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ABSTRACT

Multi-view reconstruction often assumes cross-view appearance consistency, which
is violated in the presence of participating medium and sensor artifacts. These view-
inconsistent degradations induce distorted geometry and unreliable appearance
in scene modeling. In this study, we propose Factorized Gaussian Splatting (F-
GS), a unified scene modeling framework that explicitly decomposes the scene
into three complementary components: Geometry, Medium, and Residual. The
geometry component is stabilized by a lightweight view-aware surface gain and
an optional screen-space normal-consistency prior to consolidate scene structure.
The medium component is represented by sparse yet large Gaussians to model
light attenuation through participating medium. The residual component captures
view-dependent sensor noise via residual Gaussians, compensating for sensor-
induced variations. This factorization prevents view-inconsistent degradations from
contaminating geometry and appearance, enabling more accurate scene modeling.
We instantiate and evaluate our F-GS in three representative regimes, thermal
long-wave infrared, underwater, and foggy scene, where the view-inconsistencies
naturally occur. Our F-GS significantly improves novel-view synthesis quality and
geometric accuracy over other baselines. Code and Visualization are available at
https://anonymous.4open.science/r/F-GS-83EE/README.md.

1 INTRODUCTION

For real-world sensing scenes, such as thermal, underwater, and foggy scans, precise modeling of both
geometry and appearance is crucial for emerging applications in robotics, autonomous navigation,
and immersive computing. State-of-the-art scene modeling approaches, including Neural Radiance
Field (NeRF) Mildenhall et al. (2020) and 3D Gaussian Splatting (3DGS) Kerbl et al. (2023), recover
scenes through novel view synthesis (NVS) and achieve high-quality modeling results on RGB
imagery. However, these methods implicitly assume clean and cross-view-consistent observations,
and consequently fail in scenarios where medium or sensor induces view-inconsistent degradations.

The primary source of failure under view-inconsistent degradations lies in the lack of physically-
aware principles to guide scene factorization. Scene modeling approaches, such as NeRF and 3DGS,
adopt indiscriminate representations of the scene and enforce multi-view consistency through volume
rendering. These methods are vulnerable in view-inconsistent scenarios, where degradations cannot
be interpreted as stable geometry or appearance. Specifically, participating medium can attenuate
surface radiance, while sensor artifacts introduce stochastic fluctuations. In these cases, indiscriminate
modeling without physically-aware factorization neglects the distinct properties of objects, medium,
and sensors, often producing distorted geometry, manifested as floating artifacts and depth biases,
and unreliable appearance, characterized by meaningless colors and texture shifts as shown in Fig. 1.

In this work, we propose a general framework, termed Factorized Gaussian Splatting (F-GS), for
modeling scenes under view-inconsistent degradations. We begin with a path-dependent image
formation that explicitly decomposes radiative transfer into surface radiance, medium contributions,
and residual sensor noise, thereby enabling physically-aware modeling of light attenuation along the
ray. Building upon this formulation, the scene is factorized into three complementary components:
Geometry, corresponding to surface radiance, represented by compact and high-opacity Gaussians
modeling object surfaces; Medium, corresponding to medium contributions, represented by large,
fixed, and low-opacity Gaussians approximating smooth attenuation and in-scatter; and Residual,
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(A) 3DGS (B) Ours (E) 3DGS(C) 3DGS (F) Ours(D) Ours

Figure 1: Qualitative reprojection comparison of our F-GS vs. 3DGS under view-inconsistent
degradations: (A–B) thermal LWIR, (C–D) underwater, (E–F) fog. We extract the alpha-blended
depth from each model and visualize the depth points using ground truth colors from an alternative
view. Our F-GS consistently suppresses depth biases and texture shifts compared to 3DGS.

corresponding to sensor noise and view-dependent artifacts, represented by small and low-opacity
Gaussians together with a image-plane bias for fixed-pattern noise. To further stabilize geometry
modeling, a lightweight view-aware surface gain and an optional normal consistency prior are further
imposed on the geometry component. This factorization explicitly models medium and residual
effects, thereby mitigating view-inconsistent degradations and producing sharper surfaces with stable
radiance. Our main contributions are as follows:

• We introduce a physically-grounded and path-aware image formation, and propose Fac-
torized Gaussian Splatting (F-GS) that disentangles the scene as Geometry, Medium, and
Residual to isolate attenuation, path-radiance, and sensor artifacts.

• We stabilize geometry by coupling bounded-opacity Gaussian with a view-aware gain and,
optionally, screen-space normal consistency and a small image-plane bias.

• We demonstrate that this factorization improves geometry fidelity and NVS quality across 3
important domains - thermal, fog and underwater, outperforming prior 3DGS pipelines.

2 RELATED WORK

2.1 MULTI-VIEW RECONSTRUCTION

Classical 3D reconstruction from multi-view images has traditionally relied on the Structure-from-
Motion (SfM) Schönberger & Frahm (2016) and Multi-View Stereo (MVS) Schönberger et al.
(2016) pipelines. Conventional SfM approaches estimate camera poses and recover sparse 3D
structure by performing feature matching and triangulation across multiple views. MVS methods then
refine this reconstruction by establishing dense pixel correspondences, typically using patch-based
priors, to produce detailed geometric models. A recent trend in 3D reconstruction involves the
adoption of volume rendering, which has significantly reshaped the domain of dense reconstruction.
NeRF Mildenhall et al. (2020) introduced a neural rendering framework for learning radiance fields
as implicit representations tailored for novel view synthesis, while NeuS Wang et al. (2021) extended
this paradigm to support accurate multi-view geometry reconstruction. Building on the principles
of volume rendering, 3DGS Kerbl et al. (2023) represents scenes as a collection of 3D Gaussians,
enabling efficient optimization and real-time rendering through a carefully designed rasterization
pipeline. Subsequent work has extended 3DGS to dynamic scenes Wu et al. (2024); Lu et al. (2024b),
introduced advanced densification strategies Kim et al. (2024); Kheradmand et al. (2024); Li et al.
(2024); Fang & Wang (2024a), and developed acceleration schemes Fan et al. (2024); Fang & Wang
(2024b); Chen et al. (2024b); Charatan et al. (2024). In parallel, a growing body of research Guédon
& Lepetit (2024); Huang et al. (2024); Yu et al. (2024) has focused on extracting surface meshes
through multi-view reconstruction based on 3DGS.
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2.2 PARTICIPATING MEDIUM IN NEURAL RENDERING

Participating medium (atmosphere, fog, turbid water) violate the cross-view appearance consistency
assumed by standard neural rendering. Along each camera ray, direct radiance is exponentially
attenuated and mixed with path radiance (backscatter/veiling), producing depth-dependent, view-
inconsistent degradations that confound geometry estimation and radiance disentanglement.

Early efforts extend NeRF by incorporating attenuation and backscattering effects to enable haze,
fog, and underwater synthesis, as well as dehazing applications Chen et al. (2023); Ramazzina et al.
(2023); Levy et al. (2023). Building on Gaussian splatting, several variants have been proposed:
WaterSplatting Li et al. (2025), which combines explicit Gaussian-splat-based geometry with per-
pixel volumetric modeling; DehazeGS Yu et al. (2025), designed for multi-view haze removal;
and SeaSplat Yang et al. (2025), targeting real-time underwater rendering. More recently, UDR-
GS Du et al. (2024) extends this paradigm to dynamic underwater scenes by leveraging 4DGS Wu
et al. (2023). While these works target scattering and attenuation, another important source of
view-inconsistent degradation arises from thermal imaging through atmosphere.

Thermal computer vision has garnered growing interest in recent years, driven by the need for robust
perception under adverse illumination and weather conditions. Recently, a handful of works have
begun to apply volume rendering techniques to thermal data. Several studies Ye et al. (2024); Lin
et al. (2024) adapt Neural Radiance Fields (NeRF) Mildenhall et al. (2020) to represent thermal
scenes as implicit neural representations. Thermal3DGS Chen et al. (2024a) extends 3D Gaussian
Splatting Kerbl et al. (2023) to the thermal domain by considering physical and camera effects.
Other approaches tackle dynamic thermal sequences Liu et al. (2025) or integrate RGB and thermal
modalities to leverage visible-light priors Hassan et al. (2024); Lu et al. (2024a). Existing approaches
to thermal novel view synthesis predominantly emphasize image quality, whereas, in robotics
applications employing thermal sensors, the primary requirement is accurate geometry. Departing
from this trend, our method explicitly accounts for view-inconsistent degradations across observations,
thereby facilitating robust geometric reconstruction in addition to high-quality rendering.

3 METHODOLOGY

3.1 FACTORIZED SCENE FORMATION

Preliminary. Gaussian representations model the scene as a collection of 3D Gaussians {Gi | i =
1, . . . , N}. Each Gaussian Gi is parameterized by its center µi ∈ R3, an opacity αi ∈ [0, 1], and a
covariance Σi = Ri diag(σ

2
i )R

⊤
i , where σi ∈ R3 are axis-aligned standard deviations and Ri is a

rotation matrix derived from a quaternion qi. We adopt 3D Gaussians as the fundamental primitives
in our pipeline due to their efficiency in scene recovery and ability to support high-fidelity rendering.

View-inconsistent scenarios are cases where the sensor-captured radiance of the same surface point
varies across different viewpoints. Such inconsistency introduces significant challenges for scene
reconstruction and typically manifests as artifacts such as ghosting, flickering, blurring, or distorted
geometry. In the view-inconsistent setting, 3DGS indiscriminately represents the scene with Gaussian
primitives and enforces multi-view consistency through volume rendering. To model view-dependent
radiance variations, such as those introduced by highly reflective surfaces or camera-induced effects,
3DGS leverages spherical harmonics. This approach is effective for scenarios that do not involve
participating medium (e.g., water in underwater scans) or sensor noise (e.g., low-light imaging with a
non-ideal camera), such as standard RGB image inputs.

Problem Formulation. Given a set of N images I = {Ii}Ni=1 captured by sensors with known
intrinsic and extrinsic parameters under view-inconsistent degradations arising from participating
medium and sensor effects, our pipeline is designed to model scenes in these degraded scenarios,
simultaneously learning geometry and appearance.

A major challenge in modeling view-inconsistent degradations is that scene representations tend to
entangle view-dependent effects originating from participating medium and sensor noise. Under real-
world degraded conditions, the captured signal Ii from a non-ideal sensor constitutes a path-dependent
mixture of radiance originating from both objects and the medium, each with distinct physical
properties. Accordingly, the measurement Ii can be expressed as a path-dependent combination of
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1) surface radiance, 2) medium contributions (e.g., attenuation, backscatter/veiling, and forward-
scatter blur that grows with path length and turbidity or aerosol load), and 3) residual noise (e.g.,
temporal drift, photo-response non-uniformity, fixed-pattern noise). These components vary across
viewpoints due to geometry-, path-, and time-dependent factors, and the use of spherical harmonics
within standard Gaussian representations is insufficient to capture such effects. Consequently, vanilla
Gaussian representations tend to absorb medium and sensor contributions into the scene model, often
resulting in unstable modeling characterized by distorted geometry and unreliable appearance.

Path-Aware Image Formation. To address the aforementioned view-inconsistent degradations,
we propose a path-aware image formation as an alternative to the conventional volume rendering
formulation Mildenhall et al. (2020), which relies on the assumption of strict view consistency.
Our proposed physically informed path-aware formation decomposes each pixel measurement into
attenuated surface radiance, accumulated medium radiance, and a residual term capturing forward-
scatter blur and sensor noise. By explicitly modeling medium and sensor effects, it enables a clearer
separation of geometry and appearance from degraded inputs.

Concretely, we propose our path-aware image formation model inspired by radiative transfer. Given
a ray r(s) = o+ sd with origin o and direction d, the observed radiance I(x, ω) at pixel x and view
direction ω can be expressed as:

I(x, ω) = T (d)S(x, ω) +

∫ d

0

T (s)βs(s) J(s, ω) ds+R, (1)

where S(x, ω) is the surface radiance at the first surface hit at depth d, βs is the scattering coefficient,
and J(s, ω) is the in-scattered source radiance. The transmittance can be formulated as:

T (s) = exp
(
−
∫ s

0

βt(o+ ud) du
)
, βt = βa + βs, (2)

where βa is absorption coefficient, and βs is scattering coefficient and βt is extinction coefficient.
For simplicity, we adopt a single-scattering effective model for each spectral band c:

Ic(x, ω) ≈ Tc(d)Sc(x, ω) +
(
1− Tc(d)

)
Mc(x, ω) + Rc(x, ω), (3)

where Sc models the surface radiance, Mc captures medium contributions, and the residual term Rc

represents forward-scatter blur together with sensor noise.

3.2 FACTORIZED SCENE MODELING

Building upon our path-aware image formation, Factorized Gaussian Splatting (F-GS) decomposes
the scene into three components: 1) a geometry component Sc that encodes opaque surface appearance
tied to the scene geometry (Sec. 3.2.1); 2) a medium component Mc that models transmittance and
in-scattered/path radiance along the viewing ray (Sec. 3.2.2); and 3) a residual component Rc that
captures view-dependent and sensor-locked artifacts not explained by the first two (Sec. 3.2.3). This
factorization explicitly disentangles object surfaces, medium effects, and residual artifacts, thereby
facilitating improved geometry and appearance modeling under view-inconsistent degradations.

3.2.1 GEOMETRY MODELING

Vanilla 3DGS implicitly assumes that all view variations arise from stable surface radiance, so every
Gaussian is interpreted as geometry. In adverse domains, however, view-inconsistent degradations are
spuriously absorbed as geometric structure resulting in unstable reconstructions, such as floaters and
fragmented depth, motivating us to constrain geometry to explain only the surface radiance term Sc in
Eq. 3 with a set of Geometry Gaussians Ggeo = {(µi, θi, αi, ci)}i, where (µi,Σi) are the 3D mean
and anisotropic covariance, αi is opacity, and ci are spherical-harmonic (SH) color coefficients for
view-dependent surface radiance. Gaussians are initialized from COLMAP SfM points. To stabilize
geometry, we parameterize opacity with a bounded sigmoid:

σ(θ; a, b) = a+ (b− a) sigmoid(θ), αgeo
i = σ

(
θgeoi ; αgeo

min(t), 1
)
, (4)

where αgeo
min(t) is annealed upward over iterations, promoting early translucency for coarse alignment

and late saturation for sharp, opaque surfaces. Under front-to-back compositing, semi-transparent
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geometry permits a pixel to be partially explained by both a thin front layer (i.e., floaters) and the
true surface behind, allowing floaters to persist. Enforcing high opacity induces an occlusion prior: a
spurious foreground Gaussian would fully occlude the background and must alone account for the
pixel color, which is penalized by the photometric loss. Consequently, such Gaussians are either
pruned during training or converge onto the true surface.

View-Aware Surface Gain. Beyond the standard spherical-harmonic view-dependent color used in
3DGS, we introduce a lightweight view-aware surface gain applied to Geometry Gaussians. This mod-
ule predicts a bounded multiplicative adjustment on the low-order color coefficients, conditioned on a
low-frequency spatial code and a compact per-view embedding. Unlike the SH view-dependent color,
an empirical low-order expansion of outgoing radiance over direction, our view-aware surface gain
(VASG) absorbs view- and capture-specific photometric residuals, such as per-view exposure/white-
balance drift, vignetting, sensor gain, and weak scene emission:

c̃i,0(v) = gdc(µi, v) ci,0, (5)

The gains are produced by an MLP that takes a low-frequency NeRF-like spatial encoding of the
Geometry Gaussians location and a per-view embedding:

gdc = MLP
(

φ(µi)︸ ︷︷ ︸
LF positional encoding

, e(v)︸︷︷︸
per-view embedding

)
, (6)

It serves as a photometric correction that improves robustness to per-view radiometric inconsistencies.

Normal Consistency. In regions with minimal color variation (e.g., textureless surface such as
matte walls and uniform ground), pure photometric fitting admits many explanations and tends to
fragment geometry or let residuals “explain” shape. We therefore add a geometry-only screen-space
depth–normal consistency prior Huang et al. (2024) that biases solutions toward contiguous, near-
planar surfaces. Crucially, this prior is computed from the geometry Gaussians alone, medium and
residual layers do not contribute, so it cannot be satisfied by haze/airlight or sensor noise and thus
supplies floater-free geometric supervision. Among photometrically similar fits, the prior selects low-
curvature, coherent geometry rather than residual-compensated fragments. In practice it complements
our opacity annealing and residual opacity bound to assign low-frequency surfaces to the geometry
layer. Let wi(p) be the geometry-only blending weights at pixel p. The depth induced unit normal
are N(p) = computed form D(p) =

∑
i∈Ggeo wi(p) zi. where zi is the depth of Gaussian i. Let ni

denote the normal of splat i (from its anisotropy or a local plane fit). We minimize the following
alignment loss:

Lnc =
∑
p

∑
i

wi(p)
(
1− n⊤i N(p)

)
. (7)

The extra geometry-only rasterization adds modest overhead and may slightly lower image-space
metrics by preferring geometric regularity; we enable it when accurate, complete geometry is
prioritized over small photometric gains. Having restricted geometry to the Sc in Eq. 3, the remaining
view-inconsistent energy must be explained by the path-radiance Mc accumulated along the ray and a
residual term Rc. We next model these two components in the same Gaussian rendering framework.

3.2.2 MEDIUM MODELING

Haze, path radiance, and distance-dependent attenuation have no dedicated carrier in conventional
splatting, so they are inadvertently baked into surface. Scattering and attenuation then bias depth
and color, entangling medium behavior with geometry. We therefore introduce a dedicated medium
layer whose rendering follows physical transmittance. To account for the path-radiance term Mc

and its attenuation Tc, we align Gaussian alpha compositing with physical transmittance. Consider
a camera ray partitioned into segments {m}, with optical thickness∆κm ≈

∫ tm
tm−1

β(r(s)) ds, and

per-segment opacity αm ≜ 1− exp(−∆κm), yields the standard front-to-back transmittance after
M segments:

TM =

M∏
m=1

(1− αm) = exp
(
−

M∑
m=1

∆κm

)
−−−−→
∆t→0

exp
(
−
∫ d

0

β(r(s)) ds
)
, (8)
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which matches Eq. 2. With opacity encoding optical thickness, alpha compositing consistently
discretizes transmittance, motivating medium Gaussians with small opacity and per-band path-
radiance. We introduce a set of Medium Gaussians Gmed =

{
(µj ,Σj , θ

med
j , cj)

}Nmed

j=1
, with 3D

mean µj , anisotropic covariance Σj , and a per-band SH path-radiance color vector cj . To stabilize
learning and enforce the small optical-thickness regime, we map raw parameters through a bounded
sigmoid:

αmed
j = σ

(
θmed
j ; αmed

min , α
med
max

)
, 0 < αmed

min ≤ αmed
max ≪ 1. (9)

Medium Gaussians are initialized as large, sparse whose centers are uniformly sampled inside an
expanded SfM bounding box. To reduce degeneracy with surfaces, we fix their centers during training
and only learn scales, colors, and opacities.

3.2.3 RESIDUAL MODELING

Regions with minimal color variation (i.e., textureless and ambiguous regions) are prone to overfitting:
if every deviation is forced into surfaces, depth becomes unstable. Moreover, conventional splatting
has no image-plane pathway for sensor-locked artifacts, causing them to leak into the 3D. We therefore
introduce a residual channel that absorbs small discrepancies without competing for occlusion,
implicitly preserving a sensible depth prior for geometry. The residual term in Eq. 3, denoted
Rc, aggregates effects that are neither surface locked nor well explained by a thin participating
medium-most notably forward-scatter blur that varies with path length and sensor-locked patterns
(e.g., PRNU/DSNU, banding). To model these in their appropriate domains, we decompose Rc into
two complementary parts, world-space residual Gaussians and image-plane bias.

World-Space Residual Gaussians. We assign weak and view-dependent perturbations that parallax
with the scene to a set of Residual Gaussians. These Gaussians are initialized from input SfM points.
To ensure they act only as small additive corrections and cannot compete with surfaces, we tightly
bound their opacity as:

αres = σ
(
θres; 0, αres

max

)
, αres

max≪1. (10)
Separating these low-opacity splats from geometry is key to eliminating floaters while maintaining
high-fidelity rendering. Residual Gaussians are composited in world space together with geometry
and medium, contributing only small and view-dependent perturbations to the radiance.

Image-Plane Bias. Complementing the world-space residuals, we model sensor-locked, non-
parallaxing artifacts with a view-independent additive field Rfpn : Ω→R with Ω = {0, . . . , H−1}×
{0, . . . ,W−1}. For pixel (u, v) ∈ Ω,

Rfpn(u, v) = arow[v] + acol[u] +

Kh−1∑
k=0

Kw−1∑
ℓ=0

ckℓ ϕkℓ(u, v), (11)

where arow[v] ∈ R and acol[u] ∈ R parameterize vertical/horizontal striping, and ckℓ ∈ R are
coefficients of the truncated low-frequency basis {ϕkℓ}. The basis functions ϕkℓ are orthonormal 2D
DCT-II, modes on Ω, ϕkℓ(u, v) = cos

(
π
H (u+ 1

2 )k
)
cos

(
π
W (v + 1

2 )ℓ
)
, so keeping only Kh ×Kw

low-frequency terms compactly captures slowly varying bias fields. Let Iworld(u, v) denote the
world-space composite (geometry, medium, residual Gaussians). The final pixel is formulated as:

Ifinal(u, v) = Iworld(u, v) +Rfpn(u, v), (12)

assigning non-parallaxing structure to Rfpn while view-dependent fluctuations remain in world space.

3.3 FACTORIZED SCENE RECOVERY

Densification. Building on 3DGS Kerbl et al. (2023) and 3DGS-MCMC Kheradmand et al. (2024),
we use a lightweight opacity-aware scheme: per-splat opacity drives pruning and duplication (prune
persistently low-opacity, low-visibility splats; duplicate high-opacity ones to add local capacity),
avoiding maintaining Monte Carlo states. To keep the decomposition flexible, we periodically reset all
geometry opacities to 0.5 and add a tiny zero-mean jitter to them, preventing premature saturation and
improving responsiveness to gradients. The same prune/duplicate rule applies to residual Gaussians;
medium Gaussians are only pruned according to visibility to avoid degeneracy with surfaces.
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Input Geometry Gaussian Medium Gaussian Residual Gaussian Image-Plane Bias VASG

Input SeaSplat WaterSplatting Ours GT Appearance

OursWaterSplattingSeaSplatInput

Figure 2: Qualitative visualization of Top: restoration on underwater scene. Middle: dehazing on fog
scene. Bottom components visualization for F-GS in thermal where VASG are normalized in Jet.

Optimization. The three Gaussian families are composited front-to-back within the 3DGS rasterizer.
Our objective combines photometric losses with regularization and (optionally) geometry priors:

Ltotal = (1− λD-SSIM)L1 + λD-SSIM LD-SSIM + Lα + Lscale + λNC LNC. (13)

Here, L1 and LD-SSIM measure photometric fidelity; Lα and Lscale follow 3DGS-MCMC and regular-
ize opacity and Gaussian extent; and LNC is the normal consistency term that promotes contiguous,
low-curvature geometry. The weights λD-SSIM and λNC balance perceptual and geometric regularity.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate F-GS on public benchmarks covering thermal, underwater, and foggy scenarios:
TI-NSD Chen et al. (2024a) for thermal multi-view, SeaThru-NeRF Levy et al. (2023) for underwater
scenes, and DehazeNeRF Chen et al. (2023) for fog. TI-NSD is a real-world, thermal-only dataset
captured with 360◦ multi-view trajectories. We use scenes with valid COLMAP reconstructions from
both the indoor and outdoor subsets, excluding scenes where pose recovery fails to ensure fairness.
SeaThru-NeRF provides four real multi-view underwater scenes, each with approximately 30 RGB
images. DehazeNeRF contains real indoor captures with hazy and clear images, about 60 hazy views
and 80 clear views per scene. Only hazy images are used for experiments

Implementation Details. Following prior work, we reuse poses/initialization when available; images
are downsampled to 400–800 px. Our F-GS is implemented on top of the gsplat rasterizer Ye et al.
(2025). On an RTX 4090, F-GS trains 15 min per TI-NSD scene (24 min w. LNC), faster than
Thermal3DGS (40 min) and moderately slower than MCMC (9 min). More implementation detail
and parameters for densification strategy see appendix and repo.

Metrics. For novel-view synthesis, we report PSNR, SSIM, and LPIPS to assess rendering fidelity,
following prior work by using every 8th image for evaluation. For geometry, we adopt a reprojection-
error metric computed from rendered depth maps.
4.2 EXPERIMENTAL RESULTS

Novel-View Synthesis. Table 1 reports quantitative results on TI-NSD Chen et al. (2024a), comparing
our method against Thermal3DGS Chen et al. (2024a), 3DGS, and 3DGS-MCMC. Our approach
attains the best average PSNR and LPIPS, and ranks top-2 on SSIM across all scenes, indicating

7
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superior fidelity and perceptual quality. MCMC achieves competitive (often best) SSIM on some
scenes, consistent with its use of numerous low-opacity splats to fit fine detail and sensor noise, but
this tends to trade off geometric regularity. Table 3 summarizes quantitative results on underwater and
fog scenes. We compare againstWatersplatting Li et al. (2025), SeaSplat Yang et al. (2025), 3DGS,
3DGS-MCMC, and RestorGS Qiao et al. (2025). Our method attains the best or second best scores on
nearly all sequences. Watersplatting, which uses an MLP to parameterize the participating medium,
also performs strongly. In contrast, methods that model only attenuation (SeaSplat, RestorGS) trail
in novel-view metrics, underscoring the benefit of explicitly modeling path radiance and residuals.
Fig. 2 provide a visualization of the rendering including restoration, dehazing, and the factorization
of each component.

Geometry Evaluation. We measure geometric consistency via a reprojection test. We render alpha
blended depths and then back-project each valid pixel at depth D(p) to 3D and re-project it into the
image plane of the k-th preceding frame; The detailed definition is in the Appendix.

We report results on thermal sequences only: strong participating medium in fog/underwater scenes
introduce path-dependent blur and airlight that violate the pinhole reprojection assumption, making
correspondence unreliable. As shown in Table 2, our factorized, geometry-only depth yields the lowest
errors for k ∈ {10, 15, 20}; adding the normal-consistency prior further reduces REk, indicating
crisper, more stable geometry. We also visualize the projected depth point in Fig. 3, results indicating
our method generate crisper, more stable geometry.

30  140  205

(A) Top: Ours;  Bottom: Ours + ℒnc (B)  Top:  Thermal3DGS;  Bottom: MCMC

Figure 3: Qualitative depth projection analysis. We obtain alpha-blended depths from multi views
and project the resulting depth points onto a reference frame. Color indicates estimated depth in
plasma; Perfect projection should align precisely with the object. Misalignment between projected
points and the silhouette indicates reconstruction errors.

Table 1: Quantitative thermal rendering comparison on the TI-NSD dataset. Higher is better for
PSNR and SSIM (↑), and lower is better for LPIPS (↓). Top 2 methods are colored with Red and
Orange.

Metric Method Bicycle Bridge Car Chair Standing Sitting Goal Building Avg.

PSNR ↑

3DGS 32.88 30.23 32.09 32.85 36.38 36.63 35.09 34.07 33.78
Thermal3DGS 32.68 30.05 31.91 33.23 37.32 37.86 34.27 33.71 33.88
MCMC 33.06 31.43 34.78 32.84 35.98 36.40 35.82 34.28 34.33
Ours.w.Lnc 34.05 31.78 35.03 33.72 37.83 38.02 35.70 34.69 35.10
Ours 34.27 32.06 35.15 33.88 36.97 38.18 35.78 34.79 35.13

SSIM ↑

3DGS 0.953 0.922 0.940 0.937 0.967 0.968 0.957 0.946 0.949
Thermal3DGS 0.952 0.911 0.939 0.937 0.968 0.970 0.952 0.945 0.947
MCMC 0.955 0.930 0.961 0.943 0.968 0.969 0.962 0.947 0.954
Ours.w.Lnc 0.957 0.925 0.957 0.941 0.969 0.971 0.959 0.950 0.953
Ours 0.958 0.926 0.958 0.941 0.968 0.971 0.959 0.950 0.954

LPIPS ↓

3DGS 0.165 0.200 0.198 0.164 0.219 0.209 0.171 0.143 0.184
Thermal3DGS 0.175 0.217 0.202 0.171 0.221 0.213 0.192 0.152 0.193
MCMC 0.177 0.206 0.177 0.165 0.234 0.228 0.164 0.149 0.187
Ours.w.Lnc 0.169 0.197 0.177 0.163 0.223 0.215 0.159 0.136 0.180
Ours 0.162 0.189 0.174 0.161 0.219 0.209 0.155 0.134 0.175
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Table 2: Mean reprojection error to the kth preceding views (REk ↓) for each scene in TI-NSD.

Metric Method Bicycle Bridge Car Chair Standing Sitting Goal Building Avg.

RE20 ↓

3DGS 29.38 28.61 34.65 31.88 31.05 34.09 22.28 25.98 29.74
Thermal3DGS 26.39 23.94 31.92 29.11 30.56 34.21 20.67 20.28 27.14
MCMC 25.18 21.91 25.08 28.79 30.62 32.59 16.86 16.58 24.70
Ours 24.32 21.50 23.22 28.25 27.68 30.67 17.32 15.77 23.59
Ours.w.Lnc 22.57 19.96 22.34 26.50 27.40 29.92 16.04 14.49 22.40

RE15 ↓

3DGS 26.21 26.30 30.31 27.69 28.21 30.60 20.01 25.25 26.82
Thermal3DGS 23.18 21.79 27.64 25.19 27.74 30.23 18.04 18.81 24.08
MCMC 21.97 20.01 21.47 24.96 27.73 28.92 14.91 15.06 21.88
Ours 21.55 19.76 20.10 24.75 25.28 28.59 15.16 14.41 21.20
Ours.w.Lnc 19.59 18.33 19.30 23.05 24.93 27.49 14.12 13.26 20.01

RE10 ↓

3DGS 29.38 28.61 34.65 31.88 31.05 34.09 22.28 25.98 29.74
Thermal3DGS 26.39 23.94 31.92 29.11 30.56 34.21 20.67 20.28 27.14
MCMC 25.18 21.91 25.08 28.79 30.62 32.59 16.86 16.58 24.70
Ours 24.32 21.50 23.22 28.25 27.68 30.67 17.32 15.77 23.59
Ours.w.Lnc 16.10 15.81 15.10 18.45 21.58 22.40 11.79 11.17 16.55

Table 3: Quantitative comparison in underwater and fog. (metrics: PSNR ↑, SSIM ↑, LPIPS ↓).

Method
IUI3 Red Sea Curacao J.G. Red Sea Panama Elephant(fog) Lion(fog)

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
3DGS 26.19 0.936 0.033 30.17 0.926 0.085 21.28 0.849 0.096 30.62 0.940 0.034 30.34 0.877 0.221 29.90 0.918 0.146
MCMC 31.13 0.957 0.017 30.43 0.933 0.061 23.05 0.879 0.067 31.77 0.949 0.030 33.64 0.891 0.191 32.90 0.931 0.121
Watersplatting 30.14 0.948 0.019 33.28 0.958 0.039 24.58 0.896 0.049 30.65 0.930 0.031 33.42 0.920 0.217 33.44 0.944 0.122
Seasplat 29.13 0.950 0.024 30.94 0.935 0.077 23.13 0.881 0.078 27.80 0.914 0.059 27.93 0.861 0.202 27.42 0.883 0.163
RestorGS 29.97 0.952 0.028 31.95 0.944 0.055 24.05 0.882 0.071 30.79 0.932 0.046 - - - - - -
Ours 31.61 0.952 0.024 34.76 0.964 0.037 23.31 0.885 0.061 32.23 0.952 0.025 33.95 0.893 0.177 33.47 0.929 0.119

Table 4: Independent ablation on TI-NSD (thermal) and SeaThru-NeRF (underwater)

TI-NSD Seathru-NeRF
PSNR↑ SSIM↑ LPIPS↓ RE20↓ PSNR↑ SSIM↑ LPIPS↓

Ours 35.13 0.954 0.175 23.59 30.48 0.938 0.037
w.o. View-aware surface gain 34.83 0.953 0.184 23.75 29.87 0.936 0.038
w.o. Image-plane bias 34.64 0.952 0.179 23.65 30.41 0.937 0.037
w.o. Residual Geometry factorization 35.07 0.953 0.177 24.55 29.39 0.931 0.039
w.o. Medium modeling 35.11 0.954 0.177 24.02 29.76 0.935 0.039

Ablation Study. We perform an independent ablation on TI-NSD (thermal) and SeaThru-NeRF (un-
derwater). Starting from the full model (Ours), we remove: (i) the view-aware surface gain (VASG)
in geometry, (ii) the view-independent image-plane bias, (iii) the residual/geometry factorization
(bounded opacities), and (iv) medium modeling. Removing the view-aware surface gain hurts percep-
tual quality the most, confirming it’s what keeps appearance consistent across viewpoints. Skipping
the image-plane bias causes small but reliable declines, suggesting it quietly soaks up sensor-locked
artifacts without interfering with geometry. Turning off the residual/geometry factorization makes
geometry less stable under reprojection, which shows that separating residuals from surfaces is key
to clean depth. Dropping medium modeling matters little on thermal scenes but clearly degrades
underwater performance, where path radiance and attenuation are stronger.

5 CONCLUSION

In this work, we present Factorized Gaussian Splatting (F-GS), a physically motivated scene modeling
framework designed to handle view-inconsistent degradations arising from participating medium and
sensor noise. Our framework decomposes a scene into three complementary components: Geometry,
which consolidates scene structure while isolating it from degradations; Medium, which models
light attenuation through participating medium; and Residual, which compensates for sensor-induced
variations. By disentangling geometry, medium, and residual contributions, F-GS transforms real-
world and view-inconsistently degraded inputs into a consistent scene representation. We evaluate
F-GS across thermal, underwater, and foggy benchmarks. Our approach demonstrates substantial
improvements in both novel-view synthesis quality and geometric stability compared to baseline
methods. These results establish a significant step toward physically-aware scene modeling within
the paradigm of 3D Gaussian Splatting.
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A APPENDIX

A.1 IMPLEMENTATION DETAIL

F-GS is trained for 30K iterations on thermal and fog datasets using the Adam optimizer with the same
base learning rate as 3DGS. For the SeathruNeRF dataset, we follow prior work and train for only 15K
iterations. To ensure a fair comparison, we evaluate SeathruNeRF using the AlexNet-based LPIPS
metric as in the unpublished RestorGS baseline, while all other experiments report the VGG-based
LPIPS score consistent with 3DGS.

For residual Gaussians, we replace the default exponential learning-rate decay with a linear schedule
that reduces the rate to 1% of its initial value, preventing over-decomposition of geometry. The number
of primitives is set to 500K geometry Gaussians, 50K residual Gaussians, and medium Gaussians
for TI-NSD; for underwater and fog scenes, which are smaller in scale, we use 250K geometry and
residual Gaussians. We further apply opacity and scale regularization with coefficients of 1×10−2

for thermal and fog datasets, and a lower 1×10−3 for underwater. Full implementation details are
provided in the code release at https://anonymous.4open.science/r/F-GS-83EE/
README.md.

A.2 DETAILS OF GEOMETRY EVALUATION

Depth blending. For geometry metrics we render a depth map but only over Geometry Gaussians
Ggeo. With camera centre o and unit view direction d, each pixel’s ray is r(t) = o + td, t ≥ 0.
Depth at pixel p is the weighted expectation:

D(p) =
∑

i∈Ggeo

wi(p) zi, zi = d⊤(µi − o),

where

wi(p) =
T geo
i−1αiΠi(p)∑

j∈Ggeo T
geo
j−1αjΠj(p)

, T geo
i−1 =

∏
k<i,k∈Ggeo

(1− αk).

Photometric reprojection error. For each frame t and temporal lag k we lift a pixel u = [u, v, 1]⊤

to 3-D with its rendered depth Dt(u) and the inverse intrinsics K−1
t , transform the point into the

camera of frame t−k, and project it back to the image plane. Denote this forward–backward mapping
by u 7→ ut→t−k. The per-pixel colour residual is then

et,k(u) =
∥∥It(u)− It−k

(
ut→t−k

)∥∥
1
,

computed only for correspondences whose projection lies inside the target image. Averaging over all
valid pixels Vt,k in frame t and over all frames that admit the offset yields

REk =
1

|Tk|
∑
t∈Tk

1

|Vt,k|
∑

u∈Vt,k

et,k(u),

where Tk = { t | t − k ≥ 0, |Vt,k| > 0}. For table readability, we report the reprojection error in
range 0 to 255.

A.3 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs exclusively for language polishing (grammar and style). No experimental design, data
analysis, figure creation, or result interpretation was performed by the tool. The authors reviewed and
approved all edits.
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