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ABSTRACT

Recent advances in reasoning capabilities of large language models (LLMs) are
largely driven by reinforcement learning (RL). However, the underlying parameter
dynamics throughout the RL training process remain poorly understood. This work
identifies two fundamental properties of RL-induced parameter updates in LLMs:
(1) Rank-1 Dominance, where the top singular subspace of the parameter update
matrix accounts for nearly all reasoning improvements, recovering over 99% of the
total performance gains; and (2) Rank-1 Linear Dynamics, where this dominant
subspace evolves linearly throughout training, enabling accurate prediction from
early checkpoints. Extensive experiments across 13 LLMs and 10 advanced train-
ing algorithms validate the generalizability of these properties. More importantly,
based on these findings, we propose AlphaRL, a plug-in acceleration framework
that accurately extrapolates the final parameter using a short early training win-
dow, achieving up to 2.5x speedup while retaining >96% of reasoning performance
without extra modules or hyperparameter tuning. This positions our finding as a
versatile and practical tool for large-scale RL, opening a path toward principled,
interpretable, and efficient training paradigm for LLMs. Our model and code will
be available at: https://anonymous.4open.science/r/AlphaRL.
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Figure 1: Comparison between RL-trained models and their Rank-1% parameter update counterparts
across five reasoning benchmarks. The results demonstrate that retaining only the Top 1% of the
parameter update matrix is sufficient to recover the reasoning gains achieved by RL-trained models.
More detailed experimental settings and results are exhibited in Section 2. Best viewed in color.

1 INTRODUCTION

Large language models (LLMs) have witnessed rapid advances in reasoning, a development largely
driven by reinforcement learning (RL) based training paradigm (OpenAl, 2025; Claude, 2025; Yang
et al., 2025). These advances naturally motivate efforts to interpret RL-trained LL.Ms, leading to
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Figure 2: Overview of our key findings and method. (a) Rank-1 Dominance: The majority of
reasoning improvements induced by RL can be captured by the Rank-1 Subspace of the parameter
update AW, which throughout the RL training process. (b) AlphaRL: Leveraging Rank-1 Linear
Dynamics, AlphaRL predicts the trajectory of the Rank-1 Subspace, allowing models to reach final
performance with fewer RL training steps. Best viewed in color.
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studies such as neuron attribution (Bogdan et al., 2025), circuit analysis (Qian et al., 2025), and
sparse autoencoders (Galichin et al., 2025).

While effective, these researches mainly focus on post-hoc interpretability (i.e., explaining the
endpoints of training), leaving the RL process itself less explored (Wang et al., 2025b; Zhang
et al., 2025; Feng et al., 2025). Understanding parameter dynamics during RL is essential: not
only for optimizing RL paradigms, but also for shedding light on the emergence of reasoning
capabilities. Hence, this work aims to reveal the black-box of RL process by addressing two
fundamental questions: Are RL-guided parameter updates governed by consistent principles,
and how do these principles give rise to reasoning capabilities?

To solve these, we conduct a step-wise analysis of the parameter update matrix AW (i.e., the parameter
difference between the RL-trained model and the base model). After applying mathematical tools
such as orthogonal subspace projection (Cai & Cao, 2024), we uncover a striking phenomenon:
performing singular value decomposition (SVD) (Koren et al., 2009) on AW reveals that the top
singular subspace, defined as the Rank-1 Subspace, almost entirely determines the reasoning gains
from RL. That is, adding only the Rank-1 component of AW to the base model is sufficient to recover
nearly all of the RL-trained model’s reasoning improvements. More remarkably, this property holds
not just at convergence, but at any intermediate step of RL training, as shown in Figure 2 (a). We
formalize this finding as Property 1 (Rank-1 Dominance): Rank-1 Subspace of AW determines
the reasoning gains of LLMs throughout the RL training process.

This property inspired us to probe how the Rank-1 Subspace evolves during RL training. By
applying partial least squares (PLS) to track the dimension-wise trajectory of the Rank-1 Subspace
across training steps, we observe an almost strictly linear upward trend, with the linear rate metric
R? (Geladi & Kowalski, 1986) exceeding 0.96. Consequently, the Rank-1 Subspace at a target step
can be accurately forecast from a short early window of training. We formalize this as Property
2 (Rank-1 Linear Dynamics): Rank-1 Subspace evolves approximately linearly with RL training
process, yielding high predictability from early-stage checkpoints of RL process.

To validate the generalizability, we conducted extensive experiments across 13 diverse LLMs (ranging
from 7B to 32B parameters, e.g., Qwen3 (Yang et al., 2025), Llama3 (Grattafiori et al., 2024), and
GLM4 (GLM et al., 2024)) trained with 10 advanced training algorithms (e.g., GRPO (Yu et al.,
2025), Dr.GRPO (Liu et al., 2025b), and DAPO (Yu et al., 2025)). Our analysis shows that, for
Property 1, the Rank-1 Subspace alone recovers an average of 99.17% of the reasoning capability.
For Property 2, (1) the linearity of Rank-1 Subspace’s evolution exhibits an average R> of 0.914,
and (2) predictions of its later state based on early-stage states achieve an average error of less than
5%. Crucially, control experiments with alternative training paradigms like supervised fine-tuning
and distillation on the same models yielded neither property, demonstrating that these phenomena
are distinctive characteristics of the RL process for LLMs. Detailed experimental setups and results
are presented in Sections 2 and 3.
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These findings provide actionable interpretability for RL in LLMs: since the Rank-1 Subspace
governs RL-induced gains (Property 1) and evolves almost linearly over training (Property 2), the
trajectory becomes effectively predictable. We therefore introduce AlphaRL, a plug-in acceleration
scheme. As shown in Figure 2 (b), for any given RL algorithm applied to any LLM, AlphaRL simply
requires an early training window to calculate (1) the initial Rank-1 Subspace of AW and (2) its
linear growth rate. It then directly predicts the final parameter update that attains the target reasoning
performance without running the full schedule. Experiments on the aforementioned models and RL
algorithms demonstrate that AlphaRL achieves up to 2.5% acceleration while retaining >96% of the
final reasoning capability. Detailed implementation and results are presented in Section 4.

In summary, this paper uncover two laws of parameter dynamics in LLM training process, Rank-1
Dominance and Rank-1 Linear Dynamics, providing a predictive lens on how RL yields reasoning
gains. These findings suggest that the complex, multi-step optimization of RL may be governed by a
surprisingly simple and low-dimensional core mechanism. Hence, it not only challenges the black-
box view of RL, but also opens new avenues for bridging the gap between empirical scaling laws and
theoretical understandings of how capabilities emerge. Building on these properties, we introduce
AlphaRL, a “free lunch” for RL acceleration: it requires no extra modules, hyperparameter tuning,
or human intervention, and remains orthogonal to, thus multiplicatively compatible with, existing
acceleration paradigms. This positions our finding as a versatile and practical tool for large-scale
RL, opening a path toward principled, interpretable, and efficient training paradigm for LLMs.

2 DoMINANCE OF RANK-1 SuBspPACE (PROPERTY 1)

In this section, our objective is to analyze the effect of the Rank-1 Subspace of the parameter update
matrix AW on reasoning gains. In Section 2.1, we first introduce the method for quantifying the
contribution of the Rank-1 Subspace. Then, we exhibit experimental setups and main results in
Section 2.2. Furthermore, the underlying causes of Rank-1 dominance and deeper analysis are
investigated in Section 2.3.

2.1 RANK-1 SUBSPACE

We first describe the method for quantifying the contribution of the Rank-1 Subspace to reasoning
gains of RL training process. Specifically, performing SVD on AW, we have:

AW = % oyuv], r=rank(AW), (1)

r
i=1

where o; are singular values and u;, v; are the corresponding singular vectors. The Rank-1 update
matrix is then defined by retaining only the largest singular value o and its vectors:

AW = oy upv]. 2

To ensure consistency in update strength, we rescale AW to match the L2 norm of AW:

AWl

AWD =g AW o= 112
AWM |,

3)

The evaluation model is then obtained by adding AW to the base model. In addition, we also
evaluate a Rank-k% Subspace strategy, in which only the leading the top k% of singular subspaces
are retained, in order to consistently study the collective effect of multiple subspaces.

2.2 RANK-1 SUBSPACE & REASONING GAINS

Experiment Seting. Our experiments are conducted on eight models, covering five RL algorithms,
including PPO (Schulman et al., 2017), RLOO (Ahmadian et al., 2024), GRPO (DeepSeek-Al et al.,
2025), Dr.GRPO (Liu et al., 2025b), and DAPO (Yu et al., 2025), as well as Distillation (DIST)
(Hinton et al., 2015) and Supervised Fine-tuning (SFT) (Ye et al., 2025). We comprehensively
evaluate the reasoning performance of these models on six reasoning benchmarks, including AIME24,
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Figure 3: (a) Performance under Rank-1 and Rank-k% Subspaces on MATH-500; (b) Performance
of the Rank-1 Subspace across training. Best viewed in color.

AIME25 (Ye et al., 2025) and MATH-500 (Lightman et al., 2023), to verify the robustness and
generality of our findings. More detailed settings are provided in Appendix B.

Results on Fully Trained Models. Figure 1 presents the comparison with Rank-1% Subspace,
while Figure 3 shows the results for the Rank-1 Subspace. For clearer presentation, we report the
Relative Accuracy, defined as the ratio between the accuracy of the Rank-1 reconstructed model and
that of the fully trained model. As shown in Figure 3 (a), even a single Rank-1 Subspace is sufficient
to recover performance close to that of the fully trained model; in RLOO, GRPO, and DAPO, it
can even surpass the fully trained model. This indicates that RL updates are highly concentrated
in a few directions, with a single Rank-1 Subspace capable of capturing and reproducing nearly all
reasoning improvements. In contrast, SFT and DIST exhibit a strong dependence on subspace rank,
requiring more subspaces to achieve performance gains. Notably, unlike methods such as LoRA in
SFT, which predefine subspace dimensionality prior to training, our finding holds under a stricter
condition: even after full-parameter RL training, reasoning improvements can still be almost entirely
captured by only a few subspace directions. Additional results are provided in Appendix 7.

Results across the RL Process. We then examine the property of Rank-1 dominance throughout
the RL training process, with results shown in Figure 3 (b). We observe that, during the early stages
of training, the performance of the Rank-1 Subspace is slightly lower than that of the fully trained
model; however, at later checkpoints, its performance can fully match the fully trained model. We
hypothesize that this phenomenon arises because, in the early stages, update gradients are relatively
dispersed and have not yet concentrated into stable subspace regions. As training progresses, the the
RL update directions gradually converge and align with a unified reasoning-enhancement pattern,
and the Rank-1 Subspace has already captured the principal components of this pattern, thereby
exhibiting stronger effectiveness at later stages. In general, these results demonstrate that the Rank-1
Subspace of AW remains the key factor driving reasoning improvements throughout the RL process.

Ablation Study. After establishing the dominant role of the Rank-1 Subspace, we compare the
relative contributions of different individual subspaces. As shown in Figure 4 (a), the Rank-1
Subspace significantly outperforms other subspaces, and its performance gradually decreases as
the corresponding singular values decline, underscoring its central role in reasoning enhancement.
Notably, several subspaces associated with relatively large singular values, although individually
less effective than the Rank-1 Subspace, still contribute substantially to reasoning improvements.
This indicates that, despite being orthogonal by construction, the functional contributions of these
high-singular-value subspaces are largely aligned with the Rank-1 Subspace, collectively reflecting
a unified reasoning-enhancement pattern.

Scaling Experiment. Finally, to better understand the impact of Rank-1 Subspace strength on
reasoning improvements, we conducted an experiment with the scaling factor A, where the update
rule was modified as: AW = 1.« AWM. As shown in Figure 4 (b), performance increases
rapidly with A and then saturates, peaking at A ~ 0.7, slightly below the norm magnitude of the full
update. This is consistent with the previous findings: the Rank-1 Subspace has captured the principal
components of the unified reasoning-enhancement pattern, with its core effect primarily determined
by magnitude. At this level, the core contribution of the Rank-1 Subspace has been largely realized,
and further increasing the scaling factor may result in diminishing returns.
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Figure 4: (a) Effect of different single subspaces on performance; (b) Effect of scaling the Rank-1
Subspace updates on performance. Best viewed in color.

2.3 ANALYSIS OF RANK-1 DOMINANCE

In the previous part, we experimentally observed and analyzed the contribution of the Rank-1
Subspace to reasoning gains. In this section, we attempt to further investigate the underlying causes
of this phenomenon. To this end, we begin by comparing the update characteristics of different
methods. Specifically, we compute the average L2 norm of AW for RL and compare it with the
average L2 norms of AW for SFT and DIST. Additionally, we examine the proportion of the norm of
the unscaled Rank-1 Subspace and the Rank-1% subspace relative to the total update norm AW.

As illustrated in Figure 5 (a), the update norms for DIST and SFT are found to be one to two orders
of magnitude larger than those for RL, indicating that they involve much larger parameter changes
during training. In contrast, RL updates show a higher degree of concentration, with the unscaled
Rank-1 Subspace and Rank-1% Subspace occupying a larger fraction of the total update norm.

Distribution Shifts of Embedding Space. The previous experiments raise an intriguing question:
why is RL, compared to SFT and DIST, able to achieve substantial reasoning improvements with
only 1% or even less of the parameter update? To explore this, we analyze the impact of different
training processes on token embeddings in LLMs. By applying PCA for dimensionality reduction
and t-SNE for visualization, we observe that the embeddings of DIST and SFT exhibit noticeable
global shifts, with DIST showing particularly large deviations for certain tokens, as shown in Figure 5
(b). In contrast, RL methods cause minimal distribution shift of the embedding space. This suggests
that the updates in DIST and SFT are not merely adjustments in high-level reasoning pathways, but
involve significant global modifications to the lower-level representation space. As a result, even
when utilizing the all update information, these methods struggle to consistently improve reasoning
performance. In contrast, RL maintains the embedding space largely unchanged, with its reasoning
improvements primarily driven by the optimization and adjustment of high-level information flow.

Approximate Low-rank of AW. Itis worth mentioning that, in the above experiments, we discovered
a universal approximate low-rank (Zhang, 2015) property of AW in RL, which is completely absent
in SFT and DIST. Due to space limitations, we provide a detailed discussion of this phenomenon
in Appendix C. Furthermore, we propose that the superior properties observed in RL-trained LLMs
(e.g., minimizing catastrophic forgetting and improving generalization) may fundamentally arise
from this low-rank structure, which plays a pivotal role in the model’s ability to effectively retain
and adapt learned knowledge. Additionally, we also observed in our experiments the unique role of
Rank-1 in guiding the reasoning chain, where modifying a small number of tokens achieves reasoning
performance comparable to that of the fully trained model. We recommend interested readers to
refer to the detailed results and analysis in Appendix D.

3 LINEAR Dynamics oF RANK-1 SuBsPACE (PROPERTY 2)

In the section 2, we analyzed the contribution of the Rank-1 Subspace to reasoning gains and
established its dominant role in RL training. Here, we investigate the evolution of the Rank-1
Subspace during RL training process.
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Figure 5: (a) L2 norm of updates across methods and the fraction of update information captured
by the unscaled Rank-1 and Rank-1% Subspaces; (b) Effect of different update methods on the
embedding layer, with the two embedding representations of the same token connected by gray lines.
Best viewed in color.

3.1 ExpPLORING THE DyNAMiIcs OF RANK-1 SUBSPACE

To characterize the evolution of the Rank-1 Subspace during training, we collect the sequence of u

vectors across T checkpoints for each module: U = {u?)}T which we refer to as the module’s

=1’
update trajectory. Since each u Y) lies in a high-dimensional space, we apply PCA for dimensionality

reduction and then t-SNE for visualization. As shown in Figure 6 (a), the trajectories exhibit smooth,
nearly linear patterns, with color gradients aligned to training progress, indicating the existence of a
stable update direction. Limited by space, we describe the perspective and interpretation underlying
this procedure in Appendix E.

Furthermore, to quantify whether there is a similar linear relationship between this evolution and

reasoning performance, we treat each module’s Rank-1 trajectory uit) as the independent variable
and the corresponding checkpoint’s accuracy y on the reasoning dataset as the dependent variable,
performing linear fitting using Partial Least Squares (PLS) regression (Geladi & Kowalski, 1986)
and using R” as a measure of linearity (calculation details can be found in Appendix E). As shown
in Figure 6 (b), some modules even achieve R? values close to 1, indicating that the Rank-1 update
directions are strongly correlated with reasoning performance and can be effectively modeled by a
fixed linear relationship. These experiments reveal the unique role of Rank-1 Subspace, where it
acts as a bridge during training, providing the foundation for the visual correlation between training
steps and reasoning performance.

3.2 RaNk-1 LINEARITY & MODULE IMPORTANCE

Although many modules exhibit high linearity in their Rank-1 Subspace (R? close to 1), we still
observe modules with relatively low linearity. These modules often display fragmented and irregular
trajectories, with frequent directional shifts and unstable relations to accuracy. This naturally raises
two key questions: (1) Does linearity systematically correspond to the functional roles of modules?
(2) Can module contributions to reasoning gains be quantified based on their linearity?

To address the first question, we aggregate R> values across all modules and layers in Appendix 15.
Results show that MLP modules, particularly those in mid-to-high layers, tend to achieve higher R?.
A possible reason is that higher-layer modules are closer to the source of the reward signal, allowing
them to better retain and utilize reasoning-related update directions. In contrast, self-attention
modules generally exhibit lower R?, suggesting noisier or partially redundant update signals.

Based on this observation, we argue that the heterogeneity in linearity reflects differences in functional
roles during reasoning. Modules with high R? and smooth monotonic trajectories are likely key
regions where RL allocates effective capacity: after an initial exploratory phase, they converge
around a reasoning-enhancing update direction. Conversely, modules with low R? and irregular
trajectories may be only weakly influenced by reward signals and more strongly driven by noisy
gradients, preventing them from forming stable performance-related update directions.



Under review as a conference paper at ICLR 2026

(a) Projection of Attention during Training (b) Fit Degree of Attention with Relative Accuracy (¢) Accuracy across R>-orderd Sliding Windows
27 E 1.00 0.80
0.8
0.4 2 s 090 & 075
77 e ‘é
0.0 16 = 4 080 8 470
2 e <
S o= A 070 2
-0.4 S| S . = 0.65
s 6 Y =
hd v 33
0.8 . v 6 o 060 £ o
o > ¥ & o T .
12{e e ® 1 R?=0.960 0.50 Sliding Window Index
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 00 02 04 06 08 1.0 1 2 3 4 5 6 7

Figure 6: (a) Projection visualization of U, trajectories; (b) PLS regression reveals a linear rela-
tionship between U; and accuracy, with R? values indicating the strength of fit; (c) Sliding window
analysis shows that as the window progresses from 1 to 7, the R? and prediction accuracy both exhibit
a decreasing trend. Best viewed in color.

To validate the relation between R? and module contribution, we sort all modules in descending
order of R? and select subsets using a sliding window (window size roughly one-third of all modules,
step size about one-seventh). For each window, only the Rank-1 updates of the selected modules
are injected into the base model, while other modules remain unchanged. As shown in Figure 6 (c),
performance gradually declines as the minimum R? in the window decreases. This demonstrates
that R? effectively quantifies the functional role of module updates, providing a reliable tool for
systematically analyzing module-level contributions to performance during RL training.

4 ArpHARL: A FREE ACCELERATION FOR RL TRAINING

The dominance of the Rank-1 Subspace established in Section 2, combined with its linear dynamics
demonstrated in Section 3, directly motivates the RL acceleration algorithm: AlphaRL. It lever-
ages the early-training dynamics of Rank-1 Subspace to predict the final parameter update matrix,
bypassing the need for full training. Here we provide the detailed acceleration process and results.

4.1 RANK-1 UpDATE PREDICTION

As noted in Section 3, we observed a linear relationship between the training trajectory and relative

accuracy; however, since the uit) used in the construction are unit vectors, they do not capture the
magnitude of the Rank-1 updates. To address this, we construct the scaled Rank-1 vectors, where

each vector is scaled by the product of @*) and o-l(t) to represent the corresponding column of the

update matrix AW, We record the relative accuracy of the corresponding checkpoints and fit the
vectors with their relative accuracies using a single-component PLS regression, establishing a linear
relationship between them. Given a target relative accuracy y*, AlphaRL obtains the corresponding
update vector through inversion. Finally, this update vector is combined with the left singular vector
v to form the new Rank-1 update for each module.

In this manner, each module’s Rank-1 update is guided by its AlphaRL-predicted linear relationship
between the scaled Rank-1 trajectory and accuracy. We use the model’s test accuracy on MATH-500
and set the target accuracy to y* = 1. The update vectors obtained through inversion are then applied
to all datasets for evaluation.

4.2 MaiN ResuLts

We use models trained with RLOO, GRPO, and DAPO on Qwen3-8B-Base (Qwen et al., 2025). We
then evaluate on six standard mathematical reasoning benchmarks: AIME24, AIME25 (Ye et al.,
2025), MATH-500 (Lightman et al., 2023), Minerva, and GPQA (Rein et al., 2023), with 32 sampled
responses per question under temperature 7 = 0.6, and we report average accuracy.

Table 1 presents the reasoning performance across six reasoning benchmarks (i.e., AIME24,
AIME25, MATH, MINERVA, GPQA, and GSMB8K) at different training stages, with and with-
out AlphaRL-enhanced updates. The results show that AlphaRL significantly improves the model’s
reasoning performance even at early stages (only 10% of the total training steps), achieving per-
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Table 1: Performance on reasoning benchmarks at different training stages and their AlphaRL-
enhanced variants. The prediction is based on Rank-1 vectors and their corresponding accuracies
extracted from checkpoints between the Base model and the current training stage. Within each
method block, the highest score is highlighted in “bold”, and the second highest score is indicated
with “_ "

Stage AIME24 AIME25 MATH MINERVA GPQA GSMSK  Avg.
DAPO for the Qwen3-8B Base Model

Fully Trained Model 28.54 24.17 80.95 44.02 48.23 94.35 53.38
Training 10% 12.50 7.50 70.25 32.07 36.66 84.30 40.55
Training 40% 15.80 11.67 77.60 37.07 41.67 93.20 46.30
Training 10%-+AlphaRL 15.00 11.67 76.45 40.46 41.54 93.75 46.47
Training 40%+AlphaRL 28.33 23.75 80.50 43.27 49.25 94.75 53.31
GRPO from the Qwen3-8B Base Model

Fully Trained Model 26.40 21.67 78.25 42.19 47.10 93.50 51.52
Training 10% 9.17 8.33 64.65 31.89 36.74 85.35 39.36
Training 40% 15.83 14.17 72.25 37.30 41.16 91.25 45.30
Training 10%+AlphaRL 12.50 13.25 67.60 36.83 36.74 91.35 4343
Training 40%-+AlphaRL 22.25 18.13 78.45 40.12 43.13 91.75 49.42
RLOO from the Qwen3-8B Base Model

Fully Trained Model 27.50 18.33 78.25 41.90 45.82 95.10 50.82
Training 10% 11.67 8.33 57.25 35.02 38.65 83.50 39.89
Training 40% 16.67 14.17 72.75 39.24 42.05 93.75 46.44
Training 10%+AlphaRL 11.67 14.17 60.45 37.46 44.95 93.75 43.74
Training 40%-+AlphaRL 17.92 18.33 76.00 40.60 44.40 93.80 48.52

Table 2: Different model outputs on the centroid geometry problem.

Question: The medians AD, BE, and CF of triangle ABC intersect at the centroid G. The line through
G that is parallel to BC intersects AB and AC at M and N, respectively. If the area of triangle ABC is
144, then find the area of triangle ENG.

Base Model Answer: To solve this problem, we need to understand the properties of medians and centroids

in a triangle... Area of ENG =16 — 13—6 = % - 1?6 = 33—2 So, the area of triangle ENG is % .

Fully Trained Model Answer: Alright, I have this geometry problem in front of me, and I need to find...
Areaof ENG = % x 16 = 8. Final Answer: 8 .

Rank-1 Answer: Alright, I have this geometry problem in front of me, and I need to find... Area of ENG =

% = 8. Final Answer: 8 .

formance comparable to the non-AlphaRL model at 40% of training steps. By the 40% training
stage, the AlphaRL-enhanced models almost reach the performance of fully trained models. For
instance, RLOO and GRPO models achieve 96% of the reasoning performance of the fully trained
model, surpassing the fully trained model on the MATH-500 dataset. For DAPO, AlphaRL reaches
a relative accuracy of 102% on the GPQA dataset. Furthermore, we present an example after ac-
celeration in Table 2, which shows that the AlphaRL-enhanced model not only remains consistent
with the Fully Trained Model in evaluation metrics but also exhibits largely similar patterns and
reasoning approaches in the responses. We present additional experimental results for more models
in Appendix A.

Overall, the AlphaRL-enhanced LLMs exhibit significant improvements at all training stages. Al-
phaRL not only accelerates the training process but also maintains reasoning performance close to
that of the fully trained model. On average, AlphaRL accelerates the training process by up to 2.5
times while retaining the vast majority of the reasoning performance, demonstrating its tremendous
potential in improving both training efficiency and reasoning capability.
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5 RELATED WORK

Reinforcement Learning for LLLMs. Before the emergence of reasoning-capable models such as
OpenAl’s o1, RL was primarily employed in RLHF to improve instruction-following and alignment
with human preferences (Ouyang et al., 2022). More recently, RL with Verifiable Rewards (RLVR)
has been proposed as an effective strategy to enhance reasoning in domains such as mathematics
and programming (Lambert et al., 2025). OpenAl’s ol was the first to demonstrate that RL can
incentivize large-scale reasoning, inspiring subsequent models such as DeepSeek-R1 (DeepSeek-Al
etal., 2025), Kimi-K2 (Team et al., 2025), and Qwen3 (Yang et al., 2025). Among these, DeepSeek-
R1 stands out for achieving strong reasoning capabilities via the online RL algorithm GRPO and for
introducing the ‘“Zero RL’ paradigm, showing that reasoning can emerge even without conventional
RL fine-tuning. Building on these advances, later approaches, such as DAPO (Yu et al., 2025),
VAPO (Yue et al., 2025b), GSPO (Zheng et al., 2025) and CISPO (MiniMax et al., 2025), have
further broadened the landscape of RL-based reasoning.

Emergent Behaviors of Reinforcement Learning. Yue et al. (2025a) investigated the differences
in sampling between base models and RL-fine-tuned models, showing that RL improves sampling
efficiency for pass@ 1 but does not directly enhance reasoning ability. Cui et al. (2025) identified the
phenomenon of “entropy collapse” in reinforcement learning, where rapid early convergence causes
the model to become overly confident, prematurely degrading its exploratory capacity. Wang et al.
(20252) observed in chain-of-thought reasoning that high-entropy tokens often act as branching points
defining multiple potential reasoning paths. Shenfeld et al. (2025) compared RL with supervised
fine-tuning and found that RL better preserves the model’s original knowledge and capabilities.
Finally, Feng et al. (2025) demonstrated in an intent detection task that RL significantly improves
generalization compared to SFT, underscoring the value of RL in more challenging scenarios, while
Mukherjee et al. (2025) identified the sparse nature inherent in RL.

6 LiMITATIONS AND FUTURE WORKS

Despite revealing two simple yet generalizable laws of reinforcement learning in large language
models, our study has certain limitations. The conclusions are primarily based on large-scale
empirical observations, which uncover universal low-rank dynamics in RL training. However, these
findings still lack rigorous theoretical foundations. Future work will incorporate techniques such
as neuron attribution and causal tracing to build more formal theoretical models, thereby providing
deeper insights into the underlying mechanisms.

Furthermore, while AlphaRL demonstrates the feasibility of predicting later updates from early
checkpoints to accelerate RL training, its effectiveness remains constrained by the design and stability
of RL algorithms. Future directions include exploring more sophisticated nonlinear forecasting
methods, combined with robust reward modeling and optimization strategies, to further enhance
acceleration. In addition, AlphaRL may find application in high-cost scenarios such as large-scale
agents or multimodal training, where reducing computational overhead is especially critical.

Finally, the Rank-1 property can also be exploited for monitoring training dynamics and serving
as a reward signal for reverse optimization of the training process. Future research may explore
combining Rank-1 regularities with high-rank corrections to develop more flexible low-rank control
methods, thereby advancing the development of efficient reasoning models.

7 CONCLUSION

In this work, we uncover two fundamental laws of RL in LLMs: (1) Rank-1 Dominance, where
reasoning improvements concentrate in the top singular direction, and (2) Rank-1 Linear Dynamics,
where this direction evolves in a predictable linear manner throughout training. Building on these
insights, we introduce AlphaRL, a plug-and-play acceleration method that leverages early checkpoints
to forecast later updates, reducing computational cost while preserving reasoning performance close
to full training. On average, AlphaRL accelerates the training process by up to 2.5 times while
retaining the vast majority of the reasoning performance, demonstrating its potential in improving
both training efficiency and reasoning capability.
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A ADDITIONAL EXPERIMENT

Table 3: AlphaRL’s performance on Qwen3-8B-Base, Qwen3-14B-Base and GLM-4-9B-0414.

Stage AIME24 AIME25 MATH MINERVA GPQA GSMSK Avg.
Owen3-8B-Base

Training 5% 7.50 5.50 62.25 27.25 31.50 78.47 3545
Training 5%-+AlphaRL 10.00 6.67 69.75 31.15 34.75 81.65 3891
Training 10% 12.50 7.50 70.25 32.07 36.66 84.30 40.55
Training 10%+AlphaRL 15.00 11.67 76.45 40.46 41.54 93.75 46.47
Training 20% 13.17 7.50 72.25 35.07 38.50 87.54 42.34
Training 20%+AlphaRL 16.67 12.50 75.00 41.25 42.85 94.35 47.10
Training 30% 14.45 11.67 74.25 36.37 39.42 91.25 44.56
Training 30%+AlphaRL 23.33 20.00 78.75 41.85 44.13 93.20 50.21
Training 40% 15.80 11.67 77.60 37.07 41.67 93.20 46.30
Training 40%-+AlphaRL 28.33 23.75 80.50 43.27 49.25 94.75 53.31
Training 50% 23.33 20.00 78.50 39.87 44.33 93.75 49.40
Training 50%+AlphaRL 27.67 23.33 82.00 42.85 47.75 94.50 53.01
Fully Trained Model 28.54 24.17 80.95 44.02 48.23 94.35 53.38
QOwen3-14B-Base

Training 5% 12.50 8.33 74.30 40.44 41.04 90.39 44.50
Training 5%+AlphaRL 16.11 11.11 71.75 42.27 43.25 91.25 46.96
Training 10% 13.67 10.17 77.50 41.58 43.50 91.50 46.99
Training 10%+AlphaRL 21.72 15.05 81.25 42.37 44.76 92.75 49.98
Training 20% 22.00 15.33 81.25 42.37 45.67 92.75 49.89
Training 20%+AlphaRL 25.28 21.11 86.25 44.65 48.76 94.75 53.47
Training 30% 23.33 18.33 85.00 43.67 47.34 93.50 51.53
Training 30%-+AlphaRL 30.69 23.89 89.50 46.50 51.73 96.75 56.84
Training 40% 28.33 20.00 88.25 44.30 49.75 94.75 54.56
Training 40%-+AlphaRL 38.47 31.25 91.25 47.75 52.59 97.75 59.18
Training 50% 37.64 28.89 89.75 45.67 51.25 95.25 58.08
Training 50%-+AlphaRL 40.00 31.80 92.25 48.33 53.75 97.50 60.27
Fully Trained Model 40.50 32.63 91.75 48.33 54.50 97.50 60.87
GLM-4-9B-0414

Training 5% 4.17 1.67 64.20 35.29 40.40 87.34 38.84
Training 5%+AlphaRL 5.67 333 66.75 37.35 42.50 88.85 4091
Training 10% 12.50 7.50 72.25 37.25 43.50 88.50 43.58
Training 10%+AlphaRL 16.67 11.67 79.50 40.25 53.25 90.75 48.68
Training 20% 15.00 13.33 79.50 39.75 44.50 90.25 47.06
Training 20%-+AlphaRL 20.33 17.00 83.25 43.50 57.75 92.25 52.01
Training 30% 18.52 15.06 84.20 42.33 46.36 92.33 50.13
Training 30%-+AlphaRL 24.54 19.33 88.50 48.25 53.33 95.55 54.92
Training 40% 22.67 21.50 86.50 45.50 49.35 94.00 53.92
Training 40%-+AlphaRL 29.33 27.25 91.50 50.25 54.75 96.25 58.89
Training 50% 24.33 22.67 87.25 46.75 50.20 94.25 54.57
Training 50%-+AlphaRL 30.60 30.00 91.50 50.87 55.33 97.00 59.72
Fully Trained Model 31.10 29.75 91.75 51.34 55.67 96.25 59.98

In Table 3, we report the full performance trajectories of the 9B and 14B models across training
stages to demonstrate that the observed patterns persist at larger scales. As shown, AlphaRL
exhibits similarly stable extrapolation behavior on these larger models, accurately reproducing the
performance gains associated with later-stage updates even when applied at early checkpoints. Taken
together, these results further support a central conclusion of this work: the predictability of RL
dynamics is not limited to mid-sized models, but continues to hold as model scale increases.

Table 4 extends our analysis to a broader set of base models, including distilled variants and models
that have undergone instruction tuning on mathematics-focused datasets. Despite these differences
in pretraining objectives and data distributions, the trends observed in the main experiments remain
consistent. In particular, both the Rank-1 structure of RL updates and the effectiveness of AlphaRL
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Table 4: AlphaRL’s performance on Deepseek-R1-Distill-Qwen-7B and Llama3-8B-Instruct.

Stage AIME24 AIME25 MATH MINERVA GPQA GSM8K  Avg.
Deepseek-R1-Distill-Qwen-7B (After Distillation)

Training 5% 50.83 39.17 91.25 50.00 38.89 93.00 60.69
Training 5%+AlphaRL 51.92 40.08 92.75 51.35 40.75 93.00 61.64
Training 10% 52.50 41.75 92.75 51.50 41.17 94.25 62.32
Training 10%+AlphaRL 56.50 44.50 94.50 54.25 43.85 94.75 64.73
Training 20% 56.50 45.75 93.75 53.75 44.25 94.75 64.79
Training 20%-+AlphaRL 60.00 52.25 95.50 57.85 48.25 95.50 48.23
Training 30% 59.50 51.50 95.20 56.22 47.25 95.50 67.52
Training 30%-+AlphaRL 64.50 57.25 96.17 60.07 51.33 96.50 70.97
Training 40% 63.25 55.25 95.00 58.45 49.86 96.50 69.74
Training 40%-+AlphaRL 67.50 61.50 97.25 62.35 53.67 97.75 73.34
Training 50% 65.75 58.85 96.50 60.65 52.27 97.25 71.87
Training 50%-+AlphaRL 68.25 62.50 97.25 62.58 54.16 97.75 73.75
Fully Trained Model 68.75 62.00 97.50 61.74 54.16 98.25 73.65
Llama3-8B-Instruct (After SFT)

Training 5% 9.58 6.67 68.75 26.44 29.75 85.25 37.74
Training 5%-+AlphaRL 12.36 9.02 71.25 28.37 31.25 86.50 39.79
Training 10% 12.63 9.16 73.00 28.37 31.75 86.25 40.19
Training 10%-+AlphaRL 15.97 13.06 77.75 31.76 34.54 89.25 43.72
Training 20% 20.00 15.00 78.00 31.07 34.75 89.50 45.06
Training 20%-+AlphaRL 22.67 20.00 84.75 34.75 37.25 92.25 48.94
Training 30% 23.67 20.33 81.50 35.25 38.25 91.50 48.75
Training 30%-+AlphaRL 30.64 27.02 85.75 38.85 42.13 93.50 53.98
Training 40% 28.33 23.67 84.25 37.50 40.75 92.25 51.46
Training 40%-+AlphaRL 40.75 30.00 87.50 41.50 44.25 94.50 56.75
Training 50% 31.11 27.11 86.25 37.50 42.25 92.50 52.79
Training 50%-+AlphaRL 39.12 30.75 87.75 42.25 43.75 94.25 56.98
Fully Trained Model 38.75 31.25 87.50 42.75 43.75 95.00 56.83

hold across these diverse model initializations. This consistency suggests that the predictable
dynamics identified in this work are not tied to a specific base model configuration, but instead
reflect a general property of RL training that persists under architectural variations.

Table 5 and 6 further extends our analysis to an adversarial self-play setting, allowing us to examine
whether the regularities identified in this work persist beyond traditional mathematical and reasoning
tasks. Specifically, we adopt the Self-Play framework proposed by Liu et al. (2025a), which is
conceptually similar to AlphaZero (Silver et al., 2017) in Go and enables a single language model to
play both competing roles within the same training process. In this setup, we use Qwen-4B-Base as
the base model, train it for roughly 200 checkpoints (saving one checkpoint every two epochs), and
evaluate its win rate against Gemini-2.0-Flash-Lite3 throughout training.

Despite the substantial differences from mathematical reasoning—such as the adversarial nature
of the environment, the discrete and game-specific dynamics, and the inherently noisy win/loss
reward signal—the results exhibit the same trends observed in our main experiments: RL updates
consistently maintain a stable Rank-1 structure, and AlphaRL accurately extrapolates late-stage
performance improvements using only early-stage checkpoints. These findings indicate that the
predictive structure uncovered in this work is not tied to any particular task formulation. Instead, it
generalizes beyond reasoning tasks and remains valid even in challenging RL settings characterized
by high-variance rewards and strong adversarial interactions.
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Table 5: AlphaRL’s performance on Kuhn Poker Games.

Stage WinRate Rank-1 WinRate  AlphaRL WinRate
Owen3-4B-Base

Training 5% 3% 2% 4%
Training 10% 5% 5% 12%
Training 20% 13% 15% 28%
Training 30% 27% 25% 41%
Training 40% 43% 44% 59%
Training 60% 52% 52% 64%
Training 80% 61% 59% -
Training 100% 65% 62% -

Table 6: AlphaRL’s performance on MATH-500 (after training on Kuhn Poker Games).

Stage Full Model Rank-1  AlphaRL
Owen3-4B-Base

Training 5% 45% 45% 51%
Training 10% 52% 51% 60%
Training 20% 56% 58% 65%
Training 30% 61% 61% 69%
Training 40% 64% 64% 75%
Training 60% 68% 68% 81%
Training 80% 73% 71% -
Training 100% 77% 77% -

B EXPERIMENTAL SETUP

We begin by outlining our experimental setup and relevant definitions. Let 6;,i; denote the parameters
of a pretrained base LLM. By applying a training method M, we obtain the updated parameters Oy;.

In our experiments, we consider the following methods: Distillation (DIST) (Hinton et al., 2015),
Supervised Fine-Tuning (SFT) (Ye et al., 2025; Wu et al., 2025), PPO (Schulman et al., 2017),
RLOO (Ahmadian et al., 2024; DeepSeek-Al et al., 2025), GRPO (DeepSeek-Al et al., 2025),
Dr.GRPO (Liu et al., 2025b), DAPO (Yu et al., 2025), On-Policy Distillation (Agarwal et al., 2024),
DPO (Rafailov et al., 2024), and Spiral (Liu et al., 2025a).

For DIST, we adopt the distilled model DeepSeek-R1-Distill-Qwen-7B and its base model Qwen2.5-
Math-7B. For SFT, we adopt Qwen3-8B-Base as the base model, trained on the DeepMath-103K
dataset with the LlamaFactory! framework. For PPO, we adopt the open-sourced Open-
Reasoner-Zero-7B and its base model Qwen2.5-7B. For Dr.GRPO, we adopt the open-sourced
Owen2.5-Math-7B-Oat-Zero and its base model Qwen2.5-Math-7B. For RLOO and GRPO, we
adopt Qwen3-8B-Base as the base model, trained on the DAPO-Math-17k dataset with the Verl?
framework. For DAPO, we evaluate the following models from small to large:

(1) 7B — DeepSeek-R1-Distill-Qwen-7B, which is a distilled version of Qwen2.5-Math-7B , upon
which we further trained on DAPO-Math-17k with Verl.

(2) 8B — starting from Qwen3-8B-Base, trained on DAPO-Math-17k with Ver1.

(3) We perform cold-start training on Llama3. I-8B-Instruct with the DeepMath-103K dataset as the
initialization, and subsequently perform DAPO with Verl.

(3) 9B — we additionally evaluate GLM-9B, trained on DAPO-Math-17k with Ver1.

1https ://github.com/hiyouga/LLaMA-Factory
2https://github.com/volcengine/verl
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Table 7: L2 norm of updates across methods and the fraction of update information captured by the
unscaled Rank-1 and Rank-1% Subspaces.

Method Offline DIST  Online DIST Offline SFT  Offline DPO  Online RL DAPO
On-Policy Sampling No Yes No No Yes
Constraints on the distribution of 7¢ No Yes No Yes Yes
Average Update Norm 21.24 1.46 10.75 0.79 0.01
Rank-1 fraction 12.6% 10.45% 7.7% 11.42% 19.3%
Rank-1% fraction 29.3% 24.78% 27.7% 24.13% 36.5%

Table 8: Performance under Rank-1 and Rank-k% Subspaces on MATH-500.

Method Offline DIST  Online DIST  Offline SFT  Offline DPO  Online RL DAPO

Rank-1 1.50% 56.40% 2.50% 62.25% 100.00%
Rank-1% 2.50% 64.50% 3.00% 71.50% 100.00%
Rank-10% 3.00% 71.50% 4.00% 74.50% 100.00%
Rank-20% 3.00% 72.50% 7.50% 79.00% 100.00%
Rank-30% 3.50% 77.00% 8.00% 83.25% 100.00%
Rank-50% 3.50% 80.25% 12.25% 88.25% 100.00%
Rank-70% 16.00% 84.00% 24.00% 88.25% 100.00%
Rank-90% 23.25% 89.25% 46.75% 93.25% 100.00%

(4) 14B — we further evaluate Qwen3-14B-Base, trained on DAPO-Math-17k with Verl.
(5) 32B — DAPO-Qwen-32B trained from the base Qwen2.5-32B using DAPO-Math-17k.

For On-Policy Distillation, We use Qwen3-8B-Base-Open-Thoughts-On-Policy-Distillation, whose
base model is Qwen3-8B-Base.

For DPO, We use Qwen3-8B-Base, trained on Math-Step-DPO-10K with Verl1.

For Spiral, we follow Liu et al. (2025a), and use Qwen3-4B-Base to perform adversarial training on
Kuhn Poker and Simple Negotiation games.

All of our training runs are conducted on 8x H800 80GB or 16x H800 80GB GPUs until the
reward/loss converges.

For Supervised Fine-Tuning (SFT), we adapt our training codebase with L1amaFactory (Sheng
etal., 2025). We employ full-parameter training in F 1oat 1 6 precision, with the maximum sequence
length set to 20,480 tokens. The training batch size is 1,024 and the mini-batch size is 4, corresponding
to 512 gradient accumulation steps. The learning rate is set to 1 x 107> with warmup, and gradient
clipping of 1.0 is applied. We monitor the training loss and terminate training once the loss decreases
by less than 2x 10~ over five consecutive steps. We conduct the SFT training experiment on Qwen3-
8B-Base models, using the DeepMath-107K (He et al., 2025) dataset. The chat template for SFT is
specified as:

User:
{question}

Please reason step by step, and put your final answer within
boxed{}.

Assistant: {CoT}

with < | endoftext | > serving as the EOS token, where { que st ion} is replaced with the specific
problem instance and {CoT} denotes the chain-of-thought reasoning and final answer provided in
the dataset. By training on nearly 100K examples, the model achieves stable convergence, and the
final checkpoint is adopted for subsequent experiments.
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For RLOO, GRPO, and DAPO, we adapt our training codebase with the Verl (Sheng et al.,
2025) and follow the corresponding training setups. All methods share the same core configuration:
the maximum prompt length is 2,048 tokens and the maximum response length is 20,480 tokens,
yielding a total budget of 22,528 tokens. During training, each backward pass uses a mini-batch
of 32 samples, and the gradients are accumulated for 16 iterations before a single optimization step
is performed, resulting in an effective batch size of 512 under Float 16 precision. Each prompt
generates n=8 outputs during rollout. The learning rate is set to 1 x 10~® with warmup, and gradient
clipping of 1.0 is applied. We monitor the average reward per training batch and terminate training
once the reward fails to improve for five consecutive steps.

In addition to the unified configuration described above, each method adopts specific hyperparameter
settings in our experiments. For RLOQO, we use a low-variance KL loss with coefficient 0.001 and
disable entropy regularization. For GRPO, we set both the high and low clipping ratios to 0.2 and
apply a KL loss with coefficient 0.001 following DeepSeek-Al et al. (2025). For DAPO, we employ
techniques such as clip-higher, dynamic sampling, token-level policy gradient loss, and overlong
reward shaping and apply the recommended hyperparameters from Yu et al. (2025): the clipping
ratios are set to €0y = 0.2 and epjen = 0.28, KL divergence terms are removed entirely, and each
training batch generates up to 512 x 3 candidate responses.

We perform RLVR experiments on Qwen3-8B-Base models, using the DAPO-Math-17K (Yu et al.,
2025) dataset for training. For this dataset, we employ the built-in chat template, specified as:

User: Solve the following math problem step by step.

The last line of your response should be of the form Answer:
$Answer (without quotes) where $Answer is the answer to the
problem.

{question} Remember to put your answer on its own line after
"Answer:".

Assistant:

As in the SFT setting, < | endoftext | > serves as the EOS token, where {question} is replaced
with the corresponding problem instance. We save the checkpoint after each training batch to enable
subsequent evaluation experiments.
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C IN-DEPTH ANALYSIS OF THE LOW-RANK PHENOMENON

We propose that the “low-rank yet effective” update mechanism observed in reinforcement learning
(RL) fine-tuning arises from several key factors.

First, most RL fine-tuning methods adopt an on-policy strategy, sampling training data directly from
the model’s own policy distribution. Shenfeld et al. (2025) suggest that this naturally biases the
optimization process toward staying close to the base model in terms of KL divergence, favoring
only minor corrections on top of its existing capabilities. Therefore, we argue that RL gradients
do not introduce entirely new update directions, but rather reinforce signals already present during
pretraining and instruction tuning. As a result, parameter updates concentrate in a few regions,
exhibiting a sparse, low-rank structure.

Second, common stabilization mechanisms—such as KL regularization, logits clipping, and gradient
clipping—further constrain the magnitude and spread of parameter updates, thereby limiting, to some
extent, the enrichment of update information. Importantly, our norm-based analysis (Figure 3(b))
demonstrates that even under such strong constraints, RL achieves substantial improvements in
reasoning performance through limited updates. This suggests that performance gains do not rely
on large-scale parameter drift but emerge from focused adjustments within a small set of critical
subspaces. Regarding the two points discussed above, Table 7 and 8 provide detailed empirical
evidence. Both On-Policy Distillation and DPO exhibit clear low-rank structures in their update
patterns, demonstrating that the phenomena identified in this work are not unique to RL. Notably,
On-Policy RL—combining advantages from both approaches—shows an even more pronounced
low-rank property.

Third, prior work shows that updating only about 20% of tokens suffices to match or even surpass
full-token updates (Wang et al., 2025a), indicating that reasoning improvements primarily depend on
a small set of critical tokens rather than broad, global parameter modifications. These sparse, high-
impact token updates may constitute the microscopic origin of the unified reasoning-enhancement
pattern in RL: low-rank, highly structured updates effectively concentrate on key tokens, forming
dominant update directions in parameter space.

Finally, studies on RL generalization demonstrate that RL-fine-tuned models consistently outperform
SFT-fine-tuned models in mitigating catastrophic forgetting and enhancing generalization (Shenfeld
et al., 2025; Feng et al., 2025). Our analysis supports this view: RL leverages and reinforces
existing gradient signals to activate latent model capabilities, with improvements primarily arising
from concentrated adjustments in critical subspaces and minimal overall parameter drift. In contrast,
SFT often requires learning task distributions that substantially deviate from the model’s intrinsic
capabilities, necessitating larger-scale training data and frequently inducing parameter shifts that
may lead to catastrophic forgetting.
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Relative Accuracy Comparison Across Training Methods on MATH-500
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Figure 7: Performance under Rank-1 and Rank-k% Subspace on MATH-500, AIME24, AIME2S5,

MINERVA, GSMS8K, and GPQA datasets.
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Figure 8: Effect of RLOO, GRPO, Dr.GRPO and DAPO(32B) on the embedding layer, the two
representations of the same token are connected with gray lines.
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Performance of Top Rank-1 Updates on Across Training Checkpoints
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Figure 10: Performance of GRPO Rank-1 Subspace across different training checkpoints.
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(a) Proportion of Greedy and Non-Greedy Decoding in the Base Model (b) Perplexity of different CoTs in the Base model (c) Non-Greedy Position Counts: Base Model vs Top Rank-1
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Figure 12: (a) Proportion of greedy versus non-greedy tokens in RL-generated reasoning chains
(CoTs), evaluated with the Base Model; (b) Perplexity comparison of CoTs in the Base Model: RL-
generated CoTs versus those generated by the Base Model itself; (c) Relative positional distribution
of non-greedy tokens in RL-generated CoTs, evaluated under the Base Model and the Rank-1 model.

D EXTERNAL MANIFESTATIONS OF RANK-1 DOMINANCE

The Rank-1 Subspace captures key adjustments in the reasoning tokens, recovering the
reasoning preferences of fully trained models.

In the previous section, we discovered the naturally emerging low-rank property in RL updates and
discussed its potential causes. In this section, we further analyze external manifestations of the
Rank-1 Subspace, focusing on how it shapes model behavior.

To investigate how RL training affects reasoning behavior, we conducted two experiments. For each
problem, the RL-trained model first generated answers step by step using a greedy strategy, i.e.,
selecting the token with the highest predicted probability at each step, thereby producing a complete
chain of thought. This chain was then fed token by token into the base model, and the base model’s
greedy predictions were recorded at each step. Positions where the base model’s prediction matched
the RL model were labeled as greedy, and all others as non-greedy.
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Figure 13: Word cloud of non-greedy tokens. These tokens appear in RL-generated reasoning chains
but are not treated as greedily decoded tokens at the corresponding positions by the base model.

consider

As shown in Figure 12 (a), the proportion of non-greedy positions is substantially higher for the
DIST and SFT methods compared to RL, indicating that these methods significantly alter the base
model’s output distribution, whereas RL has a comparatively limited effect. We further measured
the perplexity of the base model on the chain-of-thought reasoning generated before and after RL
training (both using greedy decoding). The results, shown in Figure 12 (b), reveal that RL training
leaves perplexity largely unchanged, while DIST and SFT training lead to a marked increase.

These observations suggest that, unlike DIST and SFT, the reasoning trajectories reinforced by RL are
not entirely newly created; rather, they correspond to latent patterns already present in the base model
that can be activated. In other words, RL training primarily introduces signals at a small number
of critical positions, effectively activating and stabilizing these latent reasoning patterns, thereby
enhancing reasoning capabilities without substantially altering the overall output distribution.
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Figure 14: Using prefix tokens generated by the Rank-1 model to guide the base model’s reasoning.

We analyzed the positions and characteristics of these non-greedy tokens and identified two pre-
dominant patterns in Figure 13. The first pattern corresponds to initial-answer tokens, such as
"Alright" or "Let", which typically occur at the beginning of the generation and reflect the
model’s initial understanding of the problem. The second pattern corresponds to reasoning-transition
tokens, such as "But " or "Wait", which often appear at critical reasoning junctures and indicate
adjustments or corrections of intermediate steps.

Moreover, as shown in Figure 12 (c), injecting only the Rank-1 information significantly reduces
the number of non-greedy tokens. This indicates that the Rank-1 Subspace reshapes token-level
decoding preferences throughout the reasoning process. By adjusting a small set of critical tokens,
the Rank-1 information can activate and stabilize latent reasoning trajectories already present in the
base model, gradually aligning them with the RL-enhanced reasoning patterns.

To more precisely investigate where these critical adjustments exert their influence, we designed a
prefix token experiment. Specifically, we truncated the reasoning chains produced by the Rank-1
model to their first n tokens and fed these prefixes into the base model to continue reasoning. As
shown in Figure 14, using only the first 20 tokens - approximately the first sentence - allows the base
model to approach the performance of the full parameter update.

This result indicates that performance gains primarily arise from the early stage of the reasoning
chain, where the problem is represented and the solution strategy is established. They further suggest
that the base model inherently possesses strong reasoning capabilities, but its potential is not fully
realized, partly because it fails to sample the tokens most critical for understanding the problem.
By capturing this key sampling capability, the Rank-1 Subspace effectively activates and stabilizes
latent reasoning trajectories, aligning the base model’s reasoning behavior more closely with that of
the RL-trained model and thereby significantly enhancing performance.

Overall, compared to DIST and SFT, RL induces only limited modifications to the model’s reasoning
behavior. The Rank-1 Subspace accurately captures the reasoning preferences of the RL-trained
model—particularly the critical token-level adjustments—thereby efficiently recovering reasoning
capabilities that would otherwise require full-parameter RL training.
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The medians AD, BE, and CF of triangle ABC intersect at the centroid G. The line through
G that is parallel to BC intersects AB and AC at M and N, respectively. If the area of triangle
ABC is 144, then find the area of triangle ENG.

Base Model Answer:

To solve the problem, we need to find the area of triangle ENG given that the area of triangle

ABC is 144. Let’s break down the problem step by step.

Identify Key Properties: - The centroid G divides each median into a ratio of 2 : 1, with

the longer segment being closer to the vertex. - The line through G parallel to BC intersects

AB at M and AC at N.

Area Relationships: - Since G is the centroid, it divides the triangle into three smaller
144 _

triangles of equal area. Each has area -5* = 48. - The line through G parallel to BC creates

a smaller triangle AM N that is similar to triangle ABC with side ratio %
2
Area of Triangle AMN: - Ratio of areas: (%) = %. - So Area(AMN) = % = 16.

Area of Triangle ENG: - By area decomposition, the final result is .

RL Trained Model Answer:

Alright, I have this geometry problem in front of me, and I need to find the area of triangle
ENG given that the area of triangle ABC is 144. Let’s break it down step by step.
Given:

* Triangle ABC with medians AD, BE, and CF intersecting at the centroid G.
* A line through G parallel to BC intersects AB at M and AC at N.
 The area of triangle ABC is 144.
Find:
* The area of triangle ENG.

Wait, I think there’s a typo in the problem. It mentions triangle ENG, but I'm not sure what
point E is. Looking back at the problem, it says the medians are AD, BE, and CF, so E
is the midpoint of AC. But the triangle we’re supposed to find the area of is ENG, which
would involve points E, N, and G. Maybe N is the intersection of the line through G parallel
to BC with AC. Let’s clarify that.

First, let’s visualize the triangle and label all the points:

1. Triangle ABC: A triangle with vertices A, B, and C.
2. Medians:

* AD: Median from A to the midpoint D of BC.
* BE: Median from B to the midpoint E of AC.
* CF: Median from C to the midpoint F of AB.

3. Centroid G: The point where the medians intersect. It divides each median in a
2:1 ratio.

4. Line through G parallel to BC: This line intersects AB at M and AC at N.
5. Area of ABC: 144.
We need to find the area of triangle ENG.

STEP 1: UNDERSTANDING THE CENTROID AND MEDIANS

The centroid G divides each median in a 2:1 ratio, with the longer part being between the
vertex and the centroid. So, for median AD, AG : GD =2 : 1. Similarly, BG : GE =2 : 1
and CG : GF =2: 1.
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SteP 2: LINE THROUGH G PARALLEL TO BC

We have a line passing through G that is parallel to BC. This line intersects AB at M and
AC at N.

Since the line is parallel to BC, triangles AMN and ABC are similar by the Basic Propor-
tionality Theorem (Thales’ theorem).

SteP 3: SIMILARITY OF TRIANGLES AMN AnD ABC

Because M N || BC, triangle AM N is similar to triangle ABC. The ratio of similarity can be
determined by the position of G.

Since G is the centroid, it divides the median in a 2:1 ratio. The distance from A to G is %
of the median AD. The line M N is parallel to BC and passes through G, so the height of
triangle AMN from A is % of the height of triangle ABC from A.

Therefore, the ratio of similarity between AMN and ABC is %

SteP 4: AREA OF TRIANGLE AMN

The area of similar triangles is the square of the ratio of their corresponding sides. So, the

2
area of AMN is (%) times the area of ABC.

2\ 4
Area of AMN = 3 ><144=§><144=64

Step 5: LocaTiING PoiNT N

Point N is the intersection of the line MN with AC. Since MN || BC, and M is on AB, N
divides AC in the same ratio as M divides AB.

But we need to find the area of triangle ENG. To do that, we need to understand the positions
of points E, N, and G.

StEP 6: COORDINATES APPROACH

Maybe assigning coordinates to the points would help. Let’s place triangle ABC in a
coordinate plane.
Let:

A(0,0), B(2b,0), C(2c,2h)

Then:
D=(b+c,h), E=(ch), F=(b,0)
The centroid is:

_ (2b+2¢ 2h
G = (2. %)

Step 7: EQuATION OF THE LINE THROUGH G PARALLEL TO BC

The slope of BC is:
2h h

2c—b) c—b
Equation of line through G parallel to BC:

_2h__h (_2b+2c)
3

3 c—bx

Step 8: FINDING PoINT M ON AB

On AB,y =0:
2h  h 2b +2c
R A
4p 4p
= —, M: —,0
=5 w=(30)
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SteP 9: FiNDING PoINT N ON AC
Equation of AC:

Intersect with line through G:

cx 3 ¢c-b *

1 2l 2b +2c
3
After manipulation, one finds contradictions. Let’s switch method.

SteP 10: VECTOR GEOMETRY APPROACH
LetA=0,B=5,C =C.

Centroid: .
=~ b+cC
B
Equation of line through G parallel to BC:
b+
P23 C+1(Z-b)

Intersection with AB : Fap = sb gives:
—_1 ¢_2 =2}
t=—-3,5=%, M= 3b

Intersection with AC : Fac = uc gives:
1 . _2 = A%
t=3,u=3%, N = 5¢€

STEP 11: COORDINATES OF POINTS

M=%b, N=%¢ E=32 G=5¢

Step 12: AREA OF TRIANGLE ENG
EN=12 EG=2=<

ENXEG = (Zxb)

But Areapc = 1|b X &| = 144 = |b x &| =288

So: R .
|[EN x EG| = & x 288 = 16
Area of ENG: ]
-x16=8
2

Final Answer:

Top Rank-1 Answer:

Alright, I have this geometry problem in front of me, and I need to find the area of triangle
ENG given that the area of triangle ABC is 144. Let’s break it down step by step.
UNDERSTANDING THE PROBLEM

First, let’s make sure I understand all the components:

» Triangle ABC: A triangle with vertices A, B, and C.
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* Medians AD, BE, and CF: A median of a triangle is a line segment joining a
vertex to the midpoint of the opposite side. So:

— D is the midpoint of BC.
— E is the midpoint of AC.
— F is the midpoint of AB.

* Centroid G: The point where the three medians intersect. It’s also the “center of
mass” of the triangle.

* Line through G parallel to BC: This line is parallel to side BC and passes through
the centroid G.

* Points M and N: The intersections of this parallel line with sides AB and AC,
respectively.

* Area of triangle ABC: Given as 144.

* Goal: Find the area of triangle ENG.
Note that point E is already defined as the midpoint of AC, so triangle ENG has vertices E,
N,and G.
VISUALIZING THE PROBLEM

It’s helpful to draw a diagram. Sketch triangle ABC, mark midpoints D, E, and F, draw the
medians, locate the centroid G, and then draw the line through G parallel to BC, intersecting
AB at M and AC at N.

(Diagram representation omitted for clarity)
PROPERTIES OF THE CENTROID
The centroid divides each median in a 2:1 ratio:
AG:GD=2:1, BG:GE=2:1, CG:GF=2:1.

LiNE PARALLEL To BC THROUGH G

Since the line through G is parallel to BC, triangles AMN and ABC are similar. The ratio
of similarity is determined by the position of G along the median. As G divides the median
in a 2 : 1 ratio, the height from A to MN is % of the height from A to BC. Therefore, the

ratio of similarity is %
AREA OF TRIANGLE AM N
The area of similar triangles scales with the square of the ratio of corresponding sides:
2\? 4
Area(AMN) = 3 X Area(ABC) = 5 X 144 = 64.
COORDINATES APPROACH

To find the area of triangle ENG, we assign coordinates:

B(0,0), C(c,0), A(a,b)

Midpoints:
p(S0). E(TC2). F(L2
2 2 72 2°2
Centroid: )
a+c
G|—.=
(53]

Line through G parallel to BC (horizontal) intersects AB at M and AC at N.
Equation of AB: y = gx
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Intersection with y = %:

- C

Equation of AC: y = —Zx + ==
Intersection with y = %:

Thus, points of interest:

a+c b 2c+a b a+c b
s(1555). v(553) o554

AREA OF TRIANGLE ENG

Using the shoelace formula:

1
Area = E)xl(yZ = y3) +x2(y3 = y1) +x3(y1 — yz)(

Plugging in coordinates:

x_a+c _é x_20+a _é x_a+c _é
1= 2 ,}71—2, 2 = 3 sy2_39 3 = 3 ,)’3—3
Compute:
1 —(2c+a)b (a+c)b| 1 cb cb
Area = o0+ = g 172 18 T 36

Given Area(ABC) = 144:
1
§|cb| =144 = cb =288

Therefore:

288
Area(ENG) = — =8

36

Final Answer:
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E LiNeEAR ProJEcTION METHODS

Constructing Update Trajectories

Motivated by prior interpretability studies (Geva et al., 2021; Meng et al., 2023), we interpret the
tuple (uy,,oq,v) of the Rank-1 update AW!) as a key—value operator. For any input h, the
Rank-1 update induces:

AyV =AWV h = @ oy uy (v1, b)), @

where v serves as the key, selecting the relevant input directions, # defines the value direction
injected into the output space, and e controls the magnitude of the update.

To characterize the evolution of the dominant update direction during training, we collect the sequence
of uy vectors across T checkpoints for each module:

U = ()"}, 5)
which we refer to as the module’s update trajectory.

Since each uY) resides in a high-dimensional space, we first apply Principal Component Analysis
(PCA) to capture the top 50 principal components, retaining the most significant directions of varia-
tion. The vectors are then projected onto this 50-dimensional subspace, and t-SNE is subsequently
applied to these projections to obtain a two-dimensional, geometry-aware visualization of the tra-
jectory. This procedure provides an interpretable representation of how the Rank-1 update direction
evolves over the course of training.

Details of PLS regression

For each module, we collect checkpoint-wise pairs, forming the set:
D ={@”, y)nL, ©6)

where u*) € R is the Rank-1 left singular (“value™) vector extracted at checkpoint 7, and y*) € R
is the corresponding reasoning accuracy. The vectors are stacked row-wise into U; € R7*¢ and
each feature is standardized to zero mean and unit variance, yielding the design matrix u.
We then perform Partial Least Squares (PLS) regression with a single latent component. PLS
regression can be viewed as Ordinary Least Squares (OLS) applied in a latent low-dimensional
space: it first extracts the most predictive direction by maximizing the covariance with the response
variable, and then fits the target values on this component using OLS. The resulting score vector is
defined as: _

z1=U wy, (7

where w identifies the direction in the standardized value space that is maximally predictive of
accuracy. Accuracy is then regressed on this component via:

Yy =a +p+e®, ®)

with (&, B) estimated by OLS, i.e., by minimizing the sum of squared residuals:

T

(@.p) = argrg%lZ(y(t) ~ (@2 + ). o

1=1
The coefficient of determination is computed as:

T ((1) _ 5())2
Yy y 2) , 90 = &Zi’) + 5. (10)
S(y@-5)

Here, R? quantifies the strength of the approximately linear coupling between the module’s value
trajectory and performance variation across checkpoints. In Section 4, AlphaRL perform the same

computation but with the scaled vectors i) = a* )O'I(t)u(’ ) instead of the raw vectors u(*).

R>=1-
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R?on MLP & Self-Attention Components

RZ

Accuracy
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Figure 15: Heatmap of R? across MLP and self-attention components.

Figure 16: t-SNE visualization of U trajectories under DAPO for Attn Q modules.
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Figure 17: PLS regression visualization of U trajectories under DAPO for Attn Q modules.
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Figure 18: t-SNE visualization of U trajectories under DAPO for Attn K modules.
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Figure 19: PLS regression visualization of U trajectories under DAPO for Attn K modules.
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Figure 20: t-SNE visualization of U trajectories under DAPO for Attn V modules.
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Figure 21: PLS regression visualization of U trajectories under DAPO for Attn V modules.
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Figure 22: t-SNE visualization of U trajectories under DAPO for Attn O modules.
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Figure 23: PLS regression visualization of U\
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Figure 24: t-SNE visualization of U trajectories under DAPO for MLP GATE modules.
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Figure 25: PLS regression visualization of U trajectories under DAPO for MLP GATE modules.
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Figure 26: t-SNE visualization of U trajectories under DAPO for MLP UP modules.
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Figure 27: PLS regression visualization of U, trajectories under DAPO for MLP UP modules.
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Figure 28:

t-SNE visualization of U, trajectories under DAPO for MLP DOWN modules.
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Figure 29: PLS regression visualization of U trajectories under DAPO for MLP DOWN modules.
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