
FUGAL:
Feature-fortified Unrestricted Graph Alignment

Aditya Bommakanti
IIT Delhi

adityabommakanti2002@gmail.com

Harshith Reddy Vonteri
IIT Delhi

harshithreddyvonteri@gmail.com

Konstantinos Skitsas
Aarhus University

skitsas@cs.au.dk

Sayan Ranu
IIT Delhi

sayanranu@cse.iitd.ac.in

Davide Mottin
Aarhus University
davide@cs.au.dk

Panagiotis Karras
University of Copenhagen & Aarhus University

piekarras@gmail.com

Abstract

The necessity to align two graphs, minimizing a structural distance metric, is
prevalent in biology, chemistry, recommender systems, and social network analysis.
Due to the problem’s NP-hardness, prevailing graph alignment methods follow a
modular and mediated approach, solving the problem restricted to the domain of
intermediary graph representations or products like embeddings, spectra, and graph
signals. Restricting the problem to this intermediate space may distort the original
problem and are hence predisposed to miss high-quality solutions. In this paper,
we propose an unrestricted method, FUGAL, which finds a permutation matrix
that maps one graph to another by directly operating on their adjacency matrices
with judicious constraint relaxation. Extensive experimentation demonstrates that
FUGAL consistently surpasses state-of-the-art graph alignment methods in accuracy
across all benchmark datasets without encumbering efficiency.

1 Introduction and Related Work

Graph alignment seeks to match a pair of graphs to each other, i.e., to correlate nodes of one graph to
those of the other. For instance, biological systems such as protein-protein interaction networks and
gene regulatory networks can be represented as graphs. The alignment of such biological networks
across species reveals orthologous proteins or genes (i.e., homologous genes that evolved from a
common ancestor) and thereby conveys the biological function of uncharted genes in one species
through their better-studied counterparts in another species [37, 36]. The same problem also arises
in other high-impact network science tasks [11], such as identifying users in social networks [22]
and feature matching in computer vision [5, 6]. The problem can be formulated as an instance of
the quadratic assignment problem (QAP) [13, 24] between nodes of the two graphs, which treats the
edges in one graph as units of flow and the edges in the other graph as distances between nodes. This
relation renders the problem APX-hard to approximate even within an approximation factor that
grows linearly with the number of nodes [30, 13].

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

1.1 Related Works

Owing to the problem’s hardness, several heuristics have been proposed. Nevertheless, state-of-the-art
graph alignment methods refrain from directly addressing the edge-aware QAP. Instead, they craft
intermediate representations of nodes that allow for the computation of similarities and settle for
solving an assignment problem over those representations. We call these methods mediated due to
their restriction to intermediary graph representations. While the transformation from the original
graph space to an intermediate space enables computational efficiency, the transformation incurs
loss of information. In this work, we propose an unrestricted graph alignment method that avoids
restricting the problem to an intermediate space, while also retaining efficiency. We call our method
“unrestricted” rather than “unmediated” since, while we retain the full graph information in the
core QAP, we also avail of help from mediated representations to solve the QAP. In the subsequent
discussion, we summarize the various mediated and unmediated approaches in the literature.

Mediated Approaches: GWL [44] jointly learns embeddings and alignments using the dissimilarity
notion of Gromov-Wasserstein discrepancy; it estimates distance matrices using the embeddings
when learning the optimal transport, and regularizes the learning of embeddings using the learned
transport. S-GWL [43] addresses the scalability drawback of GWL by adopting a partitioning method
on the input graphs. CONE [4] models intra-network proximity with node embeddings and uses
them to match nodes across networks after aligning embedding subspaces. REGAL [17] identifies
node matchings by greedily aligning their latent feature representations learnt from graph structures.
GRAMPA [13] constructs a similarity matrix as a weighted sum of outer products between all pairs
of eigenvectors of the two graphs. GRASP [20] uses the spectral properties of the graphs grounded on
the eigenvectors of their normalized Laplacian matrices. IsoRank [37] uses neighborhood similarity
to extract structural graph information and recursively updates the score of a node pair using the score
of their neighbors. GRAAL [25] is a greedy alignment method that matches nodes using a similarity
score based on a dictionary of small frequent graph patterns. GOT [31] employs the probabilistic
distribution of smooth graph signals defined with respect to the graph topology, and seeks alignments
by minimizing the distance between these graph signal distributions. fGOT [32] adopts a dissimilarity
metric that aligns two graphs using the probability distribution of data generated via graph filters.
PARROT [46] presents a semi-supervised methodology which encodes graph topology through
random walks with restart (RWR) for a position-aware transport cost and addresses a regularized
Optimal Transport (OT) problem to determine node mappings. GW [35] and FGW [40] compute
Gromov-Wasserstein discrepancy using similarity matrices of shortest path distances between nodes.

Unmediated Approaches: FAQ [42] is an unmediated algorithm that addresses the QAP by relaxing
constraints to attain computational tractability. GLAG [14] proposes a problem formulation that
retains the full graph information and relaxes the permutation constraints. As we will see in § 5, these
methods of relaxing constraints lead to inferior accuracy.

Unrestricted Approaches: In addition to the full graph information, PATH [45] and FGM [49] also
use feature matching, while DSPP [10] employs all-pairs-shortest-paths for graph alignment. We
characterize these methods as unrestricted, since they also avail of help from mediated representations.
As we will see in § 5, these methods are significantly inferior to FUGAL in terms of accuracy.

1.2 Contributions

Optimization problem formulation: We present FUGAL (Feature-fortified Unrestricted Graph
Alignment), a graph alignment method that retains full graph information by integrating the quadratic
assignment problem (QAP) in the optimization objective. To augment quality, we utilize a regularizer
in the form of a linear assignment (LAP) supplement incorporating graph structural features.
Unrestricted solution: FUGAL relaxes the solution space to doubly stochastic matrices and uses a
customized optimization strategy that guides the Frank-Wolfe algorithm [16] through a Sinkhorn
distance objective [7] to steer the resulting doubly stochastic solution towards a quasi-permutation
matrix. We call our approach unrestricted, as it does not rely solely on intermediate representations.
On the other hand, it is not entirely unmediated, as the LAP regularizer using structural features is
mediated. Thereby, we retain the full graph information and also enable mediating representations to
efficiently guide the optimization process and thereby enable both efficacy and tractability.
Experimental evaluation: Through extensive experimentation with real-world and synthetic datasets
across varying graph density and noise levels, we demonstrate that FUGAL outperforms state-of-the-
art graph alignment methods in accuracy without a detrimental efficiency overhead.

2

2 Problem Formulation

Definition 2.1. Let G(V, E) denote an unlabelled, undirected graph, where V is the set of nodes each
identified by a number [n] = {1, . . . , n} and E ⊆ V × V is the edge set. The adjacency matrix of G
is A ∈ {0, 1}n×n such that aij = aji = 1 if and only if (i, j) ∈ E .

We denote an all-ones vector as 1, an all-ones square matrix as J, and an all-zero square matrix as O.
The dimensions of entities are inferred from the equations employing them.
Definition 2.2. We denote the set of binary-valued permutation matrices as Pn = {P ∈ {0, 1}n×n :
P1 = 1,P⊤1 = 1} and that of real-valued doubly stochastic matrices as Wn = {W ∈ [0, 1]n×n :
W1 = 1,W⊤1 = 1}.
Definition 2.3. Let A = [aij]i∈[n],j∈[m] ∈ Rn×m. We denote the Frobenius norm as the entry-wise

2-norm ∥A∥F =
(∑n

i=1

∑m
j=1 |aij |2

)1/2

.

Definition 2.4. We denote the trace of a matrix A as tr(A).
Theorem 2.5. A doubly-stochastic matrix A with tr(A⊤(J−A)) = 0 is a permutation matrix.

Proof. From tr(A⊤(J − A)) = 0 follows that
∑

i

∑
j aij · (1 − aij) = 0. Since A is doubly-

stochastic, 0 ≤ aij ≤ 1 for all i and j. Thus, aij · (1 − aij) ≥ 0 for 1 ≤ i, j ≤ n. Therefore,
aij · (1− aij) = 0 for all i and j. As a consequence, aij ∈ {0, 1} for each i and j. Given that A is
doubly-stochastic and all its entries are either 0 or 1, by Definition 2.2, A is a permutation matrix.

Problem 1 (Unmediated Graph Alignment). Consider two graphs G1 := (V1, E1) and G2 := (V2, E2)
with adjacency matrices A,B respectively. The objective of unmediated graph alignment is to identify
a bijection f : V1 → V2 between the two graphs that minimizes the number of edge disagreements.
Formally, the problem is expressed as:

min
P∈Pn

∥AP−PB∥2F , (1)

where Pn denotes the set of permutation matrices.

The appellation unmediated denotes that we seek a correspondence among nodes without using any
information other than the adjacency matrix. The problem is an instance of the NP-hard quadratic
assignment problem (QAP) [24].

Due to the problem’s hardness, a popular approximation path utilizes intermediaries such as node em-
beddings. A mediated graph alignment is thus expressed as a linear assignment between embeddings
rather than a quadratic assignment between adjacency matrices:

min
P∈Pn

∥E1 −PE2∥2F (2)

where Ek ∈ R|Vk|×F is the embedding matrix of Gk and Ek[i, :] is the F -dimensional vector
representation of node i of Gk. The optimization problem in Equation (2) is a linear assignment
problem (LAP), which is solvable optimally in O

(
N3

)
by the Hungarian algorithm [26], while

sub-optimal solutions reduce complexity to O
(
N2

)
.

Extension to graphs of unequal sizes. Consider two graphs G1 and G2 with node counts n1 and n2,
respectively (n1 < n2). To enable alignment despite the size difference, we augment G1 with (n2−n1)
isolated dummy nodes and discard mappings involving dummy nodes from the output.

3 FUGAL

To design FUGAL, we augment the core QAP of Eq. (1) with a LAP supplement that leverages
simple structural graph features (§ 3.1) to form a unified optimization problem over the set of
permutation matrices Pn (§ 3.2). As this problem is NP-hard, we relax its solution space to the set
of doubly stochastic matrices Wn (§ 3.3), a superset of the set of permutation matrices. We refine the
solution to obtain a quasi-permutation matrix, i.e., almost a permutation matrix, which we adjust to a
permutation matrix that signifies a valid alignment by solving a simple LAP using the Hungarian
algorithm [26]. We dub this approach “unrestricted” as it eschews the information loss incurred by
mediated solutions, which rely solely on intermediary representations. However, we still employ
supplementary mediating representations to ensure tractability and efficiency.

3

3.1 LAP Formulation

Here, we formalize the Linear Assignment Problem (LAP), which is auxiliary to our framework.
We construct a node feature vector using four structural features proposed in NETSIMILE [2]. This
includes (1) di, the degree of node vi, (2) ci, the clustering coefficient of vi, (3) d̄Ni

, the mean degree
of vi’s neighbors, (4) and c̄Ni

, the mean clustering coefficient of vi’s neighbours. Other features,
such as betweenness centrality, PageRank, may also be used. Ultimately, the decision resides on the
trade-off between the utility of including these features on alignment quality and the efficiency of
computing these features.

Using these features, we construct a feature matrix Fk ∈ R|Vk|×4 for each graph Gk and, by the
rationale that the structural features of corresponding nodes are similar, we formulate a Linear
Assignment Problem for G1 and G2 as:

min
P∈Pn

∥F1 −PF2∥2F (3)

By the Frobenius norm definition, Eq. (3) is equivalent to:

min
P∈Pn

∑
i

∥F1[i, :]−
∑
j

PijF2[j, :]∥2F (4)

Utilizing the property of permutation matrices that each row contains only one 1, we reformulate
Eq. (4) to:

min
P∈Pn

∑
i,j

Pij∥F1[i, :]− F2[j, :]∥2F = min
P∈Pn

∑
i,j

PijDij (5)

where D is a distance matrix with Dij denoting the squared Euclidean distance between F1[i, :]
and F2[j, :]. Since each row P[i, :] contributes exactly one term to this sum, being the element of D
corresponding to the single 1 entry in P[i, :], the result is equal to the trace of the matrix product:

min
P∈Pn

tr(P⊤D) (6)

3.2 Optimization Problem

Our problem formulation augments the QAP of Eq. (1) with a LAP regularizing term as in Eq. (6):

min
P∈Pn

∥AP−PB∥2F + µ · tr(P⊤D) (7)

where A and B denote the adjacency matrices of G1 and G2, respectively, D follows Eq. (6), and µ
regulates the LAP’s significance; since PP⊤ = I, this is expanded to:

min
P∈Pn

tr(A⊤A) + tr(B⊤B)− 2 tr(APB⊤P⊤) + µ · tr(P⊤D) (8)

equivalently, ignoring constant terms and reversing the sign,

max
P∈Pn

tr(APB⊤P⊤)− µ · tr(P⊤D) (9)

In the case of µ = 0, the first term alone corresponds to the maxQAP problem [30], which is
APX-hard to approximate even within an approximation factor that grows linearly with the number
of nodes. Given this hardness of the QAP alone and the fact that relaxing combinatorial constraints
often results in a substantial deterioration of solution quality, we introduce the LAP regularization to
ground the QAP solution on pragmatic features and thereby guide it, even after we relax combinatorial
constraints.

3.3 Approximating the Optimization Problem

The problem in Eq. (9) is NP-hard, due to the non-convex nature of the space of permutation
matrices [24]. A natural way to overcome this hardness is to enlarge the allowed solution space to the
convex set of doubly stochastic matrices Wn, as considered in FAQ [42]:

min
P∈Wn

− tr(APB⊤P⊤) + µ · tr(P⊤D) (10)

4

Algorithm 1 FINDQUASIPERMUTATION
(A,B,D, µ, T)
Input: Adjacency Matrices A,B, Distance matrix D, control param-
eter µ, num iters T
Output: Quasi-Permutation matrix Q
Notation:

f(P) : − tr(APB⊤P⊤) + µ · tr(P⊤D)

g(P) : tr(P⊤(J−P))

1: Q← 1 · 1⊤/n
2: for λ = 0 to T − 1 do
3: for it = 1 to 10 do
4: grad← ∇f(Q) + λ · ∇g(Q)
5: qit ← argminq∈Wn ⟨grad, q⟩ \\ Sinkhorn-Knopp
6: α← 2

2+it

7: Q← Q + α · (qit −Q)
8: end for
9: end for
10: return Q

Since the problem in Eq. (10) calls to minimize
a function subject to linear constraints implied
by P ∈ Wn, the solution can be efficiently
found [3] by algorithms such as Adam [23] and
Frank-Wolfe [16]. The FAQ algorithm [42] follows
such an approach to solve the relaxed optimization
with the Frank-Wolfe algorithm and project the so-
lution back onto Pn, yet addresses exclusively the
first, QAP term in Eq. (10). To further augment
quality, as we elaborate later in Section 5, we in-
clude the LAP term in Eq. (10) and also add a reg-
ularizing term that guides the solution towards a
quasi-permutation matrix. By Theorem 2.5, which
establishes that a doubly-stochastic matrix P with
tr(P⊤(J−P)) = 0 is a permutation matrix, we
rewrite the problem in Eq. (9) as:

min
P∈Wn

− tr(APB⊤P⊤) + µ · tr(P⊤D)

Constraints: tr(P⊤(J−P)) = 0
(11)

and turn the constraint to a regularizer with parameter λ:

min
P∈Wn

− tr(APB⊤P⊤) + µ · tr(P⊤D) + λ · (tr(P⊤(J−P))) (12)

Equivalently, by reformulating the constraints:

min
P

− tr(APB⊤P⊤) + µ · tr(P⊤D) + λ · (tr(P⊤(J−P)))

Constraints: P1 = 1,P⊤1 = 1, 0 ≤ Pij ≤ 1
(13)

We solve the problem in eq. (13) for λ = 0 by the Frank-Wolfe (FW) algorithm [16] with updates
guided by an objective computed via the Sinkhorn-Knopp algorithm [7], due to the computational
efficiency they confer. We use the solution to this optimization problem as a warm start, and refine it
by gradually increasing λ over T iterations, each initiating with the solution obtained in the preceding
one and solving the problem in Eq. (13) by FW. Alg. 1 outlines the process.

Rounding Algorithm: Alg. 1 yields a quasi-permutation matrix Q. Next, to obtain an one-to-one
mapping between nodes of G1 and G2, we need to adjust Q to a permutation matrix by rounding. We
pose this problem as an assignment problem, maximizing the sum of Qij entries selected for rounding
up to 1, while rounding the rest down to 0, and solve it optimally by the Hungarian algorithm [26].
Alg. 2 in the appendix presents the complete FUGAL pseudocode.

4 Customized Optimization Strategy for Node Alignment

In this section, we elucidate the intricacies of Algorithm 1, which derives a quasi-permutation matrix,
focusing on two pivotal steps: (i) initialization of the quasi-permutation matrix; (ii) finding the local
solution for a given λ.

Initialization: Any doubly stochastic matrix is a viable option for initialization. However, we opt for
an uninformative flat matrix, 1 · 1⊤/n. Our empirical observations indicated that this initialization
consistently performs well across diverse datasets, contrary to informative initializations like the
identity matrix, which exhibit inconsistency in performance, as we further elaborate in Section A.8.

Local Solution for a given λ: Given a specific λ, our objective is to solve the optimization problem
of Eq. (13) under linear constraints. To achieve this, we employ the Frank-Wolfe algorithm (FW), a
successive first-order optimization technique devised for solving convex quadratic programs [16].
While FW is a widely utilized solver as a subroutine for QAP algorithms, we tailor its application
to FUGAL. Specifically, each iteration commences from the local solution obtained in the previous
iteration and involves the following steps:
Computing the Gradient: The gradient of the objective function f(P) = − tr(APB⊤P⊤) + µ ·
tr(P⊤D) with respect to P, evaluated at Q, is∇f (Q) = −AQB⊤−A⊤QB+µ ·D. Additionally,

5

the gradient of the constraint function g(P) = tr(P⊤(J − P)) with respect to P, evaluated at Q,
is ∇g (Q) = J− 2Q.
Updating Q: A critical step involves determining the doubly-stochastic matrix qit that minimizes the
inner product ⟨grad, q⟩, where grad is the current gradient. Prior work [42] applies the Hungarian
algorithm to obtain a permutation matrix to that end, which, however, may not yield the optimal
answer and incurs O(n3) cost. Contrarily, we obtain a proper doubly stochastic matrix to that end.
Definition 4.1 (Optimal Transport Distance Between r and c). Given a n× n cost matrix M, the
cost of mapping an n-dimensional probability vector r to c, using a transportation matrix (or joint
probability) P is quantified as ⟨P,M⟩. The following problem:

min
P∈U(r,c)

⟨P,M⟩. (14)

is an optimal transport problem between r and c given cost M, where

U(r, c) = {P ∈ Rn×n
+ | P1 = r,P⊤1 = c} (15)

To render this optimal transport objective strictly convex and thus efficiently solvable by the matrix
scaling Sinkhorn-Knopp fixed-point iteration algorithm [38] via matrix-vector products, we regularize
it with an entropic penalty h(P) that yields the Sinkhorn distance objective [7]:

min
P∈U(r,c)

⟨P,M⟩ − 1

κ
h(P) (16)

where h(P) = −
∑n

i,j=1 Pij logPij , κ ∈ (0,∞], which becomes equivalent to the transport distance
for suitably large κ [7]. The method exhibits excellent performance in practice with O(n2) empirical
time complexity.

Setting r and c to 1 (the all-ones vector) in Eq. (15), U(r, c) becomes the space of doubly stochastic
matrices, hence Eq. (14) with M = grad captures our update step objective. Thus, we find the doubly
stochastic matrix qit that minimizes ⟨grad, q⟩ by the Sinkhorn-Knopp algorithm and update Q
as Q← Q+ α · (qit −Q), with the step size α following the conventional choice α = 2/(2 + it).

Complexity Analysis: The complexity of FUGAL is O(n3), which is in line with the majority of the
baselines. A detailed derivation and comparison of FUGAL’s complexity with baselines is provided
in App. A.1.The O(n3) complexity stems from the need to perform matrix multiplications, a core
operation in FUGAL as well as the baselines. A thorough evaluation of empirical running times (§ 5.5)
also demonstrates the practical scalability of FUGAL.

5 Experiments

In this section, we present a comprehensive evaluation of FUGAL vs. state-of-the-art graph alignment
baselines on real and synthetic data sets with varying noise levels.

5.1 Datasets

Real Graphs. Table 1 summarizes the real-world datasets used to benchmark FUGAL.The last three
data sets in the table are evolving graphs mandating challenging ground-truth alignments.

Table 1: Real-graph nodes n, edges m,
and network type.

Dataset n m Type

Arenas [27] 1 133 5 451 communication
inf-euroroad [1] 1 174 1 417 infrastructure
bio-celegans [9] 453 2 025 biological
ca-netscience [33] 379 914 collaboration
ACM [48] 9 872 39 561 citation
DBLP [48] 9 916 44 808 citation
MultiMagna [41] 1 004 8 323 biological
HighSchool [15] 327 5 818 proximity
Voles [8] 712 2 391 proximity

Synthetic Graphs. We employ Newmann-Watts
(NW) [21] graphs, characterized by small-world prop-
erties and a high clustering coefficient. We generate
NW graphs with 1000 nodes, number of neighbors per
node k = 7, and a rewiring probability of p = 0.1. For
each graph, we generate 5 noisy variants, perform align-
ments on each, and report average results. Given the ob-
tained alignment set P and the ground truth set of align-
ments Preal, we calculate accuracy as |P∩Preal|

|P| · 100.

Noise Types. As in prior work [4, 20, 43], we introduce
perturbations to the adjacency matrix by either removing
or adding edges. We employ two noise types: one-way
noise removes edges from the target graph, while bimodal noise removes and restores the same
number of edges.

6

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

variant #

A
cc

ur
ac

y

MultiMagna

FUGAL CONE IsoRank S-GWL GRAMPA GRASP-B
FAQ PARROT fGOT GW FGW

8090100

% of edges

Voles

8090100

% of edges

HighSchool

Figure 1: Accuracy, real graphs with real noise.

5.2 Experimental Setup
We ran all experiments on a 40-core Intel Xeon E5-2687W CPU machine @3.10GHz with Python im-
plementations of FUGAL1 and competitors;2 the latter include CONE [4], IsoRank [37], S-GWL [43],
GRAMPA [13], GRASP-B [19], FAQ [42], PARROT [46], fGOT [32], GOT [31], GW [35] and
FGW [40]. Due to scalability limitations, we excluded fGOT from consideration for graphs with more
than 1000 nodes, on which it failed to terminate within 5 hours. Moreover, due to the inability of GOT,
PATH, and DSPP to scale for the smallest dataset in our analysis, we assess them separately on smaller
graphs in Appendix A.4. We exclude GWL from evaluation in favor of its scalable and superior
variant, S-GWL [39]. We omit from the comparison algorithms such as GRAAL [25], GLAG [14]
and REGAL [17] due to their inferior performance [39, 29]. As we focus on non-attributed graphs, we
exclude FINAL [47], which is equivalent to IsoRank on graphs without attributes. For the prerequisite
similarity score in IsoRank, we devise a customized weight scheme as sim(u, v) = 1− |du−dv|

max{du,dv} ,
where du = |N(u)| denotes the degree of node u. With all baselines, we use author-recommended
parameters and derive node matchings from similarity scores using the Hungarian algorithm. In
Appendix A.5, we benchmark FUGAL against S-GWL and CONE in terms of Matched Neighborhood
consistency (MNC) [4] and the Frobenius norm between aligned graph adjacency matrices.

5.3 Accuracy on varying noise

Graphs with real Noise: We evaluate all algorithms on accuracy with three real-world networks:
MultiMagna, Voles, and High School. MultiMagna represents a yeast protein-protein interaction
(PPI) network and noisy variants incorporating an additional q% of low-confidence interactions,
with q ∈ {5, 10, 15, 20, 25}. High School and Voles are temporal proximity networks; we align the
last graph version to versions containing 80%, 85%, 90%, and 99% of edges. Figure 1 presents our
results. FUGAL consistently achieves accuracy surpassing its counterparts across all datasets, with
S-GWL being the closest baseline on average. On MultiMagna, FUGAL attains a 4% improvement
over the next best algorithm, S-GWL, on the first graph variant, and this gap steadily increases to 16%
on the last variant. On Voles, CONE and S-GWL follow FUGAL’s accuracy with up to 90% of edges,
yet with 80% of edges, they achieve 83% and 75% accuracy, respectively, vs. 90% of FUGAL. On
the High School network, FUGAL, FAQ and PARROT align graphs perfectly, while S-GWL attains
near-perfect alignment. IsoRank, GRAMPA, GRASP-B fGOT, GW and FGW fall short of FUGAL’s
performance across all three datasets. Despite performing comparably to FUGAL on the HighSchool
dataset, FAQ and PARROT exhibit notably poorer performance on other datasets. The consistently
superior performance of FUGAL underscores its robustness.

Large Real Graphs with Partially Aligned nodes: ACM and DBLP are two co-authorship networks
of the ACM Digital Library and DBLP bibliography. In these networks, nodes represent authors,
and an edge exists between two authors if they have collaborated on at least one publication. Across
both networks, there are 6,325 authors who appear in both. Although both networks are attributed,
we did not incorporate this information in our experiments. Note that S-GWL and GRASP-B are
not scalable for networks of this magnitude, hence omitted from the analysis. Furthermore, the
experiment was conducted in an unsupervised manner, meaning that the methods were not provided
with any prior information regarding node alignment. Our results, detailed in Table 2, showcase

1Code and data at https://github.com/idea-iitd/Fugal.
2Source code from https://github.com/constantinosskitsas/Framework_GraphAlignment.

7

https://github.com/idea-iitd/Fugal
https://github.com/constantinosskitsas/Framework_GraphAlignment

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Noise

A
cc

ur
ac

y

inf-euroroad

FUGAL CONE IsoRank S-GWL GRAMPA GRASP-B
FAQ PARROT fGOT GW FGW

0 5 10 15 20 25

Noise

arenas

0 5 10 15 20 25

Noise

ca-Netscience

0 5 10 15 20 25

Noise

bio-celegans

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Noise

A
cc

ur
ac

y

inf-euroroad

0 5 10 15 20 25

Noise

arenas

0 5 10 15 20 25

Noise

ca-Netscience

0 5 10 15 20 25

Noise

bio-celegans

Figure 2: Accuracy, one-way (top) & bimodal (bottom) noise.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Noise

A
cc

ur
ac

y

One-way noise

CONE IsoRank S-GWL GRAMPA GRASP-B
FAQ FUGAL PARROT GW FGW

0 5 10 15 20 25

Noise

Bimodal noise

0 1 3 5

Noise

One-way noise

0 1 3 5

Noise

Bimodal noise

Figure 3: Accuracy, Newmann-Watts graphs.

the fraction of correctly aligned nodes out of the 6,325 aligned nodes. FUGAL demonstrated a
significant improvement of 30% compared to the closest baseline, CONE. This underscores the
superior scalability of FUGAL without compromising accuracy.

Table 2: Accuracy in alignment across ACM-DBLP.
CONE IsoRank GRAMPA FAQ PARROT GW FGW FUGAL

Accuracy 0.183 0.042 0.011 0.025 0.000 0.028 0.012 0.487

Real Graphs with Injected Noise: Figure 2 illustrates the results on real datasets subject to synthetic
one-way and bimodal noise. Consistent with the trends observed in real noise, FUGAL exhibits
superior performance across all evaluated networks and noise types. This consistent superior
performance of FUGAL establishes it as a robust graph alignment solution. Appendix A.3 zooms
in on the performance of FUGAL vs. baselines with noise levels in the range 0% to 5% to better
highlight the performance superiority of FUGAL.

Synthetic Graphs: Figure 3 portrays accuracy results on Newmann-Watts graphs of 1000 nodes
with node degree k = 7 and rewiring probability p = 0.1 subject to synthetic noise. Under one-way
noise, all methods except CONE and FAQ achieve perfect alignment at 0% noise. With noise of 5%
and 10%, FUGAL attains a 60% and 14% gain, respectively, over the 2nd-best method, S-GWL.
Beyond these noise levels, all methods experience failures. Bimodal noise at 0% results in perfect
alignment for most methods. However, alignment failures occur as noise grows. Figure 3 further
zooms in noise levels in the range of 0% to 5%. FUGAL significantly outperforms all baselines
under one-way noise, achieving a margin of 60% at 3% and 5% levels. Moreover, FUGAL performs

8

superiorly in the bimodal noise within the 5% noise threshold, gaining nearly 40% at 1% and 3%
noise levels. These results underscore the efficacy of FUGAL in handling diverse graph structures.

5.4 Varying Density
Here, we examine performance under varying graph density. In Newmann-Watts graphs, the rewiring
probability parameter p affects the edge density of sampled graphs for a fixed number of nodes n,
while the parameter k, representing the number of nearest neighbors per node, affects the minimum
and expected degree. Figure 4 shows our results when varying p and k in NW graphs comprising 1000
nodes. Methods other than FUGAL consistently fail to handle sparse graphs (low p). However, FUGAL
attains accuracy 92% at p = 0.25, outperforming S-GWL, which achieves only 54%. Sparse graphs
pose a challenge for alignment, as they provide less discriminating evidence in terms of density
differentials. When varying k, FUGAL consistently achieves near-perfect alignment, surpassing
all baselines. These findings corroborate the resilience of FUGAL across graph densities and its
adaptability to varying degrees of connectivity.

0.05 0.15 0.25
0

0.2

0.4

0.6

0.8

1

p

A
cc

ur
ac

y

k = 7

FUGAL CONE IsoRank S-GWL GRAMPA
GRASP-B FAQ PARROT GW FGW

0.2 0.6 1
p

k = 7

20 60 100

k

p = 0.5

Figure 4: Accuracy varying density and one-way noise.

5.5 Efficiency

Here we compare the computational efficiency of FUGAL to that of S-GWL, which ranks as the
second-best performer across most benchmark datasets.

MultiM
agna

Voles

HighSchool

euroroad
arenas

netscience
celegans

NW

ACM-DBLP
10−2
100
102

Dataset

Ti
m

e
(s

ec
)

FUGAL S-GWL

Figure 5: Running time comparison, FUGAL vs S-GWL.

Figure 5 plots running times in logarith-
mic axes. FUGAL achieves lower running
times on MultiMagna, Voles, euroroad,
arenas, and Newmann-Watts networks
with an up to 3x speed up, highlighting its
capacity to handle large networks. Con-
versely, S-GWL marginally outperforms
FUGAL on smaller networks. S-GWL
did not scale for ACM-DBLP, failing to
terminate even after 5 hours. This dis-
crepancy indicates S-GWL’s incapacity
to scale to large networks, which restricts
its broader applicability. We emphasize
that FUGAL achieves a substantial accuracy advantage without compromising efficiency, affirming its
prowess as an efficient and effective solution. Appendix A.2 presents running times for all baselines.

5.6 Scalability

29 210 211 212 213
0
2
4
6
·104

Number of nodes

Ti
m

e
(s

ec
)

FUGAL S-GWL

Figure 6: Scalability on NW graphs, k = 7, p = 0.5.

Given the results of Section 5.5, we delve
into the scalability of FUGAL and S-GWL
with Newmann-Watts graphs of increasing
nodes. Figure 6 plots our findings. At 512
nodes, FUGAL and S-GWL have compa-
rable running times. Still, as nodes grow,
FUGAL outpaces S-GWL.

9

5.7 Parameters and Ablation

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Noise

A
cc

ur
ac

y

inf-euroroad

FUGAL-0 FUGAL-1 FUGAL-2
FUGAL-3 FUGAL-4 FUGAL

0 5 10 15 20 25

Noise

ca-netscience

Figure 7: Accuracy of FUGAL variants, one-way noise.

Table 3 in Appendix lists the parameters
we employ in FUGAL with each dataset.
We set the number of iterations T to 15
for all datasets. The parameter µ con-
trols the sway of node features in the op-
timization. Sparser graphs, characterized
by lower connectivity and less information
in adjacency matrices, benefit from higher
reliance on node features, hence we recom-
mend a higher µ. Sparser datasets such
as inf-euroroad, ca-netscience, and NW
(k = 7, p = 0.1) benefit from higher val-
ues of µ (1–2), denser graphs from smaller
values (0.1–0.5).

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Variant #

A
cc

ur
ac

y

MultiMagna

FUGAL FUGAL-DS

0 5 10 15 20 25

Noise

inf-euroroad

Figure 8: The effect of setting λ = 0 (FUGAL-DS)
against the default option of iteratively increasing.

We also conduct an extensive ablation
study to assess the impact of the structural
features outlined in Section 3.1. We craft
five variants of FUGAL, where FUGAL-i
utilizes only the ith structural feature while
excluding others. FUGAL-0 abstains from
all structural features. Figure 7 juxtaposes
the accuracy of these variants to that of
FUGAL on two networks. Each variant em-
ploying structural features attains higher
accuracy than FUGAL-0, corroborating the
usefulness of these features. Further, FU-
GAL, leveraging all features, outperforms
other variants. Notably, FUGAL-1 performs
second-best, underscoring the significance of degree in identifying node alignments. We also inves-
tigate a variant setting λ = 0, denoted as FUGAL-DS (for doubly stochastic), instead of iteratively
increasing it. As Figure 8 shows, FUGAL-DS attains worse accuracy.

6 Conclusions

We introduced FUGAL, an unrestricted algebraic approach to graph alignment that works directly
on graph adjacency matrices and identifies node correspondences by relaxing permutation matrix
constraints and steering the solution to the desired form, followed by rounding. Through extensive
experimentation, we established that FUGAL surpasses state-of-the-art graph alignment methods
in accuracy across network types, noise conditions, and graph densities, even while maintaining a
scalability advantage.

Broader Impact and Ethical consequences: FUGAL opens the way to improved solutions in graph
alignment, as reflected in its performance across diverse networks, noise types, and graph density.
This outcome can spark further research in optimization techniques and advances in bioinformat-
ics, social network analysis, and infrastructure mapping. Still, advances in graph alignment also
enhance the abilities of attackers attempting to de-anonymize sensitive social network and biological
data. Therefore, preventing attacks on privacy is crucial, calling for the enforcement of advanced
anonymization methods [34] before publishing such data.

7 Acknowledgements

AB was supported by Graviton Research Capital LLP. HRV was supported by the CSE Research
Acceleration Fund of IIT Delhi. KS was supported by the Independent Research Fund Denmark.

10

References
[1] David A. Bader, Henning Meyerhenke, Peter Sanders, and Dorothea Wagner, editors. Graph

Partitioning and Graph Clustering. Proceedings of the 10th DIMACS Implementation Challenge
Workshop., volume 588 of Contemporary Mathematics. American Mathematical Society, 2013.

[2] Michele Berlingerio, Danai Koutra, Tina Eliassi-Rad, and Christos Faloutsos. Network similarity
via multiple social theories. In IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining, pages 1439–1440, 2013.

[3] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge University Press,
2004.

[4] Xiyuan Chen, Mark Heimann, Fatemeh Vahedian, and Danai Koutra. CONE-Align: Consistent
network alignment with proximity-preserving node embedding. In 29th ACM International
Conference on Information and Knowledge Management, CIKM, pages 1985–1988, 2020.

[5] Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. Graph matching appli-
cations in pattern recognition and image processing. In International Conference on Image
Processing, ICIP, pages 21–24, 2003.

[6] L.P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub)graph isomorphism algorithm
for matching large graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence,
26(10):1367–1372, 2004.

[7] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In NeurIPS,
pages 2292–2300, 2013.

[8] Stephen Davis, Babak Abbasi, Shrupa Shah, Sandra Telfer, and Mike Begon. Spatial analyses
of wildlife contact networks. Journal of The Royal Society, Interface, 12(102):20141004, 2015.

[9] Jordi Duch and Alex Arenas. Community detection in complex networks using extremal
optimization. Phys. Rev. E, 72:027104, 2005.

[10] Nadav Dym, Haggai Maron, and Yaron Lipman. DS++: a flexible, scalable and provably tight
relaxation for matching problems. ACM Trans. Graph., 36(6):184:1–184:14, 2017.

[11] Frank Emmert-Streib, Matthias Dehmer, and Yongtang Shi. Fifty years of graph matching,
network alignment and network comparison. Inf. Sci., 346-347:180–197, 2016.

[12] Paul Erdős and Alfréd Rényi. On random graphs I. Publicationes Mathematicae Debrecen,
6:290, 1959.

[13] Zhou Fan, Cheng Mao, Yihong Wu, and Jiaming Xu. Spectral graph matching and regularized
quadratic relaxations: Algorithm and theory. In ICML, volume 119, pages 2985–2995, 2020.

[14] Marcelo Fiori, Pablo Sprechmann, Joshua T. Vogelstein, Pablo Musé, and Guillermo Sapiro.
Robust multimodal graph matching: Sparse coding meets graph matching. In NeurIPS, pages
127–135, 2013.

[15] Julie Fournet and Alain Barrat. Contact Patterns among High School Students. PLOS ONE,
9(9):1–17, 2014.

[16] Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval research
logistics quarterly, 3(1-2):95–110, 1956.

[17] Mark Heimann, Haoming Shen, Tara Safavi, and Danai Koutra. REGAL: representation
learning-based graph alignment. In 27th ACM International Conference on Information and
Knowledge Management, CIKM, pages 117–126, 2018.

[18] Keith Henderson, Brian Gallagher, Lei Li, Leman Akoglu, Tina Eliassi-Rad, Hanghang Tong,
and Christos Faloutsos. It’s who you know: graph mining using recursive structural features.
In 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD, pages 663–671, 2011.

11

[19] Judith Hermanns, Konstantinos Skitsas, Anton Tsitsulin, Marina Munkhoeva, Alexander Kyster,
Simon Nielsen, Alexander M. Bronstein, Davide Mottin, and Panagiotis Karras. Grasp: Scalable
graph alignment by spectral corresponding functions. ACM Trans. Knowl. Discov. Data, 17(4),
feb 2023.

[20] Judith Hermanns, Anton Tsitsulin, Marina Munkhoeva, Alexander M. Bronstein, Davide Mottin,
and Panagiotis Karras. GRASP: graph alignment through spectral signatures. In Web and Big
Data - 5th International Joint Conference, APWeb-WAIM 2021, pages 44–52, 2021.

[21] Petter Holme and Beom Jun Kim. Growing scale-free networks with tunable clustering. Phys.
Rev. E, 65:026107, Jan 2002.

[22] Ehsan Kazemi, S. Hamed Hassani, and Matthias Grossglauser. Growing a graph matching from
a handful of seeds. Proc. VLDB Endow., 8(10):1010–1021, jun 2015.

[23] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR,
2015.

[24] Tjalling C. Koopmans and Martin Beckmann. Assignment problems and the location of
economic activities. Econometrica, 25(1):53–76, 1957.

[25] Oleksii Kuchaiev, Tijana Milenkovic, Vesna Memisevic, Wayne Hayes, and Natasa Przulj.
Topological network alignment uncovers biological function and phylogeny. Nature Precedings,
4, 12 2009.

[26] Harold W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2(1-2):83–97, 1955.

[27] Jérôme Kunegis. KONECT: the Koblenz network collection. In 22nd International World Wide
Web Conference, WWW, pages 1343–1350, 2013.

[28] Jiajin Li, Jianheng Tang, Lemin Kong, Huikang Liu, Jia Li, Anthony Man-Cho So, and Jose
Blanchet. A convergent single-loop algorithm for relaxation of Gromov-Wasserstein in graph
data. In ICLR, 2023.

[29] Vince Lyzinski, Donniell E. Fishkind, Marcelo Fiori, Joshua T. Vogelstein, Carey E. Priebe, and
Guillermo Sapiro. Graph matching: Relax at your own risk. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 38(1):60–73, 2016.

[30] Konstantin Makarychev, Rajsekar Manokaran, and Maxim Sviridenko. Maximum quadratic as-
signment problem: Reduction from maximum label cover and lp-based approximation algorithm.
ACM Trans. Algorithms, 10(4):18:1–18:18, 2014.

[31] Hermina Petric Maretic, Mireille El Gheche, Giovanni Chierchia, and Pascal Frossard. GOT: an
optimal transport framework for graph comparison. In NeurIPS, pages 13876–13887, 2019.

[32] Hermina Petric Maretic, Mireille El Gheche, Giovanni Chierchia, and Pascal Frossard. fGOT:
Graph distances based on filters and optimal transport. In AAAI, pages 7710–7718, 2022.

[33] Mark E. J. Newman. Finding community structure in networks using the eigenvectors of
matrices. Phys. Rev. E, 74:036104, 2006.

[34] Sadegh Nobari, Panagiotis Karras, HweeHwa Pang, and Stéphane Bressan. L-opacity: Linkage-
aware graph anonymization. In 17th International Conference on Extending Database Technol-
ogy, EDBT, pages 583–594, 2014.

[35] Gabriel Peyré, Marco Cuturi, and Justin Solomon. Gromov-Wasserstein averaging of kernel
and distance matrices. In ICML, pages 2664–2672, 2016.

[36] Roded Sharan and Trey Ideker. Modeling cellular machinery through biological network
comparison. Nature Biotechnology, 24:427–33, 05 2006.

[37] Rohit Singh, Jinbo Xu, and Bonnie Berger. Global alignment of multiple protein interaction
networks with application to functional orthology detection. Proceedings of the National
Academy of Sciences, 105(35):12763–12768, 2008.

12

[38] Richard Sinkhorn and Paul Knopp. Concerning nonnegative matrices and doubly stochastic
matrices. Pacific Journal of Mathematics, 21:343–348, 1967.

[39] Konstantinos Skitsas, Karol Orlowski, Judith Hermanns, Davide Mottin, and Panagiotis Karras.
Comprehensive evaluation of algorithms for unrestricted graph alignment. In Proceedings 26th
International Conference on Extending Database Technology, EDBT, pages 260–272, 2023.

[40] Vayer Titouan, Nicolas Courty, Romain Tavenard, Chapel Laetitia, and Rémi Flamary. Optimal
transport for structured data with application on graphs. In ICML, pages 6275–6284, 2019.

[41] Vipin Vijayan and Tijana Milenković. Multiple network alignment via MultiMAGNA++.
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 15(5):1669–1682,
2018.

[42] Joshua T Vogelstein, John M Conroy, Vince Lyzinski, Louis J Podrazik, Steven G Kratzer,
Eric T Harley, Donniell E Fishkind, R Jacob Vogelstein, and Carey E Priebe. Fast approximate
quadratic programming for graph matching. PLOS one, 10(4):e0121002, 2015.

[43] Hongteng Xu, Dixin Luo, and Lawrence Carin. Scalable Gromov-Wasserstein learning for
graph partitioning and matching. In NeurIPS, pages 3046–3056, 2019.

[44] Hongteng Xu, Dixin Luo, Hongyuan Zha, and Lawrence Carin. Gromov-Wasserstein learning
for graph matching and node embedding. In ICML, pages 6932–6941, 2019.

[45] Mikhail Zaslavskiy, Francis Bach, and Jean-Philippe Vert. A path following algorithm for the
graph matching problem. IEEE Transactions on Pattern Analysis and Machine Intelligence,
31(12):2227–2242, 2009.

[46] Zhichen Zeng, Si Zhang, Yinglong Xia, and Hanghang Tong. PARROT: position-aware
regularized optimal transport for network alignment. In ACM Web Conference, WWW, pages
372–382, 2023.

[47] Si Zhang and Hanghang Tong. FINAL: fast attributed network alignment. In 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pages
1345–1354, 2016.

[48] Si Zhang and Hanghang Tong. Attributed network alignment: Problem definitions and fast
solutions. IEEE Transactions on Knowledge and Data Engineering, 31(9):1680–1692, 2019.

[49] Feng Zhou and Fernando De la Torre. Factorized graph matching. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 38(9):1774–1789, 2016.

13

A Appendix

Algorithm 2 FUGAL (G1,G2)
Input: Graphs G1,G2
Output: Permutation matrix P

1: \\ STEP 1. Extract NetSimile Features
2: F1 ← EXTRACTFEATURES(G1)
3: F2 ← EXTRACTFEATURES(G2)
4: D← EUCLEDIANDISTANCE(F1,F2)
5: \\ STEP 2. Approximate Optimization
6: Q← FINDQUASIPERMUTATION(A,B,D, µ, T)
7: \\ STEP 3. Round to Permutation
8: P← HUNGARIAN(Q)
9: returnP

Table 3: Parameters used in FUGAL.
Dataset µ

Arenas 0.5
inf-euroroad 2
bio-celegans 0.1
ca-netscience 1
MultiMagna 0.5
HighSchool 0.5
Voles 0.5
Newmann-Watts 2
ACM-DBLP 0.1

A.1 Complexity Analysis

To assess the computational complexity of FUGAL, we examine the three primary components:
(i) structural feature extraction; (ii) obtaining a quasi-permutation matrix; (iii) rounding to a permu-
tation matrix. Let us consider source and target graphs G1,G2 with n nodes. Among NETSIMILE
structural features, the clustering coefficient incurs a high computational cost of O(nM2), where M
is the maximum degree among vertices in the graph. Still, for real-world graphs conforming to
a power-law degree distribution, the complexity for neighborhood features extraction is expected
to be O(nM ϵ), with 0 < ϵ < 1 [18], while finding pairwise Euclidean distances between node
features takes O(n2). The quasi-permutation matrix derivation involves determining the gradient of
the optimization problem, which requires O(n3) due to matrix multiplications. The Sinkhorn-Knopp
algorithm finds the doubly-stochastic matrix q minimizing ⟨grad, q⟩, is nearly O(n2) [7], while the
update to Q takes O(n2) time. Thus, the time complexity for finding a quasi-permutation matrix
is O(T · n3), where T is the number of iterations. We round the quasi-permutation matrix to a
permutation matrix by the Hungarian algorithm, incurring a time complexity of O(n3). Therefore,
the time complexity of FUGAL is O(T · n3). Empirically, T typically ranges from 10 to 20, resulting
in a cost of O(n3) since T ≪ n. We provide computational costs of baselines in Appendix A.6.
Table 4 compares FUGAL’s computational cost to that of baselines.

A.2 Running times for all baselines

Figure 9 presents the running times of various baselines on the benchmark datasets. It is noteworthy
that while some of these baselines exhibit better running times than FUGAL, the substantial disparity
in accuracy, as previously demonstrated in §. 5, renders a comparison skewed in favor of FUGAL.

A.3 Accuracy on Real Graphs with Synthetic Noise - Low Noise Range

In § 5, we have already demonstrated the superior performance of FUGAL in the presence of noise
levels ranging from 0% to 25%. In this section, we extend the comparison to assess the performance

14

Table 4: Computational Complexity comparison with baselines. n,m denotes the number of nodes
and edges respectively. T, L denote the number of loop iterations.

CONE IsoRank S-GWL GRAMPA GRASP-B FAQ PARROT fGOT GOT FUGAL GW FGW

TimeO(.) n2 n4 (n + m) logn n3 n3 n3 Tmn + TLn2 n3 n3 n3 n3 n3

MultiMagna Voles HighSchool euroroad arenas
10−2
100
102

Ti
m

e
(s

ec
)

FUGAL CONE IsoRank S-GWL GRAMPA GRASP-B
FAQ PARROT fGOT GW FGW

netscience celegans NW ACM-DBLP
10−2

101

104

Dataset

Ti
m

e
(s

ec
)

Figure 9: Running times of all baselines.

of FUGAL and other baseline methods on real datasets with synthetic noise, specifically of One-Way
and Multi-Modal types, within the range of 0% to 5%. The results are presented in Figure 10. On
the inf-euroroad dataset, FUGAL consistently outperforms all baselines across varying noise levels
in both One-Way and Multi-Modal scenarios. For the arenas dataset, FUGAL, CONE, S-GWL,
PARROT, and GW maintain accuracy levels exceeding 95% consistently across all noise levels,
whereas other baselines exhibit a decline in performance with increasing noise levels, particularly
evident in the Multi-Modal scenario. In the case of the ca-netscience dataset, both FUGAL and
S-GWL achieve similar accuracy in both One-Way and Multi-Modal scenarios. On the bio-celegans
dataset, S-GWL closely matches the performance of FUGAL in the One-Way scenario; however,
with Multi-Modal noise, FUGAL achieves a 6% improvement over the next-best method, S-GWL.
The consistent and superior performance of FUGAL across all benchmark datasets underscores its
robustness.

A.4 Evaluation on Small Graphs

To compare the performance of non-scalable methods like GOT, fGOT, PATH and DSPP with FUGAL,
we employed small Erdős-Rényi random graphs [12]. The limited scalability of these methods for
larger graphs is empirically demonstrated in Section 5 (failing to terminate within 5 hours) as well
as evidenced by the maximum graph size evaluated by the authors, which was 100. Following the
methodology of fGOT [32], we varied the node count n from 20 to 100, with edges generated using
a probability of 2 log(n)/n. We also included S-GWL and PARROT in the analysis. The accuracy
of these methods across different graph sizes is depicted in Figure 11. While FUGAL, S-GWL, and
PARROT achieved perfect alignment across all graph sizes, other methods exhibited notably inferior
performance. Following [32], the Frobenius distance between aligned graph Laplacian matrices
across varying graph sizes is also reported in Figure 11. FUGAL, S-GWL, and PARROT maintained
an L2 Distance of 0 across all graph sizes, indicating perfect alignment, whereas the performance of
other methods deteriorated with increasing graph size. These distance values closely align with those
reported by the original authors in [32], validating our experimental setup.

A.5 Additional Metrics

We assess FUGAL against S-GWL and CONE in terms of Matched Neighborhood Consistency
(MNC) [4] and the Frobenius distance between aligned graph adjacency matrices. The results in
Figure 12 indicate that FUGAL outperforms S-GWL and CONE across noise levels and noisy variants.

15

0 1 3 5
0

0.2

0.4

0.6

0.8

1

Noise

A
cc

ur
ac

y
inf-euroroad

FUGAL CONE IsoRank S-GWL GRAMPA GRASP-B
FAQ PARROT fGOT GW FGW

0 1 3 5

Noise

arenas

0 1 3 5

Noise

ca-Netscience

0 1 3 5

Noise

bio-celegans

0 1 3 5
0

0.2

0.4

0.6

0.8

1

Noise

A
cc

ur
ac

y

inf-euroroad

0 1 3 5

Noise

arenas

0 1 3 5

Noise

ca-Netscience

0 1 3 5

Noise

bio-celegans

Figure 10: Accuracy comparison for real datasets with noise ranging from 0% to 5%. Top row
represents One-Way noise, bottom row represents Multi-Modal noise scenarios.

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Graph Size

A
cc

ur
ac

y

FUGAL S-GWL PARROT fGOT GOT DSPP PATH

20 40 60 80 100
0

20

40

60

Graph Size

L
2

D
is

ta
nc

e

Figure 11: Performance comparison on Erdős-Rényi graphs. The performance is shown in terms
of Accuracy (L) and the Frobenius distance between aligned graph Laplacian matrices (R) across
different graph sizes (# of nodes).

A.6 Computational Complexity Analysis of Baselines

The computational costs incurred by the baseline methods and FUGAL are presented in Table 4. It
is notable that all algorithms utilize the Hungarian algorithm to convert the similarity matrix into a
permutation matrix, incurring a computational cost of O(n3). However, the costs reported in Table 4
solely pertain to the computation of the similarity matrix, excluding this operation. Among the
baselines, CONE, S-GWL, and PARROT exhibit superior time complexity compared to FUGAL.
However, as demonstrated in Section 5, both CONE and PARROT fall significantly short of FUGAL in
terms of performance. Despite the seemingly promising computational cost of S-GWL, our empirical
analysis in Sections 5.5 and 5.6 revealed slower running times compared to expectations. Moreover,
S-GWL fails to scale for larger graphs such as ACM-DBLP (failing to terminate within 5 hours),
whereas FUGAL achieves superior accuracy within 40 minutes. The limited scalability of S-GWL has
been underscored by various studies [46, 19, 39, 28]. Consequently, FUGAL emerges as a preferable
option for attaining superior accuracy without incurring detrimental overhead.

16

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Variant #

M
N

C

MultiMagna

FUGAL S-GWL CONE

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1
·104

Variant #

L
2

D
is

ta
nc

e

MultiMagna

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Noise

M
N

C

inf-euroroad

0 5 10 15 20 25
0

1,000

2,000

3,000

4,000

Noise
L

2
D

is
ta

nc
e

inf-euroroad

Figure 12: Comparison of FUGAL with S-GWL and CONE on MultiMagna and inf-euroroad datasets
in terms of Matched Neighborhood Consistency (MNC) (L) and the Frobenius distance between
aligned graph adjacency matrices (R) across different variants and varying noise respectively.

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Time (sec)

A
cc

ur
ac

y

inf-euroroad

0 10 20 30 40 50

Time (sec)

Newmann Watts
FUGAL

C2P3N1000
C2P3N100
C2P3N10
C4P2N1000
C4P2N100
C4P2N10
C8P1N1000
C8P1N100
C8P1N10

Figure 13: Accuracy vs. Running time, FUGAL vs S-GWL variants, one-way noise 5%.

A.7 Accuracy vs Running Time

S-GWL employs a recursive graph partition mechanism to accelerate graph alignment computations.
An important question is how the performance of SGWL is affected by this recursive mechanism
with respect to FUGAL. We have identified that the hyper-parameters cluster_num (C), partition_level
(P), and node_prior (N) significantly influence the recursive partitioning process. Three variants of
S-GWL were proposed by the authors [43] based on different combinations of C and P: (C = 2, P =
3), (C = 4, P = 2), and (C = 8, P = 1). Additionally, we vary the node_prior parameter within the set
{10, 100, 1000}. These combinations result in nine distinct variants of S-GWL, denoted as CxPyNz
where x, y, z represent the values of C, P, and N respectively. We conduct a comparative evaluation of
FUGAL against these nine variants with respect to both accuracy and running times jointly. Figure 13
depict the outcomes on the inf-euroroad and Newmann Watts datasets. For the inf-euroroad dataset,
variants achieving comparable accuracy to FUGAL exhibit significantly higher running times, while
those with lower running times have accuracy less than 20%. In the Newmann Watts dataset, none
of the S-GWL variants approach the accuracy of FUGAL, as previously established in Section 5.
Notably, variants with reasonable accuracy tend to have longer running times, whereas those with
better running times demonstrate poorer accuracy. These findings underscore the practical suitability
of FUGAL for graph alignment, given its favorable balance between accuracy and running times.

17

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Noise
A

cc
ur

ac
y

inf-euroroad

FUGAL FUGAL-I

100 90 80

% of edges

HighSchool

Figure 14: Accuracy, FUGAL vs FUGAL-I, one-way noise.

A.8 Effect of Initialization

Lastly, we empirically examine our decision to employ a non-informative flat doubly stochastic
matrix, denoted as 1 · 1T /n, as the initial quasi-permutation matrix in Algorithm 1, in contrast to
alternatives. We try out a variant of FUGAL, FUGAL-I, which utilizes the Identity matrix as the initial
quasi-permutation matrix instead. Figure 14 presents two instances of our comparative evaluation of
FUGAL-I vs FUGAL. While FUGAL-I closely reaches the accuracy of FUGAL on the inf-euroroad
network, it falls short of FUGAL on the HighSchool network, indicating its instability. These findings
substantiate our selection of the flat doubly stochastic matrix as a robust choice for initialization.

6

32

5 1

4 6

21

4 3

5

matrix Q (Algorithm 1)

matrix Q (Algorithm 1)matrix P (Algorithm 2)

G1 G2

Algorithm 1
End of Iteration 1

λ = 0

End of
Algorithm 1

End of Algorithm 2

0.0051 0.0103 0.4846 0.4846 0.0051 0.0103

0.4761 0.0188 0.0051 0.0051 0.4761 0.0188

0.0188 0.4710 0.0103 0.0103 0.0188 0.4710

0.4761 0.0188 0.0051 0.0051 0.4761 0.0188

0.0051 0.0103 0.4846 0.4846 0.0051 0.0103

0.0188 0.4710 0.0103 0.0103 0.0188 0.4710

1 2 3 4 5 6

1

2

3

4

5

6

~ 0 ~ 0 1 ~ 0 ~ 0 ~ 0

1 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0

~ 0 1 ~ 0 ~ 0 ~ 0 ~ 0

~ 0 ~ 0 ~ 0 ~ 0 1 ~ 0

~ 0 ~ 0 ~ 0 1 ~ 0 ~ 0

~ 0 ~ 0 ~ 0 ~ 0 ~ 0 1

1 2 3 4 5 6

1

2

3

4

5

6

0 0 1 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 0 0 1

1 2 3 4 5 6

1

2

3

4

5

6

Figure 15: Operational stages of FUGAL. Values less than 1e−10 are approximated to 0.

A.9 Illustrative example of FUGAL’s pipeline

We illustrate the functionality of FUGAL through an example in Figure 15. We create a source graph
G1 of 6 nodes and randomly permute it to a target graph G2. We show three stages of FUGAL’s
operation: (1) the doubly stochastic matrix Q, generated after the first iteration of Algorithm 1
(λ = 0); (2) the quasi-permutation matrix Q to which Algorithm 1 (Section 3) steers the doubly
stochastic matrix; (3) the permutation matrix P into which Algorithm 2 refines this quasi-permutation
matrix using the Hungarian algorithm. FUGAL aligns G1 and G2 perfectly.

18

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Sections 3, 4, 5.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section 5, 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

19

Justification: See Sections 2, 3, 4,Appendix A.1.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 5, Appendix 5.7.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

20

Answer: [Yes]

Justification: See Section 5, Appendix 5.7.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section 5, Appendix 5.7.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The error bars are compromising the visual interpretability of the plots due to
the large number of baselines compared against.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: [NA] .

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

22

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA] .

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: See Section 5.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

23

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Link to codebase in Section 5.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA] .
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA] .
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

24

	Introduction and Related Work
	Related Works
	Contributions

	Problem Formulation
	Fugal
	LAP Formulation
	Optimization Problem
	Approximating the Optimization Problem

	Customized Optimization Strategy for Node Alignment
	Experiments
	Datasets
	Experimental Setup
	Accuracy on varying noise
	Varying Density
	Efficiency
	Scalability
	Parameters and Ablation

	Conclusions
	Acknowledgements
	Appendix
	Complexity Analysis
	Running times for all baselines
	Accuracy on Real Graphs with Synthetic Noise - Low Noise Range
	Evaluation on Small Graphs
	Additional Metrics
	Computational Complexity Analysis of Baselines
	Accuracy vs Running Time
	Effect of Initialization
	Illustrative example of Fugal's pipeline

