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ABSTRACT

Single-particle cryo-electron microscopy (cryo-EM) has become a cornerstone of
structural biology, enabling near-atomic resolution analysis of macromolecules
through advanced computational methods. However, the development of cryo-EM
processing tools is constrained by the scarcity of high-quality annotated datasets.
Synthetic data generation offers a promising alternative, but existing approaches
lack thorough biophysical modeling of heterogeneity and fail to reproduce the
complex noise observed in real imaging. To address these limitations, we present
CryoCCD, a synthesis framework that unifies versatile biophysical modeling with
the first conditional cycle-consistent diffusion model tailored for cryo-EM. The
biophysical engine provides multi-functional generation capabilities to capture
authentic biological organization, and the diffusion model is enhanced with cycle
consistency and mask-guided contrastive learning to ensure realistic noise while
preserving structural fidelity. Extensive experiments demonstrate that CryoCCD
generates structurally faithful micrographs, enhances particle picking and pose es-
timation, as well as achieves superior performance over state-of-the-art baselines,
while also generalizing effectively to held-out protein families.

1 INTRODUCTION

In recent years, single-particle cryo-electron microscopy (cryo-EM) has emerged as an essential
technique in structural biology, enabling near-atomic resolution reconstructions of macromolecules
in their native states (Cheng, 2015; Kühlbrandt, 2014). By vitrifying biological specimens and imag-
ing them with high-energy electron beams, cryo-EM has significantly deepened our understanding of
protein architectures and molecular mechanisms, thereby accelerating drug discovery and expand-
ing biological insight (Nogales, 2016; Lyumkis, 2019). However, its full potential is constrained
by several data-centric limitations, including the scarcity of datasets, extremely low signal-to-noise
ratios (SNR), and reliance on labor-intensive annotation processes (Nakane et al., 2020; Hender-
son, 2013). These challenges collectively impede the development of robust models for downstream
tasks such as particle picking (Bepler et al., 2019), pose estimation (Levy et al., 2022), and 3D
reconstruction (Zhong et al., 2021a;b).

To support the development of learning-based cryo-EM algorithms (Zhu et al., 2017b; Gupta et al.,
2021; Zhong et al., 2021a; Wu et al., 2021; Jiang et al., 2025), recent efforts have focused on gener-
ating synthetic data (Rullgård et al., 2011; Vulović et al., 2013; Dhakal et al., 2023) through biophys-
ically inspired modeling. Several cryo-EM–specific frameworks, including InsilicoTEM (Vulović
et al., 2013) and LBPN (Kiewisz et al., 2025), simulate high-fidelity multi-angle projection processes
to approximate realistic imaging conditions. While effective, these methods often incur substantial
computational costs. VirtualIce (Noble et al., 2023) improves efficiency by simulating particle be-
haviors such as aggregation, overlap, and preferred orientations on top of real vitrified backgrounds.
However, it relies on simplified Gaussian noise injection, which fails to capture the complex and
structured noise patterns observed in real cryo-EM micrographs (Li et al., 2022).

Despite these advances, existing biophysical simulation approaches (Vulović et al., 2013; Rullgård
et al., 2011) still face two major limitations. First, they offer limited support for modeling structural
diversity and spatial variability, essential for generating datasets tailored to specific biological con-
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texts (Zhong et al., 2021a; Liu et al., 2023). Second, they typically assume additive Gaussian noise,
whereas real cryo-EM data contain a mixture of detector noise, electron scattering artifacts, radiation
damage, and heterogeneous background signals (Li et al., 2022; Parkhurst et al., 2024). To mitigate
this gap, CryoGEM (Zhang et al., 2024) introduces a physics-informed generative framework that
better models noise distributions. Nevertheless, its GAN-based formulation lacks bidirectional con-
straints (Zhu et al., 2017a), making it prone to structure distortion and incapable of controllable
noise synthesis.

To address these limitations, we propose CryoCCD, Conditional Cycle-consistent Diffusion with
Biophysical Modeling for Cryo-EM Synthesis. We employ a modular biophysical engine for multi-
scale cryo-EM synthesis, using structurally diverse particles from the PDB and AlphaFold3 (ww-
PDB consortium, 2018; Abramson et al., 2024) to simulate virtual cellular specimens and modeling
imaging physics to generate micrographs that faithfully capture heterogeneity. For realistic noise
simulation, CryoCCD is the first to apply diffusion models to cryo-EM data synthesis. Compared
to GAN-based methods (Zhang et al., 2024; Harar et al., 2025), which are prone to mode collapse,
conditional diffusion models provide more stable generation. To preserve structural fidelity, we in-
troduce a cycle-consistent approach that aligns positional information during domain translation.
Furthermore, mask-guided contrastive learning enhances the representation of fine-grained features
such as edges, textures, and spatial noise patterns.

We validate CryoCCD on six diverse cryo-EM datasets, showing consistently superior scores on
both FID and CMMD compared to traditional noise models and recent generative baselines. Be-
yond visual realism, our framework improves downstream tasks: particle picking achieves higher
AUPRC, pose estimation attains lower angular error, and both tasks generalize robustly to unseen
protein families, highlighting CryoCCD’s strong transferability. The simulator codebase will be
open-sourced to facilitate further research.

Our contributions are summarized as follows:

• We develop a comprehensive modeling engine that encodes biophysical priors, enabling multi-
functional cryo-EM synthesis with compositional and conformational heterogeneity.

• We introduce the first diffusion framework for cryo-EM noise generation, where cycle con-
sistency preserves structural integrity and mask-guided contrastive learning enhances fine-
grained representation, producing noise that is more realistic than traditional, GAN-based, and
diffusion-based approaches.

• We validate CryoCCD on six public cryo-EM datasets, achieving state-of-the-art performance
on standard metrics (FID, CMMD), significant improvements in particle picking and pose esti-
mation, and strong generalization to unseen protein families.

2 RELATED WORK

Cryo-EM/ET Synthesis. The development of cryo-EM/ET data synthesis has evolved from early
physics-based models of electron scattering (Cowley and Moodie, 1957; Vulović et al., 2013) to
more realistic frameworks that account for imaging noise and sample heterogeneity (Himes and
Grigorieff, 2021; Zhang et al., 2020; Dsouza et al., 2023; Zheng et al., 2023; Joosten et al., 2024).
To balance realism and controllability, hybrid simulators like VirtualIce (Noble et al., 2023) and
cryo-TomoSim (Purnell et al., 2023) generate annotation-ready data with physical priors. More
recently, specialized approaches have been developed to handle cryo-ET challenges, such as Pol-
Net (Martinez-Sanchez et al., 2024) for cellular variability and LBPN (Kiewisz et al., 2025) for
the missing wedge problem. However, most methods simulate noise by adding Gaussian pertur-
bations, which fail to capture the complex noise patterns observed in real micrographs. To bridge
this gap, CryoETGAN (Wu et al., 2022) introduces cycle-consistent unpaired translation, while
FakET (Harar et al., 2025) leverages neural style transfer for efficient synthesis. CryoGEM (Zhang
et al., 2024) further advances realism by integrating physics-based simulation with mask-guided
contrastive learning. In this work, we aim to improve the cryo-EM synthesis method by introducing
biophysical modeling for structural diversity and diffusion models for realistic noise.

Unpaired Image-to-Image Translation. Realistic noise generation in cryo-EM can be cast as
an unpaired image-to-image translation task, where clean simulated micrographs are mapped to
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realistic noisy ones without paired supervision. In vision, this has been widely studied, from early
GAN-based frameworks (Zhu et al., 2017a; Yi et al., 2017; Lee et al., 2018; Royer et al., 2020; Choi
et al., 2018) to variants with shared latent spaces (Liu et al., 2017), attention (Kim et al., 2020),
and contrastive learning (Park et al., 2020; Jung et al., 2022; Wang et al., 2021; Zheng et al., 2021).
Extending these ideas, GAN-based models such as CryoETGAN (Wu et al., 2022) and CryoGEM
(Zhang et al., 2024) have been applied to cryo-EM/ET, though often limited by instability and mode
collapse. In contrast, our method enables stable and structurally faithful noise generation.

Diffusion Models. Diffusion models have emerged as a powerful generative framework, with
DDPMs defining a forward noise process and learning its reversal (Ho et al., 2020; Song et al.,
2022). Early efforts focused on sampling efficiency and image quality (Nichol and Dhariwal, 2021;
Dhariwal and Nichol, 2021; Rombach et al., 2022), while recent advances enable conditional gen-
eration via classifier guidance and context-aware conditioning (Ho and Salimans, 2022; Yang et al.,
2024; Zhang et al., 2023). For unpaired image-to-image translation, diffusion models offer greater
stability and diversity than GANs. CycleDiffusion (Wu and De la Torre, 2022) introduced a unified
latent space to enforce cycle consistency, improving fidelity. Currently, CycleNet (Xu et al., 2023)
introduces a lightweight cycle consistency regularizer for text-guided diffusion. Despite these ad-
vances, diffusion models remain underexplored in cryo-EM synthesis. To fill this gap, we introduce
the first conditional, cycle-consistent diffusion framework tailored for this domain.

3 BIOPHYSICAL MODELING FOR DIVERSE STRUCTURAL SIMULATION

We introduce a unified biophysical modeling framework that leverages both experimental and gen-
erated structures, and scale-adaptive placement to synthesize high-fidelity, biologically grounded
cryo-EM micrographs. By integrating data-driven and probabilistic placement strategies with real-
istic imaging physics, our pipeline captures the compositional and spatial heterogeneity of cellular
specimens. Full specifications are provided in Appendix A.

(a) (b) (c) (d)

Figure 1: Cryo-EM simulation results: (a) Visualization of the processed particles. (b) Different
placement strategies are adopted based on the particles’ properties. (c) Generation of multi-scale
synthetic data from real cryo-EM images according to EMPIAR-10421. (d) Visualization of simu-
lated cryo-EM images.

Library Construction. To enrich the structural basis for simulation, we construct a heterogeneity-
supporting model library by combining a broad collection of experimentally resolved PDB struc-
tures, spanning molecular weights from small enzymes (~50 kDa) to large viral capsids (>50,000
kDa) and symmetry classes from high-order tetrahedral assemblies to asymmetric C1 complexes,
and combining AlphaFold predictions on curated proteomes to fill gaps in experimental structures
(see Figure 5), thereby expanding structural coverage to improve the robustness and generalizability.
All models are then standardized through Gaussian smoothing and isosurface extraction, followed
by triangulated mesh conversion while preserving fine-scale features. The processed particles are
shown in Figure 1(a).

Virtual Sample Modeling. To assemble in-silico specimens for imaging, we build virtual samples
that balance experimental fidelity and controllable diversity. The steps are as follows:
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• Particle Placement. To achieve biologically plausible positioning and orientation of macro-
molecules, we combine empirical annotations with probabilistic sampling under tunable
fidelity-diversity tradeoffs. RELION-derived (Kimanius et al., 2021) picks and angles are
mapped from pixel position to volume coordinates to yield translations Texp and quaternion
orientations qexp. To augment sampling beyond mapped particles, we sample translations Tsyn

from density-matched or uniform distributions calibrated to empirical radial functions and ori-
entations qsyn uniformly on S3. Confidence-weighted blending of (Texp, qexp) and (Tsyn, qsyn)
ensures fidelity and diversity.

• Class-Specific Distribution Modeling. To recapitulate distinct spatial arrangements of molec-
ular subtypes, we apply particle-type–specific priors inferred from experimental distributions
(Figure 1(b)). A dedicated module applies distribution rules extracted from experimental data:
soluble enzymes disperse uniformly in the volume, ribosomes cluster according to measured
inter-particle distances to mimic polysomes, and viral capsids follow separation distributions
observed on cryo-EM grids to avoid clashes.

• Multi-Scale Volume Modeling. To enable simulation across multiple scales, our simulator ad-
justs mesh complexity and placement parameters across scales (Figure 1 (c)). At larger scales,
simplified meshes and broader sampling capture global spatial patterns. While at finer scales,
detailed meshes and denser sampling with stricter collision checks preserve sub-nanometer
features. This scale-adaptive modeling ensures consistent biological realism from whole-cell
panoramas down to molecular interfaces.

• Ice-Layer Modeling. To reflect imaging conditions shaped by vitrified ice, we simulate an ice
layer with realistic topography and density fluctuations. We generate a vitreous ice slab with
thickness drawn from a log-normal distribution and modulate its surface via Perlin-noise to
introduce realistic thickness variations without real-sample input. The ice density field incor-
porates Gaussian fluctuations to simulate beam-induced noise before particle embedding.

Projection and Electrostatic Potential Assembly. To produce high-fidelity micrographs from the
virtual sample, we compute the total electrostatic potential from all embedded components as

Φ(r) =

L∑
i=1

ρi
(
R(qi)

−1(r− Ti)
)
, (1)

and project it under the weak-phase approximation:

P (x, y) =

∫ z0/2

−z0/2

Φ(x, y, z) dz. (2)

The generated projections are shown in Figure 1 (d). We then apply the instrument contrast transfer
function in Fourier space and perform an inverse Fourier transform to obtain a noise-free micrograph
for subsequent diffusion-based noise synthesis (see Appendix A.1).

4 CONDITIONAL CYCLE-CONSISTENT DIFFUSION FOR REALISTIC NOISE
TRANSLATION

Realistic noise generation in cryo-EM can be formulated as an unpaired image-to-image translation
problem, where noise-free simulated micrographs are translated into realistic noisy ones without
requiring paired supervision. Unlike traditional Gaussian or Poisson noise injection, which fails
to capture structured background and detector-specific artifacts, this formulation allows learning
complex noise distributions directly from real cryo-EM data. However, existing GAN-based ap-
proaches (Zhang et al., 2024) often suffer from mode collapse and lack explicit constraints to pre-
serve structural fidelity. To overcome these limitations, we introduce CryoCCD, which leverages
the stability of diffusion models, enforces cycle-consistency to maintain structural integrity, and
incorporates mask-guided conditioning for fine-grained noise modeling.

4.1 CONDITIONAL CYCLE-CONSISTENT DIFFUSION

We first define two generative diffusion models: GAB , which translates synthetic micrographs into
the realistic cryo-EM domain, and GBA, which reconstructs synthetic-like images from real micro-
graphs. This bidirectional mapping enables unpaired training while preserving structural fidelity.
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Figure 2: CryoCCD pipeline: (1) The input structures are inserted into a volume through specific
placement strategies, which then undergoes physics-based projection and density conversion to gen-
erate synthetic images. (2) In the image translation, we use two diffusion models, mask-guided
contrastive learning, and discriminator to achieve realistic synthetic-to-real image translation.

The forward diffusion process over T timesteps follows:

q(xt | xt−1) = N (xt;
√
1− βtxt−1, βtI), (3)

where {βt}Tt=1 is the noise schedule. The reverse process is:

pθ(xt−1 | xt,m) = N (xt−1;µθ(xt, t,m), σ2
t I), (4)

with mean function:

µθ(xt, t,m) =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t,m)

)
, (5)

where αt = 1− βt, ᾱt =
∏t

s=1 αs, and ϵθ is the noise prediction network.

The denoising objective minimizes the expected squared error over timesteps t, clean images x0,
noise ϵ, and masks m:

Ldiff = Et,x0,ϵ,m

[
∥ϵ− ϵθ(xt, t,m)∥22

]
. (6)

The segmentation mask m guides the model to attend to particle regions, enhancing structural
preservation. Sampling is accelerated using conditional sampler UniPC (Zhao et al., 2023) guided
by mask-based conditioning:

x̃ti =
αti

αti−1

x̃ti−1
− σti(e

hi − 1)ϵθ(x̃ti−1
, ti−1,m)− σtiB(hi)

p∑
k=1

ak
rk

Dk, (7)

where hi = λti − λti−1
is the step size in half log-SNR domain, and

Dk = ϵθ(x̃sk , sk,m)− ϵθ(x̃ti−1
, ti−1,m) (8)

with auxiliary timesteps sk = tλ(rkhi + λti−1). Here B(hi) = O(hi) and {ak}pk=1 are coefficients
for (p+ 1)-th order accuracy.

To ensure consistency across domains without paired supervision, we impose a cycle-consistency
constraint using the L1 norm:

Lcyc = Ex∼pA [∥GBA(GAB(x,m),m)− x∥1] + Ey∼pB [∥GAB(GBA(y,m),m)− y∥1] , (9)

where pA and pB are the data distributions over domains A and B respectively.
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4.2 MASK-GUIDED CONTRASTIVE LEARNING

Standard contrastive sampling often conflates particle and background regions, weakening structural
discrimination under high noise. To overcome this limitation, we introduce mask-guided contrastive
learning, where segmentation masks explicitly define particles as positives and background as neg-
atives, improving fine-grained feature representation in edges, textures, and spatial noise patterns.
The contrastive loss is defined as:

LNCE = − log
exp (cos(q, k+)/τ)

exp (cos(q, k+)/τ) +
∑

k− exp (cos(q, k−)/τ)
, (10)

where q is the query feature, k+ is its corresponding positive, and k− are sampled negatives. Here
cos(·, ·) denotes cosine similarity, and τ is a temperature parameter.

To further improve local realism, we incorporate a PatchGAN (Demir and Unal, 2018) discriminator
DB , trained with the following adversarial loss:

LGAN = Ey∼B[logDB(y)] + Ex∼A[log(1−DB(GAB(x,m)))]. (11)

We also apply physics-informed preprocessing to synthetic inputs, including weight-map normaliza-
tion x̃ = IN(w ⊙ x) and CTF-based noise simulation, to better match the statistical characteristics
of real cryo-EM images.

The overall training objective combines all components where λ are empirically tuned weights:

L = Ldiff + λGANLGAN + λcycLcyc + λNCELNCE, (12)

5 EXPERIMENTS

Datasets. We trained CryoCCD using synthetic particles derived from 15 publicly available EM-
PIAR datasets (Iudin et al., 2023) and the details are provided in Appendix B.1. For visual quality
evaluation purposes, we selected six datasets: 1) TRPV1 (Liao et al., 2013), a tetrameric mem-
brane channel resolved at 3.4 Å; 2) β-galactosidase (Bartesaghi et al., 2015), a 2.2 Å map with
∼800 solvent peaks; 3) Rhino/enterovirus (Abdelnabi et al., 2019), small icosahedral virions re-
quiring symmetry-expansion and high-fidelity difference mapping to resolve the conserved VP1-
VP3 pocket; 4) Innexin-6 (Burendei et al., 2020), nanodisc-embedded hemichannels where lipid-
induced pore closure demands focused classification and membrane-signal subtraction; 5) MLA
complex (Mann et al., 2021), apo/ATP/ADP states that necessitate heterogeneous 3-D clustering and
multi-body refinement to trace lipid transport; and 6) GroEL (Godek et al., 2024), a D7-symmetry
chaperonin. Comprehensive descriptions of all datasets are provided in Appendix B.1.

Baselines. We evaluate the performance of our method compared to several traditional noise base-
lines and deep generative models. We use Poisson noise, Gaussian noise, and Poisson-Gaussian
mixed noise (Poi-Gau) as traditional baselines. We choose CryoGEM (Zhang et al., 2024), Cy-
cleDiffusion (Wu and De la Torre, 2022) and CycleNet (Xu et al., 2023) as deep generative base-
lines. In Appendix B.2, we detail their specific settings.

Implementation Details. All experiments are conducted on a NVIDIA GeForce RTX A100 GPU
and trained for 50 epochs. The training dataset consists of 500 synthetic and 500 real images, with all
images standardized to a resolution of 1024×1024 pixels. Further implementation details of sampler
setups are provided in Appendix B.3.

5.1 VISUAL QUALITY

Visualization examples of each step in the CryoCCD pipeline are shown in Figure 3 (more vi-
sualizations in Appendix A.1). We compared CryoCCD against various baselines through visual
assessment of generated images of evaluation datasets. Figure 4 illustrates that our method pro-
duces significantly more authentic micrographs with superior noise characteristics while preserving
structural details such as particle boundaries, internal textures, and contrast between particles and
background. Conventional approaches (Gaussian, Poisson, and Poisson-Gaussian mixed noise mod-
els) consistently failed to capture the complex noise patterns inherent in real cryo-EM data, often

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 3: Visual Examples of CryoCCD Pipeline.

Figure 4: Comparison between real images and generated fake real images. Our method produces
more authentic micrographs with superior noise characteristics across all datasets.

resulting in unnatural global intensity distributions and oversmoothed textures. Among deep gener-
ative models, CycleDiffusion often produced images where the particle boundaries were blurred and
indistinguishable from the background. CryoGEM and CycleNet tended to collapse when handling
our composite synthetic datasets, failing to generate recognizable particles.

Quantitatively, we report both Fréchet Inception Distance (FID) and Class-Mean Maximum Dis-
crepancy with learned features (CMMD) (Jayasumana et al., 2024) to complement FID; Table 1
compares the two metrics across six cryo-EM datasets and shows that CryoCCD attains the low-
est scores on both against Gaussian/Poisson/Poi-Gau, recent GAN-based baseline (CryoGEM), and
diffusion-based baseline (CycleDiffusion, CycleNet).

5.2 PARTICLE PICKING

To validate the realism of the noise characteristics, we evaluated its impact on particle picking.
Specifically, we selected several publicly available EMPIAR datasets with particle annotations to
conduct this evaluation. Fake real micrographs generated by CryoCCD and multiple baselines, were
incorporated into the Topaz (Bepler et al., 2019). Subsequently, picked particles were subjected to
a standard single-particle reconstruction workflow using CryoSPARC (Punjani et al., 2017) to as-
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Table 1: Quantitative comparison of FID and CMMD on six Cryo-EM datasets (lower is better).

Dataset TRPV1 β-galactosidase Rhino/enterovirus Innexin-6 MLA complex GroEL
FID↓ CMMD↓ FID↓ CMMD↓ FID↓ CMMD↓ FID↓ CMMD↓ FID↓ CMMD↓ FID↓ CMMD↓

Gaussian 287.04 2.81 351.27 2.96 292.56 2.74 328.17 2.38 225.20 1.80 364.28 1.87
Poisson 396.59 3.19 515.91 2.89 395.59 3.58 467.19 2.66 388.26 2.57 410.38 2.33
Poi–Gau 290.68 2.86 356.96 3.01 301.77 2.77 272.24 2.28 239.43 1.80 369.95 1.87
CycleDiffusion 199.47 2.20 247.09 2.04 210.22 1.98 208.23 1.95 197.15 2.00 270.58 2.62
CryoGEM 192.28 2.17 283.28 2.73 224.18 3.41 223.02 3.76 189.46 2.93 279.20 2.77
CycleNet 211.30 2.33 235.02 2.09 228.79 3.10 215.66 2.47 203.50 2.18 290.41 2.86

Ours 121.32 1.53 137.57 1.66 130.89 1.63 130.52 1.46 88.55 0.94 147.41 1.32

Table 2: Quantitative comparison of particle picking. Our approach consistently achieves the
best in AUPRC↑ and Precision↑ metrics.

Metric AUPRC↑ Precision↑
Dataset Proteasome Integrin PhageMS2 HumanBAF Proteasome Integrin PhageMS2 HumanBAF

Gaussian 0.463 0.233 0.575 0.449 0.412 0.204 0.538 0.397
Poisson 0.458 0.195 0.408 0.392 0.386 0.168 0.365 0.341
Poi–Gau 0.438 0.244 0.601 0.376 0.397 0.227 0.519 0.347
CycleDiffusion 0.357 0.233 0.420 0.369 0.321 0.196 0.347 0.326
CryoGEM 0.257 0.208 0.159 0.178 0.221 0.175 0.148 0.159
CycleNet 0.343 0.251 0.399 0.297 0.307 0.234 0.340 0.303

Topaz 0.301 0.510 0.317 0.487 0.279 0.452 0.286 0.462

Ours 0.479 0.532 0.797 0.588 0.437 0.497 0.736 0.618

sess the resulting structural resolution improvements. Qualitatively, particle-picking visualizations
demonstrated that Topaz models finetuned with CryoCCD-generated noisy synthetic data provided
superior discrimination between true particles and background noise. Improvements were confirmed
through the Area Under the Precision-Recall Curve (AUPRC) metric (Bepler et al., 2019; Wagner
et al., 2019), where our method consistently outperformed all other baselines. Additionally, cor-
responding enhancements in final reconstruction resolutions (measured in Ångströms) further val-
idated the practical utility of CryoCCD. Figure 8 in Appendix C.1 clearly shows our visualization
results. Analysis and metrics are also comprehensively documented in Table 2 and Appendix C.1.

5.3 POSE ESTIMATION

Accurate particle orientation determination represents a critical bottleneck in achieving high-
resolution cryo-EM reconstructions. We evaluated CryoCCD’s capacity to enhance pose estimation
by applying our noisy synthetic datasets to train state-of-the-art ab-initio reconstruction methods
CryoFIRE (Levy et al., 2022). The synthetic particles, complete with precise orientation annota-
tions, provided an ideal training corpus for this supervised learning paradigm. We subsequently
assessed performance on real micrographs using Filter Back-Projection (FBP) as our reconstruction
algorithm. Our method demonstrated improvements over other baselines, achieving higher rota-
tion accuracy and enhanced resolution quality across several datasets. Table 3 presents the pose
estimation results, while Figure 9 in Appendix C.2 provides the corresponding FSC curves.

Table 3: Quantitative comparison of pose estimation. Our approach achieves the best in Res(px)↓
and Rot.(rad)↓ metrics.

Metric Res(px)↓ Rot.(rad)↓
Dataset Proteasome Integrin PhageMS2 HumanBAF Proteasome Integrin PhageMS2 HumanBAF

Gaussian 3.03 7.01 5.96 7.08 0.51 1.49 0.99 1.58
Poisson 3.12 7.14 6.09 9.33 1.09 1.66 1.03 1.60
Poi–Gau 3.15 7.99 5.98 9.09 1.32 1.57 0.73 1.51
CycleDiffusion 3.67 9.04 6.33 9.02 0.47 1.41 0.97 1.67
CryoGEM 7.99 9.24 15.38 10.79 1.72 1.94 1.20 1.78
CycleNet 4.58 8.31 9.04 8.91 1.03 1.50 1.19 1.69

CryoFIRE 6.02 13.27 18.03 7.17 1.54 0.97 0.75 1.49

Ours 2.87 5.89 5.37 7.01 0.44 0.90 0.51 1.47

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.4 GENERALIZATION TO HELD-OUT PROTEIN FAMILIES

To demonstrate the generalization ability of CryoCCD, We evaluate CryoCCD on four EMPIAR
datasets that were not used during training— EMPIAR-10028 (80S ribosome) (Wong et al., 2014),
EMPIAR-10059 (TRPV1) (Gao et al., 2016), EMPIAR-10389 (urease) (Righetto et al., 2020), and
EMPIAR-10532 (FANCD2–FANCI) (Tan and Rubinstein, 2020). For each dataset we run the full
pipeline and report FID and CMMD. As shown in Table 4, CryoCCD consistently achieves the
lowest scores against Gaussian, Poisson, Gaussian–Poisson mixture, CryoGEM, and CycleNet, in-
dicating strong realism and generalization to unseen protein families.

Table 4: Generalization to held-out protein families: FID↓ and CMMD↓ on four EMPIAR datasets
not used during training.

Dataset EMPIAR-10028 EMPIAR-10059 EMPIAR-10389 EMPIAR-10532

FID↓ CMMD↓ FID↓ CMMD↓ FID↓ CMMD↓ FID↓ CMMD↓
Gaussian 290.34 2.85 301.07 2.90 275.46 2.62 299.01 2.87
Poisson 443.13 3.43 389.78 3.31 391.27 3.36 410.98 3.50
Poi–Gau 286.46 2.77 300.98 2.87 277.04 2.64 307.87 2.91
CryoGEM 232.69 2.01 247.58 2.08 244.33 2.05 280.61 2.74
CycleNet 210.47 1.94 227.48 2.03 230.09 1.81 222.56 2.10

Ours 135.77 1.67 140.54 1.79 131.90 1.60 158.75 1.84

Table 5: Quantitative evaluation of the ablation study on diffusion components and biophysical
modeling components, reported in FID↓ across six datasets.

Setting TRPV1 β-gal. Rhino Innexin-6 MLA GroEL

w/o cycle consistency 243.38 254.97 270.01 248.53 199.79 300.35
w/o mask-guided contrastive learning 155.95 163.31 159.44 169.01 122.57 191.49

Ice layer: Global-gradient approach 199.84 270.32 212.09 228.65 197.52 284.43
CTF: small defocus 149.33 151.79 163.31 147.28 104.01 180.43
CTF: large defocus 148.47 156.90 166.44 150.80 107.09 184.47

Ours 121.32 137.57 130.89 130.52 88.55 147.41

5.5 ABLATION STUDY

Diffusion model components. We further ablate two learning modules of the reconstruction model:
cycle consistency and mask-guided contrastive learning. Table 5 reports FID on six datasets. Re-
moving cycle consistency substantially worsens FID and disrupts particle localization after noise
augmentation; removing mask-guided contrastive learning also degrades FID and yields blurred
boundaries with poor foreground–background separation. We include visual comparisons in the
supplement to illustrate these effects.

Biophysical modeling. To assess the impact of our physics-informed imaging components, we per-
formed a quantitative ablation study focusing on the ice layer model and the CTF parameterization.
We found that both elements are crucial for high-fidelity image simulation. We show the results in
Table 5 and detail the analysis in Appendix D.1.

Samplers and Sampling Steps. We further analyze the effect of different diffusion sampling steps
and samplers. Increasing the step budget from 5 to 50 yields a clear FID improvement. The complete
quantitative results are reported in Appendix D.2.

6 CONCLUSION

In this paper, we introduce CryoCCD, a synthesis framework that integrates biophysical model-
ing with conditional cycle-consistent diffusion to generate structurally diverse and noise-realistic
cryo-EM micrographs. Our method achieves state-of-the-art performance on FID, CMMD, and two
downstream tasks across six public datasets. Moreover, CryoCCD exhibits strong generalization
to held-out protein families. We hope this thorough and high-fidelity simulator will substantially
reduce the annotation burden for biologists and accelerate the development of computational tools
for the cryo-EM community.
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A DETAILS OF BIOPHYSICAL MODELING

A.1 IMPLEMENTATION DETAILS

Structure Library Construction. The structure-based mining targets cryo-EM-derived entries
from the Protein Data Bank using a resolution cutoff <4.0 Å with molecular weight and symmetry
classification spanning biological assemblies across diverse size scales and point group symmetries.
AlphaFold3 integration addresses structural coverage gaps and increases heterogeneity by generat-
ing predicted models for sequences that lack experimental structures, while expanding conforma-
tional heterogeneity by predicting and modeling structures from sequences with potential confor-
mational diversity. The structures are processed through confidence-stratified sampling: very high
confidence regions (pLDDT >90) remain static, confident regions (70-90) undergo constrained per-
turbations, low confidence regions (50-70) experience enhanced sampling, and very low confidence
regions (<50) are treated as fully flexible. Interdomain flexibility employs PAE-guided rigid-body
sampling for regions with PAE >10 Å, generating structural ensembles that capture prediction uncer-
tainty while preserving fold topology. The pipeline for enhancing compositional and conformational
heterogeneity is illustrated in Figure 5.
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Figure 5: AlphaFold3-based pipeline for enhancing compositional and conformational hetero-
geneity of the structure library. Sequences lacking experimental structures are selected from the
UniProt (Consortium, 2019) database to increase compositional heterogeneity, and entries with po-
tential conformational diversity are selected to enhance conformational heterogeneity. The green
frame shows the atomic models of two human PNPase (Q8TCS8) conformations processed based
on AlphaFold3; in the blue frame, for comparison, are the open formation (9KJR) and closed forma-
tion (9KJT) of human PNPase from the Protein Data Bank. Below the frames are illustrations of the
differences between these conformations. The generated particles are then converted into density
maps and undergo biophysical modeling to generate simulated cryo-EM images.

Atomic Model Conversion. The atomic model to volume conversion employs element-specific
van der Waals radii based on established crystallographic databases, with different radii assigned
to reflect the electronic structure and coordination environments of various atomic species. For
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unrecognized elements, a conservative default radius is applied based on typical organic atom di-
mensions. The Gaussian density kernel utilizes width σ = RvdW /(2 · spacing) where voxel spac-
ing follows spacing = resolution/2.0 to ensure Nyquist-compliant sampling. Box margin calcu-
lation applies margin = max(3Rmax, 2 · resolution) with automatic expansion by 4Rmax when
boundary violations exceed 10% of total atoms. Post-processing includes Gaussian smoothing with
σsmooth = resolution/(2.0 · spacing) and background thresholding at 0.005 relative intensity to
eliminate noise while preserving structural features. Examples of the resulting structure density
volumes are illustrated in Figure 6.

Scale-Adaptive Parameterization. The automatic scale detection employs size-based classifica-
tion with specific thresholds, particles <10 Å receive scale factor s = 1.0, 10-50 Å receive s = 0.8,
50-200 Å receive s = 0.6, 200-1000 Å receive s = 0.4, and >1000 Å receive s = 0.2. The compos-
ite scale factor follows s = 0.7ssize +0.3sdensity where density component reflects local crowding
through sdensity = min(1.0, particle_size3/(volume_size/1000)). Scale-dependent parameter rela-
tionships include overlap threshold = 0.4−0.3s, placement density = 0.7+0.5s, collision strictness
= 0.5 + 0.5s, and mesh reduction factor = 0.7− 0.7s. These scaling laws ensure appropriate geo-
metric constraints while optimizing computational resources across biological size ranges. Figure 6
illustrates the generated 3D volumes rendered at varying scales.

Distribution Modeling. The placement implementation combines data-driven coordinates from
RELION with synthetic insertion algorithms. Data-driven placement converts 2D picks (x, y)
to 3D translations Texp through coordinate system transformation, while Euler angles (α, β, γ)
undergo conversion to quaternions qexp using standard attitude conversion conventions. Syn-
thetic insertion employs multiple distribution strategies, uniform placement uses rejection sampling
with collision avoidance radius 2Rparticle(1 − overlap_threshold) and maximum iteration limits;
Gaussian clustering utilizes standard deviations σprimary = min(volume_shape)/6 for concen-
trated regions and σsecondary = 0.7σprimary for peripheral zones; grid placement applies spacing
d = 2Rparticle(1−overlap_threshold/2) with positional jitter ±d/4; interface placement constrains
particles within distance tolerance from target surfaces. Class-specific rules implement distinct or-
ganizational patterns. For example, soluble enzymes follow uniform dispersion, ribosomes cluster
according to measured inter-particle distances to mimic polysomes, and viral capsids follow separa-
tion distributions to avoid unrealistic aggregation.

Orientational Sampling. Particle orientation sampling employs multiple strategies reflecting dif-
ferent biophysical constraints. Uniform sampling draws from rotation group SO(3) using quater-
nion parameterization for isotropic coverage. Preferred axis alignment utilizes von Mises-Fisher
distributions f(x;µ, κ) = κ exp(κµTx)/(4π sinh(κ)) with concentration parameter κ = 10 pro-
viding moderate orientational bias suitable for air-water interface effects. Limited tilt sampling con-
strains orientations within θmax = π/6 from vertical using truncated normal distributions, reflecting
adsorption-induced preferences observed in cryo-EM. Numerical stability ensures quaternion nor-
malization within appropriate tolerance with iterative renormalization when necessary.

Mesh Generation and Geometric Processing. Surface mesh construction employs marching
cubes algorithm with adaptive step sizing, unit steps for high-resolution simulations (s > 0.8) and
increased step sizes for coarse applications. Triangle mesh quality maintenance includes aspect
ratio constraints, minimum angle thresholds, and edge length limits to ensure geometric fidelity.
Smoothing operations apply Niterations = max(1, 5s) iterations with relaxation factor 0.2. Mesh
decimation utilizes topology-preserving edge collapse when reduction factor 0.6(1 − s) exceeds
threshold values. Surface normal computation employs area-weighted vertex averaging to maintain
geometric accuracy. Collision detection uses octree structures with adaptive depth and leaf capacity
based on scale factor, enabling efficient proximity queries during placement operations.

Ice-Layer Modeling. Vitrified ice simulation incorporates experimentally-derived parameters for
realistic specimen conditions. Thickness distribution follows log-normal parameterization with
µ = ln(100) and σ = 0.2, yielding mean thickness 100 nm with variance matching experimen-
tal observations. Surface topography employs multi-octave Perlin noise with amplitude scaling
Ai = 5.0/2i nm and fundamental wavelength L = 10 pixels, capturing fractal roughness char-
acteristics observed in vitrified specimens. Density fluctuations apply spatially correlated Gaussian
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Figure 6: Visual Examples from the Cryo-EM Biophysical Simulation Pipeline.

noise with amplitude σ = 0.05ρice and correlation length appropriate for amorphous ice structure.
The ice density ρice = 0.92 g/cm³ represents vitrified water at cryogenic temperatures, with sur-
face height constraints maintaining reasonable thickness ranges to prevent unrealistic topographic
extremes.

Electrostatic Potential Assembly and Projection. The electrostatic potential calculation fol-
lows Φ(r) =

∑L
i=1 ρi(R(qi)

−1(r − Ti)) with atomic scattering factors incorporating appropri-
ate approximations and relativistic corrections for high-voltage applications. Weak-phase pro-
jection P (x, y) =

∫ z0/2

−z0/2
Φ(x, y, z) dz employs numerical integration with adaptive step sizing.

The contrast transfer function uses defocus values optimized for different resolution targets; in
the Fourier domain, the CTF is H(s, a) = −

(√
1− w2 sin γ(s, a) − w cos γ(s, a)

)
exp

(
−Bs2

4

)
with γ(s, a) = π

2 (2λ∆Z s2 + λ3Cs s
4) − ϕ, s =

√
k2x + k2y , and a = atan2(ky, kx).

Parameter specifications include spherical aberration Cs = 2.7 mm for conventional systems,
amplitude contrast w = 0.07 for biological specimens, and B-factors reflecting radiation sen-
sitivity and molecular flexibility. The phase function incorporates electron wavelength λ =

12.2643247/
√
kV (1 + 0.978466× 10−6 · kV ) with relativistic corrections for high-voltage appli-
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cations. An inverse Fourier transform of the filtered spectrum yields a noise-free micrograph used
as the clean input for diffusion-based noise synthesis.

A.2 VISUALIZATION OF THE CRYO-EM SIMULATION PIPELINE

As shown in Figure 6, we visualized the pipeline for biophysically simulating synthetic cryo-EM
data. The leftmost column shows real cryo-EM micrographs from the EMPIAR database. The cor-
responding extracted structures are used as inputs, and the adjacent column to the right displays
their processed density volumes. These structures are then inserted into 3D virtual sample volumes
to mimic realistic molecular distributions, and binary masks are computed to indicate spatial occu-
pancy. The final column displays noise-free simulated cryo-EM images generated through biophys-
ical modeling, which serve as structurally diverse clean inputs for subsequent CryoCCD training or
inference.

B EXPERIMENT SETTINGS

B.1 DATASET DETAILS

This section provides detailed information about EMPIAR datasets utilized in our experiments.
These datasets represent a diverse range of molecular structures with various characteristics that
present unique challenges for cryo-EM reconstruction. Among these datasets, 15 datasets serve
as training data (EMPIAR-10005, 10061, 10083, 10199, 10289, 10363, 10366, 10421, 10425,
10431, 10551, 12003, 12330, 12598, 12667), which we merge into a single, large-scale corpus
so that the model is exposed to diverse imaging conditions and can learn features that generalize
beyond any one specimen. Six additional datasets are reserved exclusively for visual-quality evalu-
ation: TRPV1 (EMPIAR-10005), β-galactosidase (EMPIAR-10061), Rhino/enterovirus (EMPIAR-
10199), Innexin-6 (EMPIAR-10289), MLA complex (EMPIAR-10425), and GroEL (EMPIAR-
12667). Additionally, four publicly available cryo-EM datasets (EMPIAR-10025, 10075, 10345,
and 10590) are used to validate our framework on the downstream tasks of particle picking and pose
estimation. EMPIAR-10028 (80S ribosome), EMPIAR-10059 (TRPV1), EMPIAR-10389 (urease),
and EMPIAR-10532 (FANCD2–FANCI) are used as held-out protein datasets to demonstrate the
generalization ability of CryoCCD.

EMPIAR-10005. Rat TRPV1 ion channel (Liao et al., 2013) (EMPIAR-10005) achieved a high-
resolution result at 3.4 Å, breaking the side-chain resolution barrier for membrane proteins without
crystallization. The structure exhibits four-fold symmetry around a central ion pathway formed by
transmembrane segments 5-6 and the intervening pore loop, with a wide extracellular mouth and a
short selectivity filter.

EMPIAR-10025. The Thermoplasma acidophilum 20S proteasome (Campbell et al., 2015)
(EMPIAR-10025) dataset comprises 196 real micrographs and 49,954 manually curated particles,
enabling reconstruction at a high resolution of 2.8 Å. The T20S proteasome is a 700 kDa com-
plex composed of 14 α-subunits and 14 β-subunits arranged with D7 symmetry. The micrographs
contain particles exhibiting high symmetry, random in-plane orientations, and frequent mutual oc-
clusion, posing challenges for particle picking.

EMPIAR-10028. Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug eme-
tine (Wong et al., 2014) (EMPIAR-10028) was determined by cryo-EM at a resolution of 3.2 Å.
The structure revealed drug–ribosome interactions in malaria parasites, with related PDB entries
3j79 and 3j7a and EMDB entry EMD-2660. The dataset contains 1081 multi-frame micrographs
(4096×4096 pixels, 16 frames each) and 105,247 processed particles, totaling 1.2 TB. These data
enabled detailed structural analysis of the malaria ribosome and its inhibition by small molecules.

EMPIAR-10059. TRPV1 ion channel in complex with DkTx and RTX, embedded in lipid nan-
odiscs (Gao et al., 2016) (EMPIAR-10059) was determined by cryo-EM at a resolution of 2.95 Å.
The structure (PDB 5irx; EMDB EMD-8117) revealed mechanisms of ligand and lipid modulation
of TRPV1. The dataset contains 1200 motion-corrected micrographs (3838×3710 pixels, 30-frame
exposures) and 218,805 raw particle images (192×192 pixels), totaling 93.8 GB.
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EMPIAR-10061. E. coli β-galactosidase with PETG inhibitor (Bartesaghi et al., 2015) was deter-
mined by cryo-EM at an average resolution of 2.2 Å. The map contains identifiable densities for
approximately 800 water molecules and for magnesium and sodium ions, demonstrating that speci-
men preparation quality and protein flexibility are now the major bottlenecks to routinely achieving
near 2 Å resolutions.

EMPIAR-10075. The MS2 bacteriophage(Koning et al., 2016) (EMPIAR-10075) dataset contains
300 real micrographs and 12,682 manually curated particles, enabling a reconstruction at 8.7 Å res-
olution. The virus comprises 178 copies of the coat protein, a single A-protein, and an encapsulated
RNA genome. Due to its large size and structural variability, PhageMS2 presents a significant chal-
lenge for particle detection and classification.

EMPIAR-10083. P22 bacteriophage capsid (Hryc et al., 2017) presents a 3.3-Å map of this large
and complex macromolecular assembly. The dataset demonstrates a computational procedure to de-
rive an atomic model with annotated metadata, identifying previously undescribed molecular inter-
actions between capsid subunits that maintain stability without cementing proteins or cross-linking
found in other bacteriophages.

EMPIAR-10199. Rhino- and enterovirus capsid (Abdelnabi et al., 2019) revealed a previously un-
known druggable pocket formed by viral proteins VP1 and VP3, conserved across entero-/rhinovirus
species. This discovery led to the identification of inhibitor analogues with broad-spectrum activity
against multiple virus groups, providing novel insights into viral entry biology.

EMPIAR-10289. C. elegans innexin-6 gap junction proteins (Burendei et al., 2020) shows the
structures in an undocked hemichannel form. In the nanodisc-reconstituted structure of the wild-type
INX-6 hemichannel, flat double-layer densities obstruct the channel pore, revealing insights into
lipid-mediated amino-terminal rearrangement and pore obstruction upon nanodisc reconstitution.

EMPIAR-10345. The asymmetric αVβ8 integrin (Cormier et al., 2018) (EMPIAR-10345) dataset
consists of 1,644 micrographs and 84,266 manually selected particles, yielding a 3.3 Å resolution
structure. This complex features the human αVβ8 ectodomain bound to porcine L-TGF-β1, and is
characterized by significant conformational flexibility, particularly in the leg domain, as observed in
the micrographs.

EMPIAR-10363. Single-particle reconstruction with aberration correction (Bromberg et al., 2020)
provides an analysis of how uncorrected antisymmetric aberrations affect cryo-EM results. The
reference-based aberration refinement for two datasets acquired with a 200 kV microscope in the
presence of significant coma yielded 2.3 and 2.7 Å reconstructions for 144 and 173 kDa particles,
respectively.

EMPIAR-10366. Canine distemper virus F protein (Kalbermatter et al., 2020) presents the prefu-
sion state of the CDV F protein ectodomain at 4.3 Å resolution. Stabilization was achieved by fusing
the GCNt trimerization sequence at the C-terminal region and purifying with a morbilliviral fusion
inhibitor, with the 3D map showing clear density for the ligand at the protein binding site.

EMPIAR-10389. Urease from the pathogen Yersinia enterocolitica (Righetto et al., 2020)
(EMPIAR-10389) was determined by cryo-EM at 1.98 Å resolution (PDB 6yl3; EMDB EMD-
10835). The high-resolution structure revealed detailed features of the multimeric urease complex
and provided insights into its pathogenic function. The dataset contains motion-corrected micro-
graphs, totaling 839.9 GB.

EMPIAR-10421. High-speed specimen preparation technique (Tan and Rubinstein, 2020) demon-
strates a method where solution sprayed onto one side of a holey cryo-EM grid is wicked through
by a glass-fiber filter held against the opposite side. This "Back-it-up" (BIU) approach produces
suitable films for vitrification in tens of milliseconds, creating large areas of ice suitable for both
soluble and detergent-solubilized protein complexes.

EMPIAR-10425. A. baumannii MLA complex (Mann et al., 2021) presents cryo-EM maps of
the core MlaBDEF complex in apo-, ATP- and ADP-bound states. The maps reveal multiple lipid
binding sites in both cytosolic and periplasmic sides of the complex, with molecular dynamics sim-
ulations suggesting potential lipid trajectories across the membrane.
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EMPIAR-10431. Human CDK-activating kinase (CAK) (Greber et al., 2020) contains the three-
dimensional structure of this critical regulator of transcription initiation and the cell cycle. The
dataset includes both the catalytic module structure and CAK in complex with covalently bound
inhibitor THZ1, providing insights into assembly, CDK7 activation, and inhibitor binding for thera-
peutic compound design.

EMPIAR-10532. Influenza hemagglutinin (HA) trimer vitrified using the Back-it-up (BIU) de-
vice (Tan and Rubinstein, 2020) (EMPIAR-10532) was determined by cryo-EM at 2.9 Å resolu-
tion (PDB 6wxb; EMDB EMD-21954). The study demonstrated that through-grid wicking en-
ables high-speed cryo-EM specimen preparation. The dataset contains 1,556 raw Falcon IV movies
(4096×4096 pixels, 30 frames each), the corresponding aligned micrographs, and 128,305 refined
particle images (256×256 pixels) with assigned Euler angles and shifts, totaling 1.2 TB.

EMPIAR-10551. Adeno-associated virus AAV-DJ (Xie et al., 2020) was determined to 1.56 Å
resolution, nearly matching the highest resolutions ever attained through X-ray diffraction of virus
crystals. At this exceptional resolution, most hydrogens are clearly visible, improving atomic refine-
ment accuracy and revealing that hydrogen bond networks are quite different from those inferred at
lower resolutions.

EMPIAR-10590. The endogenous human BAF complex(Mashtalir et al., 2020) (EMPIAR-10590)
includes 300 micrographs and 62,493 manually picked particles, achieving a reconstruction resolu-
tion of 7.8 Å. This complex is known for its compositional and conformational heterogeneity, which
increases the difficulty of automated particle picking.

EMPIAR-12003. Human pseudouridine synthase 3 (Lin et al., 2024) presents structures in apo
form and bound to three tRNAs, showing how the symmetric PUS3 homodimer recognizes tRNAs
and positions the target uridine. Combined with structure-guided mutations and transcriptome-wide
Ψ site mapping, this dataset provides the molecular basis for PUS3-mediated tRNA modification
and its link to intellectual disabilities.

EMPIAR-12330. Yeast spliceosome with Fyv6 (Senn et al., 2024) contains a high-resolution (2.3
Å) structure of a product complex spliceosome. The structure reveals Fyv6 as the only second step
factor contacting the Prp22 ATPase, with Fyv6 binding mutually exclusive with first step factor
Yju2, supporting a model where their exchange facilitates exon ligation.

EMPIAR-12598. SARS-CoV-2 RdRp backtracking (Malone et al., 2021) uses cryo-EM, RNA-
protein cross-linking, and molecular dynamics simulations to characterize viral RNA polymerase
behavior. The results establish the mechanism by which the product RNA extrudes through the RdRp
nucleoside triphosphate entry tunnel during backtracking, a process that may aid in proofreading and
contribute to viral resistance against antivirals.

EMPIAR-12667. GroEL chaperonin with inhibitors (Godek et al., 2024) employed cryo-EM to
establish the binding site of bis-sulfonamido-2-phenylbenzoxazoles at the GroEL ring-ring interface.
The biochemical characterization showed potent inhibition of Gram-negative chaperonins but lower
potency against Gram-positive organisms, validating this chaperone system as an antibiotic target
against bacteria including ESKAPE pathogens.

B.2 BASELINE DETAILS

Traditional Noise Simulations. These baselines include Gaussian, Poisson, and Poisson-Gaussian
(Poi–Gau) noise simulations, representing commonly used traditional strategies in cryo-EM syn-
thetic data generation. Following Vulovic et al. (Vulović et al., 2013), the Gaussian noise baseline
introduces zero-mean additive Gaussian noise to simulate a mixture of readout noise, dark current,
and background structural variations. The Poisson noise baseline captures the stochastic nature of
electron detection under low-dose imaging conditions, reflecting quantum noise characteristics. The
Poi–Gau baseline combines both noise types to model complex imaging artifacts. For fair compari-
son, the Signal-to-Noise Ratio (SNR) is uniformly set to 0.1 across all three methods.

CycleDiffusion (Wu and De la Torre, 2022). This method employs two diffusion models trained
independently on synthetic and real cryo-EM domains, respectively. Each DDIM is trained on
500 images of resolution 512 × 512 over 10,000 steps with a batch size of 8. The translation from
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synthetic to real is achieved by running a cycle-consistent sampling loop without paired supervision.
We use the publicly available implementation and default inference settings.

CryoGEM (Zhang et al., 2024). CryoGEM is a physics-informed generative model designed to
produce synthetic cryo-EM images with realistic noise characteristics. To introduce authentic noise,
CryoGEM employs an unpaired noise translation technique that leverages contrastive learning with
a novel mask-guided sampling strategy. This approach effectively transforms the simulated images
into ones with realistic noise patterns. All experiments are performed with the method’s default
settings.

CycleNet (Xu et al., 2023). CycleNet enables unpaired image-to-image translation with pre-trained
diffusion models by enforcing cycle-consistency regularization. Built upon ControlNet (Zhang et al.,
2023) and Stable Diffusion (Rombach et al., 2022), it performs a forward translation from source to
target domain and a backward reconstruction to ensure semantic preservation. Compared to mask-
or attention-based approaches, CycleNet achieves higher consistency and translation faithfulness,
and demonstrates strong zero-shot generalization with limited training data.

B.3 IMPLEMENTATION DETAILS

All experiments are conducted on a single NVIDIA GeForce RTX A100 GPU with 80 GB of mem-
ory. The models are trained for 50 epochs using the Adam optimizer with a learning rate of 1×10−4

and a batch size of 4. To explore the effects of different generative sampling strategies, we evaluate
four diffusion samplers within the CryoCCD framework: DDIM (Song et al., 2022), DDPM (Ho
et al., 2020), and their accelerated variants, DPM-Solver (Lu et al., 2022), DPM-Solver++ (Lu et al.,
2025), UniPC (Zhao et al., 2023), and linear multistep (LMS) sampler (Liu et al., 2022). These
sampling methods are examined to understand the trade-off between synthesis quality and inference
speed under various configurations.

Our synthetic data generation process begins with biophysical modeling to simulate noise-free cryo-
EM micrographs. Given a real cryo-EM image, the corresponding simulated noise-free counterpart
and a structural mask, the CryoCCD framework performs inference to generate realistic noisy im-
ages that closely mimic experimental conditions. This design enables controllable and interpretable
simulation of complex imaging artifacts.

The training dataset is detailed in Section B.1, and we validate the utility of our gener-
ated data in two downstream tasks—particle picking (Section C.1) and pose estimation (Sec-
tion C.2)—demonstrating the effectiveness and generalizability of the proposed framework.

B.4 EFFICIENCY AND COMPUTATIONAL COMPLEXITY

Figure 7: Efficiency on a single NVIDIA A100: train-
ing time (s/epoch), inference time (s/img), peak mem-
ory (MB).

Method Train Infer Memory
CryoGEM 209 0.2 4150
CycleDiffusion 1267 3.1 54377
Ours 805 1.9 68341

We benchmark training time, inference
latency, and peak memory on a single
NVIDIA A100 GPU to clarify compu-
tational feasibility. As expected for a
lightweight GAN, CryoGEM attains the
fastest speed and lowest memory, but suf-
fers from instability and eventual collapse
in our mixed datasets (see the CryoGEM
column in Fig. 4). Compared with Cy-
cleDiffusion, CryoCCD reduces training time (805 s vs. 1267 s per epoch) and inference latency
(1.9 s vs. 3.1 s per image) while yielding better visual and downstream performance. The efficiency
gains stem from mask-guided contrastive learning and a lightweight discriminator, which provide
strong structural guidance so fewer diffusion steps suffice. Our peak memory is higher due to these
additional modules.
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C DETAILS OF DOWNSTREAM TASK

C.1 PARTICLE PICKING

Topaz (Bepler et al., 2019) is a cryo-EM particle picking framework that assigns each pixel a prob-
ability of belonging to a particle. A user-defined threshold is then applied to retain high-confidence
detections. We adopt a pre-trained Topaz model as our baseline without further fine-tuning.

Evaluation via AUPRC. To compare different picking methods, we rank detection candidates
by their confidence scores and select the top N predictions for analysis. Varying a threshold set
{τi}n−1

i=1 partitions the confidence range into n levels, allowing computation of precision Pr(k) and
recall ℜ(k) at each level. The area under the resulting precision–recall curve (AUPRC) is defined as

AUPRC =

n∑
k=1

Pr(k)
(
ℜ(k)−ℜ(k − 1)

)
, (13)

where the precision Pr(k) is the fraction of true positives among predictions with probability ≥ τk,
and the recall ℜ(k) is the fraction of true positives with probability ≥ τk relative to the total number
of true positives.

Evaluation via Precision. Beyond AUPRC, we also report the overall precision at a fixed confi-
dence cutoff. Precision is computed as

Precision =
TP

TP + FP
(14)

where TP and FP denote true and false positives, respectively, at the chosen threshold. This metric
directly reflects the accuracy of detected particles without regard to recall.

Gaussian CycleDiffusion CryoGEM Ours Real
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a
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Topaz

Figure 8: Qualitative comparison results of particle picking. The blue circles indicate matches
with manual picking results, while the red circles represent misses or excess picks by the model.

Result Analysis. Table 2 summarizes both AUPRC and overall precision for each method. Over-
all, our detector exhibits consistent improvements over classical noise-model baselines (Gaussian,
Poisson, Hybrid) as well as recent learning-based approaches (CycleDiffusion (Wu and De la Torre,
2022), CryoGEM (Zhang et al., 2024), Topaz (Bepler et al., 2019)). These gains manifest across
both high-contrast specimens (Proteasome, PhageMS2) and more challenging low-contrast cases
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(Integrin, HumanBAF), suggesting that our model balances sensitivity and specificity more effec-
tively. By selecting a fixed confidence cutoff, we observe a uniform reduction in false positives,
directly benefiting downstream reconstruction workflows.

In terms of AUPRC, our method achieves the best results on all four datasets, notably improving
over Topaz by +17.8% on PhageMS2 and +10.1% on HumanBAF. While traditional models fail
to register meaningful precision at the fixed cutoff, our method maintains valid detection outputs
across all test cases, as reflected in the non-zero precision scores. Although all baselines yield near-
zero precision under the same conditions, our method preserves confident particle proposals and
achieves superior localization accuracy, particularly on Integrin and HumanBAF, where noise and
low contrast typically pose significant challenges.

As shown in Figure 8, particle picking accuracy improves significantly when Topaz is fine-tuned
using synthetic data generated by CryoCCD. Compared to other data synthesis methods such as
Gaussian noise, CycleDiffusion, and CryoGEM, our approach produces more realistic cryo-EM
micrographs that better reflect the structural and noise characteristics of experimental data. As a
result, the fine-tuned Topaz model yields more accurate particle localization across both static (e.g.,
HumanBAF) and dynamic (e.g., Integrin, PhageMS2) specimens, closely matching the annotations
in real datasets.

C.2 POSE ESTIMATION

Our approach predicts particle orientations and translations via direct supervised learning on syn-
thetic data. Each training batch contains images with known ground-truth rotations {Rgt

i } and trans-
lations {T gt

i }. We minimize the pose loss:

Lpose =
1

B

B∑
i=1

[
1

9
∥Rgt

i −Rpred
i ∥2F +

1

2
∥T gt

i − T pred
i ∥1

]
, (15)

where B is the batch size, ∥·∥F denotes the Frobenius norm, and ∥·∥1 is the L1 norm.

Evaluation via Reconstruction Resolution (Res(px)). Predicted poses reconstruct two indepen-
dent half-volumes using filter back-projection (FBP). Resolution is determined by the Fourier shell
correlation (FSC) at threshold 0.5:

FSC(r) =

∑
ri∈r F1(ri) · F2(ri)

∗√∑
ri∈r∥F1(ri)∥2 ·

∑
ri∈r∥F2(ri)∥2

, (16)

where F1 and F2 are Fourier transforms of the two half-volumes. The resulting Res(px) measures
pose accuracy without 2D classification bias.

Evaluation via Angular Error (Rot(rad)). We further compute the mean angular error in radians:

Rot(rad) =
180

π nrots

nrots∑
i=1

arccos
( Rgt

i v

∥Rgt
i v∥

· Rpred
i v

∥Rpred
i v∥

)
, (17)

using unit vector v = (0, 0, 1).

Result Analysis. Table 3 reports reconstruction resolution (Res(px)) and angular precision
(Rot(rad)) for each baseline and our method. Our pose estimator consistently produces sharper
reconstructions—reflected in lower Res(px) values—on both static (Proteasome, HumanBAF) and
dynamic (Integrin, PhageMS2) specimens, indicating more accurate orientation estimates. Simi-
larly, angular precision improvements demonstrate that a greater proportion of predicted rotations
fall within acceptable error bounds, which is key for high-fidelity 3D volume recovery. These overall
trends highlight the robustness of our supervised training framework and its capacity to generalize
across diverse structural classes.

Compared to CryoFIRE, our method yields consistent gains across all datasets in both resolution
and rotation. In particular, we improve Integrin resolution by 55.6% (5.89 vs. 13.27 px) and reduce
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Figure 9: Filter back-projection reconstruction FSC curves at the 0.500 threshold.

PhageMS2 rotation error by 32.0% (0.51 vs. 0.75 rad). We also see large margins on Protea-
some—52.3% better resolution (2.87 vs. 6.02 px) and 71.4% lower rotation error (0.44 vs. 1.54
rad)—and a smaller but positive gain on HumanBAF (resolution 7.01 vs. 7.17 px, rotation 1.47 vs.
1.49 rad). On average over the four datasets, our approach reduces resolution error by 45.1% and
rotation error by 28.0% relative to CryoFIRE.

Classical noise baselines (Gaussian, Poisson, and their mixture) still underperform across datasets:
despite occasionally competitive numbers (e.g., Gaussian resolution on HumanBAF), their aver-
age errors remain higher (Res: 5.77–6.55 px; Rot.: 1.14–1.35 rad) than ours (Res: 5.29 px; Rot.:
0.83 rad), reflecting limited noise realism. CryoGEM exhibits the largest errors overall (e.g., Res:
7.99–15.38 px; Rot.: 1.72–1.94 rad), suggesting adversarial distortions that harm both angular ac-
curacy and resolution.

Importantly, our method is best on every dataset and both metrics in Table 3. The margins vary with
structural heterogeneity: they are largest on PhageMS2 (complex, flexible; Res: 70.2% better than
CryoFIRE) and Proteasome (rigid; Rot.: 71.4% improvement), and narrower on HumanBAF, where
we still edge out the next best baseline on both resolution and rotation. These results indicate that
our model maintains low errors on both rigid and flexible structures, confirming robustness across
structural heterogeneity. Consistent with Figure 9, our advantage in resolution at the 0.500 FSC
threshold on Proteasome persists relative to all competing baselines.

D ABLATION STUDY

D.1 BIOPHYSICAL MODELING.

Our biophysical engine is implemented as an integrated pipeline; thus only the physics-informed
imaging components can be isolated for quantitative ablations. Following this principle, we
probe two factors: the ice layer model and the CTF parameterization. For the ice layer, we
replace our physically-based simulation with a global-gradient scheme that randomly selects
IceBreaker-estimated thickness maps (Olek et al., 2022). For CTF, we compare (i) small defocus
(8,000–15,000 Å, 300–800 Å astigmatism), (ii) large defocus (10,000–30,000 Å, 500–2,500 Å), and
(iii) ours (15,000–20,000 Å, 100–500 Å), which targets high-quality cryo-EM imaging. As Table 5
shows, replacing the ice layer with the global-gradient approach severely degrades FID across all
datasets, confirming the effectiveness of our ice modeling. Across realistic CTF ranges, FID shifts
are within ≤ 7%, and our setting is best or on par on five of six datasets (Innexin-6 shows a marginal
0.8% gain under small defocus).
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D.2 SAMPLERS AND SAMPLING STEPS.

Table 6: Quantitative comparison of FID scores
on the Ribosome: varying DDPM steps vs. differ-
ent samplers.

Configuration Steps Sampler Algorithm FID↓
5 Steps 5 DDPM 37.97
10 Steps 10 DDPM 29.08
20 Steps 20 DDPM 24.44
50 Steps 50 DDPM 20.06

DDIM 20 DDIM 20.33
DDPM 20 DDPM 24.44
DPM-Solver 20 DPM-Solver 19.27
DPM-Solver++ 20 DPM-Solver++ 19.13
LMS 20 LMS 18.68
UniPC 20 UniPC 18.54

We validate the effectiveness of different sam-
pling configurations on the Ribosome dataset.
Table 6 presents two complementary studies:

Sampling steps. We vary the DDPM step bud-
get from 5 to 50. As expected, the FID steadily
decreases as the number of steps increases:
from 37.97 (5 steps) to 29.08 (10 steps), 24.44
(20 steps), and finally 20.06 (50 steps). This
indicates that longer trajectories allow the de-
noising process to better approximate the data
distribution, although with diminishing returns
as the step budget grows.

Sampler algorithm. With the step budget fixed
to 20, we compare several popular samplers.
While DDPM achieves an FID of 24.44, ad-
vanced solvers bring consistent improvements:
DPM-Solver and DPM-Solver++ reduce FID to
19.27 and 19.13, respectively, while LMS and
UniPC achieve the best performance at 18.68 and 18.54. In contrast, DDIM (20.33) underperforms,
likely due to its deterministic formulation, which limits stochastic exploration and reduces sample
diversity.

E BACKGROUND OF CRYO-EM

E.1 PRINCIPLES OF CRYO-EM

Cryo-EM is a cornerstone of contemporary structural biology, enabling macromolecular structures
to be determined at near-atomic resolution in a close-to-native environment (Dubochet et al., 1988;
Nogales, 2016). By eliminating the need for crystallization or harsh chemical fixation, cryo-EM
allows direct visualization of protein assemblies, viruses, and cellular organelles.

Cryo-EM enables structural imaging of radiation-sensitive biological specimens by operating a
transmission electron microscope (TEM) under cryogenic conditions. Electrons, typically accel-
erated to 300kV, possess a de Broglie wavelength of approximately 0.02Å, vastly shorter than that
of visible light (4000–7000Å), thus allowing for atomic-resolution imaging (Henderson, 2015). To
mitigate the severe radiation damage caused by electron scattering, cryo-EM employs (i) vitrification
via plunge-freezing into liquid ethane to form amorphous ice that preserves the native ultrastruc-
ture (Dubochet et al., 1988), and (ii) low-dose imaging strategies, where multiple noisy projections
are later computationally averaged.

Modern TEM consists of a high-coherence electron source, condenser lenses that control beam illu-
mination, an objective lens that focuses the electron wavefront after interacting with the specimen,
and image magnification lenses. The specimen is maintained below −170,◦C to prevent devitrifi-
cation during imaging. Transmitted electrons are collected by a direct electron detector, producing
a set of 2D projection micrographs. According to the central projection theorem (DeRosier and
Moore, 1970), the Fourier transform of each 2D image corresponds to a central slice of the object’s
3D Fourier space. By acquiring thousands of such projections at varying orientations, it becomes
possible to reconstruct a 3D structure via algorithms such as iterative back-projection or maximum-
likelihood refinement (Cheng, 2018).

E.2 MAJOR APPLICATIONS

Single-particle cryo-EM merges tens of thousands of noisy projections into 3D density maps, often
reaching 2–3 Å resolution for favourable specimens (Bai et al., 2015). Three computational stages
are pivotal:
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Particle picking. Automatic discrimination of particles from ice, carbon, and contaminants is es-
sential for downstream accuracy.

Pose estimation. Assignment of particle orientations is typically achieved via common-line meth-
ods or projection matching, both of which are sensitive to noise and heterogeneity.

Demonstrated targets include membrane channels (TRPV1 (Liao et al., 2013; Gao et al., 2016)),
soluble enzymes (E. coli β-galactosidase (Bartesaghi et al., 2015)), viral capsids, and chaper-
onins—each posing unique challenges related to symmetry, flexibility, and low SNR.

F USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this paper, we used Generative AI to assist with grammar checking, lan-
guage polishing, and improving readability. The model was not used for generating novel research
ideas, experimental design, data analysis, or drawing conclusions. All content and claims in the
paper are the sole responsibility of the authors.
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