of [Tail]? [MASK]!
is [Head] of [Tail]? [MASK].
is [Head] of [Tail]? [MASK]!
Q: is [Head] of [Tail]? A: [MASK].
Question: is [Head] of [Tail]? Answer: [MASK].
[Tail] [Head]? [MASK].
is [Head] typically [Tail]? [MASK].

Material

can [Head] be made of [Tail]? [MASK]!
can [Head] be made of [Tail]? [MASK].
is [Head] made of [Tail]? [MASK]!
is [Head] made of [Tail]? [MASK].
is [Tail] the necessary material for making [Head]? [MASK].
is [Tail] the necessary material for making [Head]? [MASK]!
does [Head] consist of [Tail]? [MASK].
is [Head] made up of [Tail]? [MASK].
Q: is [Head] made of [Tail]? A: [MASK].
Question: is [Head] made of [Tail]? Answer: [MASK].

C DETAILED EDGE PROBING RESULTS

Here, we introduce the details of the compression metric c used in our main paper. Formally, given
N instance representations with each label having K classes, we need to send their corresponding
labels with a minimum description length (MDL). In uniform encoding, which assumes that each
representation has a label with a probability of 1/K and does not require any learning, we can
transmit the labels with codelength N log2(K). However, when the representations exhibit some
degree of regularity with respect to the labels, we can train a classifier to predict the labels given
the representations and transmit the classifier’s complexity, i.e., the classifier codelength, instead of
sending the labels. As the classifier is usually not optimal, the final cross-entropy of the classifier
over the data, i.e., the data codelength) will be added to the classifier’s codelength, resulting in
the final MDL metric. We further eliminate the effect of the number N on the total sum of data
cross-entropy by reporting the compression metric, which is calculated as:

c =
N log2(K)

MDL
. (4)

The MDL can be calculated via a Bayesian method or an online encoding framework. We adopt the
latter due to its simplicity and report the compression ratio over a uniform coding in our main pa-
per, where a higher compression ratio c indicates that the representations contain richer information
regarding the target linguistic knowledge. The detailed probing results of different models in each
layer, which is shown in Table 10, and layers are indexed from 0 to 12 indicating the embedding
layer and the last Transformer layer. Further, following Tenney et al. (2019a), we derive the Lin-
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Table 7: Prompts for Causal Language Models

Model Task Prompt

OPT

Size, Height, Temperature, Weight, Hardness

the [Head] is [Rel] than the [Tail].
[Head] is [Rel] than [Tail].
acutally, the [Head] is [Rel] than the [Tail].
acutally, [Head] is [Rel] than [Tail].
it is well-known that [Head] is [Rel] than [Tail].
[Head] is indeed [Rel] than [Tail].
the [Head] is indeed [Rel] than [Tail].
compared with the [Head], the [Tail] is [Rel].
a/(an) [Head] is [Rel] than a/(an) [Tail].
yes, [Head] is [Rel] than [Tail].

Color

[Head] can be of the color [Tail].
the [Head] can be of color [Tail].
the color of a(an) [Head] is [Tail].
the color of [Head] is [Tail].
the [Head] is in [Tail].
[Head] is [Tail].
what color is the [Head]? [Tail].
[Head]’s color is [Tail].
usually, [Head] is in [Tail].
[Head] is typically [Tail].

Shape

[Head] is usually [Tail].
what is the shape of [Head]? [Tail].
[Head] is typically [Tail].
[Head]’s shape is [Tail].

Material

[Head] is made of [Tail].
the [Head] is made of [Tail].
[Head] consists of [Tail].
the main material of [Head] is [Tail].
[Tail] is necessary material for making [Head].
the [Head] consists of [Tail].
the [Head] can be made of [Tail].
the [Head] is built with [Tail].
the [Head] contains [Tail].
the [Head] is made up of [Tail].

Table 8: Prompts used for CLIP

Model Task Prompt

CLIP All Tasks

a photo of a [Head]/[Attribute].
a photo of the [Head]/[Attribute].
a blurry photo of a [Head]/[Attribute].
a good photo of a [Head]/[Attribute].
a painting of a [Head]/[Attribute].
a bad photo of a [Head]/[Attribute].
a close-up photo of a [Head]/[Attribute].
a bright photo of the [Head]/[Attribute].
a photo of one [Head]/[Attribute].
a low resolution photo of a [Head]/[Attribute].

guistic Layer Center metric to check which layer contains the most information regarding the target
linguistic property. Specifically, for layer ℓ of a language model and the corresponding compression
ratio cℓ, the linguistic layer center which is similar to the physical concept center of gravity, is
calculated as:

Ec[ℓ] =

∑L
ℓ=0 cℓ · ℓ∑L
ℓ=0 cℓ

. (5)

The linguistic layer center of different models in all linguistic probing tasks is shown in Figure 7.
We observe that BERT has a higher linguistic layer center compared to CLIP models. This again
verifies our assumption in the main paper that the learned language representations are fusing with
the visual information more deeply in higher layers.
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Figure 7: The center of gravity of different models in all linguistic probing tasks. The gravity is
measured with the MDL compression. The linguistic information is centered in lower layers of
CLIP models than BERT.

Table 9: Fine-tuned accuracy of other visual-informed pre-trained language models on NLU tasks
and zero-shot results in W2 and W3.

Model SST-2 QQP QNLI MNLI (m / mm) Avg.
BERT (Wiki) 90.13 83.20 87.57 78.90 / 80.05 83.97
DistilledOscar 89.33 67.98 82.48 74.46 / 74.82 77.81
VLM-BERT-base 90.60 90.10 89.47 81.57 / 82.43 86.83
VLM-RoBERTa-base 90.13 80.37 / 80.43 87.91 88.44 85.46

Model Color Shape Size Height Material Mass Temperature Hardness Avg.
BERT (Wiki) 49.41 48.07 51.70 49.46 52.39 48.85 51.07 52.34 50.41
DistilledOscar 49.97 53.61 49.07 49.80 51.46 51.22 47.94 51.23 50.54
VLM-BERT-base 50.69 50.07 51.00 50.92 53.89 44.83 50.64 49.22 50.16
VLM-RoBERTa-base 49.53 51.21 49.00 49.22 49.54 49.92 51.11 49.63 49.90

D PROBING OTHER VISUAL-AIDED LANGUAGE MODELINGS

We examine whether other V+L pre-training methods bring gains regarding visual and embodied
knowledge. Specifically, following Zhang et al. (2022a), we distill the knowledge of Oscar (Li et al.,
2020) into a BERT model by performing knowledge distillation (Hinton et al., 2015) on the image-
caption pair dataset. Specifically, the paired text and image is fed into Oscar model for getting the
vision-awared vocabulary distribution, and a student BERT model is performing masked language
modeling on the text data only and learns from the soft labels provided by the Oscar teacher model.
The distillation results in a DistilledOscar model supporting text-only inputs. We also evaluate
VLM-BERT learned via Vokenziation (Tan & Bansal, 2020), which devises a fine-grained token-
voken matching framework to utilize visual supervision. The models are evaluated on the four
largest datasets in GLUE, including SST-2 (Socher et al., 2013), QQP (Iyer et al., 2017), QNLI (Ra-
jpurkar et al., 2016) and MNLI (Williams et al., 2018) for stable results. As shown in Table 9,
DistilledOscar performs worse than the vanilla BERT in both NLU tasks and probing tasks regard-
ing visual and embodied knowledge. Besides, while VLM-BERT achieves improvements on NLU
tasks, it performs at the random level on the probed tasks. We think the reason is not the differences
in the training objectives and the model architecture, but the data scale used for pre-training, i.e.,
CLIP builds a 400M paired image-text dataset for training, yet the amount for Oscar and Vokenzia-
tion is less than 10M. As recent studies suggest that purely text language models acquire complicated
reasoning abilities during scaling up in model parameters and training corpus (Brown et al., 2020;
Wei et al., 2022), investigating the emergent abilities during the scaling up of multi-modal models
can also be interesting.
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Table 10: MDL Compression (Comp.) and Task F1 of different models trained with YFCC15M in
different linguistic tasks. The maximum compression of a model is bolded.

Tasks BERT CLIP DeCLIP DeFILIP
Compression Task F1 Compression Task F1 Compression Task F1 Compression Task F1

Coref

2.41 89.90 1.74 85.01 1.78 85.52 1.81 86.33
2.51 90.30 1.70 84.33 2.26 89.62 2.21 89.44
2.53 90.60 1.71 84.43 2.37 89.85 2.31 89.84
2.62 90.90 1.70 83.97 2.38 89.93 2.39 90.08
2.66 91.04 1.70 84.37 2.42 90.06 2.38 89.78
2.68 91.11 1.69 84.21 2.41 89.99 2.37 89.87
2.70 91.02 1.69 84.01 2.41 89.90 2.37 89.82
2.70 91.36 1.66 83.59 2.39 89.90 2.35 89.65
2.72 91.50 1.65 83.28 2.40 89.95 2.35 89.78
2.73 91.51 1.62 83.04 2.40 89.84 2.32 89.43
2.68 91.32 1.61 82.49 2.38 89.73 2.30 89.28
2.61 91.15 1.58 82.03 2.35 89.36 2.30 89.24
2.55 90.66 1.58 80.84 2.25 89.08 2.23 88.91

Deps.

5.57 82.80 3.41 70.10 4.70 78.64 4.60 78.19
6.86 86.80 2.76 63.60 6.50 86.03 6.12 84.86
7.92 88.86 2.83 64.81 6.96 87.20 6.86 86.95
8.39 89.53 2.86 65.24 6.98 87.21 6.97 87.33
8.45 89.76 2.82 64.70 7.07 87.37 6.83 86.84
8.58 89.88 2.78 64.03 7.15 87.55 6.67 86.56
9.11 90.55 2.75 63.79 6.99 87.21 6.53 86.19
9.51 90.92 2.70 63.15 6.85 86.96 6.43 85.86
10.22 91.54 2.63 61.92 6.78 86.97 6.36 85.74
10.42 91.70 2.55 60.86 6.67 86.71 6.27 85.49
10.59 91.71 2.46 59.66 6.55 86.43 6.15 85.19
10.43 91.45 2.37 58.38 6.42 86.03 6.00 84.82
9.94 91.01 2.35 58.53 5.82 84.71 5.56 83.73

NER

7.29 90.16 5.46 86.86 6.49 88.81 6.50 88.76
8.34 91.54 3.89 79.20 7.49 90.33 7.50 90.34
8.96 92.16 3.88 79.10 7.74 90.51 7.74 90.66
9.32 92.22 3.84 78.97 7.79 90.60 7.76 90.63
9.42 92.31 3.79 78.59 7.84 90.65 7.71 90.54
9.47 92.32 3.72 78.14 7.81 90.70 7.60 90.39
9.55 92.26 3.66 77.73 7.75 90.67 7.53 90.21
9.74 92.30 3.58 77.21 7.71 90.48 7.50 90.10
9.91 92.51 3.49 76.62 7.63 90.46 7.39 89.98
9.79 92.42 3.37 75.86 7.55 90.28 7.28 89.76
9.79 92.65 3.23 74.65 7.39 89.95 7.18 89.66
9.70 92.43 3.09 73.49 7.27 89.73 7.08 89.48
9.31 92.05 3.02 73.01 6.81 89.27 6.65 89.03

SRL

6.27 81.51 4.43 70.75 4.93 74.87 4.88 74.49
7.04 84.45 3.62 67.86 6.45 82.82 6.23 82.11
7.76 86.31 3.67 68.55 6.62 83.24 6.57 83.24
7.96 86.73 3.62 67.92 6.66 83.23 6.49 82.84
7.89 86.39 3.62 67.97 6.61 83.00 6.44 82.71
8.02 86.71 3.58 67.55 6.64 83.18 6.37 82.43
8.24 87.08 3.48 65.96 6.52 82.68 6.24 81.83
8.70 87.94 3.43 65.48 6.40 82.27 6.18 81.70
8.86 88.14 3.42 65.70 6.43 82.37 6.10 81.34
9.15 88.56 3.34 64.68 6.40 82.23 6.06 81.21
9.07 88.42 3.22 62.74 6.30 81.98 5.99 80.98
8.89 88.11 3.14 61.76 6.19 81.45 5.91 80.58
8.52 87.49 3.12 61.27 5.94 80.51 5.69 79.58

RC

1.59 47.38 1.34 37.33 1.45 40.92 1.44 42.27
1.68 50.57 1.49 42.44 1.66 51.51 1.60 49.75
1.83 54.31 1.58 45.69 1.85 56.83 1.85 56.88
1.91 55.92 1.60 46.30 1.89 58.08 2.01 60.19
1.92 56.59 1.62 48.26 1.97 58.81 2.08 61.41
1.99 57.97 1.64 47.97 2.11 61.36 2.09 60.95
2.07 59.81 1.63 48.17 2.16 62.06 2.10 60.57
2.13 61.33 1.60 47.85 2.19 62.12 2.06 60.95
2.28 63.84 1.57 46.80 2.18 62.00 2.05 60.68
2.31 64.54 1.56 46.04 2.16 61.15 2.03 59.95
2.35 65.19 1.50 43.44 2.14 60.45 2.01 59.81
2.39 65.74 1.44 42.65 2.09 58.84 2.01 59.69
2.41 65.71 1.42 41.60 1.93 58.29 1.88 57.64
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