
FUGAL:
Feature-fortified Unrestricted Graph Alignment

Aditya Bommakanti
IIT Delhi

adityabommakanti2002@gmail.com

Harshith Reddy Vonteri
IIT Delhi

harshithreddyvonteri@gmail.com

Konstantinos Skitsas
Aarhus University

skitsas@cs.au.dk

Sayan Ranu
IIT Delhi

sayanranu@cse.iitd.ac.in

Davide Mottin
Aarhus University
davide@cs.au.dk

Panagiotis Karras
University of Copenhagen & Aarhus University

piekarras@gmail.com

Abstract

The necessity to align two graphs, minimizing a structural distance metric, is
prevalent in biology, chemistry, recommender systems, and social network analysis.
Due to the problem’s NP-hardness, prevailing graph alignment methods follow a
modular and mediated approach, solving the problem restricted to the domain of
intermediary graph representations or products like embeddings, spectra, and graph
signals. Restricting the problem to this intermediate space may distort the original
problem and are hence predisposed to miss high-quality solutions. In this paper,
we propose an unrestricted method, FUGAL, which finds a permutation matrix
that maps one graph to another by directly operating on their adjacency matrices
with judicious constraint relaxation. Extensive experimentation demonstrates that
FUGAL consistently surpasses state-of-the-art graph alignment methods in accuracy
across all benchmark datasets without encumbering efficiency.

1 Introduction and Related Work

Graph alignment seeks to match a pair of graphs to each other, i.e., to correlate nodes of one graph to
those of the other. For instance, biological systems such as protein-protein interaction networks and
gene regulatory networks can be represented as graphs. The alignment of such biological networks
across species reveals orthologous proteins or genes (i.e., homologous genes that evolved from a
common ancestor) and thereby conveys the biological function of uncharted genes in one species
through their better-studied counterparts in another species [37, 36]. The same problem also arises
in other high-impact network science tasks [11], such as identifying users in social networks [22]
and feature matching in computer vision [5, 6]. The problem can be formulated as an instance of
the quadratic assignment problem (QAP) [13, 24] between nodes of the two graphs, which treats the
edges in one graph as units of flow and the edges in the other graph as distances between nodes. This
relation renders the problem APX-hard to approximate even within an approximation factor that
grows linearly with the number of nodes [30, 13].
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1.1 Related Works

Owing to the problem’s hardness, several heuristics have been proposed. Nevertheless, state-of-the-art
graph alignment methods refrain from directly addressing the edge-aware QAP. Instead, they craft
intermediate representations of nodes that allow for the computation of similarities and settle for
solving an assignment problem over those representations. We call these methods mediated due to
their restriction to intermediary graph representations. While the transformation from the original
graph space to an intermediate space enables computational efficiency, the transformation incurs
loss of information. In this work, we propose an unrestricted graph alignment method that avoids
restricting the problem to an intermediate space, while also retaining efficiency. We call our method
“unrestricted” rather than “unmediated” since, while we retain the full graph information in the
core QAP, we also avail of help from mediated representations to solve the QAP. In the subsequent
discussion, we summarize the various mediated and unmediated approaches in the literature.

Mediated Approaches: GWL [44] jointly learns embeddings and alignments using the dissimilarity
notion of Gromov-Wasserstein discrepancy; it estimates distance matrices using the embeddings
when learning the optimal transport, and regularizes the learning of embeddings using the learned
transport. S-GWL [43] addresses the scalability drawback of GWL by adopting a partitioning method
on the input graphs. CONE [4] models intra-network proximity with node embeddings and uses
them to match nodes across networks after aligning embedding subspaces. REGAL [17] identifies
node matchings by greedily aligning their latent feature representations learnt from graph structures.
GRAMPA [13] constructs a similarity matrix as a weighted sum of outer products between all pairs
of eigenvectors of the two graphs. GRASP [20] uses the spectral properties of the graphs grounded on
the eigenvectors of their normalized Laplacian matrices. IsoRank [37] uses neighborhood similarity
to extract structural graph information and recursively updates the score of a node pair using the score
of their neighbors. GRAAL [25] is a greedy alignment method that matches nodes using a similarity
score based on a dictionary of small frequent graph patterns. GOT [31] employs the probabilistic
distribution of smooth graph signals defined with respect to the graph topology, and seeks alignments
by minimizing the distance between these graph signal distributions. fGOT [32] adopts a dissimilarity
metric that aligns two graphs using the probability distribution of data generated via graph filters.
PARROT [46] presents a semi-supervised methodology which encodes graph topology through
random walks with restart (RWR) for a position-aware transport cost and addresses a regularized
Optimal Transport (OT) problem to determine node mappings. GW [35] and FGW [40] compute
Gromov-Wasserstein discrepancy using similarity matrices of shortest path distances between nodes.

Unmediated Approaches: FAQ [42] is an unmediated algorithm that addresses the QAP by relaxing
constraints to attain computational tractability. GLAG [14] proposes a problem formulation that
retains the full graph information and relaxes the permutation constraints. As we will see in § 5, these
methods of relaxing constraints lead to inferior accuracy.

Unrestricted Approaches: In addition to the full graph information, PATH [45] and FGM [49] also
use feature matching, while DSPP [10] employs all-pairs-shortest-paths for graph alignment. We
characterize these methods as unrestricted, since they also avail of help from mediated representations.
As we will see in § 5, these methods are significantly inferior to FUGAL in terms of accuracy.

1.2 Contributions

Optimization problem formulation: We present FUGAL (Feature-fortified Unrestricted Graph
Alignment), a graph alignment method that retains full graph information by integrating the quadratic
assignment problem (QAP) in the optimization objective. To augment quality, we utilize a regularizer
in the form of a linear assignment (LAP) supplement incorporating graph structural features.
Unrestricted solution: FUGAL relaxes the solution space to doubly stochastic matrices and uses a
customized optimization strategy that guides the Frank-Wolfe algorithm [16] through a Sinkhorn
distance objective [7] to steer the resulting doubly stochastic solution towards a quasi-permutation
matrix. We call our approach unrestricted, as it does not rely solely on intermediate representations.
On the other hand, it is not entirely unmediated, as the LAP regularizer using structural features is
mediated. Thereby, we retain the full graph information and also enable mediating representations to
efficiently guide the optimization process and thereby enable both efficacy and tractability.
Experimental evaluation: Through extensive experimentation with real-world and synthetic datasets
across varying graph density and noise levels, we demonstrate that FUGAL outperforms state-of-the-
art graph alignment methods in accuracy without a detrimental efficiency overhead.
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2 Problem Formulation

Definition 2.1. Let G(V, E) denote an unlabelled, undirected graph, where V is the set of nodes each
identified by a number [n] = {1, . . . , n} and E ⊆ V × V is the edge set. The adjacency matrix of G
is A ∈ {0, 1}n×n such that aij = aji = 1 if and only if (i, j) ∈ E .

We denote an all-ones vector as 1, an all-ones square matrix as J, and an all-zero square matrix as O.
The dimensions of entities are inferred from the equations employing them.
Definition 2.2. We denote the set of binary-valued permutation matrices as Pn = {P ∈ {0, 1}n×n :
P1 = 1,P⊤1 = 1} and that of real-valued doubly stochastic matrices as Wn = {W ∈ [0, 1]n×n :
W1 = 1,W⊤1 = 1}.
Definition 2.3. Let A = [aij ]i∈[n],j∈[m] ∈ Rn×m. We denote the Frobenius norm as the entry-wise

2-norm ∥A∥F =
(∑n

i=1

∑m
j=1 |aij |2

)1/2

.

Definition 2.4. We denote the trace of a matrix A as tr(A).
Theorem 2.5. A doubly-stochastic matrix A with tr(A⊤(J−A)) = 0 is a permutation matrix.

Proof. From tr(A⊤(J − A)) = 0 follows that
∑

i

∑
j aij · (1 − aij) = 0. Since A is doubly-

stochastic, 0 ≤ aij ≤ 1 for all i and j. Thus, aij · (1 − aij) ≥ 0 for 1 ≤ i, j ≤ n. Therefore,
aij · (1− aij) = 0 for all i and j. As a consequence, aij ∈ {0, 1} for each i and j. Given that A is
doubly-stochastic and all its entries are either 0 or 1, by Definition 2.2, A is a permutation matrix.

Problem 1 (Unmediated Graph Alignment). Consider two graphs G1 := (V1, E1) and G2 := (V2, E2)
with adjacency matrices A,B respectively. The objective of unmediated graph alignment is to identify
a bijection f : V1 → V2 between the two graphs that minimizes the number of edge disagreements.
Formally, the problem is expressed as:

min
P∈Pn

∥AP−PB∥2F , (1)

where Pn denotes the set of permutation matrices.

The appellation unmediated denotes that we seek a correspondence among nodes without using any
information other than the adjacency matrix. The problem is an instance of the NP-hard quadratic
assignment problem (QAP) [24].

Due to the problem’s hardness, a popular approximation path utilizes intermediaries such as node em-
beddings. A mediated graph alignment is thus expressed as a linear assignment between embeddings
rather than a quadratic assignment between adjacency matrices:

min
P∈Pn

∥E1 −PE2∥2F (2)

where Ek ∈ R|Vk|×F is the embedding matrix of Gk and Ek[i, :] is the F -dimensional vector
representation of node i of Gk. The optimization problem in Equation (2) is a linear assignment
problem (LAP), which is solvable optimally in O

(
N3

)
by the Hungarian algorithm [26], while

sub-optimal solutions reduce complexity to O
(
N2

)
.

Extension to graphs of unequal sizes. Consider two graphs G1 and G2 with node counts n1 and n2,
respectively (n1 < n2). To enable alignment despite the size difference, we augment G1 with (n2−n1)
isolated dummy nodes and discard mappings involving dummy nodes from the output.

3 FUGAL

To design FUGAL, we augment the core QAP of Eq. (1) with a LAP supplement that leverages
simple structural graph features (§ 3.1) to form a unified optimization problem over the set of
permutation matrices Pn (§ 3.2). As this problem is NP-hard, we relax its solution space to the set
of doubly stochastic matrices Wn (§ 3.3), a superset of the set of permutation matrices. We refine the
solution to obtain a quasi-permutation matrix, i.e., almost a permutation matrix, which we adjust to a
permutation matrix that signifies a valid alignment by solving a simple LAP using the Hungarian
algorithm [26]. We dub this approach “unrestricted” as it eschews the information loss incurred by
mediated solutions, which rely solely on intermediary representations. However, we still employ
supplementary mediating representations to ensure tractability and efficiency.
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3.1 LAP Formulation

Here, we formalize the Linear Assignment Problem (LAP), which is auxiliary to our framework.
We construct a node feature vector using four structural features proposed in NETSIMILE [2]. This
includes (1) di, the degree of node vi, (2) ci, the clustering coefficient of vi, (3) d̄Ni

, the mean degree
of vi’s neighbors, (4) and c̄Ni

, the mean clustering coefficient of vi’s neighbours. Other features,
such as betweenness centrality, PageRank, may also be used. Ultimately, the decision resides on the
trade-off between the utility of including these features on alignment quality and the efficiency of
computing these features.

Using these features, we construct a feature matrix Fk ∈ R|Vk|×4 for each graph Gk and, by the
rationale that the structural features of corresponding nodes are similar, we formulate a Linear
Assignment Problem for G1 and G2 as:

min
P∈Pn

∥F1 −PF2∥2F (3)

By the Frobenius norm definition, Eq. (3) is equivalent to:

min
P∈Pn

∑
i

∥F1[i, :]−
∑
j

PijF2[j, :]∥2F (4)

Utilizing the property of permutation matrices that each row contains only one 1, we reformulate
Eq. (4) to:

min
P∈Pn

∑
i,j

Pij∥F1[i, :]− F2[j, :]∥2F = min
P∈Pn

∑
i,j

PijDij (5)

where D is a distance matrix with Dij denoting the squared Euclidean distance between F1[i, :]
and F2[j, :]. Since each row P[i, :] contributes exactly one term to this sum, being the element of D
corresponding to the single 1 entry in P[i, :], the result is equal to the trace of the matrix product:

min
P∈Pn

tr(P⊤D) (6)

3.2 Optimization Problem

Our problem formulation augments the QAP of Eq. (1) with a LAP regularizing term as in Eq. (6):

min
P∈Pn

∥AP−PB∥2F + µ · tr(P⊤D) (7)

where A and B denote the adjacency matrices of G1 and G2, respectively, D follows Eq. (6), and µ
regulates the LAP’s significance; since PP⊤ = I, this is expanded to:

min
P∈Pn

tr(A⊤A) + tr(B⊤B)− 2 tr(APB⊤P⊤) + µ · tr(P⊤D) (8)

equivalently, ignoring constant terms and reversing the sign,

max
P∈Pn

tr(APB⊤P⊤)− µ · tr(P⊤D) (9)

In the case of µ = 0, the first term alone corresponds to the maxQAP problem [30], which is
APX-hard to approximate even within an approximation factor that grows linearly with the number
of nodes. Given this hardness of the QAP alone and the fact that relaxing combinatorial constraints
often results in a substantial deterioration of solution quality, we introduce the LAP regularization to
ground the QAP solution on pragmatic features and thereby guide it, even after we relax combinatorial
constraints.

3.3 Approximating the Optimization Problem

The problem in Eq. (9) is NP-hard, due to the non-convex nature of the space of permutation
matrices [24]. A natural way to overcome this hardness is to enlarge the allowed solution space to the
convex set of doubly stochastic matrices Wn, as considered in FAQ [42]:

min
P∈Wn

− tr(APB⊤P⊤) + µ · tr(P⊤D) (10)
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Algorithm 1 FINDQUASIPERMUTATION
(A,B,D, µ, T )
Input: Adjacency Matrices A,B, Distance matrix D, control param-
eter µ, num iters T
Output: Quasi-Permutation matrix Q
Notation:

f(P) : − tr(APB⊤P⊤) + µ · tr(P⊤D)

g(P) : tr(P⊤(J−P))

1: Q← 1 · 1⊤/n
2: for λ = 0 to T − 1 do
3: for it = 1 to 10 do
4: grad← ∇f(Q) + λ · ∇g(Q)
5: qit ← argminq∈Wn ⟨grad, q⟩ \\ Sinkhorn-Knopp
6: α← 2

2+it

7: Q← Q + α · (qit −Q)
8: end for
9: end for
10: return Q

Since the problem in Eq. (10) calls to minimize
a function subject to linear constraints implied
by P ∈ Wn, the solution can be efficiently
found [3] by algorithms such as Adam [23] and
Frank-Wolfe [16]. The FAQ algorithm [42] follows
such an approach to solve the relaxed optimization
with the Frank-Wolfe algorithm and project the so-
lution back onto Pn, yet addresses exclusively the
first, QAP term in Eq. (10). To further augment
quality, as we elaborate later in Section 5, we in-
clude the LAP term in Eq. (10) and also add a reg-
ularizing term that guides the solution towards a
quasi-permutation matrix. By Theorem 2.5, which
establishes that a doubly-stochastic matrix P with
tr(P⊤(J−P)) = 0 is a permutation matrix, we
rewrite the problem in Eq. (9) as:

min
P∈Wn

− tr(APB⊤P⊤) + µ · tr(P⊤D)

Constraints: tr(P⊤(J−P)) = 0
(11)

and turn the constraint to a regularizer with parameter λ:

min
P∈Wn

− tr(APB⊤P⊤) + µ · tr(P⊤D) + λ · (tr(P⊤(J−P))) (12)

Equivalently, by reformulating the constraints:

min
P

− tr(APB⊤P⊤) + µ · tr(P⊤D) + λ · (tr(P⊤(J−P)))

Constraints: P1 = 1,P⊤1 = 1, 0 ≤ Pij ≤ 1
(13)

We solve the problem in eq. (13) for λ = 0 by the Frank-Wolfe (FW) algorithm [16] with updates
guided by an objective computed via the Sinkhorn-Knopp algorithm [7], due to the computational
efficiency they confer. We use the solution to this optimization problem as a warm start, and refine it
by gradually increasing λ over T iterations, each initiating with the solution obtained in the preceding
one and solving the problem in Eq. (13) by FW. Alg. 1 outlines the process.

Rounding Algorithm: Alg. 1 yields a quasi-permutation matrix Q. Next, to obtain an one-to-one
mapping between nodes of G1 and G2, we need to adjust Q to a permutation matrix by rounding. We
pose this problem as an assignment problem, maximizing the sum of Qij entries selected for rounding
up to 1, while rounding the rest down to 0, and solve it optimally by the Hungarian algorithm [26].
Alg. 2 in the appendix presents the complete FUGAL pseudocode.

4 Customized Optimization Strategy for Node Alignment

In this section, we elucidate the intricacies of Algorithm 1, which derives a quasi-permutation matrix,
focusing on two pivotal steps: (i) initialization of the quasi-permutation matrix; (ii) finding the local
solution for a given λ.

Initialization: Any doubly stochastic matrix is a viable option for initialization. However, we opt for
an uninformative flat matrix, 1 · 1⊤/n. Our empirical observations indicated that this initialization
consistently performs well across diverse datasets, contrary to informative initializations like the
identity matrix, which exhibit inconsistency in performance, as we further elaborate in Section A.8.

Local Solution for a given λ: Given a specific λ, our objective is to solve the optimization problem
of Eq. (13) under linear constraints. To achieve this, we employ the Frank-Wolfe algorithm (FW), a
successive first-order optimization technique devised for solving convex quadratic programs [16].
While FW is a widely utilized solver as a subroutine for QAP algorithms, we tailor its application
to FUGAL. Specifically, each iteration commences from the local solution obtained in the previous
iteration and involves the following steps:
Computing the Gradient: The gradient of the objective function f(P) = − tr(APB⊤P⊤) + µ ·
tr(P⊤D) with respect to P, evaluated at Q, is∇f (Q) = −AQB⊤−A⊤QB+µ ·D. Additionally,
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the gradient of the constraint function g(P) = tr(P⊤(J − P)) with respect to P, evaluated at Q,
is ∇g (Q) = J− 2Q.
Updating Q: A critical step involves determining the doubly-stochastic matrix qit that minimizes the
inner product ⟨grad, q⟩, where grad is the current gradient. Prior work [42] applies the Hungarian
algorithm to obtain a permutation matrix to that end, which, however, may not yield the optimal
answer and incurs O(n3) cost. Contrarily, we obtain a proper doubly stochastic matrix to that end.
Definition 4.1 (Optimal Transport Distance Between r and c). Given a n× n cost matrix M, the
cost of mapping an n-dimensional probability vector r to c, using a transportation matrix (or joint
probability) P is quantified as ⟨P,M⟩. The following problem:

min
P∈U(r,c)

⟨P,M⟩. (14)

is an optimal transport problem between r and c given cost M, where

U(r, c) = {P ∈ Rn×n
+ | P1 = r,P⊤1 = c} (15)

To render this optimal transport objective strictly convex and thus efficiently solvable by the matrix
scaling Sinkhorn-Knopp fixed-point iteration algorithm [38] via matrix-vector products, we regularize
it with an entropic penalty h(P) that yields the Sinkhorn distance objective [7]:

min
P∈U(r,c)

⟨P,M⟩ − 1

κ
h(P) (16)

where h(P) = −
∑n

i,j=1 Pij logPij , κ ∈ (0,∞], which becomes equivalent to the transport distance
for suitably large κ [7]. The method exhibits excellent performance in practice with O(n2) empirical
time complexity.

Setting r and c to 1 (the all-ones vector) in Eq. (15), U(r, c) becomes the space of doubly stochastic
matrices, hence Eq. (14) with M = grad captures our update step objective. Thus, we find the doubly
stochastic matrix qit that minimizes ⟨grad, q⟩ by the Sinkhorn-Knopp algorithm and update Q
as Q← Q+ α · (qit −Q), with the step size α following the conventional choice α = 2/(2 + it).

Complexity Analysis: The complexity of FUGAL is O(n3), which is in line with the majority of the
baselines. A detailed derivation and comparison of FUGAL’s complexity with baselines is provided
in App. A.1.The O(n3) complexity stems from the need to perform matrix multiplications, a core
operation in FUGAL as well as the baselines. A thorough evaluation of empirical running times (§ 5.5)
also demonstrates the practical scalability of FUGAL.

5 Experiments

In this section, we present a comprehensive evaluation of FUGAL vs. state-of-the-art graph alignment
baselines on real and synthetic data sets with varying noise levels.

5.1 Datasets

Real Graphs. Table 1 summarizes the real-world datasets used to benchmark FUGAL.The last three
data sets in the table are evolving graphs mandating challenging ground-truth alignments.

Table 1: Real-graph nodes n, edges m,
and network type.

Dataset n m Type

Arenas [27] 1 133 5 451 communication
inf-euroroad [1] 1 174 1 417 infrastructure
bio-celegans [9] 453 2 025 biological
ca-netscience [33] 379 914 collaboration
ACM [48] 9 872 39 561 citation
DBLP [48] 9 916 44 808 citation
MultiMagna [41] 1 004 8 323 biological
HighSchool [15] 327 5 818 proximity
Voles [8] 712 2 391 proximity

Synthetic Graphs. We employ Newmann-Watts
(NW) [21] graphs, characterized by small-world prop-
erties and a high clustering coefficient. We generate
NW graphs with 1000 nodes, number of neighbors per
node k = 7, and a rewiring probability of p = 0.1. For
each graph, we generate 5 noisy variants, perform align-
ments on each, and report average results. Given the ob-
tained alignment set P and the ground truth set of align-
ments Preal, we calculate accuracy as |P∩Preal|

|P| · 100.

Noise Types. As in prior work [4, 20, 43], we introduce
perturbations to the adjacency matrix by either removing
or adding edges. We employ two noise types: one-way
noise removes edges from the target graph, while bimodal noise removes and restores the same
number of edges.

6



1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

variant #

A
cc

ur
ac

y

MultiMagna

FUGAL CONE IsoRank S-GWL GRAMPA GRASP-B
FAQ PARROT fGOT GW FGW

8090100

% of edges

Voles

8090100

% of edges

HighSchool

Figure 1: Accuracy, real graphs with real noise.

5.2 Experimental Setup
We ran all experiments on a 40-core Intel Xeon E5-2687W CPU machine @3.10GHz with Python im-
plementations of FUGAL1 and competitors;2 the latter include CONE [4], IsoRank [37], S-GWL [43],
GRAMPA [13], GRASP-B [19], FAQ [42], PARROT [46], fGOT [32], GOT [31], GW [35] and
FGW [40]. Due to scalability limitations, we excluded fGOT from consideration for graphs with more
than 1000 nodes, on which it failed to terminate within 5 hours. Moreover, due to the inability of GOT,
PATH, and DSPP to scale for the smallest dataset in our analysis, we assess them separately on smaller
graphs in Appendix A.4. We exclude GWL from evaluation in favor of its scalable and superior
variant, S-GWL [39]. We omit from the comparison algorithms such as GRAAL [25], GLAG [14]
and REGAL [17] due to their inferior performance [39, 29]. As we focus on non-attributed graphs, we
exclude FINAL [47], which is equivalent to IsoRank on graphs without attributes. For the prerequisite
similarity score in IsoRank, we devise a customized weight scheme as sim(u, v) = 1− |du−dv|

max{du,dv} ,
where du = |N(u)| denotes the degree of node u. With all baselines, we use author-recommended
parameters and derive node matchings from similarity scores using the Hungarian algorithm. In
Appendix A.5, we benchmark FUGAL against S-GWL and CONE in terms of Matched Neighborhood
consistency (MNC) [4] and the Frobenius norm between aligned graph adjacency matrices.

5.3 Accuracy on varying noise

Graphs with real Noise: We evaluate all algorithms on accuracy with three real-world networks:
MultiMagna, Voles, and High School. MultiMagna represents a yeast protein-protein interaction
(PPI) network and noisy variants incorporating an additional q% of low-confidence interactions,
with q ∈ {5, 10, 15, 20, 25}. High School and Voles are temporal proximity networks; we align the
last graph version to versions containing 80%, 85%, 90%, and 99% of edges. Figure 1 presents our
results. FUGAL consistently achieves accuracy surpassing its counterparts across all datasets, with
S-GWL being the closest baseline on average. On MultiMagna, FUGAL attains a 4% improvement
over the next best algorithm, S-GWL, on the first graph variant, and this gap steadily increases to 16%
on the last variant. On Voles, CONE and S-GWL follow FUGAL’s accuracy with up to 90% of edges,
yet with 80% of edges, they achieve 83% and 75% accuracy, respectively, vs. 90% of FUGAL. On
the High School network, FUGAL, FAQ and PARROT align graphs perfectly, while S-GWL attains
near-perfect alignment. IsoRank, GRAMPA, GRASP-B fGOT, GW and FGW fall short of FUGAL’s
performance across all three datasets. Despite performing comparably to FUGAL on the HighSchool
dataset, FAQ and PARROT exhibit notably poorer performance on other datasets. The consistently
superior performance of FUGAL underscores its robustness.

Large Real Graphs with Partially Aligned nodes: ACM and DBLP are two co-authorship networks
of the ACM Digital Library and DBLP bibliography. In these networks, nodes represent authors,
and an edge exists between two authors if they have collaborated on at least one publication. Across
both networks, there are 6,325 authors who appear in both. Although both networks are attributed,
we did not incorporate this information in our experiments. Note that S-GWL and GRASP-B are
not scalable for networks of this magnitude, hence omitted from the analysis. Furthermore, the
experiment was conducted in an unsupervised manner, meaning that the methods were not provided
with any prior information regarding node alignment. Our results, detailed in Table 2, showcase

1Code and data at https://github.com/idea-iitd/Fugal.
2Source code from https://github.com/constantinosskitsas/Framework_GraphAlignment.
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Figure 2: Accuracy, one-way (top) & bimodal (bottom) noise.
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the fraction of correctly aligned nodes out of the 6,325 aligned nodes. FUGAL demonstrated a
significant improvement of 30% compared to the closest baseline, CONE. This underscores the
superior scalability of FUGAL without compromising accuracy.

Table 2: Accuracy in alignment across ACM-DBLP.
CONE IsoRank GRAMPA FAQ PARROT GW FGW FUGAL

Accuracy 0.183 0.042 0.011 0.025 0.000 0.028 0.012 0.487

Real Graphs with Injected Noise: Figure 2 illustrates the results on real datasets subject to synthetic
one-way and bimodal noise. Consistent with the trends observed in real noise, FUGAL exhibits
superior performance across all evaluated networks and noise types. This consistent superior
performance of FUGAL establishes it as a robust graph alignment solution. Appendix A.3 zooms
in on the performance of FUGAL vs. baselines with noise levels in the range 0% to 5% to better
highlight the performance superiority of FUGAL.

Synthetic Graphs: Figure 3 portrays accuracy results on Newmann-Watts graphs of 1000 nodes
with node degree k = 7 and rewiring probability p = 0.1 subject to synthetic noise. Under one-way
noise, all methods except CONE and FAQ achieve perfect alignment at 0% noise. With noise of 5%
and 10%, FUGAL attains a 60% and 14% gain, respectively, over the 2nd-best method, S-GWL.
Beyond these noise levels, all methods experience failures. Bimodal noise at 0% results in perfect
alignment for most methods. However, alignment failures occur as noise grows. Figure 3 further
zooms in noise levels in the range of 0% to 5%. FUGAL significantly outperforms all baselines
under one-way noise, achieving a margin of 60% at 3% and 5% levels. Moreover, FUGAL performs
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superiorly in the bimodal noise within the 5% noise threshold, gaining nearly 40% at 1% and 3%
noise levels. These results underscore the efficacy of FUGAL in handling diverse graph structures.

5.4 Varying Density
Here, we examine performance under varying graph density. In Newmann-Watts graphs, the rewiring
probability parameter p affects the edge density of sampled graphs for a fixed number of nodes n,
while the parameter k, representing the number of nearest neighbors per node, affects the minimum
and expected degree. Figure 4 shows our results when varying p and k in NW graphs comprising 1000
nodes. Methods other than FUGAL consistently fail to handle sparse graphs (low p). However, FUGAL
attains accuracy 92% at p = 0.25, outperforming S-GWL, which achieves only 54%. Sparse graphs
pose a challenge for alignment, as they provide less discriminating evidence in terms of density
differentials. When varying k, FUGAL consistently achieves near-perfect alignment, surpassing
all baselines. These findings corroborate the resilience of FUGAL across graph densities and its
adaptability to varying degrees of connectivity.
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Figure 4: Accuracy varying density and one-way noise.

5.5 Efficiency

Here we compare the computational efficiency of FUGAL to that of S-GWL, which ranks as the
second-best performer across most benchmark datasets.
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Figure 5: Running time comparison, FUGAL vs S-GWL.

Figure 5 plots running times in logarith-
mic axes. FUGAL achieves lower running
times on MultiMagna, Voles, euroroad,
arenas, and Newmann-Watts networks
with an up to 3x speed up, highlighting its
capacity to handle large networks. Con-
versely, S-GWL marginally outperforms
FUGAL on smaller networks. S-GWL
did not scale for ACM-DBLP, failing to
terminate even after 5 hours. This dis-
crepancy indicates S-GWL’s incapacity
to scale to large networks, which restricts
its broader applicability. We emphasize
that FUGAL achieves a substantial accuracy advantage without compromising efficiency, affirming its
prowess as an efficient and effective solution. Appendix A.2 presents running times for all baselines.

5.6 Scalability
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Figure 6: Scalability on NW graphs, k = 7, p = 0.5.

Given the results of Section 5.5, we delve
into the scalability of FUGAL and S-GWL
with Newmann-Watts graphs of increasing
nodes. Figure 6 plots our findings. At 512
nodes, FUGAL and S-GWL have compa-
rable running times. Still, as nodes grow,
FUGAL outpaces S-GWL.
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5.7 Parameters and Ablation
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Figure 7: Accuracy of FUGAL variants, one-way noise.

Table 3 in Appendix lists the parameters
we employ in FUGAL with each dataset.
We set the number of iterations T to 15
for all datasets. The parameter µ con-
trols the sway of node features in the op-
timization. Sparser graphs, characterized
by lower connectivity and less information
in adjacency matrices, benefit from higher
reliance on node features, hence we recom-
mend a higher µ. Sparser datasets such
as inf-euroroad, ca-netscience, and NW
(k = 7, p = 0.1) benefit from higher val-
ues of µ (1–2), denser graphs from smaller
values (0.1–0.5).
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Figure 8: The effect of setting λ = 0 (FUGAL-DS)
against the default option of iteratively increasing.

We also conduct an extensive ablation
study to assess the impact of the structural
features outlined in Section 3.1. We craft
five variants of FUGAL, where FUGAL-i
utilizes only the ith structural feature while
excluding others. FUGAL-0 abstains from
all structural features. Figure 7 juxtaposes
the accuracy of these variants to that of
FUGAL on two networks. Each variant em-
ploying structural features attains higher
accuracy than FUGAL-0, corroborating the
usefulness of these features. Further, FU-
GAL, leveraging all features, outperforms
other variants. Notably, FUGAL-1 performs
second-best, underscoring the significance of degree in identifying node alignments. We also inves-
tigate a variant setting λ = 0, denoted as FUGAL-DS (for doubly stochastic), instead of iteratively
increasing it. As Figure 8 shows, FUGAL-DS attains worse accuracy.

6 Conclusions

We introduced FUGAL, an unrestricted algebraic approach to graph alignment that works directly
on graph adjacency matrices and identifies node correspondences by relaxing permutation matrix
constraints and steering the solution to the desired form, followed by rounding. Through extensive
experimentation, we established that FUGAL surpasses state-of-the-art graph alignment methods
in accuracy across network types, noise conditions, and graph densities, even while maintaining a
scalability advantage.

Broader Impact and Ethical consequences: FUGAL opens the way to improved solutions in graph
alignment, as reflected in its performance across diverse networks, noise types, and graph density.
This outcome can spark further research in optimization techniques and advances in bioinformat-
ics, social network analysis, and infrastructure mapping. Still, advances in graph alignment also
enhance the abilities of attackers attempting to de-anonymize sensitive social network and biological
data. Therefore, preventing attacks on privacy is crucial, calling for the enforcement of advanced
anonymization methods [34] before publishing such data.
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A Appendix

Algorithm 2 FUGAL (G1,G2)
Input: Graphs G1,G2
Output: Permutation matrix P

1: \\ STEP 1. Extract NetSimile Features
2: F1 ← EXTRACTFEATURES(G1)
3: F2 ← EXTRACTFEATURES(G2)
4: D← EUCLEDIANDISTANCE(F1,F2)
5: \\ STEP 2. Approximate Optimization
6: Q← FINDQUASIPERMUTATION(A,B,D, µ, T )
7: \\ STEP 3. Round to Permutation
8: P← HUNGARIAN(Q)
9: returnP

Table 3: Parameters used in FUGAL.
Dataset µ

Arenas 0.5
inf-euroroad 2
bio-celegans 0.1
ca-netscience 1
MultiMagna 0.5
HighSchool 0.5
Voles 0.5
Newmann-Watts 2
ACM-DBLP 0.1

A.1 Complexity Analysis

To assess the computational complexity of FUGAL, we examine the three primary components:
(i) structural feature extraction; (ii) obtaining a quasi-permutation matrix; (iii) rounding to a permu-
tation matrix. Let us consider source and target graphs G1,G2 with n nodes. Among NETSIMILE
structural features, the clustering coefficient incurs a high computational cost of O(nM2), where M
is the maximum degree among vertices in the graph. Still, for real-world graphs conforming to
a power-law degree distribution, the complexity for neighborhood features extraction is expected
to be O(nM ϵ), with 0 < ϵ < 1 [18], while finding pairwise Euclidean distances between node
features takes O(n2). The quasi-permutation matrix derivation involves determining the gradient of
the optimization problem, which requires O(n3) due to matrix multiplications. The Sinkhorn-Knopp
algorithm finds the doubly-stochastic matrix q minimizing ⟨grad, q⟩, is nearly O(n2) [7], while the
update to Q takes O(n2) time. Thus, the time complexity for finding a quasi-permutation matrix
is O(T · n3), where T is the number of iterations. We round the quasi-permutation matrix to a
permutation matrix by the Hungarian algorithm, incurring a time complexity of O(n3). Therefore,
the time complexity of FUGAL is O(T · n3). Empirically, T typically ranges from 10 to 20, resulting
in a cost of O(n3) since T ≪ n. We provide computational costs of baselines in Appendix A.6.
Table 4 compares FUGAL’s computational cost to that of baselines.

A.2 Running times for all baselines

Figure 9 presents the running times of various baselines on the benchmark datasets. It is noteworthy
that while some of these baselines exhibit better running times than FUGAL, the substantial disparity
in accuracy, as previously demonstrated in §. 5, renders a comparison skewed in favor of FUGAL.

A.3 Accuracy on Real Graphs with Synthetic Noise - Low Noise Range

In § 5, we have already demonstrated the superior performance of FUGAL in the presence of noise
levels ranging from 0% to 25%. In this section, we extend the comparison to assess the performance
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Table 4: Computational Complexity comparison with baselines. n,m denotes the number of nodes
and edges respectively. T, L denote the number of loop iterations.
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Figure 9: Running times of all baselines.

of FUGAL and other baseline methods on real datasets with synthetic noise, specifically of One-Way
and Multi-Modal types, within the range of 0% to 5%. The results are presented in Figure 10. On
the inf-euroroad dataset, FUGAL consistently outperforms all baselines across varying noise levels
in both One-Way and Multi-Modal scenarios. For the arenas dataset, FUGAL, CONE, S-GWL,
PARROT, and GW maintain accuracy levels exceeding 95% consistently across all noise levels,
whereas other baselines exhibit a decline in performance with increasing noise levels, particularly
evident in the Multi-Modal scenario. In the case of the ca-netscience dataset, both FUGAL and
S-GWL achieve similar accuracy in both One-Way and Multi-Modal scenarios. On the bio-celegans
dataset, S-GWL closely matches the performance of FUGAL in the One-Way scenario; however,
with Multi-Modal noise, FUGAL achieves a 6% improvement over the next-best method, S-GWL.
The consistent and superior performance of FUGAL across all benchmark datasets underscores its
robustness.

A.4 Evaluation on Small Graphs

To compare the performance of non-scalable methods like GOT, fGOT, PATH and DSPP with FUGAL,
we employed small Erdős-Rényi random graphs [12]. The limited scalability of these methods for
larger graphs is empirically demonstrated in Section 5 (failing to terminate within 5 hours) as well
as evidenced by the maximum graph size evaluated by the authors, which was 100. Following the
methodology of fGOT [32], we varied the node count n from 20 to 100, with edges generated using
a probability of 2 log(n)/n. We also included S-GWL and PARROT in the analysis. The accuracy
of these methods across different graph sizes is depicted in Figure 11. While FUGAL, S-GWL, and
PARROT achieved perfect alignment across all graph sizes, other methods exhibited notably inferior
performance. Following [32], the Frobenius distance between aligned graph Laplacian matrices
across varying graph sizes is also reported in Figure 11. FUGAL, S-GWL, and PARROT maintained
an L2 Distance of 0 across all graph sizes, indicating perfect alignment, whereas the performance of
other methods deteriorated with increasing graph size. These distance values closely align with those
reported by the original authors in [32], validating our experimental setup.

A.5 Additional Metrics

We assess FUGAL against S-GWL and CONE in terms of Matched Neighborhood Consistency
(MNC) [4] and the Frobenius distance between aligned graph adjacency matrices. The results in
Figure 12 indicate that FUGAL outperforms S-GWL and CONE across noise levels and noisy variants.
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Figure 10: Accuracy comparison for real datasets with noise ranging from 0% to 5%. Top row
represents One-Way noise, bottom row represents Multi-Modal noise scenarios.
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Figure 11: Performance comparison on Erdős-Rényi graphs. The performance is shown in terms
of Accuracy (L) and the Frobenius distance between aligned graph Laplacian matrices (R) across
different graph sizes (# of nodes).

A.6 Computational Complexity Analysis of Baselines

The computational costs incurred by the baseline methods and FUGAL are presented in Table 4. It
is notable that all algorithms utilize the Hungarian algorithm to convert the similarity matrix into a
permutation matrix, incurring a computational cost of O(n3). However, the costs reported in Table 4
solely pertain to the computation of the similarity matrix, excluding this operation. Among the
baselines, CONE, S-GWL, and PARROT exhibit superior time complexity compared to FUGAL.
However, as demonstrated in Section 5, both CONE and PARROT fall significantly short of FUGAL in
terms of performance. Despite the seemingly promising computational cost of S-GWL, our empirical
analysis in Sections 5.5 and 5.6 revealed slower running times compared to expectations. Moreover,
S-GWL fails to scale for larger graphs such as ACM-DBLP (failing to terminate within 5 hours),
whereas FUGAL achieves superior accuracy within 40 minutes. The limited scalability of S-GWL has
been underscored by various studies [46, 19, 39, 28]. Consequently, FUGAL emerges as a preferable
option for attaining superior accuracy without incurring detrimental overhead.
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Figure 12: Comparison of FUGAL with S-GWL and CONE on MultiMagna and inf-euroroad datasets
in terms of Matched Neighborhood Consistency (MNC) (L) and the Frobenius distance between
aligned graph adjacency matrices (R) across different variants and varying noise respectively.
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Figure 13: Accuracy vs. Running time, FUGAL vs S-GWL variants, one-way noise 5%.

A.7 Accuracy vs Running Time

S-GWL employs a recursive graph partition mechanism to accelerate graph alignment computations.
An important question is how the performance of SGWL is affected by this recursive mechanism
with respect to FUGAL. We have identified that the hyper-parameters cluster_num (C), partition_level
(P), and node_prior (N) significantly influence the recursive partitioning process. Three variants of
S-GWL were proposed by the authors [43] based on different combinations of C and P: (C = 2, P =
3), (C = 4, P = 2), and (C = 8, P = 1). Additionally, we vary the node_prior parameter within the set
{10, 100, 1000}. These combinations result in nine distinct variants of S-GWL, denoted as CxPyNz
where x, y, z represent the values of C, P, and N respectively. We conduct a comparative evaluation of
FUGAL against these nine variants with respect to both accuracy and running times jointly. Figure 13
depict the outcomes on the inf-euroroad and Newmann Watts datasets. For the inf-euroroad dataset,
variants achieving comparable accuracy to FUGAL exhibit significantly higher running times, while
those with lower running times have accuracy less than 20%. In the Newmann Watts dataset, none
of the S-GWL variants approach the accuracy of FUGAL, as previously established in Section 5.
Notably, variants with reasonable accuracy tend to have longer running times, whereas those with
better running times demonstrate poorer accuracy. These findings underscore the practical suitability
of FUGAL for graph alignment, given its favorable balance between accuracy and running times.
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Figure 14: Accuracy, FUGAL vs FUGAL-I, one-way noise.

A.8 Effect of Initialization

Lastly, we empirically examine our decision to employ a non-informative flat doubly stochastic
matrix, denoted as 1 · 1T /n, as the initial quasi-permutation matrix in Algorithm 1, in contrast to
alternatives. We try out a variant of FUGAL, FUGAL-I, which utilizes the Identity matrix as the initial
quasi-permutation matrix instead. Figure 14 presents two instances of our comparative evaluation of
FUGAL-I vs FUGAL. While FUGAL-I closely reaches the accuracy of FUGAL on the inf-euroroad
network, it falls short of FUGAL on the HighSchool network, indicating its instability. These findings
substantiate our selection of the flat doubly stochastic matrix as a robust choice for initialization.
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Figure 15: Operational stages of FUGAL. Values less than 1e−10 are approximated to 0.

A.9 Illustrative example of FUGAL’s pipeline

We illustrate the functionality of FUGAL through an example in Figure 15. We create a source graph
G1 of 6 nodes and randomly permute it to a target graph G2. We show three stages of FUGAL’s
operation: (1) the doubly stochastic matrix Q, generated after the first iteration of Algorithm 1
(λ = 0); (2) the quasi-permutation matrix Q to which Algorithm 1 (Section 3) steers the doubly
stochastic matrix; (3) the permutation matrix P into which Algorithm 2 refines this quasi-permutation
matrix using the Hungarian algorithm. FUGAL aligns G1 and G2 perfectly.
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