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ABSTRACT

Heterogeneity within data distribution poses a challenge in many modern feder-
ated learning tasks. We formalize it as an optimization problem involving a com-
putationally heavy composite under data similarity. By employing different sets of
assumptions, we present several approaches to develop communication-efficient
methods. An optimal algorithm is proposed for the convex case. The constructed
theory is validated through a series of experiments across various problems.

1 INTRODUCTION

Currently, the field of optimization theory is well-developed. It includes a wide range of algorithms
and techniques designed to efficiently solve various tasks. In today’s landscape, engineers often
have to handle large-scale data. It can be spread across multiple nodes/clients/devices/machines to
share the load by working in parallel (Verbraeken et al.,2020). The problem can be formally written
as

1 . 1

irel%Rg h(z) = A Z hm(x) |, with h,,(z) = — Z@(m,z}”), (1)
me My, j=1

where n,, is the size of the m-th local dataset, x is the vector of model parameters, z}” is the j-th

data point of the m-th dataset, and / is the loss function. The most computationally powerful device

(hq, without loss of generality) is treated as a server, while the others communicate through it.

The primary challenge that must be addressed in this paradigm is a communication bottleneck (Jor-
dan et al.l [2019). Deep models are often extremely large, and excessive information exchange can
negate the acceleration provided by computational parallelism (Kairouz et al., [2021). A potential
solution to reduce the frequency of communication is to exploit the similarity of local data. There
are several ways to measure this phenomenon. The most mathematically solid one typically employs
the Hessians.

Definition 1. (Hessian similarity). We say that h;, h; are §-related, if there exists a constant § > 0
such that

|V2hi(z) — V2h;(x)|| <5, VoeR

Many papers assume the relatedness of every h,, and & (Lin et al.,|2024; Jiang et al., 2024), but we
rely only on h; and h, as in (Shamir et al., [2014; [Hendrikx et al., 2020; [Kovalev et al., 2022)). If
we consider h to be L-smooth, the losses exhibit greater statistical similarity with the growth of the
local dataset size n. Measure concentration theory implies 6 ~ L/n and 6 ~ L/,/n in the quadratic
and general cases, respectively (Hendrikx et al.| [2020). In distributed learning, where samples are
shared between machines manually, it is easy to produce a homogeneous distribution. As a result,
schemes using d-relatedness strongly outperform their competitors.

However, new settings entail new challenges. Federated learning (Zhang et al., 202 1)) requires work-
ing with private data that is collected locally by clients and may therefore be heterogeneous. As a
result, similarity-based methods lose quality (see Table 3 in (Karimireddy et al, [2020)). We argue
that this issue can be addressed to some extent. In practice, some distribution modes are common
and shared uniformly between the server and the clients, while others are unique and primarily con-
tained on the devices. In that case, one part of the data is better approximated by the server than
the other. This suggests the idea that the objective can be represented as a sum of two functions,
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corresponding to frequent and rare data. The new problem can be formulated as

> L)+ X )] @

1
min | h(z) ] )
meMy meM,

z€ERY

where M, M, denotes the set of devices sharing f, g, respectively, and | - | is the number of nodes
in the corresponding set. f and g are the empirical losses corresponding to common and rare modes,
respectively. The problem [2] exhibits a composite structure. It consists of components that are
distinct from one another, including in terms of similarity. For the most typical samples, the server
(h1 = f1 4+ ¢1) may possess more extensive information, while for unique instances, there may be
no ability to reproduce them accurately. In this context, we propose to examine two characteristics
of relatedness simultaneously:

IV2 fi(e) = V2 f ()| < &7, Yz eRY

IV2g1(2) = V2g(2)l| < 65, VYo € R%
Without loss of generality, we assume d; < d,. Due to the additional structure of the objective, it is
possible to call f (and hence the devices from M) less frequently. Thus, communication bottleneck
can be addressed more effectively than SOTA approaches suggest. Indeed, the complexity of existing
schemes depends on max{ds,d,} = 0, (Hendrikx et al. 2020; |[Kovalev et al.| 2022} Beznosikov
et al.l 2024} [Lin et al.| 2024; Bylinkin and Beznosikov, [2024). This indicates that no account is
taken of the fact that certain data modes are better distributed between the server and the clients than
others. This presents a unique challenge that requires the development of new schemes. Our paper
answers the question:

How to bridge the gap between separating the complexities in the problem (2) and the Hessian
similarity?

2 RELATED WORKS

2.1 COMPOSITE OPTIMIZATION

Classic works on numerical methods considered minimizing h without assuming any additional
structure (Polyak, [1987). Influenced by the development of machine learning, a composite setting
with h(xz) = f(x) 4+ g(x) as an objective has emerged. This focused on proximal friendly g (reg-
ularizer) (Parikh et al., [2014). This means that any optimization problem over g is easy to solve
since its value and gradient are “free” to compute. However, many practical tasks do not satisfy
this property. Consequently, the community has shifted towards analyzing more specific scenarios,
leading to the emergence of the heavy composite setting. Juditsky et al.| (2011) and [Lan| (2012)
studied convex smooth-+non-smooth problems but were unable to separate the complexities. The

result was O (\/ﬁ/e + Lf‘q’/sz). It cannot be improved if only the first-order information of f + g is
accessible. However, it is reasonable to expect that the number of V f evaluations can be bounded
by O (\/T/E) if the non-smooth term g is absent. This suggests that the estimate can be enhanced
if there is separate access to the first-order information of f and g. A step in this direction was taken
with the invention of gradient sliding in (Lan, |2016). For convex f and g, the author managed to
obtain O (m) and O (\/T/e + Li/sz) of Vf and ¢’ € Og evaluations, respectively. Later,
the exact separation was achieved for convex smooth+smooth problems in|Lan and Ouyang|(2016).
The proposed method achieved O (m) and O (\/?/s) For strongly convex f, g, the result

was O <\/Lf/,u log 1/5) and O (\/Lg/u log 1/5).

At present, various exotic sliding-based schemes exist: for VIs (Lan and Ouyang, 2021; |[Emelyanov
et al.| 2024)), saddle points (Tominin et al.,[2021; Kuruzov et al., 2022} Borodich et al.| [2023)), zero-
order optimization problems (Beznosikov et al., 2020; [Stepanov et al., [2021} [Ivanova et al., |[2022),
and high-order minimization (Kamzolov et al.||2020; |Gasnikov et al.,[2021};|Grapiglia and Nesterov,
2023).

Based on the above literature review, it can be concluded that the concept of complexity separation
is well established. Moreover, the sliding approach is utilized to design communication-efficient
algorithms based on similarity. The following subsection is dedicated to this topic.
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2.2 SIMILARITY

The essence of most techniques for handling the Hessian similarity lies in artificially dividing the
objective into two components:

hz) = (h = h1)(x) + ha (),
where h—hy is §-smooth. Unfortunately, previous gradient sliding methods cannot be easily adapted

to this setting, as classic works assume the convexity of both components. This presents a challenge
in developing a theory for the convex+non-convex=convex case.

The first approach addressing similarity was the Newton-type method, DANE, designed for quadratic
strongly convex functions (Shamir et al.| [2014). For this class of problems, |Arjevani and Shamir,
(2015) established a lower bound on the required number of communication rounds. However,
DANE failed to achieve it, prompting the question of how to bridge the gap. Numerous papers
explored this issue but either fell short of meeting the exact bound or required specific cases and
unnatural assumptions (Zhang and Lin, [2015; [Lu et al.l 2018} Yuan and Li, 2020; |Beznosikov et al.,
20215 Tian et al., 2022). Recently, Accelerated ExtraGradient, achieving optimal round
complexity, was introduced by |[Kovalev et al.| (2022).

The current trend in this area is to combine similarity with other approaches. This is often non-
trivial and demands the development of new techniques. In constructing a scheme with local steps,
the theory of the d-relatedness was first utilized by |[Karimireddy et al.|(2020). The proposed method
experienced acceleration due to the similarity of local data, but only for quadratic losses. This result
has recently been revisited and significantly improved in (Luo et al., 2025)).

Khaled and Jin| (2022) attempted to utilize client sampling in the similarity scenario. However, the
analysis of the proposed scheme requires strong convexity of each local function, which sufficiently
narrows the class of problems. Moreover, the authors used CATALYST (Lin et al., 2015)) to accel-
erate the method, which resulted in extra logarithm multiplier in the complexity and experimental
instability. This issue was addressed in (Lin et al.||2024). AccSVRS achieved an optimal number of
client-server communications.

Combining compression and similarity is also widespread in research papers. One of the first results
in this area was obtained by |[Beznosikov and Gasnikov|(2022). The authors proposed schemes uti-
lizing both unbiased and biased compression. However, the complexity includes a term that depends
on the Lipschitz constant of the objective’s gradient. This issue was addressed in (Beznosikov et al.,
2024), but only for the permutation compression operator. Recently, similarity and compression
(both unbiased and biased) have been combined in an accelerated method designed by |Bylinkin and
Beznosikov| (2024)).

Similarity + composite structure of the objective represents an interesting challenge that has not
been addressed.

3 OUR CONTRIBUTION

We analyze the problem 2] under the Hessian similarity condition. This paper presents several effi-
cient methods for various sets of assumptions.

e Firstly, we consider the setting of strongly convex h and possibly non-convex f, g. Start-
ing with a naive stochastic approach, we construct a method with exact separation of complex-

ities: O (\/5f/u log /e + Uz/ue) and O (\/59/u log /e + Uz/ue) communication rounds for the
nodes from My and M,, respectively. It is not optimal because of sublinear terms in the esti-
mates. To address this issue, we develop the variance reduction theory for the problem [2] Over-
coming several challenges, we present Variance Reduction for Composite under
Similarity (VRCS) that achieves O (37/ulog /<) and O ((94/5;)%/ulog 1/<). Its accelerated ver-

sion AccVRCS enjoys O (\/5f/u log 1/5) and O ((%/af)?’/z«/%/u log 1/5). In summary, we man-

age to achieve complexity separation with the optimal estimate for M and the extra factor (%s/s )72
for M. To make both complexities optimal, we have to impose requirements on g, see the following
paragraph.

e Under the additional assumption of g convexity, we propose an approach based on Accelerated
Extragradient. Our method enjoys separated communication complexities. It achieves optimal

(@] (\/5f/,u log 1/5) ,O («/%/u log 1/5) for My, My, respectively.
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e We validate our theory through experiments across a diverse set of tasks. Specifically, we eval-
uate the performance of a Multilayer Perceptron (MLP) on the MNIST dataset and ResNet-18 on
CIFAR-10.

4 SETTING

4.1 NOTATION

We assume that the devices and their communication channels are equivalent if they belong to the
same set of nodes (M or My). In a synchronous setup, analyzing the complexity in terms of
communication rounds for My and M, separately is sufficient. The number of times the server
initiates communication is considered in this case. This approach does not take into account the
number of involved machines and is well-suited for networks with synchronized nodes of two types.
When discussing our results, we also utilize the number of communications. This metric counts
each client-server vector exchange as a separate unit of complexity and is more appropriate for the
asynchronous case.

4.2 ASSUMPTIONS

The first part of our work relies solely on standard assumptions, leaving f, g arbitrary:
Assumption 1. h: R? — R is p-strongly convex on R%:

h(@) 2 h(y) + (Vh(y),e —y) + Slle — gl Va,y e R 3

Assumption 2. fy is §y-related to f, and g, is 64-related to g (Definition . We assume p < §¢ <
g-

Strong convexity of the objective (with arbitrary f and g) is the common assumption. No paper on

data similarity is void of it (Hendrikx et al., 2020; Kovalev et al.| 2022; |Beznosikov et al.,2024; Lin

et al.,2024; Bylinkin and Beznosikov}, 2024). The J-relatedness does not diminish the generality of

our analysis, as in the case of absolutely heterogeneous data, it suffices to substitute 6 = L¢ and

dg = Lg4 in the results.

Further, we strengthen the setting by assuming g to be convex (only in Section[7):
Assumption 3. g: RY — R is convex (11 = 0) on R

This allows us to obtain optimal estimates for communication rounds over My and M, simultane-
ously.

5 COMPLEXITY SEPARATION VIA SGD

To construct a theory suitable for applications, we should avoid introducing excessive requirements.
Firstly, we analyze the problem (2) without imposing additional conditions on f, g.

We begin with a naive SGD-like approach (Robbins and Monro, [1951). In Line [5] of Algorithm
we propose selecting which part of the nodes (M or M) to communicate with at each iteration.
Moreover, we aim to perform sampling based on the similarity constants rather than uniformly. To
maintain an unbiased estimator, we normalize it by the probability of choice (Line[3). Additionally,
we apply the same scheme in Line [/} Thus, each round of communication involves clients from
either My or M,.

As previously stated, the stochastic oracles & and (; are unbiased. As usual in SGD-
like algorithms, we impose a variance boundedness assumption to prove the convergence of
SC-AccExtragradient (Algorithm|I).

Assumption 4. The stochastic oracles &, y, have bounded variances:

Ee, [ — V(b= h)@)IP] < 0% Ee, [II6: — VA@r) 2] < o>
This approach enables the separation of complexities without introducing assumptions regarding the
composite.

Theorem 1. Consider Algorithm/[I|for the problem[2|under Assumptions Let the subproblem in
Line6]be solved approximately:
E [V A} @esn)2] < E

1 .
Tigz Ik — arg min AG(@)] | )
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Algorithm 1 SC-AccExtragradient

. Input: zo = 7o € R?
: Parameters: T € (0,1), n,6,a,p, K >0
cfork=0,1,..., K —1do
: z, =T1rKr + (1 —7)Tg
SV (f = f1)(zy,), with probability p
5: & = ﬁV(g — ¢1)(z;,), with probability 1 — p

Eralindl ol

6: Thy1 A argmingega [Af ()], where
1
Aj(@) = (& 2) + gglle = 2yl + b (2)

. Co = %V f(Tgs1), with probability p
' "7\ £ V9(@n41), with probability 1 — p

(2]

Tpt1 = Tk + N(Tp1 — k) — Nk
end for
10: Output: g

bl

Then the complexities in terms of communication rounds are

1 2 1 2
o(,/(sflog+">, 0( (Sglog-i-U)
o e ue 1] e pe

for the nodes from My, M, respectively.
See the proof in Appendix

5.1 DISCUSSION

The naive stochastic approach yields a complexity separation without imposing requirements on the
problem components. However, the estimates are not optimal and rely on an unnatural Assumption
[l The next step is to remove it by incorporating variance reduction into the proposed algorithm.
This constitutes the primary theoretical challenge of our paper.

6 COMPLEXITY SEPARATION VIA VARIANCE REDUCTION

To achieve convergence without the sublinear terms, we require Assumptions [T}j2] only. We refer to
(Lin et al| 2024) that successfully implemented variance reduction for the problem[I] Their SVRG-
like gradient estimator does not account for both similarity constants and does not allow for splitting
the complexities. Following the logic, we propose to replace hy (zx) by hi* (zx) — hi* (wo) +h1 (wp)
(see Line [§| of Algorithm [2)). We also suggest to use sampling from Bernoulli distribution, same as
in Algorithm 1]

By overcoming the technical challenges associated with selecting the appropriate geometry to sepa-
rate the complexities, we derive the result.

Theorem 2. Consider Algorithm[2|for the problem[2lunder Assumptions[I{2] Let the subproblem in
Line [9)be solved approximately:

B [V Ab er0)|?] < E | ogllon — arg min 4502 ®)
Then the complexities in terms of communication rounds are

0 1 dg\ 6 1
O<f10g> , O((‘q) glog)
i € 0f) 1 €
for the nodes from My, M, respectively.

See the proof in Appendix@} Due to the difference between ¢y and ¢4, the number of communication
rounds over M is reduced. This effect is not “free”, since the complexity over M, is increased by
the same number of times.
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Algorithm 2 VRCS*®P(p, ¢, 0, x¢)

1: Input: 27 € R?

2: Parameters: p,q € (0,1), 6 >0
3: T ~ Geom (q)

4: fort =0,..., 7T —1do

5: it ~ Be(p)

5 V(9 — g1) (@) if iy = 0
¢ = SV(f = fi) (o) if iy = 1,
t 15 V(g = g1)(xo) if iy = 0

8: €y = ét - gt + Vh(.’ﬂ()) - Vhl(l’())
9: Tip1 A argmingcga [A) ()], where

6 &= {;v(f — fo)(@) ifi =1,

1
Ag(l‘) = <€t,l’> + %Hl‘ — LIItHZ + hl(a?)

10: end for
11: Output: zp

Next, we utilize an interpolation framework inspired by Kat yushaX (Allen-Zhu, 2018) to develop
an accelerated version of Algorithm [2] Note that the subproblem appearing in Line [8|of Algorithm

Algorithm 3 AccVRCS

1: Input: 2y = 1o € R?
2: Parameters: p,q,7 € (0,1), 6, >0
3: fork=0,1,2,..., K —1do

4: ka:Tzk—l—(l—T)yk
5: Yk+1 :VRcslep(paq797xk+1>
6:  ty=V(h—h1)(@kt1) = V(h = h1)(Yr+1)
7. Grr1=¢q (tk 4 TRk
8: Zk+1 = arg min, cpa q(z), where

1

a(2) = 5ollz = 2l + (G, 2) + Sl = g2

9: end for

10: Output: yx

[3] can be solved analytically. Therefore, it does not require any additional heavy computations. We
provide the convergence result for AccVRCS (Algorithm 3).

Theorem 3. Consider Algorithm[3|for the problem[2|under Assumptions[I{2] Then the complexities
in terms of communication rounds are

3/2
@<1/6f10g1), o((%) «/mgl)
I € Of I 5

for the nodes from My, Mg, respectively.

See the proof in Appendix[E] As can be seen from Theorem [3] the acceleration has to be paid for by
increasing the factor in one of the complexities to (ds/s,)%>.

6.1 DISCUSSION

Using only general assumptions, we construct the method that achieves the lower bound on the
number of communication rounds across M. Without imposing additional conditions on the com-
posites, achieving complexities independent of the 9/s; factor is not possible. Nevertheless, the
proposed approach is notable for the presence of parameters p, ¢, which allow adjustment of the
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proportion between communication over My and M. The next chapter addresses the reachability
of exact complexity separation.

7 COMPLEXITY SEPARATION VIA ACCELERATED EXTRAGRADIENT

In this section, we move on to the more straightforward case, which requires g to be “good”
enough. This allows for the adaptation of an already existing technique to yield a satisfying re-
sult. For the problem [I] the optimal communication complexity is achieved by Accelerated
Extragradient (Kovalev et al.,[2022).

Algorithm 4 C-AccExtragradient

Input: z( = 7 € R?
Parameters: 7 € (0,1), n,0,a, K >0
fork=0,1,...,K —1do

Zp Zwak-‘r(l —Tf)fk

A e

Tgy1 & arg Mingepa {A’gf (x)} , Where

Af(2) =(V(f — £1) () 2) + Q;fx P+ A + gla)

6: Tp41 = Tk + ’I]fOéf(Tk_;,_l — :L'k) — T]th(f]H_l)
end for
8: Output: rg

~

In the first phase, it is proposed to use only the J s-relatedness of f and f;, and to place g in the sub-
problem (Line[3). Thus, Algorithm[d]is a modified version of Accelerated Extragradient.
To be consistent with the notation of the original paper, let

q(z) = fi(x) + g(x), plx)=(f—fi)(®).
We have
IV2p(z) = V)|l < 6f,  Va,y € RY
Moreover, Assumption [3| guarantees the convexity of g. This allows us to apply Theorem 1 from
(Kovalev et al.,|2022) with § = 1/s, and obtain O (\ /95 /ulogl/ s) communication rounds over only

M to achieve an arbitrary e-solution. To guarantee the convergence of Algorithm [} it is required
to solve the subproblem in Line[5| with a certain accuracy:

52 2

2 .

’|A§(fk+1)“ < ?f x,, — arg min A (z) (6)
reR4

Unlike the original paper, computing A% (z) requires communication. This necessitates finding an
efficient method to solve the subproblem[6] We can rewrite it as

Af(z) = qg(z) + py(2),
where

qq () =(Vf = f)(z), w>+2;f|x—xkll2+f1(x)+91(x)7 Pg() = (9 — 91)().

Working with g4 does not require communication. This pertains to the gradient sliding technique
and suggests that A’g can be minimized by using Accelerated Extragradient once more.
We slightly modify the original proof and obtain linear convergence of Algorithm [5]by the norm of
the gradient. This is important since equation [6|requires exactly this criterion. We now combine the
obtained results. We formulate this as a corollary.

Theorem 4. Consider Algorithm ] for the problem [2| and Algorithm ] for its subproblem[6] Then
the complexities in terms of communication rounds are

1 ~ [ 1
(’)( 5f10g>, (’)( 5910g>
I 5 I €

for the nodes from My, Mg, respectively.
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Algorithm 5 AccExtragradient for A}

1: Input: zo = 7o € R?

2: Parameters: Tg (0,1), ng,b,,04, K >0
3: fort =0,1,...,7T —1do

4: Ty = Tyly + (1 —74)T4

5

Tyiq A arg mingcpa Beq (x)} , Where

BY, (2) =(V(g — 91)(@), ) + =12 — |

26,
+ qq(z)

6:  Typy1 = Ty A+ g0y (Te1 — x4) — 0gVAG(Ter1)
7: end for
8: Output: zp

See the proof in Appendix [F}

7.1 DISCUSSION

Assumption on g convexity allows us to construct an approach that achieves suboptimal complexity
over My and M, simultaneously. As mentioned earlier, without considering heterogeneity within
the data distribution, the optimal method is Accelerated Extragradient. Applied to our

setting, it yields O (\ /(85+64)/ u) rounds over both My and M,. By complicating the structure of
the problem and relying on real-world scenarios, we can break through this bound.

8 NUMERICAL EXPERIMENTS

Our theoretical insights are confirmed numerically on different classification tasks. We consider the
distributed minimization of the negative Ccross-entropy:

Z ZZ% log 7. (al', ), %)

M j=1ceC

where C' is the set of classes, (4 and y ' (a ;”,x) are the c-th components of one-hot encoded
and predicted label for the sample ai’, respectlvely. Motivated by the opportunity to introduce
heterogeneity in the distribution of modes, we choose two sets of classes (C'y, Cy) and create an
imbalance between them in such a way that the server has more objects from C'y than from C|,.
Moreover, we divide the nodes (excepting the server) into two groups: My and M, containing only
Cy and Cg, respectively. Thus, we aim to use 5 < J, to communicate with the fraction of the

devices less frequently. In accordance with equation@ the objective takes the form:

h(z) = f(z) + g(x) = ‘M| > - Zzyjclogy” a', x)

mEMf M j=1ceCy ®)
‘M‘ Z ZZy}?’LIOgyﬂ ).
moj= 1ceCy

In order to construct setups with different 94/s; ratlos, we introduce a disparity index «, defined as
the proportion of objects from C'y among all available data on the server. Thus, x = 1 means that
it contains only C/f, and k = 1/2 corresponds to a completely homogeneous scenario (equal d and
dg). Since it is impossible to estimate d¢, J, analytically, we tune the parameters of each algorithm
to the fastest convergence.

In this work, we provide a comparison of our approaches with distributed learning methods, such
as ProxyProx (Woodworth et al., [2023), Accelerated Extragradient (AEG) (Kovalev
et al., [2022).
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8.1 MULTILAYER PERCEPTRON

Firstly, we use MLP to solve the MNIST (Dengl [2012) classification problem with C'y = {0, ..., 3},
Cy={4,...,9}, |My| = |My|. To keep the task from being too simple, we consider the three-layer
network (784, 64, 10 parameters).

k=1.0 k=0.9 k=10.85

[vFx)

T T T T T T T T T 10 T T T T T T T T T 10 T T T T T T T T T
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
f comm rounds f comm rounds f comm rounds
—+— AccVRCS —=— C-AEG —=— AEG —— MirrorProx

Figure 1: Comparison of state-of-the-art distributed methods on equationwith | M| = |My| = 32
and MNIST dataset. The criterion is the number of communication rounds over My. To show
robustness, we vary the disparity parameter «.

Figure [I| demonstrates clear superiority of the proposed approach in terms of communication with
M. This effect is achieved through the dissimilar use of well- and poorly-conditioned clients. This
experiment demonstrates the potential of complexity separation techniques in processing real-world
federated learning scenarios, where the server represents different parts of the sample unevenly.

8.2 RESNET-18

In the second part of the experimental section, we consider CIFAR-10 (Krizhevsky et al.| [2009)
with Cy = {4,...,9}, Cy ={0,...,3}, |Ms| = |M,]|. Since variance reduction in deep learning
is associated with various challenges (Defazio and Bottou, 2019), we focus on comparing the two
approaches: SC-Extragradient (Algorithm[I) and Accelerated Extragradient
2022). To minimize equation 8] we implement two heads in ResNet-18 2016),
each corresponding to its respective set of classes. The weighted average classification accuracy for
objects from C'y and C, is used as a metric. The curves for the examined strategies are presented in

Figure[2]

k=1/2, p=1R2 k=1/3, p=1/3 k=1/5 p=1/3
0.9 0.8
0.8
0.8 1 4
074 07
0.7
0.6 1 0.6 1
> 0.6 1
E 0.5 1 057
2 0.4
(v} 0.4 4 .4
& 041
034 03 0.3
021 0.2 0.2
0.1 T T T 014 T T T T 0.17 T T T T
0 500 1000 1500 0 500 1000 1500 2000 4] 500 1000 1500 2000 2500
f comm rounds f comm rounds f comm rounds
—— VRCS —=— SC-AEG —— ProxyProx

Figure 2: Comparison of Accelerated Extragradient and SC-AccExtragradient on
equation [8]with [ M| = | M| = 5 and CIFAR-10 dataset. The criterion is the number of communi-
cation rounds over M. To show robustness, we vary the disparity parameter .



Under review as a conference paper at ICLR 2026

REFERENCES

Sreangsu Acharyya, Arindam Banerjee, and Daniel Boley. Bregman divergences and triangle in-
equality. In Proceedings of the 2013 SIAM International Conference on Data Mining, pages
476-484. SIAM, 2013.

Zeyuan Allen-Zhu. Katyusha x: Practical momentum method for stochastic sum-of-nonconvex
optimization. arXiv preprint arXiv:1802.03866, 2018.

Yossi Arjevani and Ohad Shamir. Communication complexity of distributed convex learning and
optimization. Advances in neural information processing systems, 28, 2015.

Aleksandr Beznosikov and Alexander Gasnikov. Compression and data similarity: Combination
of two techniques for communication-efficient solving of distributed variational inequalities. In
International Conference on Optimization and Applications, pages 151-162. Springer, 2022.

Aleksandr Beznosikov, Eduard Gorbunov, and Alexander Gasnikov. Derivative-free method for
composite optimization with applications to decentralized distributed optimization. IFAC-
PapersOnLine, 53(2):4038-4043, 2020.

Aleksandr Beznosikov, Gesualdo Scutari, Alexander Rogozin, and Alexander Gasnikov. Distributed
saddle-point problems under data similarity. Advances in Neural Information Processing Systems,
34:8172-8184, 2021.

Aleksandr Beznosikov, Martin Takéc, and Alexander Gasnikov. Similarity, compression and local
steps: three pillars of efficient communications for distributed variational inequalities. Advances
in Neural Information Processing Systems, 36, 2024.

Ekaterina Borodich, Georgiy Kormakov, Dmitry Kovalev, Aleksandr Beznosikov, and Alexander
Gasnikov. Optimal algorithm with complexity separation for strongly convex-strongly concave
composite saddle point problems. arXiv preprint arXiv:2307.12946, 2023.

Dmitry Bylinkin and Aleksandr Beznosikov.  Accelerated methods with compressed com-
munications for distributed optimization problems under data similarity. arXiv preprint
arXiv:2412.16414, 2024.

Aaron Defazio and Léon Bottou. On the ineffectiveness of variance reduced optimization for deep
learning. Advances in Neural Information Processing Systems, 32, 2019.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141-142, 2012.

Roman Emelyanov, Andrey Tikhomirov, Aleksandr Beznosikov, and Alexander Gasnikov. Ex-
tragradient sliding for composite non-monotone variational inequalities.  arXiv preprint
arXiv:2403.14981, 2024.

Alexander Vladimirovich Gasnikov, Darina Mikhailovna Dvinskikh, Pavel Evgenievich Dvurechen-
sky, Dmitry Igorevich Kamzolov, Vladislav Vyacheslavovich Matyukhin, Dmitry Arkadievich
Pasechnyuk, Nazarii Konstantinovich Tupitsa, and Aleksey Vladimirovich Chernov. Accelerated
meta-algorithm for convex optimization problems. Computational Mathematics and Mathemati-
cal Physics, 61:17-28, 2021.

Geovani Nunes Grapiglia and Yu Nesterov. Adaptive third-order methods for composite convex
optimization. SIAM Journal on Optimization, 33(3):1855-1883, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-

nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770-778, 2016.

Hadrien Hendrikx, Lin Xiao, Sebastien Bubeck, Francis Bach, and Laurent Massoulie. Statisti-

cally preconditioned accelerated gradient method for distributed optimization. In International
conference on machine learning, pages 4203—-4227. PMLR, 2020.

10



Under review as a conference paper at ICLR 2026

Anastasiya Ivanova, Pavel Dvurechensky, Evgeniya Vorontsova, Dmitry Pasechnyuk, Alexander
Gasnikov, Darina Dvinskikh, and Alexander Tyurin. Oracle complexity separation in convex
optimization. Journal of Optimization Theory and Applications, 193(1):462—490, 2022.

Xiaowen Jiang, Anton Rodomanov, and Sebastian U Stich. Stabilized proximal-point methods for
federated optimization. arXiv preprint arXiv:2407.07084, 2024.

Michael I Jordan, Jason D Lee, and Yun Yang. Communication-efficient distributed statistical infer-
ence. Journal of the American Statistical Association, 2019.

Anatoli Juditsky, Arkadi Nemirovski, and Claire Tauvel. Solving variational inequalities with
stochastic mirror-prox algorithm. Stochastic Systems, 1(1):17-58, 2011.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and trends® in machine learning,
14(1-2):1-210, 2021.

Dmitry Kamzolov, Alexander Gasnikov, and Pavel Dvurechensky. Optimal combination of tensor
optimization methods. In International Conference on Optimization and Applications, pages
166—-183. Springer, 2020.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International conference on machine learning, pages 5132-5143. PMLR, 2020.

Ahmed Khaled and Chi Jin. Faster federated optimization under second-order similarity. arXiv
preprint arXiv:2209.02257, 2022.

Dmitry Kovalev, Aleksandr Beznosikov, Ekaterina Borodich, Alexander Gasnikov, and Gesualdo
Scutari. Optimal gradient sliding and its application to optimal distributed optimization under
similarity. Advances in Neural Information Processing Systems, 35:33494-33507, 2022.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Ilya Kuruzov, Alexander Rogozin, Demyan Yarmoshik, and Alexander Gasnikov. The mirror-
prox sliding method for non-smooth decentralized saddle-point problems. arXiv preprint
arXiv:2210.06086, 2022.

Guanghui Lan. An optimal method for stochastic composite optimization. Mathematical Program-
ming, 133(1):365-397, 2012.

Guanghui Lan. Gradient sliding for composite optimization. Mathematical Programming, 159:
201-235, 2016.

Guanghui Lan and Yuyuan Ouyang. Accelerated gradient sliding for structured convex optimization.
arXiv preprint arXiv:1609.04905, 2016.

Guanghui Lan and Yuyuan Ouyang. Mirror-prox sliding methods for solving a class of monotone
variational inequalities. arXiv preprint arXiv:2111.00996, 2021.

Dachao Lin, Yuze Han, Haishan Ye, and Zhihua Zhang. Stochastic distributed optimization un-
der average second-order similarity: Algorithms and analysis. Advances in Neural Information
Processing Systems, 36, 2024.

Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. A universal catalyst for first-order optimization.
Advances in neural information processing systems, 28, 2015.

Haihao Lu, Robert M Freund, and Yurii Nesterov. Relatively smooth convex optimization by first-
order methods, and applications. SIAM Journal on Optimization, 28(1):333-354, 2018.

Ruichen Luo, Sebastian U Stich, Samuel Horvath, and Martin Taka¢. Revisiting localsgd and scaf-
fold: Improved rates and missing analysis. arXiv preprint arXiv:2501.04443, 2025.

11



Under review as a conference paper at ICLR 2026

Neal Parikh, Stephen Boyd, et al. Proximal algorithms. Foundations and trends® in Optimization,
1(3):127-239, 2014.

Boris T Polyak. Introduction to optimization. 1987.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathemati-
cal statistics, pages 400407, 1951.

Ohad Shamir, Nati Srebro, and Tong Zhang. Communication-efficient distributed optimization using
an approximate newton-type method. In International conference on machine learning, pages
1000-1008. PMLR, 2014.

Ivan Stepanov, Artyom Voronov, Aleksandr Beznosikov, and Alexander Gasnikov. One-point
gradient-free methods for composite optimization with applications to distributed optimization.
arXiv preprint arXiv:2107.05951, 2021.

Sebastian U Stich. Unified optimal analysis of the (stochastic) gradient method. arXiv preprint
arXiv:1907.04232, 2019.

Ye Tian, Gesualdo Scutari, Tianyu Cao, and Alexander Gasnikov. Acceleration in distributed op-
timization under similarity. In International Conference on Artificial Intelligence and Statistics,
pages 5721-5756. PMLR, 2022.

Vladislav Tominin, Yaroslav Tominin, Ekaterina Borodich, Dmitry Kovalev, Alexander Gasnikov,
and Pavel Dvurechensky. On accelerated methods for saddle-point problems with composite
structure. arXiv preprint arXiv:2103.09344, 2021.

Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim Verbelen, and Jan S
Rellermeyer. A survey on distributed machine learning. Acm computing surveys (csur), 53(2):
1-33, 2020.

Blake Woodworth, Konstantin Mishchenko, and Francis Bach. Two losses are better than one:
Faster optimization using a cheaper proxy. In International Conference on Machine Learning,
pages 37273-37292. PMLR, 2023.

Xiao-Tong Yuan and Ping Li. On convergence of distributed approximate newton methods: Glob-
alization, sharper bounds and beyond. Journal of Machine Learning Research, 21(206):1-51,
2020.

Chen Zhang, Yu Xie, Hang Bai, Bin Yu, Weihong Li, and Yuan Gao. A survey on federated learning.
Knowledge-Based Systems, 216:106775, 2021.

Yuchen Zhang and Xiao Lin. Disco: Distributed optimization for self-concordant empirical loss. In
International conference on machine learning, pages 362-370. PMLR, 2015.

12



Under review as a conference paper at ICLR 2026

APPENDIX
CONTENTS

M TIntroduction|
2 Related Works

2.1 Composite Optimization| . . . . . . . . . . . . v v v vt v vt
.......................................

4 g
BTNOW@OON - « « v v e v e et e et e e e e e
B2 Assumptions| . . . . ... e e e e e e e e e e

[6  Complexity Separation via Variance Reduction|

6.1 Discussionl. . . . . ..

(7 Complexity Separation via Accelerated Extragradient]

(8 Numerical Experiments|
8.1 Multlayer Perceptron| . . . . . . . . ... L
8.2 ResNet-18]. . . . . . . . .

el

|A Auxillary Lemmas|

[B_Proof of TheoremIl

[C__Descent Lemma for Variance Reduction|

D Proof of Theorem [2i

L Proof of Theorem |3

[F_Proof of Theorem

13

14

14

18

21

23

26



Under review as a conference paper at ICLR 2026

A  AUXILLARY LEMMAS

Lemma 1. (Three-point equality), (Acharyya et al| 2013) . Given a differentiable function
h: R? — R. We have

<.’E - Y, Vh(y) - Vh(2)> = Dh($7 Z) - Dh(ﬂf,y) - Dh(ya Z)
Lemma 2. (Allen-Zhu, 2018) Given a sequence Dy, D1, ..., Dy € R, where N € Geom(p). Then
ENn[Dn-1] = pDo + (1 — p)Ex[Dn].
Lemma 3. (Allen-Zhul 2018) If g is proper o-strongly convex and zgi1 =
argmin.cg 5=z — 2l|* + (Grt1, 2) + g(2)], then for every x € R we have
lzx —|>  (1+00)
2c 2a

a
(Grg1, 2k — ) + 9(zk41) — 9(x) < = [|Gra]l® + [ 2h41 — ]|,

B PROOF OF THEOREMI]

Theorem 5. (Theorem[l) Consider Algorithm[I|for the problem2|under Assumptions[I\4) , with the
following tuning:

0 < ——, )
~ 3(6y +dy) 21" 2\

Let Ty 11 satisfy:

1 11 1/6
T =/ b, nmin{ }, o= p. )

62 .
B IV A5 @) 1] < B |l - org min 4517

Then the complexities in terms of communication rounds are

(5f 1 02
@ — log — + — | for the nodes from My,
u € pE

dg 1 o2
o —= log - + — | for the nodes from M.
1

and

e

Proof. We begin with writing the norm of the argument in the standard way, as is usually done in
convergence proofs:

1 1 2 1
;Hmkﬂ —z)? = BH-TIc — .+ ;<$k+1 — Ty, &) — L) + ;lekﬂ — ).
Next, we expand the scalar product using Line [8]and obtain

1 1 1
;]kaﬂ -z )? :5”% — 2 ||? 4 20(Tpg1 — o, T — T) — 2(Chy T — @) + 5||ﬂ?k+1 — ap||?

1
:5||ack — 2|12 + 20T 1 — Tk, T — o) — 2(Ch, T — T

+ 200 | Trpa — wl® + 201Gl
On the right hand, we have only two terms depending on (j. The expectation over (i of the scalar
product is easy to take, since x, T, are independent of this random variable, and (}, itself gives an
unbiased estimate of VL (Tx1). We get

1 1
E¢, [n||$k+1 - $*||2} :ank — 2 |? + 20(Tpg1 — @k, T — T4) — 2(VR(Tpt1), Tk — T4
+ 2002 | Tpgr — wll® + 20Ee, [[1Gl%] -
(10)
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To deal with E [||¢x||?], we use the smart zero technique, adding and subtracting Vi (Zr1). We
have

Ee, [I16]1?] =E¢, [(¢k — VR(ZTr41)) + VA(Zrt1) ]
=E¢, [II6e — VA1) 1?] + IVA@e)1? + 2E¢, [(Ge — VA(Trt1), VA(Trt1))]
=E¢, [ICk — VA@r41)]1?] + VA Zr41)]1*

Here, the scalar product is zeroed because E¢, [(x] = Vh(Zj41), and VA(Tj41) is independent of
(k. Now we are ready to use Assumption 4 and obtain

Ee, [[I6]1?] < E [|IVAZk11)|?] + 0>
Substitute this into equation [I0]and get

1 1
Ee, [77||93k+1 - w*nﬂ <ok =+ 20(Fss — s — ) — 2V Ep1) e — )

+ 2002 ||Tpa1 — wil* + 20| VA@kr1)|? + 200,
Let us apply the formula for the square of the difference to 2a(Zy+1 — Tk, T, — 2.). We obtain

1 1 —n«a
Eo, | Hllonn -2 <22

= 2AVI(Tpi1), 2k — T) + 2007 [Trp1 — zi || + 20| VA(T 1) |2
+ 2no?.

Using Line[d] we rewrite the last remaining scalar product and get

1 1 -1«
E., [nnxm—xﬂ Lo

2 = 2|1 = al|Zpr1 — zxl® + | Tpir — 2]

e = 2| = allTrrr — zx® + al|Trir — 2.

D @hn)# -2y

+ 2002 |[Tpr1 — 2il|? + 20| VA(Tgsr)||? + 2902
To move on, we have to figure out what to do with the scalar product. Let us start with
2AVh(@rs1), ¢ — zp) = 2(VR(Th41), ¢ — Tpt1) + 2(VA(T41), Thy1 — Zp)-
In the first of the scalar products, we use strong convexity due to Assumption[I] We get

AVA(@ir1), o —24) < (@) = h(@irr)] — pllTiss — ]* +26 <Vh<xk+1>, ”“’“*07”> .

+ 2(VI(Tpq1), Te — ) +

Then, using the square of the difference once again, we obtain
2(Vh(@ps1), @ — zp) <[h(2) = h(@rs1)] = pllTrer — 2l + 2{VA(Tr41), Trrr — zi)

_ _ L. _
=h(@) = h@x1)] = pllTess = 21” = Z1Tnr = 2 = OIVAER)|?

_ 2
Te+1 — L,

+0 ; k4 Vh(Trg1)

(12)

The last expression on the right hand is almost A% (7. 1) from Line @ Let us take a closer look on

1t:

_ 2
Te+1 — L

2 _
; k—l—Vh(EkH) Tk41 — I

7 b+ V(h— m)(Tpt1) + Vhi (Tps1)

= || VAG @rg1) — & + V(b — hl)(@ﬂ)”2

= |VAE @s1) — &+ V(R — ) (@)

<3| VAG (T 1) 1* + 3l — V(b — ha)(z) [P
+ 3V (h = hy) () = V(h — 1) (@1 |2

15
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Using Assumption 2] we obtain

_ 2
x — X
S Vh(Ek) || <S3IVAF@a)IP 4 316k — V(b h) ()|

+3(87 + 09) [Trr1 — a1
Note that now the right-hand side depends on the random variable &,. Using Assumption4] we write
the estimate for the mathematical expectation of the expression:

2
EEk [

Substituting equation [[3]into equation[T2] we obtain
Ee, [2(Vh(Fei). 2 — 24)] <Be, [[h(2) ~ h@xer)] — plFics — 2]

Tpt+1 — L,

Lk Vh(@n)| | < Be [BIVAE@k41)? + 307 +8,)% T — 2 2] + 302

13)

1
=5 (=300 4 69)°0%) [Trs1 — zyll* — 0 VA@r10)[®

+ 301| Af (k1) I12] + 3002,

Choosing 0 < 1/3(5;+5,), we get

_ _ _ 2
Ee, [2(Vh(Trt1), ® — z4)] <Eg, [[h(l”) — W(Tpg1)] — pllTrgr — z)* — 3*9|\$k+1 -z ?

= OV h(@k41) I + 30] A5 (@ 11)]2] + 3600

Note that

1
—[la —b|]* < —§||a —c|®+ b —c||.
Thus, we have
Ee, [2(Vh(Tpi1), x — 23,)] <E¢, |[A(z) — W(Th41)] — pl|Trgr — ||

1 . 2, _ .
— gl — arg min AG (@) + 25 [Fris — arg min A5 ()|
= OV R(@k1)II? + 30]| AG (Tp41) |
+ 3002,
A’g is 1/6-strongly convex. This implies
2

_ . 20 »
o7t — arg min A5@)]2 < IV AS @)

Hence, we can write

Ee, [2(Vh(Zrs1), @ — 2,)] <Ee, [[h(x) — h@rsr)] — plTnsr — ]

— oz, — arg min 45| = 0]VA(es ) P
+ 20 A5 ) 7] + 3002
Using equationd] we conclude:
Ee, [2(VA@k11), @ - 2;)] <Be, |[h(x) = A(@ks1)] = pllThsr — 2|2 = 0] Th(@y11)]?]
+ 36002.

(14)
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We take the expectation of equation |l 1| over & and substitute equation Taking a = p into
account, we obtain

1 1
o |ollon = o] <Eee |
+ 2| VAT )12 + 200% + [W(z.) — h(Tps)]
1—7 0 30
+ L h(@) = h(@ee)] = ZIVA@)I + =0,
With our choice of parameters (see equation[J), we have

1 1 —na
ECkafk |:77||xk - $*||2:| SECk@k [

1—17

— N
T g — 2] — (1 — 200) [Tasr — )

Ik = 2l + ~h(e) = h(@rar)]

+ T ihE) — hGe)) + o),

Multiplying this expression by 7, we obtain

T _ T
o |Cllon = 2P + (40in) ~ )] <Beg. 20 - nadlon - o]

F =)@ - b)) + Lo,

i
Denote

T _
Py, = Ellxk — @ |? + [(@k) = h(z)].
Using the choice of parameters as in equation[9} write down the result:

1
Ec¢, e, [Pri1] < (1 — 2\/@) P + 4002.

Thus, we have convergence to some neighborhood of the solution. To achieve the “true” conver-
gence, we have to make a finer tuning of 6. |Stich|(2019) analyzed the recurrence sequence

1
0< (== +e?, 1<
and obtained (see Lemma 2 in (Stich, 2019))

~ aK c
<0O|(d e — .
arg4+1 < ( ToeXp{ d }—l—aK)
In our analysis, we have
1
’y:\/é, dzi7 azi\éﬁ, C:4O'2.

or+96 1 2
) < %+ 0% log = + U) epochs
' £ e

to converge to an arbitrary e-solution. Of these, the p fraction engages only M and the 1 — p uses
only M. Choosing p = 9s/(6;+5,) and using d; < &4, we obtain

[ 1 2
O ( ke log — + U) communication rounds for My,
1 € pE

g 1 o2 L
@) —log — + — | communication rounds for M,.
I € ue

Thus, Algorithm T]requires

and
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C DESCENT LEMMA FOR VARIANCE REDUCTION

Lemma 4. Consider an epoch ofAlgorithm Consider 1(x) = h'(x) — h(x) + /20||z||%, where
0 < 1/2(55+5,). Let x411 satisfy
2
B[V Aj (o) < 155 |larg min 4f(2) —
Then the following inequality holds for every x € R%:
2 2
E [h(zr) — h(x)] < E|qgDy(z,20) — ¢Dy (2, 27) + 86* (; + 1_gp> Dy (zo, z7)
0
— ti(iE, I‘T)‘| .

3

Proof. Let us differentiate the subproblem (Line [9):
VAL (z) = e + 0 4+ Vhy(2).

After substituting e;, we have
-
VAp(z) =& — ¢ + 7 S+ V().

Next, we add and subtract the expressions: Vh(x), Vh(z:), Vhy (). After grouping the terms, we
get

X

VA (x) ={[& — G| = [V (7 = ha)(z¢) = V(b = 7 )(z0)]}
x x
+{V(n =)@ + 5 =V =n)@) - 5} (15)
+ Vh(z).
In the conditions of Lemma[d] we defined distance generating function as
1
V(@) = ha(@) = h(z) + 55l
It is not difficult to notice the presence of its gradient in equation T3] Thus, we have
VA () ={[& — Gl = [V(h = ha)(¢) = V(b = )(20)]}
+{Vi(z) = Vi ()} (16)
+ Vh(z).
Now we can express VA(z). Using definition of strong convexity (Definition , we write
h@ra) = hi@) < (@ = weir, = Vh(zen) = & e — el
Substituting equation[T6] we obtain
hzepr) = M) <@ — w1, [§ = G] = [V(h = ha) (@) — V(h = hy)(z0)])
+ (T = o1, VY (@041) — VY (2)) — (2 = 2411, VAG(2e11))
K 2
— Bl — ol
Rewriting the first scalar product using smart zero x, we obtain
h(@ig1) = h(z) <(z — 2, (6 — Gl = [V(h = hn)(2e) — V(A = h)(20)])
+ (@ = o1, [§ — G = [V(h = ha) (1) = V(b = h1)(20)])
(2 = 21, VY (@011) — Vip(2)) — (& — 2441, VAY(2141))

_H — 2|2
5 et —z]”.

18
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Let us apply Young’s inequality to the second scalar product. We get
Mwia) = hz) < (@ =, (6 = G] = [V(h = ha) (@) — V(b = hi)(20)])
1 «
t gl = @l® + Sl — G = [V(h = k) () = V(R = ha) (o]
+ (2 = 21, VY (@e11) = V() — (2 — 2441, VAY(211))
— Sllee — 2l
o 1T+

After that, we apply Young’s inequality again, now to (z — z411, VA4 (x41). This allows us to
write

Mzi1) = h(z) < (@ — 2, [6 = Gl = [V(h = hn)(20) — V(A = hi)(20)])

o llonss = wulP + S = Gl = [V = b)) = V= b))

1
+ (@ = g1, Vi(2141) — Vi(2)) + EHVAZ(%H)HZ - %th-&-l — x|
Next, we use the three-point equality (Lemma [I)) and obtain
W) = h(x) < (@ =2, [§ = G = [V(h = ha) (i) = V(A = h1)(20)])

+scllzes =l + Sl6 - Gl - [V(h = b)) = V(= b))

1
+ Dy (w, 1) — Dy (2, 011) — Dy (Tey1, 1) + ;HVAE(%H)HQ

_K gt
2 |z — 2l
a7
Note that equation [T7] contains expressions that depend on the choice between f — f1 and g — g1

(ix). We get rid of it by passing to the mathematical expectation. Let us consider some terms of
equation [T7] separately. We note that

Ei, [(& — 4, [6 — G = [V(h = ha) (@) = V(h = ha)(20)])] = 0, (18)
since z, x, are do not depend on i, and &, —(; is unbiased estimator of V(h—h1)(z;)—V (h h1 (z0)
(see our explanations in the main text). Moreover, carefully looking at & [|[£; — (] — [V (h—hy)(z¢) —

V(h — h1)(x0)]||?, we notice
Ei, [lig — ¢l = [V(h = h)(@e) = V(b = h) @)l
<SEi, [ll& — Gl
<G oIV = Filan) = V(S = F)lao) P

+§1*|\V<g 9)(@:) = V(g — g1 (o)l

Here, the first transition takes advantage of the fact that & — (; estimates V(h — hq)(z¢) — V(h —
h1)(wo) in the unbiased way. Given Hessian similarity (Assumption 2), this implies

o o 512“ 53 2
i, Gl = Gl = V(= h)(a) = T = k)@l I2] < 5 ( L+ 72 ) e = ol
(19)

Substituting equation [I8]and equation[T9]into equation [I7} we obtain

1
Ei, [A(z411) — h(2)] <E;, lDw(iB,wt) = Dy (2, 2441) — Dy(Te41,2¢) + %Hfftﬂ —z?

« 612‘ 53 2, 1 t 2 M 2
T3 s + T—p |z — zoll” + ;”VA(;(%H)” - Z”xtH —xf|7|.
(20)
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Since 6 < 1/2(55+4,), it holds that
L —0/(5;+9y)
20

Thus, we can estimate

1+ 9/05,+3,)

<
0= 20

|z —ylI> < Dy(z,y) < |z —yl?, Vz,yeR™L 1)

1 —0/(5;+06,)
L0 1y — a2

Substituting it into equation [20{and taking o = —2——, we get
g q g TG +aq) V€ 8

—Dy(zp41,2) < —

1 —0/(55+6,
Ei, [M(zi41) — h(2)] <E;, 1—/¢,+40)

Dy (z,2t) — Dy (2, 2411) — [EE &

460

1 9 52 62

+ = | VA (= 2y 7 (L4 xy — x|
VAl + g (o ) - ol

- %Hfftﬂ —9C||21~

Since 6 < 1/2(5;+5,), we have
1—9/5,45 1
Ay P < gl —

Further, we note that
1
—lla—0b|* < —3lla— cl? + 1o — ]

Combining all the remarks, we obtain

4 5 482
E;, [h — h(z)] <E;, | Dy(x, 21) — Dyl(a, — (L4 — 2|2
o [(@ei1) — h(z)] <E;, | Dy (z, 24) w(@, Teq1) + 1= 0/6,15,) (p T s ze — 2ol

2
166 |

1 .
+ = |IVAj (@) |* — s llwe — arg min Aj(x)
H z€R4

+ gl — arg min 4 @2 = Llfarss - xn?].
(22)

Let us look carefully at the second row of the expression. Since A} is 1/6-strongly convex, it holds
that

VA (zer) .

| >

gg ot = arg min, Ay(@)|” <
Thus,

I

1 1 1
VA (i) — gz llee — arg min A45(@)]2 + g5 lzes — arg min 4)(z)

8+ 0u ¢ 2 [ At ]2
<L VAol - gyt o ave min A3
8+ 6u 1z .
S v ag(on? = gl — ang win A

8u 176

20
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Taking equation [3] into account, we get rid of this term in the obtained estimate. We rewrite equa-
tion 22 as

E;, [M(zt+1) — h(2)] <E;, | Dy(x, 2¢) — Dy (x, 241)

0 % . % 2
| T+ v -
1 —6/(3¢+64) (p —p) el

_¢ 2
4||$t+1 x]

For (T — 1)-th iteration we have

Eiry [M(@r) = W(@)] <Eir_, | Dy(z,27-1) — Dy(2,27)

0 %, 9 2
RS <p Ty ) el

ijmﬂ.

As discussed above, T' — 1 is the geometrically distributed random variable. Thus, we can write the
mathematical expectation by this quantity as well and use the tower-property. We have

E[h(zr) = h(z)] <E|Dy(z,27-1) — Dy (2, 21)

0 %, 9 2
t—— L+ troi -
L —/(5r+5,) (p —p) el

U
4wTwﬂ.
Using Lemma[2} we obtain
E[h h(z)] <E|D D b % 2
[h(z7) — h(z)] < (2, 20) — w(xal’T)er ;JF 1—p |z — @ol|

—ZmT—ﬂﬂ.

Taking 6 < 1/2(5;+5,) and equation [21|into account, we write
52 52
E[h(z7) — h(z)] < E|qDy(z,20) — ¢Dy (2, 27) + 86° (; + 1 jp) Dy(zo,xT)
0
— %Dw(l‘, :L‘T)‘| .

This is the required. O

D PROOF OF THEOREM

Now we are ready to prove the convergence of VRCS. Let us repeat the statement.
Theorem 6. (Theorem[2) Consider Algorithm|6|for the problem 2| under Assumptions [I}2] and the
conditions of Lemma ) with the following tuning:
_ 1| p(t-py I oF
4\ poZ + (1 - p)o3’ 07 + 02

(23)
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Algorithm 6 VRCS

1: Input: 2y € R?

2: Parameters: p,q € (0,1), 6 >0
3: fork=0,..., K—1do

4: Tpr1 =VRCS'®P(p, q,0, zx)
5: end for

6: Output: xx

Then the complexities in terms of communication rounds are
) 1
@) <f log > Sfor the nodes from My,
I €
and

O (<5~‘7> 6—9 log 1) for the nodes from M,.
5f 1% €

Proof. Let us apply Lemmatwice (Note that Dy (zg, x) = 0):

52 52
E[h(zks1) — h(zs)] <E qu¢(x*,xk) — qDy (s, Tp41) + 86° (; 1 _gp> Dy (2k, Tht1)

0
- l;Dip(x*,ka)}»

2 (07 %
— gDy (zk, Tpt1) +80° | — + Dy (Tk, Trr1)

E [h(z41) — h(zr)] <E p 1-p

6
- /;sz(l”k,wkﬂ)}»

We note that .—%GDv (xk, Tht1) < 0 due to the strong convexity of ¢ (see equation . Summing
up the above inequalities, we obtain

0
qDy (T, k) — (q + l;) Dy (w4, Tpq1)

166° % D
+ ;‘FH = q | Dy(@k, Tr41) | -

We have to get rid of D¢ (z, 2x+1). Thus, we have to fine-tune 6 as

o< p(l—pla
4,/pd2 + (1 = p)o3
Thus, we have
1 p(1 —p)g

6 = min

265 +dg)’ 4, /pég +(1 —p)éj%

With choive of parameters given in equation[23] we have

(1 —pla _ _ 1

44/pd2 + (1 = p)d3 T 2005 +0,)

which indeed allows us to consider

p(1 —p)g

4, /p82 + (1 —p)o?

22
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Thus, we have
0 1
B |[h(on) )]+ 0 (14 50 ) Dytoain)| < B [aDy(onan) + 5lh() - ho)
With our choice of parameters (see equation 23)), we can note
~1
10 1o
1+ — <1—-—
( * 3q > B 6g
and conclude that Algorithm [6|requires

) <q) iterations
uo

to achieve an arbitrary e-solution. Iteration of VRCS consists of the communication across all de-
vices and then the epoch, at each iteration of which only My or M, is engaged. The round length is
on average !/q. Thus, VRCS requires

@) (q (1 + p)> rounds for My,
uo q

- 1—
@ (q (1 + p)) rounds for M.
o q

With our choice of parameters (see[23) we have

and

@] (5f> rounds for My,
7

@, (<ng> 6g> rounds for M.
o5/

and

Remark 1. The analysis of Algorithm[6|allows different complexities to be obtained, thus allowing
adaptation to the parameters of a particular problem. For example, by varying p and q, one can get

O (‘Ly)’ O (iy) or O <V‘5f59>’ O (M) Unfortunately, it is not possible to obtain 1) (%f)

I w w I

over My and o %‘7 over M, simultaneously.

E PROOF OF THEOREM 3]

Theorem 7. (Theorem [3) Consider Algorithm 3] for the problem 2| under Assumptions [I}2] and the
conditions of Lemma M) with the following tuning:

L op0=pa w00
mwmra-pe T\ Ve P g @Y

Then the complexities in terms of communication rounds are

@ ( 5—f log i) for the nodes from My,
\/ i
5\ 6, 1
o= —=log — | for the nodes from M,.
Of 7 €

23
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Proof. We start with Lemma given that yi11 = VRCS*®P(p, q,0, xk11). Let us write

52 52
qDy(z, z11) — qDy (2, Yry1) + 86° (pf + ) Dy(Trt1,Yrt1)

E [h(ys1) — (o)) <E —

— Ll —xn?].

(25)
Using three-point equality (see Lemmal[T), we note

qDy (@, 2p41) — 4Dy (@, Yos1) = ¢(@ = Tpg1, VY (Urt1) — VO (@r41)) — ¢Dy (Trt1, Yry)-
Substituting it into equation[25] we obtain

E [h(ye1) — h(2)] <EB|g(e — rr, V(i) = Viann)) = Sllose - o)

86° R D
+ ;—i_ﬂ —q ¢ Dy(@pt1,Yrt1) |-

With our choice of 6 (see equation 24)), we have

52 52 q
{892 (pf + 1_“7p> - CJ} Dy (@r+1, Yrt1) < =5 Dy (@ht1, Yora)-

Thus, we can write

E[h(yk+1) — h(x)] <E [Q@ = Tt 1, VO(Yrt1) — VY(Tpy1)) — %Hykﬂ —z|?

q
- 2Dw(xk+17yk+1)]-

We suggest to add and subtract z in the scalar product to get

E [h(yks1) — h(2)] <E|q(z — 2, VY (yr+1) — VY (T11))

+ q{zk — g1, VYO (Y1) — Vo(or41)) (26)

o q
- Z”ykJrl - x||2 - §Dw($k+17yk+1) .

Looking carefully at Line[d] we note that
1—7

2k — Tk41 = (Trt1 — Yn)-

Substituting it into equation[26] we get

E [h(yre1) — h(2)] <E|q(x — 2k, VY (yrr1) — VY (Tr11))

1—
+ (@it = g, V(i) — Vi (@ir) @7)

12 q
- ZHka - $||2 - 2Dw($k+1,yk+1)] .

Next, let us analyze ¢(xg+1 — Yk, V¥ (Yrt+1) — V(xg41)). It is not difficult to see that this term
appears in Lemma ] if we substitute = y;,. Writing it out, we obtain

Elg(zrs1 — vk, VO (Yrt1) — Vo (zrg))] < E|[h(yr) — hM(yrs1)] — %Dw(xkﬂ’ yk+1)] :

24
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Plugging this into equation[27] we derive

E [(yh-11) — h(e)] <E [ ale — 20, Viluksn) = Voanen)) + ) = hlyesa)]

K
27

Note that Gi+1 = ¢(V(xr+1) — Vi (yr+1)). Thus, we have

Dy(Trs1,Yrt1)

_ K T
4Hyk+1 ||

1—-7 o
E [h(yr+1) — h(z)] <E l@k =@, Gryr) + ——[h(yr) = hlyksn)]) = g — 2l
(28)
9 p
- (Tt 15 Y1) | -
Next, we apply Lemma[3]to Line([8]in order to evaluate
(2 = @, Girn) = Ll = all? <(z = 2. Grn) = Sy = ol + S lyess = 2 ?
o 9 1 5 1+0.5¢ 9 (29)
T R i PRI
We also have to estimate |G|/
20+0(6s+ 0
[Genll? <@IV6Gre) - Vo) < 2200 0D by )
(30)

3q>
§7Dw($k+1,yk+1)~

Substituting equation [30]and equation 29]into equation 28] we conclude

1 1+ 0.5pa

E | [hlyes) — (o) + o LT

(hn) — h(2)] + 5l — 2

q 1 3aqr
27 0

. —x||2] <E

) Dw($k+1a yk+1)] .

With our choice of parameters (see equation [24), we have
3aqr
0

Moreover, pa < 1 (with our choice of «) and therefore,

qu)—l J1%e!
14+ — <1-——.
(%) =14

1 =0

Thus, we conclude that Algorithm [3|requires
@) 4 iterations
On
to achieve an arbitrary e-solution. The same as in Algorithm [2} iteration of AccVRCS consists of
the communication across all devices and then the epoch with random choice of My or M. Thus,

AccVRCS requires
1) ( 4 (1 + p)) rounds for M,
po q

19 < 4 (1 + 1—p>> rounds for M.
po q

After substituting equation [24} this results in

@] (1 / 6f> rounds for My,
"

25
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and

3/2
9] <(§g> 59) rounds for M.
! V M

F PROOF OF THEOREM [4]

Theorem 8. Consider Algorithm 5] for the problem [6] under Assumptions 2}3] with the following

tuning:
1 1 /6 1 0 10
9=795, -2\ YT M mm{2’47g}’ D

and let Ty satisfy:
2

2
|55, @)

2, — arg min By (v)

< 2
= 1002
Then it takes

1
@ <\/9(59 log 5) communication rounds

over only M to achieve HVA’gf (@) < e

Proof. The proof is much the same as the proof of Theorem [I] (see Appendix [B). Nevertheless, we
give it in the full form. We start with

1 1 2 1

—zer = 2l = =l — 2a|® + (@1 — 2w — 2) + — @i — 2]
9 g 9 9

Next, we use Line[6]to obtain

1 1 _ _
7||{17t+1 — $*||2 :177”% — (E*HQ + 20¢g<xt+1 — Tty Tt — .’I;*> + 2<VA§(xt+1),wt — .’E*>
g g

1
+ [z — 2.
Mg
After that, we apply the formula for square of difference to the first scalar product and get

1 1
—lzt41 — fﬁ*Hz =—|lz; — 2«

g9 g

12+ aglTrar — el — g Tern — |

1
— aglles — 2P + 2(VAG(Tey1), 20 — @) + n*||$t+1 — %
g
Let us take a closer look at the last norm. Using Line[6] we obtain

1 _ _
77||36t+1 — 24||? < 20g02|[Tos1 — mel|” + 20| VAG (Tt
g
Taking the choice of parameters (see equation [31)) into account, we can write

1—-mn,

1 o _ _
|z — 2 < Ly = 2ull” + agl|Tosr — 2l|® + 2(VAG (Tor1), 20 — 2)

g
k(= 2
+ 20| VAG (Tpet1) 7.

It remains to use Line @] to write out the remaining scalar product. We have

1 1—n,«
— s — wl? <2z, — 22 + ag|[Frar — ) + 2(VAE(Fip1), 2 — )

g 9 (32)

2(1 -, _ _ _
+ ¥<VA§(%+1)JR — ;) + 2ng || VAG (T 1) ||
g
As in the proof of Theorem|[I] we have to deal with the scalar products. Let us write

(VAG(Tr41), @ — z;) = (VAF(Te41), ® — Tegr) + (VAG(Tr41), Tegr — z,).-

26
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We have already mentioned in the main text that A} is 1/6-strongly convex. Indeed, V2 A% (z) = +.
Thus, we can apply the definition of strong convex1ty (see Assumption [T)) to the first scalar product

X
(VAG(Ti1), @ — ) < [Af(Torr) — Af(2)] — §||ft+1 —z|* + 6, <VA§(9%+1)7 Hlet> -
g
Next, we write out the remaining scalar product, exploiting the square of the difference, and obtain

1
(VA§(Ti41), @ — z,) <[AF(Tus1) — 4G (2)] — §||Tt+1 — z||? = 0, VA (Tos1) ||

33
Lo 2 k(= Tpt1 — Ty 2 33
- 9*||$t+1 —zy||" + 0y | VAG(Try1) + —
g g
Let us look carefully at the last norm and notice
_ 2 _ 2
Ttp1 — & Ttr1 — &
Vaf(i) + T Vo ) + Vi - )@ +
g g

2
= VBS, @) + V(g — g0 @) - V(g — g0
<2|VBj (T[> +2[V (9 — 91)(Tey1) — V(g — g1)(z,) ]I
Next, we apply the Hessian similarity (see Definition [T)) and obtain

_ 2

Tt41 — Ly
0,

Substituting equation [34]into equation [33] we get

HVAI(;(%H) +

<2||VBg, (Tr41)||? + 205 |[Ter — 2, (34)

1
(VAG(Fig1), @ — z,) <[A§(Tesr) — Af(2)] — *||Tt+1 —z|? = 04| VA (@es1) I

1
+20, IV B () |I” — - (1 —20202) | Tep1 — 2, ||
With 6 < 1/2¢, (see equation|31 , we have ’
_ _ 1, _
(VA (Trs1), @ — z;) <[A§(Tes1) — Af(2)] — §||=Tt+1 — || — 4| VA (Zeqr) P

_ 1 _
+20,[| VB, (Ti41)]* - ﬁ”fﬂtﬂ -z
g
Note that
1
~lla = blI* < =S lla— ¢l + b - cl]*.
Thus, we can write

1
(VA (Trs1), @ — z;) <[A§(Ts1) — Af(2)] — *||ft+1 — || = 04| VA (Te41)|1?

+ 204V By, (@e41)|I* — - llzy — arg min By, ()|

49

+ g 1Tt — arg min B, ()]

B};g is 1/o,-strongly convex. This implies
_ _ 1. _
(VA§(T 1), — 1) S[Ag(wtﬂ) — Ag(x)] — gITee1 = 2||* — 0|V AG (Ter1) |
1
g IVBg, (Tes) || — Ith — arg min By, ()|,

The criterion helps to eliminate the last two terms. We conclude

_ _ 1. _
(VAG(Tiq1), @ — z;) <[A§(@ig1) — Af(2)] — ngtH —z|* = 04| VA (o) |-
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We are ready to estimate the scalar products in equation[32] Let us write

1 1—n,« 1 i
Lsess = aul 2%+ (g = 7 ) s = ]
Mg g ¢

0 _
+ (o - 22) 1045, @ P
I—1

+ [A§(@er1) — Af ()] + [A5 (Te41) — AF(T)].

Tg
Denote & = - [z — a.]|* + - [Af(T:) — Af(w.)] With the proposed choice of parameters (see
equation [31)), we have

0 » 1 /6
Dpi1 + %HVA];(%H”F < (1 -3 ;) Py,

1 /6 0
< _ 9 . g9 4k2 - 2 .
= (1 2\ % ) {‘@k + TTQHC 6@l

Rolling out the recursion and noting that 2 ||V Ak (T )[|? < @ + w2 ||V AS(Tx)||?, we obtain
linear convergence of Algorithm [5]by the gradient norm. It requires '

1
@) («/959 log s) rounds over only M,

to converge to an arbitrary e-solution. O

THE USE OF LARGE LANGUAGE MODELS (LLMS)

Language models were used to improve text quality (mostly to correct grammatical errors). LLMs
were not used to obtain theoretical results or write code.
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