
Prompting ELECTRA: Few-Shot Learning with Discriminative
Pre-Trained Models

Anonymous ACL submission

Abstract

Pre-trained masked language models have been001
successfully used for few-shot learning by for-002
mulating downstream tasks as text infilling.003
However, discriminative pre-trained models004
like ELECTRA, as a strong alternative in full-005
shot settings, does not fit into the paradigm.006
In this work, we adapt prompt-based few-shot007
learning to ELECTRA and show that it outper-008
forms masked language models in a wide range009
of tasks. ELECTRA is pre-trained to distin-010
guish if a token is generated or original. We011
naturally extend that to prompt-based few-shot012
learning by training to score the originality of013
the verbalizers without introducing new param-014
eters. Our method can be easily adapted to015
tasks involving multi-token verbalizers without016
extra computation overhead. Analysis shows017
that the distributions learned by ELECTRA018
align better with downstream tasks.019

1 Introduction020

Large pre-trained language models, which encode021

rich language properties, are known to be effective022

zero- and few-shot learners (Brown et al., 2020;023

Artetxe et al., 2021; Rae et al., 2021). Even rel-024

atively small masked language models (MLMs),025

like BERT (Devlin et al., 2019) and RoBERTa (Liu026

et al., 2019), demonstrate competitive few-shot per-027

formance through prompt-based fine-tuning, which028

updates the model to select the correct verbaliz-029

ers (Schick and Schütze, 2021a; Gao et al., 2021).030

Discriminative pre-trained models like ELEC-031

TRA (Clark et al., 2020) are strong alternatives032

to MLMs in full-shot settings, but their properties033

as zero- and few-shot learners remain unexplored.034

We hypothesize that models like ELECTRA would035

make strong zero- and few-shot learners as they036

are pre-trained to distinguish between challenging037

alternatives. To test this hypothesis, we explore038

prompt-based learning with ELECTRA by align-039

ing its pre-training objective, which distinguishes if040
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Figure 1: Prompt-based fine-tuning with MLMs and
discriminative models with a SST-2 and COPA example.
The underlined text is the task-specific template. c(·)
denotes the contextualized embedding; y and y′ denotes
a correct and an incorrect option respectively.

a single token is generated or from the training data, 041

with the downstream prompt-based prediction by 042

reusing the discriminative head to classify correct 043

verbalizers as original tokens. As an additional ben- 044

efit, we can naturally adapt the approach to verbaliz- 045

ers spanning multiple tokens by aggregating either 046

representations or probabilities. In contrast, MLMs 047

require auto-regressive decoding to adapt to multi- 048

token verbalizers (Schick and Schütze, 2021b). 049

Our approach to prompting ELECTRA outper- 050

forms BERT and RoBERTa by 10.2 and 3.1 points 051

on average across 13 tasks (text classification, NLI, 052

multiple-choice tasks) for base-sized models in the 053

few-shot setting, and the trend prevails for large- 054

sized models. Analysis shows that the output distri- 055

butions of ELECTRA’s pre-training task are close 056
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to downstream task distributions.057

2 Background058

Prompting Masked Language Models MLMs059

such as BERT and RoBERTa are trained by mask-060

ing words in inputs and maximizing the probabil-061

ity of the original tokens which are replaced by062

[MASK] tokens. Given a sequence x1, x2, · · · , xn,063

with the i-th token masked, the objective is:064

− log
exp (c([MASK]) · exi)∑
v∈V exp (c([MASK]) · ev)

065

where ev denotes the output embedding of word066

v ∈ V . We use c(·) to denote the contextualized067

representation for simplicity. Prompt-based learn-068

ing turns the objective into a softmax distribution069

over all verbalizers of a prompt template (Gao et al.,070

2021; Schick and Schütze, 2021a). For example, in071

binary sentiment analysis, given an input sentence072

x, its associated label y ∈ {positive, negative} and073

a template T , we formulate the prompt as:074

T (x) = x It was[MASK] .075

By defining a mapping M : Y → V from the task076

label space to words from the vocabulary, the task077

is transformed into predicting the verbalizer M(y):078

− log
exp

(
c([MASK]) · eM(y)

)∑
y′∈Y exp

(
c([MASK]) · eM(y′)

)079

This formulation can be used for both prompt-080

based zero-shot evaluation and few-shot fine-tuning081

to perform gradient updates.082

For tasks involving multi-token verbalizers such083

as multiple-choice tasks, prompt-based fine-tuning084

with MLMs is less intuitive. Schick and Schütze085

(2021b) propose PET, which adopts a multiclass086

hinge loss for training and devise a heuristic decod-087

ing method to estimate probabilities for multi-token088

verbalizers during inference. The disadvantages089

are (1) such usage of MLMs deviates from the pre-090

training objective; (2) the auto-regressive decoding091

cannot forward in batches during inference, which092

is computationally inefficient.093

Discriminative Pre-trained Models Discrimina-094

tive models such as ELECTRA (Clark et al., 2020)095

cast the word prediction problem into a binary clas-096

sification problem. In ELECTRA, a discriminator097

D and a smaller generator G are jointly trained with098

the goal to distinguish if the tokens are sampled099

from G or data:100

−
∑
i

(
1(x′i = xi) logH(c(xi)) 101

+1(x′i ̸= xi) log(1−H(c(x′i))
)

102

where {xi} are tokens from the original sentence, 103

{x′i} are tokens from the corrupted sentence and H 104

denotes the discriminator head. We refer readers to 105

Clark et al. (2020) for more details. 106

3 Method: Prompting ELECTRA 107

Discriminative models like ELECTRA are strong 108

alternatives to MLMs, so they have the potential to 109

be effective few-shot learners even though they do 110

not fit the current paradigm. Furthermore, ELEC- 111

TRA could be more amenable to solving tasks in- 112

volving multi-token verbalizers, as it does not re- 113

quire auto-regressive decoding. In this section, we 114

propose to adapt ELECTRA to accommodate a 115

wide range of tasks involving either single-token or 116

multi-token verbalizers for prompt-based learning. 117

Tasks with Single-Token Verbalizers The 118

prompts for ELECTRA models are formulated with 119

an input sentence x, a label y ∈ Y , a template T 120

with the mapping function M. An example of 121

sentiment classification is as follows: 122

T (x, y) = x It was M(y) . 123

For each input sentence, we create |Y| prompts and 124

forward them for gradient updates such that the 125

model predicts the correct verbalizer as an original 126

token and incorrect verbalizers as generated tokens: 127

− logH(c(M(y)))−
∑

y′∈Y/{y}
log(1−H(c(M(y′)))) 128

During inference, the model predicts how likely it 129

is for each verbalizer to fit into the sentence and 130

outputs the most likely one.1 This approach allows 131

us to perform prompt-based zero-shot prediction 132

and few-shot fine-tuning analogously to the MLM 133

paradigm. 134

Tasks with Multi-Token Verbalizers We hand- 135

ily adapt ELECTRA’s discriminative objective to 136

accommodate tasks with multi-token verbalizers 137

for prompt-based fine-tuning. The mapping M : 138

1One disadvantage is that this approach requires forward-
ing the input |Y| times, which is less efficient than MLMs.
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SST-2 SST-5 MR

BERT RoBERTa ELECTRA BERT RoBERTa ELECTRA BERT RoBERTa ELECTRA

prompt zero-shot 61.6 77.8 82.8 26.0 30.3 31.1 55.8 77.7 81.5
standard few-shot FT 72.8 (6.4) 84.5 (2.3) 78.2 (7.6) 34.9 (2.0) 37.9 (1.3) 41.7 (1.8) 70.8 (5.2) 76.8 (3.7) 76.3 (2.9)
prompt few-shot FT 84.6 (1.0) 89.9 (0.6) 91.2 (0.7) 37.9 (1.4) 43.3 (1.2) 49.3 (1.5) 78.2 (1.1) 85.0 (0.9) 88.0 (0.5)
standard full-shot FT 93.6 95.1 95.6 53.3 55.9 55.0 87.1 88.9 90.4

MNLI RTE QNLI

BERT RoBERTa ELECTRA BERT RoBERTa ELECTRA BERT RoBERTa ELECTRA

prompt zero-shot 43.5 48.1 51.9 48.7 53.4 57.8 49.5 50.5 54.5
standard few-shot FT 41.3 (1.7) 42.2 (2.8) 44.7 (3.1) 52.8 (4.1) 54.2 (2.8) 59.1 (1.7) 68.4 (4.8) 65.1 (5.1) 69.7 (3.7)
prompt few-shot FT 47.9 (0.7) 59.1 (2.1) 60.8 (2.3) 57.5 (2.6) 62.7 (2.17) 67.0 (1.4) 56.0 (0.7) 67.4 (2.8) 70.6 (4.0)
standard full-shot FT 84.9 88.1 89.0 70.8 74.4 79.4 91.7 92.7 93.2

SNLI AGNews BoolQ

BERT RoBERTa ELECTRA BERT RoBERTa ELECTRA BERT RoBERTa ELECTRA

prompt zero-shot 38.7 48.8 56.6 60.6 73.2 72.2 47.7 55.9 59.1
standard few-shot FT 50.4 (2.8) 44.8 (3.9) 50.5 (3.3) 84.9 (0.6) 85.5 (0.8) 81.4 (1.4) 54.7 (2.5) 56.8 (3.9) 57.2 (2.1)
prompt few-shot FT 51.0 (2.6) 66.3 (3.0) 72.4 (2.0) 84.6 (1.2) 87.1 (0.6) 86.9 (1.0) 57.4 (2.9) 57.8 (2.4) 60.8 (4.2)
standard full-shot FT 92.3 94.1 94.6 94.9 95.5 95.0 77.1 78.8 82.0

Table 1: Zero-shot and few-shot (K = 16) results of BERT, RoBERTa and ELECTRA base models. In the
parenthesis are standard deviations of 5 runs. We highlight the best number for each setting.

Y → V∗ is an identity function for such tasks139

where the verbalizers are the options themselves.140

Consider the multiple-choice task COPA (Roem-141

mele et al., 2011); given a premise x, a template T142

and an option y ∈ Y , we formulate the prompt as:143

T (x, y) = x so/because M(y) .144

As a verbalizer M(y) contains multiple tokens,145

we either average the hidden representations of all146

tokens in M(y) (equivalent to y):147

H

(
1

|y|
∑
i

c(yi)

)
;148

or use the average probability of all tokens in v as149

the final prediction:150

1

|y|
∑
i

H(c(yi))151

Both methods 2 fully reuse all pre-trained weights152

of ELECTRA and refrain from autoregressive de-153

coding. Similar to PET, we only use this approach154

for few-shot fine-tuning due to its discrepancy from155

pre-training.156

4 Experimental Setup157

We run experiments with released checkpoints of158

BERT (Devlin et al., 2019), RoBERTa (Liu et al.,159

2We also experimented with another approach to adapt the
discriminative objective for contrastive learning but the results
were not as competitive. Please see Equation F for details.

2019) and ELECTRA (Clark et al., 2020) from 160

the transformers (Wolf et al., 2019) library. We 161

use base-sized models unless otherwise specified. 162

More pre-training details of the models are in Ap- 163

pendix A. We conduct prompt-based zero-shot 164

evaluations as well as standard 3 and prompt-based 165

few-shot training for each checkpoint. For few-shot 166

experiments, we follow Gao et al. (2021) to create a 167

development set the same size as the training set for 168

model selection and conduct multiple runs of exper- 169

iments to mitigate instability issues (Dodge et al., 170

2020). More training details are in Appendix C. 171

We evaluate on sequence classification tasks in- 172

cluding SST-2, SST-5, MR, MNLI, RTE, QNLI, 173

SNLI, AGNews and BoolQ; and multiple-choice 174

tasks including COPA, StoryCloze, Hellaswag, 175

PIQA. Dataset and template details are in Ap- 176

pendix B and Appendix H. 177

5 Results and Analysis 178

Tasks with Single-token Verbalizers Table 1 179

reports zero-shot and few-shot fine-tuning results 180

on base-sized models4. ELECTRA shows a clear 181

advantage compared to BERT and RoBERTa, with 182

an average margin of 7.9 and 3.5 points on zero- 183

shot prediction, respectively, and an average margin 184

of 10.2 and 3.1 on prompt-based few-shot fine- 185

tuning. The difference is much smaller on standard 186

3We use the CLS token for prediction in standard fine-
tuning, known as head fine-tuning in Le Scao and Rush (2021).

4Results on large-sized models are in Appendix D.
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Figure 2: Few-shot performance of RoBERTa v.s.
ELECTRA with standard and prompt-based fine-tuning
as K (number of instances per label) increases.
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few-shot fine-tuning (3.3 and 1.3, respectively),5187

suggesting that ELECTRA is inherently better at188

prompt learning, in addition to being a better model189

in general. On that note, we find that prompt-based190

fine-tuning consistently outperforms standard fine-191

tuning in line with prior work (Gao et al., 2021;192

Schick and Schütze, 2021b), which reinforces the193

importance of prompts for few-shot learning.194

Tasks with Multi-token Verbalizers Table 2195

shows results on multiple-choice tasks, the ver-196

balizers of which are multi-token options. ELEC-197

TRA outperforms RoBERTa with PET (Schick198

and Schütze, 2021b), which uses a heuristic auto-199

regressive decoding approach. ELECTRAbase and200

ELECTRAlarge outperform their counterparts of201

RoBERTa fine-tuned with PET. This result demon-202

strates the potential of discriminative models on a203

5The gains of ELECTRA over RoBERTa and BERT on
full dataset fine-tuning are similar, 3.3 and 1.2 respectively.

Model Size CP SC HS PI

RoBERTa (PET) 125M 72.7 71.0 31.3 61.8
ELECTRA (prob) 109M 73.7 85.3 52.6 66.2
ELECTRA (rep) 109M 75.0 86.9 56.0 67.4

RoBERTa (PET) 335M 77.7 73.2 46.9 61.9
ELECTRA (prob) 335M 85.0 88.9 77.7 70.9
ELECTRA (rep) 335M 90.7 90.4 77.6 71.7

Table 2: Multi-choice task results for prompt-based fine-
tuning with RoBERTa and ELECTRA with 32 randomly
selected examples. We run each model three times and
the standard deviations are around 1-2 points. prob and
rep denote average probability and representations. CP:
COPA, SC: StoryCloze, HS: Hellaswag, PI: PIQA.

broader range of tasks under the few-shot setting 6. 204

Number of Examples Figure 2 shows stan- 205

dard and prompt-based few-shot fine-tuning per- 206

formance as the number of instances (K) increases 207

for RoBERTa and ELECTRA on four datasets7. 208

ELECTRA outperforms RoBERTa as K increases, 209

and the two converge when K ≥ 256. The perfor- 210

mance gap increases as the number of examples 211

decreases, demonstrating that ELECTRA’s discrim- 212

inative pre-training objective is well-suited for zero- 213

and few-shot applications. 214

Prediction Analysis We show the output distribu- 215

tions of zero-shot predictions from RoBERTa and 216

ELECTRA on SST-2 in Figure 3. RoBERTa failed 217

mostly on negative examples, and ELECTRA’s out- 218

puts align with the task distribution better. In Ap- 219

pendix G we show that the output distribution shifts 220

to a polarized shape with few-shot fine-tuning. 221

6 Conclusion 222

We explore discriminative pre-trained models for 223

prompt-based zero-shot and few-shot learning and 224

find that they consistently outperform masked lan- 225

guage models, suggesting that discriminative pre- 226

trained models are effective zero-shot and few-shot 227

learners. Analysis shows that the output distri- 228

butions of discriminative models align with the 229

downstream task distribution better. We speculate 230

that this could be due to discriminative models 231

being less vulnerable to the surface form competi- 232

tion (Holtzman et al., 2021), and we would like to 233

dig deeper into this hypothesis in future work. 234

6While we focus on MLMs for their direct comparability
with ELECTRA, our approach also outperforms GPT-3 results
reported in Brown et al. (2020) for equivalent model sizes.

7See Appendix E for results on the rest of the datasets.
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5 (Socher et al., 2013), MR (Pang and Lee, 2005); 4 406

natural language inference tasks: MNLI (Williams 407

et al., 2018), RTE (Dagan et al., 2005; Haim et al., 408

2006; Giampiccolo et al., 2007; Bentivogli et al., 409

2009), QNLI (Rajpurkar et al., 2016), SNLI (Bow- 410

man et al., 2015); AGNews (Zhang et al., 2015), 411

which is a news classification dataset, BoolQ (Clark 412

et al., 2019), which is a dataset of boolean ques- 413

tions; 2) multiple-choice tasks, which involve 414

multi-token options, including COPA (Roemmele 415

et al., 2011), StoryCloze (Mostafazadeh et al., 416

2016), Hellaswag (Zellers et al., 2019), PIQA (Bisk 417

et al., 2020). We construct a validation set the same 418

size as the training set in few-shot settings and re- 419

port results on the full validation set for all datasets. 420

C Training Details 421

Following Gao et al. (2021), we conduct grid search 422

for all few-shot experiments and take learning rates 423

from {1e− 5, 2e− 5, 3e− 5} and batch sizes from 424

{2, 4, 8}. For each trial, we perform gradients up- 425

dates for 1000 steps and evaluate the model ev- 426

ery 100 steps and select the model with the best 427

validation accuracy. For full-shot experiments, 428

we conduct grid search with learning rates from 429

{1e− 5, 2e− 5, 3e− 5} and use a batch size of 16. 430

D Large Models 431

We present prompt-based zero-shot and few-shot 432

results on large-sized models in Table 4 to show 433

that the trend prevails when the model scales 434

up. Except SNLI, the average gain from prompt- 435

based fine-tuning for ELECTRAlarge is signifi- 436

cantly larger than BERTlarge and RoBERTalarge. 437

Notably, ELECTRAlarge also significantly outper- 438

forms BERTlarge and RoBERTalarge on zero-shot 439

prediction. 440

E Number of Examples 441

We show the few-shot results as a function of K 442

on the rest of the single-token tasks in Figure 4. 443

ELECTRA significantly outperforms RoBERTa on 444
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Models Pretrain Corpora Corpora Size # Vocab Steps GLUE

BERTbase Wikipedia, BooksCorpus 16GB 30K 1M 82.2
RoBERTabase Wikipedia, BooksCorpus, CC-News, OpenWebText, Stores 160GB 50K 500K 86.4
ELECTRAbase Wikipedia, BooksCorpus 16GB 30K 766K 85.1

BERTlarge Wikipedia, BooksCorpus 16GB 30K 464K 84.0
RoBERTAalarge Wikipedia, BooksCorpus, CC-News, OpenWebText, Stores 160GB 50K 500K 88.9
ELECTRAlarge Wikipedia, BooksCorpus, ClueWeb, CommonCrawl, Gigaword 33GB 30K 400K 89.0

Table 3: Pre-training details of BERT, RoBERTa and ElECTRA. The GLUE results are taken from Clark et al.
(2020) and Liu et al. (2019) on the development set.

SST-2 SST-5

BERT RoBERTa ELECTRA BERT RoBERTa ELECTRA

prompt zero-shot 61.2 83.6 86.0 25.7 34.7 32.1
standard few-shot FT 82.4 (3.0) 85.4 (2.9) 75.8 (5.2) 40.1 (2.4) 41.3 (1.2) 42.8 (0.9)
prompt few-shot FT 87.9 (0.8) 93.0 (0.6) 93.6 (0.4) 42.4 (1.5) 47.1 (0.9) 50.3 (1.8)
standard full-shot FT 94.3 96.6 97.1 53.3 56.8 58.9

SNLI BoolQ

BERT RoBERTa ELECTRA BERT RoBERTa ELECTRA

prompt zero-shot 41.5 49.8 59.4 49.3 53.4 71.1
standard full-shot FT 51.2 (3.3) 51.4 (3.1) 66.7 (2.7) 56.0 (2.3) 59.5 (3.0) 61.3 (1.5)
prompt few-shot FT 60.6 (2.8) 79.4 (1.4) 79.1 (2.0) 56.9 (0.3) 70.3 (2.6) 75.2 (1.2)
full standard FT 91.6 92.1 92.2 73.1 85.2 85.0

Table 4: Zero-shot and few-shot (K = 16) results of BERT, RoBERTa and ELECTRA large models.

BoolQ and RTE across all settings, suggesting that445

ELECTRA is an overall stronger model for these446

datasets. On MR, we observe a similar pattern447

where the gap between ELECTRA and RoBERTa448

gets smaller, showing that ELECTRA benefits from449

prompt training more than RoBERTa. On AGNews,450

ELECTRA underperforms RoBERTa on standard451

fine-tuning but closes the gap on prompt-based fine-452

tuning, backing up the argument that ELECTRA453

benefits more from the prompt.454

F Contrastive Objective455

We also explored a contrastive objective with456

ELECTRA’s output probabilities for prompt-based457

few-shot finetuning. For all the prompts of an input458

x with the label set Y , we define the loss as459

− log
exp(H(c(y)))∑

y′∈Y exp(H(c(y′))))
460

With this objective, we directly contrast the correct461

verbalizer with the incorrect ones and show results462

on SST-2 and AGNews in Table 5. Prompt-based463

fine-tuning with the original ELECTRA objective464
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Figure 4: Fewshot performance of RoBERTa v.s. ELEC-
TRA with standard and prompt-based fine-tuning as K
(number of instances per label) increases on more tasks.
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Task K Original Original w/ Cons. Contrastive

SST-2

16 91.2 (0.7) 91.2 (0.8) 91.0 (0.4)
32 90.9 (0.8) 90.5 (0.8) 90.6 (0.7)

256 92.6 (0.5) 92.2 (0.4) 92.2 (0.7)
1024 93.6 (0.3) 92.9 (0.5) 93.1 (0.3)

AGNews

16 86.5 (1.1) 85.4 (1.3) 85.4 (0.8)
32 88.4 (0.3) 86.5 (0.6) 86.7 (0.7)

256 90.3 (0.2) 89.8 (0.2) 89.3 (0.2)
1024 90.5 (0.1) 90.1 (0.2) 89.5 (0.3)

Table 5: Few-shot prompt-based fine-tuning results on different objectives with ELECTRAbase.

outperforms the contrastive objective. We hypoth-465

esize that the downside of the contrastive objec-466

tive is that one input with different verbalizers will467

be packed into the same batch, which affects the468

optimization. To verify the hypothesis, we also469

experiment on the original discriminative objec-470

tive with the same batch restriction and observe a471

performance drop.472

G Few-shot Plots473

We show the few-shot output distribution of474

RoBERTa and ELECTRA on SST-2 in Figure 5.475
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Figure 5: Few-shot prediction distributions on SST-2
with RoBERTabase and ELECTRAbase. Each sub-graph
shows the output distribution for inputs with a label
y ∈ {negative, positive} when prompted with the corre-
sponding verbalizer M(y).

H Template476

We largely follow previous works to construct477

our template. For sentiment classification tasks478

and natural language inference tasks, we use tem-479

plates from Gao et al. (2021). For AGNews, we480

use the template from Holtzman et al. (2021) and481

for BoolQ, we use the template from Schick and482

Schütze (2021b). For tasks involving multi-token483

verbalizers, we simply concatenate the context484

and options, which largely follows Holtzman et al.485

(2021). The template details can be found in Ta- 486

ble 6 and Table 7. 487

To verify that the template does not affect our ma- 488

jor conclusion, we conduct prompt-based few-shot 489

finetuning experiments with different templates for 490

four tasks. The templates we use are in Table 8. Re- 491

sults in Table 9 show that ELECTRA outperforms 492

RoBERTa with different templates. 493
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Task Template Label Words

SST-2 <sentence> It was [MASK] . positive: great, negative: terrible
SST-5 <sentence> It was [MASK] . v.positive: great, positive: good, neutral: okay, negative: bad, v.negative: terrible
MR <sentence> It was [MASK] . positive: great, negative: terrible
MNLI <premise>? [MASK] , <hypothesis> entailment: Yes, netural: Maybe, contradiction: No
SNLI <premise>? [MASK] , <hypothesis> entailment: Yes, netural: Maybe, contradiction: No
RTE <premise>? [MASK] , <hypothesis> entailment: Yes, not entailment: No
QNLI <premise>? [MASK] , <hypothesis> entailment: Yes, not entailment: No
AGNews [MASK] News: <sentence> World: World, Sports: Sports, Business: Business, Sci/Tech: Tech
BoolQ <passage> Question: <question> ? Answer: [MASK] . No: No, Yes: Yes

Table 6: Task templates for tasks with single-token verbalizers.

Task Template

COPA <sentence> so/because [OPTION]
StoryCloze <sentence1> <sentence2> <sentence3> <sentence4> [OPTION]
Hellaswag <context>[OPTION]
PIQA <sentence>[OPTION]

Table 7: Task templates for tasks with multi-token verbalizers.

Text T Template

MNLI
T1 <premise> ? [MASK] , <hypothesis>
T2 <premise> ? [MASK] . <hypothesis>
T3 "<premise>" ? [MASK] , "<hypothesis>"

RTE
T1 <premise> ? [MASK] , <hypothesis>
T2 <premise> ? [MASK] . <hypothesis>
T3 "<premise>" ? [MASK] , "<hypothesis>"

COPA
T1 <sentence> so/because [OPTION]
T2 [OPTION_1] or [OPTION_2] ? <sentence>so/because [OPTION]

StoryCloze
T1 <sentence1> < sentence2> < sentence3> < sentence4> [OPTION]
T2 [OPTION_1] or [OPTION_2] ? <sentence1> <sentence2> <sentence3> <sentence4> [OPTION]

Table 8: Task templates for task sensitivity test.

MNLI RTE COPA SC

T1
RoBERTa 59.1 62.7 72.7 71.0
ELECTRA 60.8 67.0 75.0 86.9

T2
RoBERTa 55.3 63.2 69.7 71.7
ELECTRA 61.0 64.9 74.7 86.4

T3
RoBERTa 57.3 63.9 - -
ELECTRA 60.9 67.2 - -

Table 9: Few-shot results with different templates with base-sized models. ELECTRA still outperforms RoBERTa
with different templates.
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