

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FACTORIZED GAUSSIAN SPLATTING FOR VIEW-INCONSISTENT DEGRADATIONS

Anonymous authors

Paper under double-blind review

ABSTRACT

Multi-view reconstruction often assumes cross-view appearance consistency, which is violated in the presence of participating medium and sensor artifacts. These view-inconsistent degradations induce distorted geometry and unreliable appearance in scene modeling. In this study, we propose Factorized Gaussian Splatting (F-GS), a unified scene modeling framework that explicitly decomposes the scene into three complementary components: Geometry, Medium, and Residual. The geometry component is stabilized by a lightweight view-aware surface gain and an optional screen-space normal-consistency prior to consolidate scene structure. The medium component is represented by sparse yet large Gaussians to model light attenuation through participating medium. The residual component captures view-dependent sensor noise via residual Gaussians, compensating for sensor-induced variations. This factorization prevents view-inconsistent degradations from contaminating geometry and appearance, enabling more accurate scene modeling. We instantiate and evaluate our F-GS in three representative regimes, thermal long-wave infrared, underwater, and foggy scene, where the view-inconsistencies naturally occur. Our F-GS significantly improves novel-view synthesis quality and geometric accuracy over other baselines. Code and Visualization are available at <https://anonymous.4open.science/r/F-GS-83EE/README.md>.

1 INTRODUCTION

For real-world sensing scenes, such as thermal, underwater, and foggy scans, precise modeling of both geometry and appearance is crucial for emerging applications in robotics, autonomous navigation, and immersive computing. State-of-the-art scene modeling approaches, including Neural Radiance Field (NeRF) Mildenhall et al. (2020) and 3D Gaussian Splatting (3DGS) Kerbl et al. (2023), recover scenes through novel view synthesis (NVS) and achieve high-quality modeling results on RGB imagery. However, these methods implicitly assume clean and cross-view-consistent observations, and consequently fail in scenarios where medium or sensor induces view-inconsistent degradations.

The primary source of failure under view-inconsistent degradations lies in the lack of physically-aware principles to guide scene factorization. Scene modeling approaches, such as NeRF and 3DGS, adopt indiscriminate representations of the scene and enforce multi-view consistency through volume rendering. These methods are vulnerable in view-inconsistent scenarios, where degradations cannot be interpreted as stable geometry or appearance. Specifically, participating medium can attenuate surface radiance, while sensor artifacts introduce stochastic fluctuations. In these cases, indiscriminate modeling without physically-aware factorization neglects the distinct properties of objects, medium, and sensors, often producing distorted geometry, manifested as floating artifacts and depth biases, and unreliable appearance, characterized by meaningless colors and texture shifts as shown in Fig. 1.

In this work, we propose a general framework, termed *Factorized Gaussian Splatting (F-GS)*, for modeling scenes under view-inconsistent degradations. We begin with a path-dependent image formation that explicitly decomposes radiative transfer into surface radiance, medium contributions, and residual sensor noise, thereby enabling physically-aware modeling of light attenuation along the ray. Building upon this formulation, the scene is factorized into three complementary components: **Geometry**, corresponding to surface radiance, represented by compact and high-opacity Gaussians modeling object surfaces; **Medium**, corresponding to medium contributions, represented by large, fixed, and low-opacity Gaussians approximating smooth attenuation and in-scatter; and **Residual**,

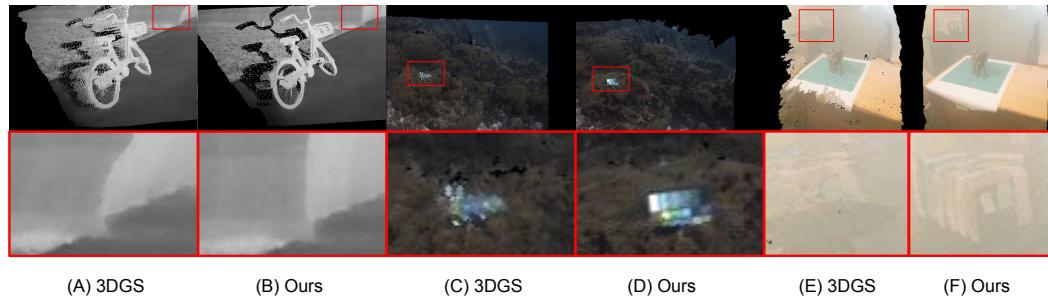


Figure 1: Qualitative reprojection comparison of our **F-GS** vs. **3DGS** under view-inconsistent degradations: **(A–B)** thermal LWIR, **(C–D)** underwater, **(E–F)** fog. We extract the alpha-blended depth from each model and visualize the depth points using ground truth colors from an alternative view. Our F-GS consistently suppresses depth biases and texture shifts compared to 3DGS.

corresponding to sensor noise and view-dependent artifacts, represented by small and low-opacity Gaussians together with a image-plane bias for fixed-pattern noise. To further stabilize geometry modeling, a lightweight *view-aware surface gain* and an optional *normal consistency* prior are further imposed on the geometry component. This factorization explicitly models medium and residual effects, thereby mitigating view-inconsistent degradations and producing sharper surfaces with stable radiance. Our main contributions are as follows:

- We introduce a physically-grounded and path-aware image formation, and propose Factorized Gaussian Splatting (F-GS) that disentangles the scene as Geometry, Medium, and Residual to isolate attenuation, path-radiance, and sensor artifacts.
- We stabilize geometry by coupling bounded-opacity Gaussian with a view-aware gain and, optionally, screen-space normal consistency and a small image-plane bias.
- We demonstrate that this factorization improves geometry fidelity and NVS quality across 3 important domains - thermal, fog and underwater, outperforming prior 3DGS pipelines.

2 RELATED WORK

2.1 MULTI-VIEW RECONSTRUCTION

Classical 3D reconstruction from multi-view images has traditionally relied on the Structure-from-Motion (SfM) Schönberger & Frahm (2016) and Multi-View Stereo (MVS) Schönberger et al. (2016) pipelines. Conventional SfM approaches estimate camera poses and recover sparse 3D structure by performing feature matching and triangulation across multiple views. MVS methods then refine this reconstruction by establishing dense pixel correspondences, typically using patch-based priors, to produce detailed geometric models. A recent trend in 3D reconstruction involves the adoption of volume rendering, which has significantly reshaped the domain of dense reconstruction. NeRF Mildenhall et al. (2020) introduced a neural rendering framework for learning radiance fields as implicit representations tailored for novel view synthesis, while NeuS Wang et al. (2021) extended this paradigm to support accurate multi-view geometry reconstruction. Building on the principles of volume rendering, 3DGS Kerbl et al. (2023) represents scenes as a collection of 3D Gaussians, enabling efficient optimization and real-time rendering through a carefully designed rasterization pipeline. Subsequent work has extended 3DGS to dynamic scenes Wu et al. (2024); Lu et al. (2024b), introduced advanced densification strategies Kim et al. (2024); Kheradmand et al. (2024); Li et al. (2024); Fang & Wang (2024a), and developed acceleration schemes Fan et al. (2024); Fang & Wang (2024b); Chen et al. (2024b); Charatan et al. (2024). In parallel, a growing body of research Guédon & Lepetit (2024); Huang et al. (2024); Yu et al. (2024) has focused on extracting surface meshes through multi-view reconstruction based on 3DGS.

108
109

2.2 PARTICIPATING MEDIUM IN NEURAL RENDERING

110
111
112
113

Participating medium (atmosphere, fog, turbid water) violate the cross-view appearance consistency assumed by standard neural rendering. Along each camera ray, direct radiance is exponentially attenuated and mixed with path radiance (backscatter/veiling), producing depth-dependent, view-inconsistent degradations that confound geometry estimation and radiance disentanglement.

114
115
116
117
118
119
120
121
122

Early efforts extend NeRF by incorporating attenuation and backscattering effects to enable haze, fog, and underwater synthesis, as well as dehazing applications Chen et al. (2023); Ramazzina et al. (2023); Levy et al. (2023). Building on Gaussian splatting, several variants have been proposed: WaterSplatting Li et al. (2025), which combines explicit Gaussian-splat-based geometry with per-pixel volumetric modeling; DehazeGS Yu et al. (2025), designed for multi-view haze removal; and SeaSplat Yang et al. (2025), targeting real-time underwater rendering. More recently, UDR-GS Du et al. (2024) extends this paradigm to dynamic underwater scenes by leveraging 4DGS Wu et al. (2023). While these works target scattering and attenuation, another important source of view-inconsistent degradation arises from thermal imaging through atmosphere.

123
124
125
126
127
128
129
130
131
132
133
134

Thermal computer vision has garnered growing interest in recent years, driven by the need for robust perception under adverse illumination and weather conditions. Recently, a handful of works have begun to apply volume rendering techniques to thermal data. Several studies Ye et al. (2024); Lin et al. (2024) adapt Neural Radiance Fields (NeRF) Mildenhall et al. (2020) to represent thermal scenes as implicit neural representations. Thermal3DGS Chen et al. (2024a) extends 3D Gaussian Splatting Kerbl et al. (2023) to the thermal domain by considering physical and camera effects. Other approaches tackle dynamic thermal sequences Liu et al. (2025) or integrate RGB and thermal modalities to leverage visible-light priors Hassan et al. (2024); Lu et al. (2024a). Existing approaches to thermal novel view synthesis predominantly emphasize image quality, whereas, in robotics applications employing thermal sensors, the primary requirement is accurate geometry. Departing from this trend, our method explicitly accounts for view-inconsistent degradations across observations, thereby facilitating robust geometric reconstruction in addition to high-quality rendering.

135
136

3 METHODOLOGY

137
138

3.1 FACTORIZED SCENE FORMATION

139
140
141
142
143

Preliminary. Gaussian representations model the scene as a collection of 3D Gaussians $\{\mathcal{G}_i \mid i = 1, \dots, N\}$. Each Gaussian \mathcal{G}_i is parameterized by its center $\mu_i \in \mathbb{R}^3$, an opacity $\alpha_i \in [0, 1]$, and a covariance $\Sigma_i = \mathbf{R}_i \text{ diag}(\sigma_i^2) \mathbf{R}_i^\top$, where $\sigma_i \in \mathbb{R}^3$ are axis-aligned standard deviations and \mathbf{R}_i is a rotation matrix derived from a quaternion \mathbf{q}_i . We adopt 3D Gaussians as the fundamental primitives in our pipeline due to their efficiency in scene recovery and ability to support high-fidelity rendering.

144
145
146
147
148
149
150
151
152

View-inconsistent scenarios are cases where the sensor-captured radiance of the same surface point varies across different viewpoints. Such inconsistency introduces significant challenges for scene reconstruction and typically manifests as artifacts such as ghosting, flickering, blurring, or distorted geometry. In the view-inconsistent setting, 3DGS indiscriminately represents the scene with Gaussian primitives and enforces multi-view consistency through volume rendering. To model view-dependent radiance variations, such as those introduced by highly reflective surfaces or camera-induced effects, 3DGS leverages spherical harmonics. This approach is effective for scenarios that do not involve participating medium (*e.g.*, water in underwater scans) or sensor noise (*e.g.*, low-light imaging with a non-ideal camera), such as standard RGB image inputs.

153
154
155
156
157

Problem Formulation. Given a set of N images $\mathcal{I} = \{I_i\}_{i=1}^N$ captured by sensors with known intrinsic and extrinsic parameters under view-inconsistent degradations arising from participating medium and sensor effects, our pipeline is designed to model scenes in these degraded scenarios, simultaneously learning geometry and appearance.

158
159
160
161

A major challenge in modeling view-inconsistent degradations is that scene representations tend to entangle view-dependent effects originating from participating medium and sensor noise. Under real-world degraded conditions, the captured signal I_i from a non-ideal sensor constitutes a path-dependent mixture of radiance originating from both objects and the medium, each with distinct physical properties. Accordingly, the measurement I_i can be expressed as a path-dependent combination of

1) surface radiance, 2) medium contributions (e.g., attenuation, backscatter/veiling, and forward-scatter blur that grows with path length and turbidity or aerosol load), and 3) residual noise (e.g., temporal drift, photo-response non-uniformity, fixed-pattern noise). These components vary across viewpoints due to geometry-, path-, and time-dependent factors, and the use of spherical harmonics within standard Gaussian representations is insufficient to capture such effects. Consequently, vanilla Gaussian representations tend to absorb medium and sensor contributions into the scene model, often resulting in unstable modeling characterized by distorted geometry and unreliable appearance.

Path-Aware Image Formation. To address the aforementioned view-inconsistent degradations, we propose a path-aware image formation as an alternative to the conventional volume rendering formulation Mildenhall et al. (2020), which relies on the assumption of strict view consistency. Our proposed physically informed path-aware formation decomposes each pixel measurement into attenuated surface radiance, accumulated medium radiance, and a residual term capturing forward-scatter blur and sensor noise. By explicitly modeling medium and sensor effects, it enables a clearer separation of geometry and appearance from degraded inputs.

Concretely, we propose our path-aware image formation model inspired by radiative transfer. Given a ray $r(s) = \mathbf{o} + s\mathbf{d}$ with origin \mathbf{o} and direction \mathbf{d} , the observed radiance $I(\mathbf{x}, \omega)$ at pixel \mathbf{x} and view direction ω can be expressed as:

$$I(\mathbf{x}, \omega) = T(d) S(\mathbf{x}, \omega) + \int_0^d T(s) \beta_s(s) J(s, \omega) ds + R, \quad (1)$$

where $S(\mathbf{x}, \omega)$ is the surface radiance at the first surface hit at depth d , β_s is the scattering coefficient, and $J(s, \omega)$ is the in-scattered source radiance. The transmittance can be formulated as:

$$T(s) = \exp\left(-\int_0^s \beta_t(\mathbf{o} + u\mathbf{d}) du\right), \quad \beta_t = \beta_a + \beta_s, \quad (2)$$

where β_a is absorption coefficient, and β_s is scattering coefficient and β_t is extinction coefficient. For simplicity, we adopt a single-scattering effective model for each spectral band c :

$$I_c(\mathbf{x}, \omega) \approx T_c(d) S_c(\mathbf{x}, \omega) + (1 - T_c(d)) M_c(\mathbf{x}, \omega) + R_c(\mathbf{x}, \omega), \quad (3)$$

where S_c models the surface radiance, M_c captures medium contributions, and the residual term R_c represents forward-scatter blur together with sensor noise.

3.2 FACTORIZED SCENE MODELING

Building upon our path-aware image formation, Factorized Gaussian Splatting (F-GS) decomposes the scene into three components: 1) a geometry component S_c that encodes opaque surface appearance tied to the scene geometry (Sec. 3.2.1); 2) a medium component M_c that models transmittance and in-scattered/path radiance along the viewing ray (Sec. 3.2.2); and 3) a residual component R_c that captures view-dependent and sensor-locked artifacts not explained by the first two (Sec. 3.2.3). This factorization explicitly disentangles object surfaces, medium effects, and residual artifacts, thereby facilitating improved geometry and appearance modeling under view-inconsistent degradations.

3.2.1 GEOMETRY MODELING

Vanilla 3DGS implicitly assumes that all view variations arise from stable surface radiance, so every Gaussian is interpreted as geometry. In adverse domains, however, view-inconsistent degradations are spuriously absorbed as geometric structure resulting in unstable reconstructions, such as floaters and fragmented depth, motivating us to constrain geometry to explain only the surface radiance term S_c in Eq. 3 with a set of *Geometry Gaussians* $\mathcal{G}^{\text{geo}} = \{(\mu_i, \theta_i, \alpha_i, \mathbf{c}_i)\}_i$, where (μ_i, Σ_i) are the 3D mean and anisotropic covariance, α_i is opacity, and \mathbf{c}_i are spherical-harmonic (SH) color coefficients for view-dependent surface radiance. Gaussians are initialized from COLMAP SfM points. To stabilize geometry, we parameterize opacity with a bounded sigmoid:

$$\sigma(\theta; a, b) = a + (b - a) \text{sigmoid}(\theta), \quad \alpha_i^{\text{geo}} = \sigma(\theta_i^{\text{geo}}; \alpha_{\min}^{\text{geo}}(t), 1), \quad (4)$$

where $\alpha_{\min}^{\text{geo}}(t)$ is annealed upward over iterations, promoting early translucency for coarse alignment and late saturation for sharp, opaque surfaces. Under front-to-back compositing, semi-transparent

geometry permits a pixel to be partially explained by both a thin front layer (*i.e.*, floaters) and the true surface behind, allowing floaters to persist. Enforcing high opacity induces an occlusion prior: a spurious foreground Gaussian would fully occlude the background and must alone account for the pixel color, which is penalized by the photometric loss. Consequently, such Gaussians are either pruned during training or converge onto the true surface.

View-Aware Surface Gain. Beyond the standard spherical-harmonic view-dependent color used in 3DGs, we introduce a lightweight view-aware surface gain applied to Geometry Gaussians. This module predicts a bounded multiplicative adjustment on the low-order color coefficients, conditioned on a low-frequency spatial code and a compact per-view embedding. Unlike the SH view-dependent color, an empirical low-order expansion of outgoing radiance over direction, our view-aware surface gain (VASG) absorbs view- and capture-specific photometric residuals, such as per-view exposure/white-balance drift, vignetting, sensor gain, and weak scene emission:

$$\tilde{c}_{i,0}(v) = g_{dc}(\mu_i, v) c_{i,0}, \quad (5)$$

The gains are produced by an MLP that takes a low-frequency NeRF-like spatial encoding of the Geometry Gaussians location and a per-view embedding:

$$g_{dc} = \text{MLP} \left(\underbrace{\varphi(\mu_i)}_{\text{LF positional encoding}}, \underbrace{\mathbf{e}(v)}_{\text{per-view embedding}} \right), \quad (6)$$

It serves as a photometric correction that improves robustness to per-view radiometric inconsistencies.

Normal Consistency. In regions with minimal color variation (*e.g.*, textureless surface such as matte walls and uniform ground), pure photometric fitting admits many explanations and tends to fragment geometry or let residuals “explain” shape. We therefore add a geometry-only screen-space depth–normal consistency prior Huang et al. (2024) that biases solutions toward contiguous, near-planar surfaces. Crucially, this prior is computed from the geometry Gaussians alone, medium and residual layers do not contribute, so it cannot be satisfied by haze/airlight or sensor noise and thus supplies floater-free geometric supervision. Among photometrically similar fits, the prior selects low-curvature, coherent geometry rather than residual-compensated fragments. In practice it complements our opacity annealing and residual opacity bound to assign low-frequency surfaces to the geometry layer. Let $w_i(\mathbf{p})$ be the *geometry-only* blending weights at pixel \mathbf{p} . The depth induced unit normal are $\mathbf{N}(\mathbf{p})$ = computed form $D(\mathbf{p}) = \sum_{i \in \mathcal{G}^{\text{geo}}} w_i(\mathbf{p}) z_i$, where z_i is the depth of Gaussian i . Let \mathbf{n}_i denote the normal of splat i (from its anisotropy or a local plane fit). We minimize the following alignment loss:

$$\mathcal{L}_{\text{nc}} = \sum_{\mathbf{p}} \sum_i w_i(\mathbf{p}) (1 - \mathbf{n}_i^\top \mathbf{N}(\mathbf{p})). \quad (7)$$

The extra geometry-only rasterization adds modest overhead and may slightly lower image-space metrics by preferring geometric regularity; we enable it when accurate, complete geometry is prioritized over small photometric gains. Having restricted geometry to the S_c in Eq. 3, the remaining view-inconsistent energy must be explained by the path-radiance M_c accumulated along the ray and a residual term R_c . We next model these two components in the same Gaussian rendering framework.

3.2.2 MEDIUM MODELING

Haze, path radiance, and distance-dependent attenuation have no dedicated carrier in conventional splatting, so they are inadvertently baked into surface. Scattering and attenuation then bias depth and color, entangling medium behavior with geometry. We therefore introduce a dedicated medium layer whose rendering follows physical transmittance. To account for the path-radiance term M_c and its attenuation T_c , we align Gaussian alpha compositing with physical transmittance. Consider a camera ray partitioned into segments $\{m\}$, with optical thickness $\Delta\kappa_m \approx \int_{t_{m-1}}^{t_m} \beta(r(s)) ds$, and per-segment opacity $\alpha_m \triangleq 1 - \exp(-\Delta\kappa_m)$, yields the standard front-to-back transmittance after M segments:

$$T_M = \prod_{m=1}^M (1 - \alpha_m) = \exp \left(- \sum_{m=1}^M \Delta\kappa_m \right) \xrightarrow{\Delta t \rightarrow 0} \exp \left(- \int_0^d \beta(r(s)) ds \right), \quad (8)$$

which matches Eq. 2. With opacity encoding optical thickness, alpha compositing consistently discretizes transmittance, motivating medium Gaussians with small opacity and per-band path-radiance. We introduce a set of *Medium Gaussians* $\mathcal{G}^{\text{med}} = \{(\mu_j, \Sigma_j, \theta_j^{\text{med}}, \mathbf{c}_j)\}_{j=1}^{N_{\text{med}}}$, with 3D mean μ_j , anisotropic covariance Σ_j , and a per-band SH path-radiance color vector \mathbf{c}_j . To stabilize learning and enforce the *small optical-thickness* regime, we map raw parameters through a bounded sigmoid:

$$\alpha_j^{\text{med}} = \sigma(\theta_j^{\text{med}}; \alpha_{\min}^{\text{med}}, \alpha_{\max}^{\text{med}}), \quad 0 < \alpha_{\min}^{\text{med}} \leq \alpha_{\max}^{\text{med}} \ll 1. \quad (9)$$

Medium Gaussians are initialized as large, sparse whose centers are uniformly sampled inside an *expanded* SfM bounding box. To reduce degeneracy with surfaces, we fix their centers during training and only learn scales, colors, and opacities.

3.2.3 RESIDUAL MODELING

Regions with minimal color variation (*i.e.*, textureless and ambiguous regions) are prone to overfitting: if every deviation is forced into surfaces, depth becomes unstable. Moreover, conventional splatting has no image-plane pathway for sensor-locked artifacts, causing them to leak into the 3D. We therefore introduce a residual channel that absorbs small discrepancies without competing for occlusion, implicitly preserving a sensible depth prior for geometry. The residual term in Eq. 3, denoted R_c , aggregates effects that are neither surface locked nor well explained by a thin participating medium-most notably forward-scatter blur that varies with path length and sensor-locked patterns (*e.g.*, PRNU/DSNU, banding). To model these in their appropriate domains, we decompose R_c into two complementary parts, world-space residual Gaussians and image-plane bias.

World-Space Residual Gaussians. We assign weak and view-dependent perturbations that parallax with the scene to a set of *Residual Gaussians*. These Gaussians are initialized from input SfM points. To ensure they act only as small additive corrections and cannot compete with surfaces, we tightly bound their opacity as:

$$\alpha^{\text{res}} = \sigma(\theta^{\text{res}}; 0, \alpha_{\max}^{\text{res}}), \quad \alpha_{\max}^{\text{res}} \ll 1. \quad (10)$$

Separating these low-opacity splats from geometry is key to eliminating floaters while maintaining high-fidelity rendering. Residual Gaussians are composited in world space together with geometry and medium, contributing only small and view-dependent perturbations to the radiance.

Image-Plane Bias. Complementing the world-space residuals, we model sensor-locked, non-parallaxing artifacts with a *view-independent* additive field $R_{\text{fpn}} : \Omega \rightarrow \mathbb{R}$ with $\Omega = \{0, \dots, H-1\} \times \{0, \dots, W-1\}$. For pixel $(u, v) \in \Omega$,

$$R_{\text{fpn}}(u, v) = a_{\text{row}}[v] + a_{\text{col}}[u] + \sum_{k=0}^{K_h-1} \sum_{\ell=0}^{K_w-1} c_{k\ell} \phi_{k\ell}(u, v), \quad (11)$$

where $a_{\text{row}}[v] \in \mathbb{R}$ and $a_{\text{col}}[u] \in \mathbb{R}$ parameterize vertical/horizontal striping, and $c_{k\ell} \in \mathbb{R}$ are coefficients of the truncated low-frequency basis $\{\phi_{k\ell}\}$. The basis functions $\phi_{k\ell}$ are orthonormal 2D DCT-II, modes on Ω , $\phi_{k\ell}(u, v) = \cos\left(\frac{\pi}{H}(u + \frac{1}{2})k\right) \cos\left(\frac{\pi}{W}(v + \frac{1}{2})\ell\right)$, so keeping only $K_h \times K_w$ low-frequency terms compactly captures slowly varying bias fields. Let $I_{\text{world}}(u, v)$ denote the world-space composite (geometry, medium, residual Gaussians). The final pixel is formulated as:

$$I_{\text{final}}(u, v) = I_{\text{world}}(u, v) + R_{\text{fpn}}(u, v), \quad (12)$$

assigning non-parallaxing structure to R_{fpn} while view-dependent fluctuations remain in world space.

3.3 FACTORIZED SCENE RECOVERY

Densification. Building on 3DGS Kerbl et al. (2023) and 3DGS-MCMC Kheradmand et al. (2024), we use a lightweight *opacity-aware* scheme: per-splat opacity drives pruning and duplication (prune persistently low-opacity, low-visibility splats; duplicate high-opacity ones to add local capacity), avoiding maintaining Monte Carlo states. To keep the decomposition flexible, we periodically reset all *geometry* opacities to 0.5 and add a tiny zero-mean jitter to them, preventing premature saturation and improving responsiveness to gradients. The same prune/duplicate rule applies to *residual* Gaussians; *medium* Gaussians are only pruned according to visibility to avoid degeneracy with surfaces.

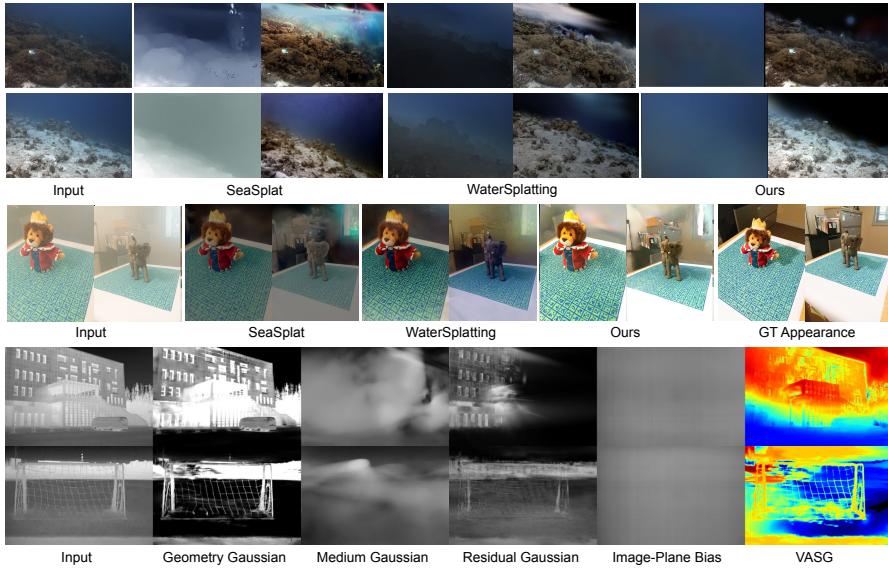


Figure 2: Qualitative visualization of Top: restoration on underwater scene. Middle: dehazing on fog scene. Bottom components visualization for F-GS in thermal where VASG are normalized in Jet.

Optimization. The three Gaussian families are composited front-to-back within the 3DGS rasterizer. Our objective combines photometric losses with regularization and (optionally) geometry priors:

$$\mathcal{L}_{\text{total}} = (1 - \lambda_{\text{D-SSIM}}) \mathcal{L}_1 + \lambda_{\text{D-SSIM}} \mathcal{L}_{\text{D-SSIM}} + \mathcal{L}_{\alpha} + \mathcal{L}_{\text{scale}} + \lambda_{\text{NC}} \mathcal{L}_{\text{NC}}. \quad (13)$$

Here, \mathcal{L}_1 and $\mathcal{L}_{\text{D-SSIM}}$ measure photometric fidelity; \mathcal{L}_{α} and $\mathcal{L}_{\text{scale}}$ follow 3DGS-MCMC and regularize opacity and Gaussian extent; and \mathcal{L}_{NC} is the normal consistency term that promotes contiguous, low-curvature geometry. The weights $\lambda_{\text{D-SSIM}}$ and λ_{NC} balance perceptual and geometric regularity.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate F-GS on public benchmarks covering thermal, underwater, and foggy scenarios: **TI-NSD** Chen et al. (2024a) for thermal multi-view, **SeaThru-NeRF** Levy et al. (2023) for underwater scenes, and **DehazeNeRF** Chen et al. (2023) for fog. **TI-NSD** is a real-world, thermal-only dataset captured with 360° multi-view trajectories. We use scenes with valid COLMAP reconstructions from both the indoor and outdoor subsets, excluding scenes where pose recovery fails to ensure fairness. **SeaThru-NeRF** provides four real multi-view underwater scenes, each with approximately 30 RGB images. **DehazeNeRF** contains real indoor captures with hazy and clear images, about 60 hazy views and 80 clear views per scene. Only hazy images are used for experiments

Implementation Details. Following prior work, we reuse poses/initialization when available; images are downsampled to 400–800 px. Our F-GS is implemented on top of the gsplat rasterizer Ye et al. (2025). On an RTX 4090, F-GS trains 15 min per TI-NSD scene (24 min w. \mathcal{L}_{NC}), faster than Thermal3DGS (40 min) and moderately slower than MCMC (9 min). More implementation detail and parameters for densification strategy see appendix and repo.

Metrics. For novel-view synthesis, we report PSNR, SSIM, and LPIPS to assess rendering fidelity, following prior work by using every 8th image for evaluation. For geometry, we adopt a reprojection-error metric computed from rendered depth maps.

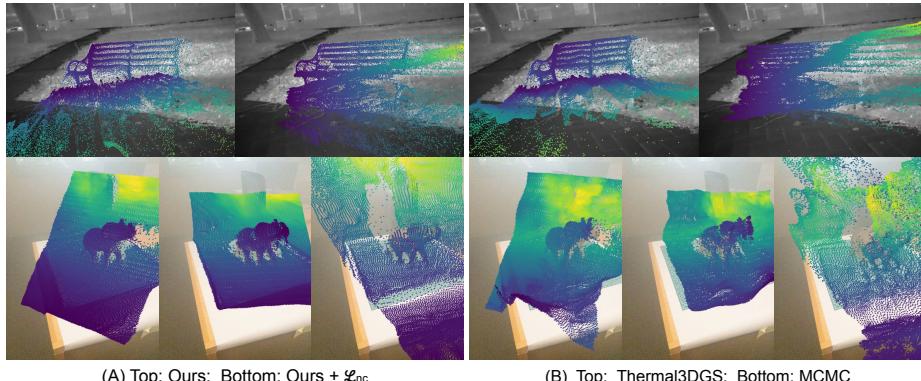
4.2 EXPERIMENTAL RESULTS

Novel-View Synthesis. Table 1 reports *quantitative* results on TI-NSD Chen et al. (2024a), comparing our method against Thermal3DGS Chen et al. (2024a), 3DGS, and 3DGS-MCMC. Our approach attains the best average PSNR and LPIPS, and ranks top-2 on SSIM across all scenes, indicating

378 superior fidelity and perceptual quality. MCMC achieves competitive (often best) SSIM on some
 379 scenes, consistent with its use of numerous low-opacity splats to fit fine detail and sensor noise, but
 380 this tends to trade off geometric regularity. Table 3 summarizes *quantitative* results on underwater and
 381 fog scenes. We compare against Watersplattting Li et al. (2025), SeaSplat Yang et al. (2025), 3DGS,
 382 3DGS-MCMC, and RestorGS Qiao et al. (2025). Our method attains the best or second best scores on
 383 nearly all sequences. Watersplattting, which uses an MLP to parameterize the participating medium,
 384 also performs strongly. In contrast, methods that model only attenuation (SeaSplat, RestorGS) trail
 385 in novel-view metrics, underscoring the benefit of explicitly modeling path radiance and residuals.
 386 Fig. 2 provide a visualization of the rendering including restoration, dehazing, and the factorization
 387 of each component.

388 **Geometry Evaluation.** We measure geometric consistency via a reprojection test. We render alpha
 389 blended depths and then back-project each valid pixel at depth $D(\mathbf{p})$ to 3D and re-project it into the
 390 image plane of the k -th preceding frame; The detailed definition is in the Appendix.

391 We report results on thermal sequences only: strong participating medium in fog/underwater scenes
 392 introduce path-dependent blur and airlight that violate the pinhole reprojection assumption, making
 393 correspondence unreliable. As shown in Table 2, our factorized, geometry-only depth yields the lowest
 394 errors for $k \in \{10, 15, 20\}$; adding the normal-consistency prior further reduces RE_k , indicating
 395 crisper, more stable geometry. We also visualize the projected depth point in Fig. 3, results indicating
 396 our method generate crisper, more stable geometry.



411 Figure 3: Qualitative depth projection analysis. We obtain alpha-blended depths from multi views
 412 and project the resulting depth points onto a reference frame. Color indicates estimated depth in
 413 plasma; Perfect projection should align precisely with the object. Misalignment between projected
 414 points and the silhouette indicates reconstruction errors.

416 Table 1: Quantitative thermal rendering comparison on the TI-NSD dataset. Higher is better for
 417 **PSNR** and **SSIM** (\uparrow), and lower is better for **LPIPS** (\downarrow). Top 2 methods are colored with Red and
 418 Orange.

Metric	Method	Bicycle	Bridge	Car	Chair	Standing	Sitting	Goal	Building	Avg.
PSNR \uparrow	3DGS	32.88	30.23	32.09	32.85	36.38	36.63	35.09	34.07	33.78
	Thermal3DGS	32.68	30.05	31.91	33.23	37.32	37.86	34.27	33.71	33.88
	MCMC	33.06	31.43	34.78	32.84	35.98	36.40	35.82	34.28	34.33
	Ours.w. \mathcal{L}_{nc}	34.05	31.78	35.03	33.72	37.83	38.02	35.70	34.69	35.10
	Ours	34.27	32.06	35.15	33.88	36.97	38.18	35.78	34.79	35.13
SSIM \uparrow	3DGS	0.953	0.922	0.940	0.937	0.967	0.968	0.957	0.946	0.949
	Thermal3DGS	0.952	0.911	0.939	0.937	0.968	0.970	0.952	0.945	0.947
	MCMC	0.955	0.930	0.961	0.943	0.968	0.969	0.962	0.947	0.954
	Ours.w. \mathcal{L}_{nc}	0.957	0.925	0.957	0.941	0.969	0.971	0.959	0.950	0.953
	Ours	0.958	0.926	0.958	0.941	0.968	0.971	0.959	0.950	0.954
LPIPS \downarrow	3DGS	0.165	0.200	0.198	0.164	0.219	0.209	0.171	0.143	0.184
	Thermal3DGS	0.175	0.217	0.202	0.171	0.221	0.213	0.192	0.152	0.193
	MCMC	0.177	0.206	0.177	0.165	0.224	0.228	0.164	0.149	0.187
	Ours.w. \mathcal{L}_{nc}	0.169	0.197	0.177	0.163	0.223	0.215	0.159	0.136	0.180
	Ours	0.162	0.189	0.174	0.161	0.219	0.209	0.155	0.134	0.175

432 Table 2: Mean reprojection error to the k th preceding views ($RE_k \downarrow$) for each scene in TI-NSD.
433

Metric	Method	Bicycle	Bridge	Car	Chair	Standing	Sitting	Goal	Building	Avg.
RE ₂₀ \downarrow	3DGS	29.38	28.61	34.65	31.88	31.05	34.09	22.28	25.98	29.74
	Thermal3DGS	26.39	23.94	31.92	29.11	30.56	34.21	20.67	20.28	27.14
	MCMC	25.18	21.91	25.08	28.79	30.62	32.59	16.86	16.58	24.70
	Ours	24.32	21.50	23.22	28.25	27.68	30.67	17.32	15.77	23.59
	Ours.w. \mathcal{L}_{nc}	22.57	19.96	22.34	26.50	27.40	29.92	16.04	14.49	22.40
RE ₁₅ \downarrow	3DGS	26.21	26.30	30.31	27.69	28.21	30.60	20.01	25.25	26.82
	Thermal3DGS	23.18	21.79	27.64	25.19	27.74	30.23	18.04	18.81	24.08
	MCMC	21.97	20.01	21.47	24.96	27.73	28.92	14.91	15.06	21.88
	Ours	21.55	19.76	20.10	24.75	25.28	28.59	15.16	14.41	21.20
	Ours.w. \mathcal{L}_{nc}	19.59	18.33	19.30	23.05	24.93	27.49	14.12	13.26	20.01
RE ₁₀ \downarrow	3DGS	29.38	28.61	34.65	31.88	31.05	34.09	22.28	25.98	29.74
	Thermal3DGS	26.39	23.94	31.92	29.11	30.56	34.21	20.67	20.28	27.14
	MCMC	25.18	21.91	25.08	28.79	30.62	32.59	16.86	16.58	24.70
	Ours	24.32	21.50	23.22	28.25	27.68	30.67	17.32	15.77	23.59
	Ours.w. \mathcal{L}_{nc}	16.10	15.81	15.10	18.45	21.58	22.40	11.79	11.17	16.55

446 Table 3: Quantitative comparison in underwater and fog. (metrics: PSNR \uparrow , SSIM \uparrow , LPIPS \downarrow).
447

Method	IUI3 Red Sea			Curacao			J.G. Red Sea			Panama			Elephant(fog)			Lion(fog)		
	PSNR	SSIM	LPIPS	PSNR	SSIM	LPIPS	PSNR	SSIM	LPIPS	PSNR	SSIM	LPIPS	PSNR	SSIM	LPIPS	PSNR	SSIM	LPIPS
3DGS	26.19	0.936	0.033	30.17	0.926	0.085	21.28	0.849	0.096	30.62	0.940	0.034	30.34	0.877	0.221	29.90	0.918	0.146
MCMC	31.13	0.957	0.017	30.43	0.933	0.061	23.05	0.879	0.067	31.77	0.949	0.030	33.64	0.891	0.191	32.90	0.931	0.121
Watersplatting	30.14	0.948	0.019	33.28	0.958	0.039	24.58	0.896	0.049	30.65	0.930	0.031	33.42	0.920	0.217	33.44	0.944	0.122
Seasplat	29.13	0.950	0.024	30.94	0.935	0.077	23.13	0.881	0.078	27.80	0.914	0.059	27.93	0.861	0.202	27.42	0.883	0.163
RestorGS	29.97	0.952	0.028	31.95	0.944	0.055	24.05	0.882	0.071	30.79	0.932	0.046	-	-	-	-	-	-
Ours	31.61	0.952	0.024	34.76	0.964	0.037	23.31	0.885	0.061	32.23	0.952	0.025	33.95	0.893	0.177	33.47	0.929	0.119

454 Table 4: Independent ablation on TI-NSD (thermal) and SeaThru-NeRF (underwater)
455

	TI-NSD						Seathru-NeRF					
	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	RE ₂₀ \downarrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	PSNR \uparrow	SSIM \uparrow
Ours	35.13	0.954	0.175	23.59	30.48	0.938	0.037					
w.o. View-aware surface gain	34.83	0.953	0.184	23.75	29.87	0.936	0.038					
w.o. Image-plane bias	34.64	0.952	0.179	23.65	30.41	0.937	0.037					
w.o. Residual Geometry factorization	35.07	0.953	0.177	24.55	29.39	0.931	0.039					
w.o. Medium modeling	35.11	0.954	0.177	24.02	29.76	0.935	0.039					

463 **Ablation Study.** We perform an *independent* ablation on TI-NSD (thermal) and SeaThru-NeRF (underwater). Starting from the full model (**Ours**), we remove: (i) the *view-aware surface gain* (VASG) in geometry, (ii) the *view-independent image-plane bias*, (iii) the *residual/geometry factorization* (bounded opacities), and (iv) *medium modeling*. Removing the view-aware surface gain hurts perceptual quality the most, confirming it's what keeps appearance consistent across viewpoints. Skipping the image-plane bias causes small but reliable declines, suggesting it quietly soaks up sensor-locked artifacts without interfering with geometry. Turning off the residual/geometry factorization makes geometry less stable under reprojection, which shows that separating residuals from surfaces is key to clean depth. Dropping medium modeling matters little on thermal scenes but clearly degrades underwater performance, where path radiance and attenuation are stronger.

5 CONCLUSION

476 In this work, we present Factorized Gaussian Splatting (F-GS), a physically motivated scene modeling
477 framework designed to handle view-inconsistent degradations arising from participating medium and
478 sensor noise. Our framework decomposes a scene into three complementary components: Geometry,
479 which consolidates scene structure while isolating it from degradations; Medium, which models
480 light attenuation through participating medium; and Residual, which compensates for sensor-induced
481 variations. By disentangling geometry, medium, and residual contributions, F-GS transforms real-
482 world and view-inconsistently degraded inputs into a consistent scene representation. We evaluate
483 F-GS across thermal, underwater, and foggy benchmarks. Our approach demonstrates substantial
484 improvements in both novel-view synthesis quality and geometric stability compared to baseline
485 methods. These results establish a significant step toward physically-aware scene modeling within
486 the paradigm of 3D Gaussian Splatting.

486 REFERENCES
487

488 David Charatan, Sizhe Li, Andrea Tagliasacchi, and Vincent Sitzmann. pixelsplat: 3d gaussian splats
489 from image pairs for scalable generalizable 3d reconstruction. In *CVPR*, 2024.

490 Qian Chen, shihao Shu, and Xiangzhi Bai. Thermal3d-gs: Physics-induced 3d gaussians for thermal
491 infrared novel-view synthesis. In *European Conference on Computer Vision*, 2024a.

492 Wei-Ting Chen, Wang Yifan, Sy-Yen Kuo, and Gordon Wetzstein. Dehazenerf: Multiple image
493 haze removal and 3d shape reconstruction using neural radiance fields, 2023. URL <https://arxiv.org/abs/2303.11364>.

494 Yuedong Chen, Haofei Xu, Chuanxia Zheng, Bohan Zhuang, Marc Pollefeys, Andreas Geiger, Tat-Jen
495 Cham, and Jianfei Cai. Mvsplat: Efficient 3d gaussian splatting from sparse multi-view images.
496 *ECCV2024*, 2024b.

497 Yu Du, Zhisheng Zhang, Peng Zhang, Fuchun Sun, and Xiao Lv. Udr-gs: Enhancing underwater
498 dynamic scene reconstruction with depth regularization. *Symmetry*, 16:1010, 2024.

499 Zhiwen Fan, Wenyan Cong, Kairun Wen, Kevin Wang, Jian Zhang, Xinghao Ding, Danfei Xu, Boris
500 Ivanovic, Marco Pavone, Georgios Pavlakos, Zhangyang Wang, and Yue Wang. Instantsplat:
501 Unbounded sparse-view pose-free gaussian splatting in 40 seconds, 2024.

502 Guangchi Fang and Bing Wang. Mini-splatting: Representing scenes with a constrained number of
503 gaussians. In *European Conference on Computer Vision*, pp. 165–181. Springer, 2024a.

504 Guangchi Fang and Bing Wang. Mini-splatting2: Building 360 scenes within minutes via aggressive
505 gaussian densification. *arXiv preprint arXiv:2411.12788*, 2024b.

506 Antoine Guédon and Vincent Lepetit. Sugar: Surface-aligned gaussian splatting for efficient 3d mesh
507 reconstruction and high-quality mesh rendering. *CVPR*, 2024.

508 Mariam Hassan, Florent Forest, Olga Fink, and Malcolm Mielle. Thermonerf: Multimodal neural
509 radiance fields for thermal novel view synthesis. *arXiv preprint arXiv:2403.12154*, 2024.

510 Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and Shenghua Gao. 2d gaussian splatting for
511 geometrically accurate radiance fields. In *SIGGRAPH 2024 Conference Papers*. Association for
512 Computing Machinery, 2024. doi: 10.1145/3641519.3657428.

513 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting
514 for real-time radiance field rendering. *ACM Transactions on Graphics*, 42(4), July 2023.

515 Shakiba Kheradmand, Daniel Rebain, Gopal Sharma, Weiwei Sun, Jeff Tseng, Hossm Isack,
516 Abhishek Kar, Andrea Tagliasacchi, and Kwang Moo Yi. 3d gaussian splatting as markov chain
517 monte carlo, 2024.

518 Sieun Kim, Kyungjin Lee, and Youngki Lee. Color-cued efficient densification method for 3d
519 gaussian splatting. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
520 Recognition (CVPR) Workshops*, pp. 775–783, June 2024.

521 Deborah Levy, Amit Peleg, Naama Pearl, Dan Rosenbaum, Derya Akkaynak, Simon Korman, and
522 Tali Treibitz. Seathru-nerf: Neural radiance fields in scattering media. In *Proceedings of the
523 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 56–65, 2023.

524 Huapeng Li, Wenxuan Song, Tianao Xu, Alexandre Elsig, and Jonas Kulhanek. WaterSplatting: Fast
525 underwater 3D scene reconstruction using gaussian splatting. *3DV*, 2025.

526 Zhuoxiao Li, Shanliang Yao, Yijie Chu, Angel F. Garcia-Fernandez, Yong Yue, Eng Gee Lim, and
527 Xiaohui Zhu. Mvg-splatting: Multi-view guided gaussian splatting with adaptive quantile-based
528 geometric consistency densification, 2024. URL <https://arxiv.org/abs/2407.11840>.

529 Yvette Y Lin, Xin-Yi Pan, Sara Fridovich-Keil, and Gordon Wetzstein. ThermalNeRF: Thermal
530 radiance fields. In *IEEE International Conference on Computational Photography (ICCP)*. IEEE,
531 2024.

540 Yuxiang Liu, Xi Chen, Shen Yan, Zeyu Cui, Huaxin Xiao, Yu Liu, and Maojun Zhang. Thermalalgs:
 541 Dynamic 3d thermal reconstruction with gaussian splatting. *Remote Sensing*, 17(2), 2025. ISSN
 542 2072-4292. doi: 10.3390/rs17020335. URL <https://www.mdpi.com/2072-4292/17/2/335>.

544 Rongfeng Lu, Hangyu Chen, Zunjie Zhu, Yuhang Qin, Ming Lu, Le Zhang, Chenggang Yan, and
 545 Anke Xue. Thermalgaussian: Thermal 3d gaussian splatting. *arXiv preprint arXiv:2409.07200*,
 546 2024a.

548 Zhicheng Lu, Xiang Guo, Le Hui, Tianrui Chen, Ming Yang, Xiao Tang, Feng Zhu, and Yuchao Dai.
 549 3d geometry-aware deformable gaussian splatting for dynamic view synthesis. In *Proceedings of
 550 the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2024b.

551 Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
 552 Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In *ECCV*, 2020.

554 Yuanjian Qiao, Mingwen Shao, Lingzhuang Meng, and Kai Xu. Restorgs: Depth-aware gaussian
 555 splatting for efficient 3d scene restoration. In *Proceedings of the IEEE/CVF Conference on
 556 Computer Vision and Pattern Recognition (CVPR)*, pp. 11177–11186, June 2025.

557 Andrea Ramazzina, Mario Bijelic, Stefanie Walz, Alessandro Sanvito, Dominik Scheuble, and Felix
 558 Heide. Scatternerf: Seeing through fog with physically-based inverse neural rendering, 2023. URL
 559 <https://arxiv.org/abs/2305.02103>.

561 Johannes Lutz Schönberger and Jan-Michael Frahm. Structure-from-motion revisited. In *Conference
 562 on Computer Vision and Pattern Recognition (CVPR)*, 2016.

564 Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys, and Jan-Michael Frahm. Pixelwise
 565 View Selection for Unstructured Multi-View Stereo. In *ECCV*, 2016.

566 Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping Wang. Neus:
 567 Learning neural implicit surfaces by volume rendering for multi-view reconstruction. *arXiv
 568 preprint arXiv:2106.10689*, 2021.

570 Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian,
 571 and Wang Xinggang. 4d gaussian splatting for real-time dynamic scene rendering. *arXiv preprint
 572 arXiv:2310.08528*, 2023.

573 Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian,
 574 and Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. In *Proceedings
 575 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 20310–
 576 20320, June 2024.

578 Daniel Yang, John J. Leonard, and Yogesh Girdhar. Seasplat: Representing underwater scenes with
 579 3d gaussian splatting and a physically grounded image formation model, 2025. URL <https://arxiv.org/abs/2409.17345>.

581 Tianxiang Ye, Qi Wu, Junyuan Deng, Guoqing Liu, Liu Liu, Songpengcheng Xia, Liang Pang,
 582 Wenxian Yu, and Ling Pei. Thermal-nerf: Neural radiance fields from an infrared camera, 2024.
 583 URL <https://arxiv.org/abs/2403.10340>.

585 Vickie Ye, Ruilong Li, Justin Kerr, Matias Turkulainen, Brent Yi, Zhuoyang Pan, Otto Seiskari,
 586 Jianbo Ye, Jeffrey Hu, Matthew Tancik, and Angjoo Kanazawa. gsplat: An open-source library for
 587 gaussian splatting. *Journal of Machine Learning Research*, 26(34):1–17, 2025.

588 Jinze Yu, Yiqun Wang, Zhengda Lu, Jianwei Guo, Yong Li, Hongxing Qin, and Xiaopeng Zhang.
 589 Dehazegs: Seeing through fog with 3d gaussian splatting. *ArXiv*, abs/2501.03659, 2025. URL
 590 <https://arxiv.org/pdf/2501.03659.pdf>.

592 Zehao Yu, Torsten Sattler, and Andreas Geiger. Gaussian opacity fields: Efficient adaptive surface
 593 reconstruction in unbounded scenes. *ACM Transactions on Graphics*, 2024.

594 **A APPENDIX**595 **A.1 IMPLEMENTATION DETAIL**

598 F-GS is trained for 30K iterations on thermal and fog datasets using the Adam optimizer with the same
 599 base learning rate as 3DGS. For the SeathruNeRF dataset, we follow prior work and train for only 15K
 600 iterations. To ensure a fair comparison, we evaluate SeathruNeRF using the AlexNet-based LPIPS
 601 metric as in the unpublished RestorGS baseline, while all other experiments report the VGG-based
 602 LPIPS score consistent with 3DGS.

603 For residual Gaussians, we replace the default exponential learning-rate decay with a linear schedule
 604 that reduces the rate to 1% of its initial value, preventing over-decomposition of geometry. The number
 605 of primitives is set to 500K geometry Gaussians, 50K residual Gaussians, and medium Gaussians
 606 for TI-NSD; for underwater and fog scenes, which are smaller in scale, we use 250K geometry and
 607 residual Gaussians. We further apply opacity and scale regularization with coefficients of 1×10^{-2}
 608 for thermal and fog datasets, and a lower 1×10^{-3} for underwater. Full implementation details are
 609 provided in the code release at <https://anonymous.4open.science/r/F-GS-83EE/README.md>.
 610

611 **A.2 DETAILS OF GEOMETRY EVALUATION**

613 **Depth blending.** For geometry metrics we render a depth map but *only* over Geometry Gaussians
 614 \mathcal{G}^{geo} . With camera centre \mathbf{o} and unit view direction \mathbf{d} , each pixel's ray is $\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$, $t \geq 0$.
 615 Depth at pixel \mathbf{p} is the weighted expectation:

$$617 \quad D(\mathbf{p}) = \sum_{i \in \mathcal{G}^{\text{geo}}} w_i(\mathbf{p}) z_i, \quad z_i = \mathbf{d}^\top (\mu_i - \mathbf{o}),$$

619 where

$$620 \quad w_i(\mathbf{p}) = \frac{T_{i-1}^{\text{geo}} \alpha_i \Pi_i(\mathbf{p})}{\sum_{j \in \mathcal{G}^{\text{geo}}} T_{j-1}^{\text{geo}} \alpha_j \Pi_j(\mathbf{p})}, \quad T_{i-1}^{\text{geo}} = \prod_{k < i, k \in \mathcal{G}^{\text{geo}}} (1 - \alpha_k).$$

623 **Photometric reprojection error.** For each frame t and temporal lag k we *lift* a pixel $\mathbf{u} = [u, v, 1]^\top$
 624 to 3-D with its rendered depth $D_t(\mathbf{u})$ and the inverse intrinsics K_t^{-1} , transform the point into the
 625 camera of frame $t - k$, and project it back to the image plane. Denote this forward–backward mapping
 626 by $\mathbf{u} \mapsto \mathbf{u}_{t \rightarrow t-k}$. The per-pixel colour residual is then
 627

$$628 \quad e_{t,k}(\mathbf{u}) = \|I_t(\mathbf{u}) - I_{t-k}(\mathbf{u}_{t \rightarrow t-k})\|_1,$$

631 computed only for correspondences whose projection lies inside the target image. Averaging over all
 632 valid pixels $\mathcal{V}_{t,k}$ in frame t and over all frames that admit the offset yields
 633

$$634 \quad \text{RE}_k = \frac{1}{|\mathcal{T}_k|} \sum_{t \in \mathcal{T}_k} \frac{1}{|\mathcal{V}_{t,k}|} \sum_{\mathbf{u} \in \mathcal{V}_{t,k}} e_{t,k}(\mathbf{u}),$$

637 where $\mathcal{T}_k = \{t \mid t - k \geq 0, |\mathcal{V}_{t,k}| > 0\}$. For table readability, we report the reprojection error in
 638 range 0 to 255.

639 **A.3 THE USE OF LARGE LANGUAGE MODELS (LLMs)**

641 We used LLMs exclusively for language polishing (grammar and style). No experimental design, data
 642 analysis, figure creation, or result interpretation was performed by the tool. The authors reviewed and
 643 approved all edits.