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Abstract

Pre-trained masked language models have been
successfully used for few-shot learning by for-
mulating downstream tasks as text infilling.
However, discriminative pre-trained models
like ELECTRA, as a strong alternative in full-
shot settings, does not fit into the paradigm.
In this work, we adapt prompt-based few-shot
learning to ELECTRA and show that it outper-
forms masked language models in a wide range
of tasks. ELECTRA is pre-trained to distin-
guish if a token is generated or original. We
naturally extend that to prompt-based few-shot
learning by training to score the originality of
the verbalizers without introducing new param-
eters. Our method can be easily adapted to
tasks involving multi-token verbalizers without
extra computation overhead. Analysis shows
that the distributions learned by ELECTRA
align better with downstream tasks.

1 Introduction

Large pre-trained language models, which encode
rich language properties, are known to be effective
zero- and few-shot learners (Brown et al., 2020;
Artetxe et al., 2021; Rae et al., 2021). Even rel-
atively small masked language models (MLMs),
like BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019), demonstrate competitive few-shot per-
formance through prompt-based fine-tuning, which
updates the model to select the correct verbaliz-
ers (Schick and Schiitze, 2021a; Gao et al., 2021).

Discriminative pre-trained models like ELEC-
TRA (Clark et al., 2020) are strong alternatives
to MLMs in full-shot settings, but their properties
as zero- and few-shot learners remain unexplored.
We hypothesize that models like ELECTRA would
make strong zero- and few-shot learners as they
are pre-trained to distinguish between challenging
alternatives. To test this hypothesis, we explore
prompt-based learning with ELECTRA by align-
ing its pre-training objective, which distinguishes if
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Figure 1: Prompt-based fine-tuning with MLMs and
discriminative models with a SST-2 and COPA example.
The underlined text is the task-specific template. c(-)
denotes the contextualized embedding; v and " denotes
a correct and an incorrect option respectively.

a single token is generated or from the training data,
with the downstream prompt-based prediction by
reusing the discriminative head to classify correct
verbalizers as original tokens. As an additional ben-
efit, we can naturally adapt the approach to verbaliz-
ers spanning multiple tokens by aggregating either
representations or probabilities. In contrast, MLMs
require auto-regressive decoding to adapt to multi-
token verbalizers (Schick and Schiitze, 2021b).
Our approach to prompting ELECTRA outper-
forms BERT and RoBERTa by 10.2 and 3.1 points
on average across 13 tasks (text classification, NLI,
multiple-choice tasks) for base-sized models in the
few-shot setting, and the trend prevails for large-
sized models. Analysis shows that the output distri-
butions of ELECTRA’s pre-training task are close



to downstream task distributions.

2 Background

Prompting Masked Language Models MLMs
such as BERT and RoBERTa are trained by mask-
ing words in inputs and maximizing the probabil-
ity of the original tokens which are replaced by
[MASK] tokens. Given a sequence xi, X2, - ,Tn,
with the i-th token masked, the objective is:

exp (¢([MASK]) - ez,)
2 vy exp (¢([MASK]) - e,)

where e,, denotes the output embedding of word
v € V. We use ¢(+) to denote the contextualized
representation for simplicity. Prompt-based learn-
ing turns the objective into a softmax distribution
over all verbalizers of a prompt template (Gao et al.,
2021; Schick and Schiitze, 2021a). For example, in
binary sentiment analysis, given an input sentence
z, its associated label y € {positive, negative} and
a template 7, we formulate the prompt as:

—log

T (x) = x It was [MASK] .

By defining a mapping M : ) — V from the task
label space to words from the vocabulary, the task
is transformed into predicting the verbalizer M (y):

exp (c([MASK]) - e ()
> yrey exp (c(MASK]) - enqy))

This formulation can be used for both prompt-
based zero-shot evaluation and few-shot fine-tuning
to perform gradient updates.

For tasks involving multi-token verbalizers such
as multiple-choice tasks, prompt-based fine-tuning
with MLMs is less intuitive. Schick and Schiitze
(2021b) propose PET, which adopts a multiclass
hinge loss for training and devise a heuristic decod-
ing method to estimate probabilities for multi-token
verbalizers during inference. The disadvantages
are (1) such usage of MLMs deviates from the pre-
training objective; (2) the auto-regressive decoding
cannot forward in batches during inference, which
is computationally inefficient.

—log

Discriminative Pre-trained Models Discrimina-
tive models such as ELECTRA (Clark et al., 2020)
cast the word prediction problem into a binary clas-
sification problem. In ELECTRA, a discriminator
D and a smaller generator G are jointly trained with
the goal to distinguish if the tokens are sampled
from G or data:

— Z (]l(x; = z;) log H(c(z;))

i

+1(z; # i) log(1 — H(c(x7)))

where {z;} are tokens from the original sentence,
{«}} are tokens from the corrupted sentence and H
denotes the discriminator head. We refer readers to
Clark et al. (2020) for more details.

3 Method: Prompting ELECTRA

Discriminative models like ELECTRA are strong
alternatives to MLMs, so they have the potential to
be effective few-shot learners even though they do
not fit the current paradigm. Furthermore, ELEC-
TRA could be more amenable to solving tasks in-
volving multi-token verbalizers, as it does not re-
quire auto-regressive decoding. In this section, we
propose to adapt ELECTRA to accommodate a
wide range of tasks involving either single-token or
multi-token verbalizers for prompt-based learning.

Tasks with Single-Token Verbalizers The
prompts for ELECTRA models are formulated with
an input sentence x, a label y € ), a template 7
with the mapping function M. An example of
sentiment classification is as follows:

T(z,y) = x It was M(y) .

For each input sentence, we create |)/| prompts and
forward them for gradient updates such that the
model predicts the correct verbalizer as an original
token and incorrect verbalizers as generated tokens:

—logH(c(M(y))) — >
y'eYy/{y}

log(1 —H(c(M(y))))

During inference, the model predicts how likely it
is for each verbalizer to fit into the sentence and
outputs the most likely one.! This approach allows
us to perform prompt-based zero-shot prediction
and few-shot fine-tuning analogously to the MLM
paradigm.

Tasks with Multi-Token Verbalizers We hand-
ily adapt ELECTRA’s discriminative objective to
accommodate tasks with multi-token verbalizers
for prompt-based fine-tuning. The mapping M :

'One disadvantage is that this approach requires forward-
ing the input || times, which is less efficient than MLMs.



SST-2 SST-5 MR
BERT  RoBERTa ELECTRA ‘ BERT RoBERTa ELECTRA ‘ BERT  RoBERTa ELECTRA
prompt zero-shot 61.6 77.8 82.8 26.0 30.3 31.1 55.8 71.7 81.5
standard few-shot FT 72.8 (6.4) 84.5(2.3) 78.2(7.6) | 349(2.0) 379(1.3) 41.71.8) |70.8(52) 76.8(3.7) 76.3(2.9)
prompt few-shot FT ~ 84.6 (1.0) 89.9(0.6) 91.2(0.7) | 37.9(14) 433(1.2) 493(1.5) |782(1l.1) 850(0.9) 88.0(0.5)
standard full-shot FT 93.6 95.1 95.6 53.3 55.9 55.0 87.1 88.9 90.4
MNLI RTE QNLI
BERT RoBERTa ELECTRA ‘ BERT RoBERTa ELECTRA ‘ BERT RoBERTa ELECTRA
prompt zero-shot 43.5 48.1 51.9 48.7 534 57.8 49.5 50.5 54.5
standard few-shot FT 41.3 (1.7) 42.2(2.8) 44.7(3.1) | 52.8(4.1) 542(2.8) 591 (1.7) |684(4.8) 651(51) 69.73.7)
prompt few-shot FT ~ 47.9(0.7) 59.1 (2.1) 60.8(2.3) | 57.5(2.6) 62.7(2.17) 67.0(1.4) |56.0(0.7) 67.4(2.8) 70.6(4.0)
standard full-shot FT 84.9 88.1 89.0 70.8 74.4 79.4 91.7 92.7 93.2
SNLI AGNews BoolQ
BERT RoBERTa ELECTRA ‘ BERT RoBERTa ELECTRA ‘ BERT RoBERTa ELECTRA
prompt zero-shot 38.7 48.8 56.6 60.6 73.2 72.2 47.7 559 59.1
standard few-shot FT  50.4 (2.8) 44.8(3.9) 50.5(3.3) | 84.9(0.6) 85.5(0.8) 81.4(1.4) |54.7(25 56.8(3.9) 57.2(2.1)
prompt few-shot FT ~ 51.0 (2.6) 66.3(3.0) 72.4(2.0) | 84.6(1.2) 87.1(0.6) 869(1.0) |574(29) 578124 60.84.2)
standard full-shot FT 92.3 94.1 94.6 94.9 95.5 95.0 77.1 78.8 82.0

Table 1: Zero-shot and few-shot (K = 16) results of BERT, RoBERTa and ELECTRA base models. In the
parenthesis are standard deviations of 5 runs. We highlight the best number for each setting.

Y — V* is an identity function for such tasks
where the verbalizers are the options themselves.
Consider the multiple-choice task COPA (Roem-
mele et al., 2011); given a premise x, a template T
and an option y € Y, we formulate the prompt as:

T (z,y) = x so/because M (y) .

As a verbalizer M (y) contains multiple tokens,
we either average the hidden representations of all
tokens in M (y) (equivalent to y):

1
H m ;C(yi) ;

or use the average probability of all tokens in v as
the final prediction:

Y Hlelwn)

Both methods  fully reuse all pre-trained weights
of ELECTRA and refrain from autoregressive de-
coding. Similar to PET, we only use this approach
for few-shot fine-tuning due to its discrepancy from
pre-training.

4 Experimental Setup

We run experiments with released checkpoints of
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,

2We also experimented with another approach to adapt the
discriminative objective for contrastive learning but the results
were not as competitive. Please see Equation F for details.

2019) and ELECTRA (Clark et al., 2020) from
the transformers (Wolf et al., 2019) library. We
use base-sized models unless otherwise specified.
More pre-training details of the models are in Ap-
pendix A. We conduct prompt-based zero-shot
evaluations as well as standard > and prompt-based
few-shot training for each checkpoint. For few-shot
experiments, we follow Gao et al. (2021) to create a
development set the same size as the training set for
model selection and conduct multiple runs of exper-
iments to mitigate instability issues (Dodge et al.,
2020). More training details are in Appendix C.

We evaluate on sequence classification tasks in-
cluding SST-2, SST-5, MR, MNLI, RTE, QNLI,
SNLI, AGNews and BoolQ; and multiple-choice
tasks including COPA, StoryCloze, Hellaswag,
PIQA. Dataset and template details are in Ap-
pendix B and Appendix H.

S Results and Analysis

Tasks with Single-token Verbalizers Table 1
reports zero-shot and few-shot fine-tuning results
on base-sized models*. ELECTRA shows a clear
advantage compared to BERT and RoBERTa, with
an average margin of 7.9 and 3.5 points on zero-
shot prediction, respectively, and an average margin
of 10.2 and 3.1 on prompt-based few-shot fine-
tuning. The difference is much smaller on standard

3We use the CLS token for prediction in standard fine-
tuning, known as head fine-tuning in Le Scao and Rush (2021).
*Results on large-sized models are in Appendix D.
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Figure 2: Few-shot performance of RoBERTa v.s.
ELECTRA with standard and prompt-based fine-tuning
as K (number of instances per label) increases.
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Figure 3: Zero-shot prediction distributions on SST-2
with RoOBERTa and ELECTRA. Each sub-graph shows
the output distribution for inputs associated with a la-
bel y € {negative, positive} when prompted with the
verbalizers {great, terrible}. The y-axis shows the per-
centage of values in each subgraph.

few-shot fine-tuning (3.3 and 1.3, respectively),’
suggesting that ELECTRA is inherently better at
prompt learning, in addition to being a better model
in general. On that note, we find that prompt-based
fine-tuning consistently outperforms standard fine-
tuning in line with prior work (Gao et al., 2021;
Schick and Schiitze, 2021b), which reinforces the
importance of prompts for few-shot learning.

Tasks with Multi-token Verbalizers Table 2
shows results on multiple-choice tasks, the ver-
balizers of which are multi-token options. ELEC-
TRA outperforms RoBERTa with PET (Schick
and Schiitze, 2021b), which uses a heuristic auto-
regressive decoding approach. ELECTRAy,, and
ELECTRA|,ge outperform their counterparts of
RoBERTa fine-tuned with PET. This result demon-
strates the potential of discriminative models on a

The gains of ELECTRA over RoBERTa and BERT on
full dataset fine-tuning are similar, 3.3 and 1.2 respectively.

Model Size CP SC HS PI

RoBERTa (PET) 125M 727 71.0 313 6138
ELECTRA (prob) 109M 73.7 853 52.6 66.2
ELECTRA (rep) 109M 75.0 86.9 56.0 67.4
RoBERTa (PET) 335M 77.7 732 469 619
ELECTRA (prob) 335M 85.0 88.9 77.7 709
ELECTRA (rep) 335M 90.7 904 77.6 71.7

Table 2: Multi-choice task results for prompt-based fine-
tuning with RoBERTa and ELECTRA with 32 randomly
selected examples. We run each model three times and
the standard deviations are around 1-2 points. prob and
rep denote average probability and representations. CP:
COPA, SC: StoryCloze, HS: Hellaswag, PI: PIQA.

broader range of tasks under the few-shot setting 6.

Number of Examples Figure 2 shows stan-
dard and prompt-based few-shot fine-tuning per-
formance as the number of instances (K) increases
for ROBERTa and ELECTRA on four datasets’.
ELECTRA outperforms RoBERTa as K increases,
and the two converge when K > 256. The perfor-
mance gap increases as the number of examples
decreases, demonstrating that ELECTRA’s discrim-
inative pre-training objective is well-suited for zero-
and few-shot applications.

Prediction Analysis We show the output distribu-
tions of zero-shot predictions from RoBERTa and
ELECTRA on SST-2 in Figure 3. RoBERTa failed
mostly on negative examples, and ELECTRA’s out-
puts align with the task distribution better. In Ap-
pendix G we show that the output distribution shifts
to a polarized shape with few-shot fine-tuning.

6 Conclusion

We explore discriminative pre-trained models for
prompt-based zero-shot and few-shot learning and
find that they consistently outperform masked lan-
guage models, suggesting that discriminative pre-
trained models are effective zero-shot and few-shot
learners. Analysis shows that the output distri-
butions of discriminative models align with the
downstream task distribution better. We speculate
that this could be due to discriminative models
being less vulnerable to the surface form competi-
tion (Holtzman et al., 2021), and we would like to
dig deeper into this hypothesis in future work.

®While we focus on MLMs for their direct comparability
with ELECTRA, our approach also outperforms GPT-3 results
reported in Brown et al. (2020) for equivalent model sizes.

"See Appendix E for results on the rest of the datasets.
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A  Model Details

We list the details of the pre-trained models, in-
cluding training corpora, vocabulary size, training
steps, and GLUE development set results in Ta-
ble 3. ELECTRA, which is trained on the same set

of corpora as BERT, outperforms BERT on GLUE
datasets by 3 to 5 points. It slightly underperforms
RoBERTa on the base size but is comparable to
RoBERTa on the large size.

B Datasets

We experiment on 1) sentence classification tasks,
including 3 sentiment analysis datastes SST-2, SST-
5 (Socher et al., 2013), MR (Pang and Lee, 2005); 4
natural language inference tasks: MNLI (Williams
et al., 2018), RTE (Dagan et al., 2005; Haim et al.,
2006; Giampiccolo et al., 2007; Bentivogli et al.,
2009), QNLI (Rajpurkar et al., 2016), SNLI (Bow-
man et al., 2015); AGNews (Zhang et al., 2015),
which is a news classification dataset, BoolQ (Clark
et al., 2019), which is a dataset of boolean ques-
tions; 2) multiple-choice tasks, which involve
multi-token options, including COPA (Roemmele
et al., 2011), StoryCloze (Mostafazadeh et al.,
2016), Hellaswag (Zellers et al., 2019), PIQA (Bisk
et al., 2020). We construct a validation set the same
size as the training set in few-shot settings and re-
port results on the full validation set for all datasets.

C Training Details

Following Gao et al. (2021), we conduct grid search
for all few-shot experiments and take learning rates
from {le — 5, 2e — 5, 3e — 5} and batch sizes from
{2,4, 8}. For each trial, we perform gradients up-
dates for 1000 steps and evaluate the model ev-
ery 100 steps and select the model with the best
validation accuracy. For full-shot experiments,
we conduct grid search with learning rates from
{le—b5,2e —5,3e — 5} and use a batch size of 16.

D Large Models

We present prompt-based zero-shot and few-shot
results on large-sized models in Table 4 to show
that the trend prevails when the model scales
up. Except SNLI, the average gain from prompt-
based fine-tuning for ELECTRA e is signifi-
cantly larger than BERT s and RoOBERTayy .
Notably, ELECTRA |, also significantly outper-
forms BERT)ae and ROBERTay,ge On zero-shot
prediction.

E Number of Examples

We show the few-shot results as a function of K
on the rest of the single-token tasks in Figure 4.
ELECTRA significantly outperforms RoBERTa on



Models Pretrain Corpora Corpora Size # Vocab Steps GLUE
BERT} e Wikipedia, BooksCorpus 16GB 30K M 82.2
RoBERTabase Wikipedia, BooksCorpus, CC-News, OpenWebText, Stores 160GB 50K 500K  86.4
ELECTRAbase  Wikipedia, BooksCorpus 16GB 30K 766K  85.1
BERTlarge Wikipedia, BooksCorpus 16GB 30K 464K 84.0
RoBERTAalarge Wikipedia, BooksCorpus, CC-News, OpenWebText, Stores 160GB 50K 500K  88.9
ELECTRAlarge  Wikipedia, BooksCorpus, ClueWeb, CommonCrawl, Gigaword 33GB 30K 400K  89.0

Table 3: Pre-training details of BERT, RoBERTa and EIECTRA. The GLUE results are taken from Clark et al.

(2020) and Liu et al. (2019) on the development set.

SST-2 SST-5
BERT  RoBERTa ELECTRA ‘ BERT  RoBERTa ELECTRA
prompt zero-shot 61.2 83.6 86.0 25.7 34.7 32.1
standard few-shot FT 82.4 (3.0) 85.4(2.9) 75.8(5.2) | 40.1 (24) 41.3(1.2) 42.8(0.9)
prompt few-shot FT ~ 87.9(0.8) 93.0(0.6) 93.6 (0.4) | 42.4(1.5) 47.1(09) 50.3(1.8)
standard full-shot FT 94.3 96.6 97.1 53.3 56.8 58.9
SNLI BoolQ
BERT  RoBERTa ELECTRA ‘ BERT  RoBERTa ELECTRA
prompt zero-shot 41.5 49.8 59.4 49.3 53.4 71.1
standard full-shot FT 51.2(3.3) 514 (3.1) 66.7(2.7) | 56.0(2.3) 59.5@3.0) 61.3(1.5)
prompt few-shot FT ~ 60.6 (2.8) 79.4 (1.4) 79.1 (2.0) | 56.9(0.3) 703 (2.6) 75.2(1.2)
full standard FT 91.6 92.1 92.2 73.1 85.2 85.0

Table 4: Zero-shot and few-shot (KX = 16) results of BERT, RoBERTa and ELECTRA large models.

BoolQ and RTE across all settings, suggesting that
ELECTRA is an overall stronger model for these
datasets. On MR, we observe a similar pattern
where the gap between ELECTRA and RoBERTa
gets smaller, showing that ELECTRA benefits from
prompt training more than ROBERTa. On AGNews,
ELECTRA underperforms RoBERTa on standard
fine-tuning but closes the gap on prompt-based fine-
tuning, backing up the argument that ELECTRA
benefits more from the prompt.

F Contrastive Objective

We also explored a contrastive objective with
ELECTRA’s output probabilities for prompt-based
few-shot finetuning. For all the prompts of an input
x with the label set ), we define the loss as

exp(H(c(y)))
> yey exp(H(c(y'))))

—log

With this objective, we directly contrast the correct
verbalizer with the incorrect ones and show results
on SST-2 and AGNews in Table 5. Prompt-based
fine-tuning with the original ELECTRA objective
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ELECTRA Standard FT
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Figure 4: Fewshot performance of RoOBERTa v.s. ELEC-
TRA with standard and prompt-based fine-tuning as K
(number of instances per label) increases on more tasks.



Task K Original Original w/ Cons. Contrastive
16 91.2(0.7) 91.2 (0.8) 91.0 (0.4)
ST 32 90.9(0.8) 90.5 (0.8) 90.6 (0.7)
256 92.6 (0.5) 92.2 (0.4) 92.2 (0.7)
1024 93.6 (0.3) 92.9 (0.5) 93.1 (0.3)
16 86.5(1.1) 85.4 (1.3) 85.4 (0.8)
32 88.4(0.3) 86.5 (0.6) 86.7 (0.7)
AGNews 556 903(0.2) 89.8 (0.2) 89.3 (0.2)
1024 90.5 (0.1) 90.1 (0.2) 89.5 (0.3)

Table 5: Few-shot prompt-based fine-tuning results on different objectives with ELECTRAp,se.

outperforms the contrastive objective. We hypoth-
esize that the downside of the contrastive objec-
tive is that one input with different verbalizers will
be packed into the same batch, which affects the
optimization. To verify the hypothesis, we also
experiment on the original discriminative objec-
tive with the same batch restriction and observe a
performance drop.

G Few-shot Plots

We show the few-shot output distribution of
RoBERTa and ELECTRA on SST-2 in Figure 5.

Few-Shot RoBERTa Few-Shot ELECTRA
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Figure 5: Few-shot prediction distributions on SST-2
with RoOBERTay,s. and ELECTRAy,.. Each sub-graph
shows the output distribution for inputs with a label
y € {negative, positive} when prompted with the corre-
sponding verbalizer M(y).

H Template

We largely follow previous works to construct
our template. For sentiment classification tasks
and natural language inference tasks, we use tem-
plates from Gao et al. (2021). For AGNews, we
use the template from Holtzman et al. (2021) and
for BoolQ, we use the template from Schick and
Schiitze (2021b). For tasks involving multi-token
verbalizers, we simply concatenate the context
and options, which largely follows Holtzman et al.

(2021). The template details can be found in Ta-
ble 6 and Table 7.

To verify that the template does not affect our ma-
jor conclusion, we conduct prompt-based few-shot
finetuning experiments with different templates for
four tasks. The templates we use are in Table 8. Re-
sults in Table 9 show that ELECTRA outperforms
RoBERTa with different templates.



Task Template Label Words

SST-2 <sentence> It was [MASK] . positive: great, negative: terrible

SST-5 <sentence> It was [MASK] . v.positive: great, positive: good, neutral: okay, negative: bad, v.negative: terrible
MR <sentence> It was [MASK] . positive: great, negative: terrible

MNLI <premise>? [MASK] , <hypothesis> entailment: Yes, netural: Maybe, contradiction: No

SNLI <premise>? [MASK] , <hypothesis> entailment: Yes, netural: Maybe, contradiction: No

RTE <premise>? [MASK] , <hypothesis> entailment: Yes, not entailment: No

QNLI <premise>? [MASK] , <hypothesis> entailment: Yes, not entailment: No

AGNews [MASK] News: <sentence> World: World, Sports: Sports, Business: Business, Sci/Tech: Tech

BoolQ <passage> Question: <question> ? Answer: [MASK] . No: No, Yes: Yes

Table 6: Task templates for tasks with single-token verbalizers.

Task Template

COPA <sentence> so/because [OPTION]

StoryCloze <sentencel> <sentence2> <sentence3> <sentence4> [OPTION]
Hellaswag  <context>[OPTION]

PIQA <sentence>[OPTION]

Table 7: Task templates for tasks with multi-token verbalizers.

Text T  Template

71 <premise> ? [MASK] , <hypothesis>
MNLI T2 <premise>? [MASK] . <hypothesis>
Tz "<premise>" ? [MASK] , "<hypothesis>"

71 <premise>? [MASK] , <hypothesis>
RTE T2 <premise> ? [MASK] . <hypothesis>
T3 "<premise>" ? [MASK] , "<hypothesis>"

T1 <sentence> so/because [OPTION]

COPA
7> [OPTION_1] or [OPTION_2] ? <sentence>so/because [OPTION]

T1 <sentencel> < sentence2> < sentence3> < sentence4> [OPTION]

StoryCloze
y T> [OPTION_1] or [OPTION_2] ? <sentencel> <sentence2> <sentence3> <sentence4> [OPTION]

Table 8: Task templates for task sensitivity test.

MNLI RTE COPA SC
RoBERTa 591 627 727 710

i ELECTRA 608 670 750 869
5 RoBERTa 553 632 697 717
2 ELECTRA 610 649 747 864

RoBERTa 573 63.9 . -
T3

ELECTRA 609 672 - -

Table 9: Few-shot results with different templates with base-sized models. ELECTRA still outperforms RoBERTa
with different templates.



