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ABSTRACT

Heterogeneity within data distribution poses a challenge in many modern feder-
ated learning tasks. We formalize it as an optimization problem involving a com-
putationally heavy composite under data similarity. By employing different sets of
assumptions, we present several approaches to develop communication-efficient
methods. An optimal algorithm is proposed for the convex case. The constructed
theory is validated through a series of experiments across various problems.

1 INTRODUCTION

Currently, the field of optimization theory is well-developed. It includes a wide range of algorithms
and techniques designed to efficiently solve various tasks. In today’s landscape, engineers often
have to handle large-scale data. It can be spread across multiple nodes/clients/devices/machines to
share the load by working in parallel (Verbraeken et al., 2020). The problem can be formally written
as

min
x∈Rd

[
h(x) =

1

|Mh|
∑
m∈Mh

hm(x)

]
, with hm(x) =

1

nm

nm∑
j=1

ℓ(x, zmj ), (1)

where nm is the size of the m-th local dataset, x is the vector of model parameters, zmj is the j-th
data point of the m-th dataset, and ℓ is the loss function. The most computationally powerful device
(h1, without loss of generality) is treated as a server, while the others communicate through it.
The primary challenge that must be addressed in this paradigm is a communication bottleneck (Jor-
dan et al., 2019). Deep models are often extremely large, and excessive information exchange can
negate the acceleration provided by computational parallelism (Kairouz et al., 2021). A potential
solution to reduce the frequency of communication is to exploit the similarity of local data. There
are several ways to measure this phenomenon. The most mathematically solid one typically employs
the Hessians.

Definition 1. (Hessian similarity). We say that hi, hj are δ-related, if there exists a constant δ > 0
such that

∥∇2hi(x)−∇2hj(x)∥ ≤ δ, ∀x ∈ Rd.

Many papers assume the relatedness of every hm and h (Lin et al., 2024; Jiang et al., 2024), but we
rely only on h1 and h, as in (Shamir et al., 2014; Hendrikx et al., 2020; Kovalev et al., 2022). If
we consider h to be L-smooth, the losses exhibit greater statistical similarity with the growth of the
local dataset size n. Measure concentration theory implies δ ∼ L/n and δ ∼ L/

√
n in the quadratic

and general cases, respectively (Hendrikx et al., 2020). In distributed learning, where samples are
shared between machines manually, it is easy to produce a homogeneous distribution. As a result,
schemes using δ-relatedness strongly outperform their competitors.
However, new settings entail new challenges. Federated learning (Zhang et al., 2021) requires work-
ing with private data that is collected locally by clients and may therefore be heterogeneous. As a
result, similarity-based methods lose quality (see Table 3 in (Karimireddy et al., 2020)). We argue
that this issue can be addressed to some extent. In practice, some distribution modes are common
and shared uniformly between the server and the clients, while others are unique and primarily con-
tained on the devices. In that case, one part of the data is better approximated by the server than
the other. This suggests the idea that the objective can be represented as a sum of two functions,
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corresponding to frequent and rare data. The new problem can be formulated as

min
x∈Rd

h(x) = 1

|Mf |
∑
m∈Mf

fm(x) +
1

|Mg|
∑
m∈Mg

gm(x)

 , (2)

where Mf , Mg denotes the set of devices sharing f , g, respectively, and | · | is the number of nodes
in the corresponding set. f and g are the empirical losses corresponding to common and rare modes,
respectively. The problem 2 exhibits a composite structure. It consists of components that are
distinct from one another, including in terms of similarity. For the most typical samples, the server
(h1 = f1 + g1) may possess more extensive information, while for unique instances, there may be
no ability to reproduce them accurately. In this context, we propose to examine two characteristics
of relatedness simultaneously:

∥∇2f1(x)−∇2f(x)∥ ≤ δf , ∀x ∈ Rd;
∥∇2g1(x)−∇2g(x)∥ ≤ δg, ∀x ∈ Rd.

Without loss of generality, we assume δf < δg . Due to the additional structure of the objective, it is
possible to call f (and hence the devices fromMf ) less frequently. Thus, communication bottleneck
can be addressed more effectively than SOTA approaches suggest. Indeed, the complexity of existing
schemes depends on max{δf , δg} = δg (Hendrikx et al., 2020; Kovalev et al., 2022; Beznosikov
et al., 2024; Lin et al., 2024; Bylinkin and Beznosikov, 2024). This indicates that no account is
taken of the fact that certain data modes are better distributed between the server and the clients than
others. This presents a unique challenge that requires the development of new schemes. Our paper
answers the question:

How to bridge the gap between separating the complexities in the problem (2) and the Hessian
similarity?

2 RELATED WORKS

2.1 COMPOSITE OPTIMIZATION

Classic works on numerical methods considered minimizing h without assuming any additional
structure (Polyak, 1987). Influenced by the development of machine learning, a composite setting
with h(x) = f(x) + g(x) as an objective has emerged. This focused on proximal friendly g (reg-
ularizer) (Parikh et al., 2014). This means that any optimization problem over g is easy to solve
since its value and gradient are ”free” to compute. However, many practical tasks do not satisfy
this property. Consequently, the community has shifted towards analyzing more specific scenarios,
leading to the emergence of the heavy composite setting. Juditsky et al. (2011) and Lan (2012)
studied convex smooth+non-smooth problems but were unable to separate the complexities. The
result was O

(√
Lf/ε+ L2

g/ε2
)

. It cannot be improved if only the first-order information of f + g is
accessible. However, it is reasonable to expect that the number of ∇f evaluations can be bounded
by O

(√
Lf/ε

)
if the non-smooth term g is absent. This suggests that the estimate can be enhanced

if there is separate access to the first-order information of f and g. A step in this direction was taken
with the invention of gradient sliding in (Lan, 2016). For convex f and g, the author managed to
obtain O

(√
Lf/ε

)
and O

(√
Lf/ε+ L2

g/ε2
)

of ∇f and g′ ∈ ∂g evaluations, respectively. Later,
the exact separation was achieved for convex smooth+smooth problems in Lan and Ouyang (2016).
The proposed method achieved O

(√
Lf/ε

)
and O

(√
Lg/ε

)
. For strongly convex f , g, the result

was O
(√

Lf/µ log 1/ε
)

and O
(√

Lg/µ log 1/ε
)

.

At present, various exotic sliding-based schemes exist: for VIs (Lan and Ouyang, 2021; Emelyanov
et al., 2024), saddle points (Tominin et al., 2021; Kuruzov et al., 2022; Borodich et al., 2023), zero-
order optimization problems (Beznosikov et al., 2020; Stepanov et al., 2021; Ivanova et al., 2022),
and high-order minimization (Kamzolov et al., 2020; Gasnikov et al., 2021; Grapiglia and Nesterov,
2023).
Based on the above literature review, it can be concluded that the concept of complexity separation
is well established. Moreover, the sliding approach is utilized to design communication-efficient
algorithms based on similarity. The following subsection is dedicated to this topic.
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2.2 SIMILARITY

The essence of most techniques for handling the Hessian similarity lies in artificially dividing the
objective into two components:

h(x) = (h− h1)(x) + h1(x),

where h−h1 is δ-smooth. Unfortunately, previous gradient sliding methods cannot be easily adapted
to this setting, as classic works assume the convexity of both components. This presents a challenge
in developing a theory for the convex+non-convex=convex case.
The first approach addressing similarity was the Newton-type method, DANE, designed for quadratic
strongly convex functions (Shamir et al., 2014). For this class of problems, Arjevani and Shamir
(2015) established a lower bound on the required number of communication rounds. However,
DANE failed to achieve it, prompting the question of how to bridge the gap. Numerous papers
explored this issue but either fell short of meeting the exact bound or required specific cases and
unnatural assumptions (Zhang and Lin, 2015; Lu et al., 2018; Yuan and Li, 2020; Beznosikov et al.,
2021; Tian et al., 2022). Recently, Accelerated ExtraGradient, achieving optimal round
complexity, was introduced by Kovalev et al. (2022).
The current trend in this area is to combine similarity with other approaches. This is often non-
trivial and demands the development of new techniques. In constructing a scheme with local steps,
the theory of the δ-relatedness was first utilized by Karimireddy et al. (2020). The proposed method
experienced acceleration due to the similarity of local data, but only for quadratic losses. This result
has recently been revisited and significantly improved in (Luo et al., 2025).
Khaled and Jin (2022) attempted to utilize client sampling in the similarity scenario. However, the
analysis of the proposed scheme requires strong convexity of each local function, which sufficiently
narrows the class of problems. Moreover, the authors used CATALYST (Lin et al., 2015) to accel-
erate the method, which resulted in extra logarithm multiplier in the complexity and experimental
instability. This issue was addressed in (Lin et al., 2024). AccSVRS achieved an optimal number of
client-server communications.
Combining compression and similarity is also widespread in research papers. One of the first results
in this area was obtained by Beznosikov and Gasnikov (2022). The authors proposed schemes uti-
lizing both unbiased and biased compression. However, the complexity includes a term that depends
on the Lipschitz constant of the objective’s gradient. This issue was addressed in (Beznosikov et al.,
2024), but only for the permutation compression operator. Recently, similarity and compression
(both unbiased and biased) have been combined in an accelerated method designed by Bylinkin and
Beznosikov (2024).
Similarity + composite structure of the objective represents an interesting challenge that has not
been addressed.

3 OUR CONTRIBUTION

We analyze the problem 2 under the Hessian similarity condition. This paper presents several effi-
cient methods for various sets of assumptions.
• Firstly, we consider the setting of strongly convex h and possibly non-convex f , g. Start-
ing with a naive stochastic approach, we construct a method with exact separation of complex-
ities: O

(√
δf/µ log 1/ε+ σ2

/µε
)

and O
(√

δg/µ log 1/ε+ σ2
/µε
)

communication rounds for the
nodes from Mf and Mg , respectively. It is not optimal because of sublinear terms in the esti-
mates. To address this issue, we develop the variance reduction theory for the problem 2. Over-
coming several challenges, we present Variance Reduction for Composite under
Similarity (VRCS) that achieves O (δf/µ log 1/ε) and O ((δg/δf)δg/µ log 1/ε). Its accelerated ver-
sion AccVRCS enjoys O

(√
δf/µ log 1/ε

)
and O

(
(δg/δf)

3/2
√
δg/µ log 1/ε

)
. In summary, we man-

age to achieve complexity separation with the optimal estimate forMf and the extra factor (δg/δf)
3/2

forMg . To make both complexities optimal, we have to impose requirements on g, see the following
paragraph.
• Under the additional assumption of g convexity, we propose an approach based on Accelerated
Extragradient. Our method enjoys separated communication complexities. It achieves optimal
O
(√

δf/µ log 1/ε
)

, Õ
(√

δg/µ log 1/ε
)

for Mf , Mg , respectively.

3
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• We validate our theory through experiments across a diverse set of tasks. Specifically, we eval-
uate the performance of a Multilayer Perceptron (MLP) on the MNIST dataset and ResNet-18 on
CIFAR-10.

4 SETTING

4.1 NOTATION

We assume that the devices and their communication channels are equivalent if they belong to the
same set of nodes (Mf or Mg). In a synchronous setup, analyzing the complexity in terms of
communication rounds for Mf and Mg separately is sufficient. The number of times the server
initiates communication is considered in this case. This approach does not take into account the
number of involved machines and is well-suited for networks with synchronized nodes of two types.
When discussing our results, we also utilize the number of communications. This metric counts
each client-server vector exchange as a separate unit of complexity and is more appropriate for the
asynchronous case.

4.2 ASSUMPTIONS

The first part of our work relies solely on standard assumptions, leaving f , g arbitrary:
Assumption 1. h : Rd → R is µ-strongly convex on Rd:

h(x) ≥ h(y) + ⟨∇h(y), x− y⟩+ µ

2
∥x− y∥2, ∀x, y ∈ Rd. (3)

Assumption 2. f1 is δf -related to f , and g1 is δg-related to g (Definition 1). We assume µ < δf <
δg .

Strong convexity of the objective (with arbitrary f and g) is the common assumption. No paper on
data similarity is void of it (Hendrikx et al., 2020; Kovalev et al., 2022; Beznosikov et al., 2024; Lin
et al., 2024; Bylinkin and Beznosikov, 2024). The δ-relatedness does not diminish the generality of
our analysis, as in the case of absolutely heterogeneous data, it suffices to substitute δf = Lf and
δg = Lg in the results.
Further, we strengthen the setting by assuming g to be convex (only in Section 7):
Assumption 3. g : Rd → R is convex (µ = 0) on Rd.

This allows us to obtain optimal estimates for communication rounds over Mf and Mg simultane-
ously.

5 COMPLEXITY SEPARATION VIA SGD

To construct a theory suitable for applications, we should avoid introducing excessive requirements.
Firstly, we analyze the problem (2) without imposing additional conditions on f , g.
We begin with a naive SGD-like approach (Robbins and Monro, 1951). In Line 5 of Algorithm 1,
we propose selecting which part of the nodes (Mf or Mg) to communicate with at each iteration.
Moreover, we aim to perform sampling based on the similarity constants rather than uniformly. To
maintain an unbiased estimator, we normalize it by the probability of choice (Line 5). Additionally,
we apply the same scheme in Line 7. Thus, each round of communication involves clients from
either Mf or Mg .
As previously stated, the stochastic oracles ξk and ζk are unbiased. As usual in SGD-
like algorithms, we impose a variance boundedness assumption to prove the convergence of
SC-AccExtragradient (Algorithm 1).
Assumption 4. The stochastic oracles ξk, ζk have bounded variances:

Eξk
[
∥ξk −∇(h− h1)(xk)∥2

]
≤ σ2, Eζk

[
∥ζk −∇h(xk+1)∥2

]
≤ σ2.

This approach enables the separation of complexities without introducing assumptions regarding the
composite.
Theorem 1. Consider Algorithm 1 for the problem 2 under Assumptions 1-4. Let the subproblem in
Line 6 be solved approximately:

E
[
∥∇Akθ(xk+1)∥2

]
≤ E

[
1

11θ2
∥xk − arg min

x∈Rd
Akθ(x)∥2

]
. (4)

4
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Algorithm 1 SC-AccExtragradient

1: Input: x0 = x0 ∈ Rd
2: Parameters: τ ∈ (0, 1), η, θ, α, p,K > 0
3: for k = 0, 1, . . . ,K − 1 do
4: xk = τxk + (1− τ)xk

5: ξk =


1
p∇(f − f1)(xk), with probability p
1

1−p∇(g − g1)(xk), with probability 1− p

6: xk+1 ≈ argminx∈Rd

[
Akθ(x)

]
, where

Akθ(x) = ⟨ξk, x⟩+
1

2θ
∥x− xk∥2 + h1(x)

7: ζk =

{
1
p∇f(xk+1), with probability p
1

1−p∇g(xk+1), with probability 1− p

8: xk+1 = xk + ηα(xk+1 − xk)− ηζk
9: end for

10: Output: xK

Then the complexities in terms of communication rounds are

O

(√
δf
µ

log
1

ε
+
σ2

µε

)
, O

(√
δg
µ

log
1

ε
+
σ2

µε

)
for the nodes from Mf , Mg respectively.

See the proof in Appendix B.

5.1 DISCUSSION

The naive stochastic approach yields a complexity separation without imposing requirements on the
problem components. However, the estimates are not optimal and rely on an unnatural Assumption
4. The next step is to remove it by incorporating variance reduction into the proposed algorithm.
This constitutes the primary theoretical challenge of our paper.

6 COMPLEXITY SEPARATION VIA VARIANCE REDUCTION

To achieve convergence without the sublinear terms, we require Assumptions 1-2 only. We refer to
(Lin et al., 2024) that successfully implemented variance reduction for the problem 1. Their SVRG-
like gradient estimator does not account for both similarity constants and does not allow for splitting
the complexities. Following the logic, we propose to replace h1(xk) by hik1 (xk)−hik1 (w0)+h1(w0)
(see Line 8 of Algorithm 2). We also suggest to use sampling from Bernoulli distribution, same as
in Algorithm 1.
By overcoming the technical challenges associated with selecting the appropriate geometry to sepa-
rate the complexities, we derive the result.
Theorem 2. Consider Algorithm 2 for the problem 2 under Assumptions 1-2. Let the subproblem in
Line 9 be solved approximately:

E
[
∥∇Atθ(xt+1)∥2

]
≤ E

[
µ

17θ
∥xt − arg min

x∈Rd
Atθ(x)∥2

]
. (5)

Then the complexities in terms of communication rounds are

O
(
δf
µ

log
1

ε

)
, O

((
δg
δf

)
δg
µ

log
1

ε

)
for the nodes from Mf , Mg , respectively.

See the proof in Appendix D. Due to the difference between δf and δg , the number of communication
rounds over Mf is reduced. This effect is not “free”, since the complexity over Mg is increased by
the same number of times.

5
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Algorithm 2 VRCS1ep(p, q, θ, x0)

1: Input: x0 ∈ Rd
2: Parameters: p, q ∈ (0, 1), θ > 0
3: T ∼ Geom (q)
4: for t = 0, . . . , T − 1 do
5: it ∼ Be(p)

6: ξt =

{
1
p∇(f − f1)(xt) if it = 1,
1

1−p∇(g − g1)(xt) if it = 0

7: ζt =

{
1
p∇(f − f1)(x0) if it = 1,
1

1−p∇(g − g1)(x0) if it = 0

8: et = ξt − ζt +∇h(x0)−∇h1(x0)
9: xt+1 ≈ argminx∈Rd [Atθ(x)], where

Atθ(x) = ⟨et, x⟩+
1

2θ
∥x− xt∥2 + h1(x)

10: end for
11: Output: xT

Next, we utilize an interpolation framework inspired by KatyushaX (Allen-Zhu, 2018) to develop
an accelerated version of Algorithm 2. Note that the subproblem appearing in Line 8 of Algorithm

Algorithm 3 AccVRCS

1: Input: z0 = y0 ∈ Rd
2: Parameters: p, q, τ ∈ (0, 1), θ, α > 0
3: for k = 0, 1, 2, . . . ,K − 1 do
4: xk+1 = τzk + (1− τ)yk
5: yk+1 = VRCS1ep(p, q, θ, xk+1)
6: tk = ∇(h− h1)(xk+1)−∇(h− h1)(yk+1)

7: Gk+1 = q
(
tk +

xk+1−yk+1

θ

)
8: zk+1 = argminz∈Rd q(z), where

q(z) =
1

2α
∥z − zk∥2 + ⟨Gk+1, z⟩+

µ

4
∥z − yk+1∥2

9: end for
10: Output: yK

3 can be solved analytically. Therefore, it does not require any additional heavy computations. We
provide the convergence result for AccVRCS (Algorithm 3).

Theorem 3. Consider Algorithm 3 for the problem 2 under Assumptions 1-2. Then the complexities
in terms of communication rounds are

O

(√
δf
µ

log
1

ε

)
, O

((
δg
δf

)3/2
√
δg
µ

log
1

ε

)
for the nodes from Mf , Mg , respectively.

See the proof in Appendix E. As can be seen from Theorem 3, the acceleration has to be paid for by
increasing the factor in one of the complexities to (δg/δf)

3/2.

6.1 DISCUSSION

Using only general assumptions, we construct the method that achieves the lower bound on the
number of communication rounds across Mf . Without imposing additional conditions on the com-
posites, achieving complexities independent of the δg/δf factor is not possible. Nevertheless, the
proposed approach is notable for the presence of parameters p, q, which allow adjustment of the

6
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proportion between communication over Mf and Mg . The next chapter addresses the reachability
of exact complexity separation.

7 COMPLEXITY SEPARATION VIA ACCELERATED EXTRAGRADIENT

In this section, we move on to the more straightforward case, which requires g to be ”good”
enough. This allows for the adaptation of an already existing technique to yield a satisfying re-
sult. For the problem 1, the optimal communication complexity is achieved by Accelerated
Extragradient (Kovalev et al., 2022).

Algorithm 4 C-AccExtragradient

1: Input: x0 = x0 ∈ Rd
2: Parameters: τ ∈ (0, 1), η, θ, α,K > 0
3: for k = 0, 1, . . . ,K − 1 do
4: xk = τfxk + (1− τf )xk

5: xk+1 ≈ argminx∈Rd

[
Akθf (x)

]
, where

Akθ(x) =⟨∇(f − f1)(xk), x⟩+
1

2θf
∥x− xk∥2 + f1(x) + g(x)

6: xk+1 = xk + ηfαf (xk+1 − xk)− ηf∇h(xk+1)
7: end for
8: Output: xK

In the first phase, it is proposed to use only the δf -relatedness of f and f1, and to place g in the sub-
problem (Line 5). Thus, Algorithm 4 is a modified version of Accelerated Extragradient.
To be consistent with the notation of the original paper, let

q(x) = f1(x) + g(x), p(x) = (f − f1)(x).

We have
∥∇2p(x)−∇2p(y)∥ ≤ δf , ∀x, y ∈ Rd.

Moreover, Assumption 3 guarantees the convexity of q. This allows us to apply Theorem 1 from
(Kovalev et al., 2022) with θ = 1/δf and obtain O

(√
δf/µ log 1/ε

)
communication rounds over only

Mf to achieve an arbitrary ε-solution. To guarantee the convergence of Algorithm 4, it is required
to solve the subproblem in Line 5 with a certain accuracy:∥∥Akθ(xk+1)

∥∥2 ≤
δ2f
3

∥∥∥∥xk − arg min
x∈Rd

Akθ(x)

∥∥∥∥2 . (6)

Unlike the original paper, computing Akθ(x) requires communication. This necessitates finding an
efficient method to solve the subproblem 6. We can rewrite it as

Akθ(x) = qg(x) + pg(x),

where

qg(x) =⟨∇(f−f1)(xk), x⟩+
1

2θf
∥x−xk∥2+f1(x)+g1(x), pg(x) = (g − g1)(x).

Working with qg does not require communication. This pertains to the gradient sliding technique
and suggests that Akθ can be minimized by using Accelerated Extragradient once more.
We slightly modify the original proof and obtain linear convergence of Algorithm 5 by the norm of
the gradient. This is important since equation 6 requires exactly this criterion. We now combine the
obtained results. We formulate this as a corollary.

Theorem 4. Consider Algorithm 4 for the problem 2 and Algorithm 5 for its subproblem 6. Then
the complexities in terms of communication rounds are

O

(√
δf
µ

log
1

ε

)
, Õ

(√
δg
µ

log
1

ε

)
for the nodes from Mf , Mg , respectively.

7
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Algorithm 5 AccExtragradient for Akθ

1: Input: x0 = x0 ∈ Rd
2: Parameters: τg ∈ (0, 1), ηg, θg, αg,K > 0
3: for t = 0, 1, . . . , T − 1 do
4: xt = τgxt + (1− τg)xt

5: xt+1 ≈ argminx∈Rd

[
Btθg (x)

]
, where

Btθg (x) =⟨∇(g − g1)(xt), x⟩+
1

2θg
∥x− xt∥2

+ qg(x)

6: xt+1 = xt + ηgαg(xt+1 − xt)− ηg∇Akθ(xt+1)
7: end for
8: Output: xT

See the proof in Appendix F.

7.1 DISCUSSION

Assumption on g convexity allows us to construct an approach that achieves suboptimal complexity
over Mf and Mg simultaneously. As mentioned earlier, without considering heterogeneity within
the data distribution, the optimal method is Accelerated Extragradient. Applied to our
setting, it yields Õ

(√
(δf+δg)/µ

)
rounds over both Mf and Mg . By complicating the structure of

the problem and relying on real-world scenarios, we can break through this bound.

8 NUMERICAL EXPERIMENTS

Our theoretical insights are confirmed numerically on different classification tasks. We consider the
distributed minimization of the negative cross-entropy:

h(x) = − 1

M

M∑
m=1

1

nm

nm∑
j=1

∑
c∈C

ymj,c log ŷ
m
j,c(a

m
j , x), (7)

where C is the set of classes, ymj,c and ŷmj,c(a
m
j , x) are the c-th components of one-hot encoded

and predicted label for the sample amj , respectively. Motivated by the opportunity to introduce
heterogeneity in the distribution of modes, we choose two sets of classes (Cf , Cg) and create an
imbalance between them in such a way that the server has more objects from Cf than from Cg .
Moreover, we divide the nodes (excepting the server) into two groups: Mf and Mg , containing only
Cf and Cg , respectively. Thus, we aim to use δf < δg to communicate with the fraction of the
devices less frequently. In accordance with equation 2, the objective takes the form:

h(x) = f(x) + g(x) =− 1

|Mf |
∑
m∈Mf

1

nm

nm∑
j=1

∑
c∈Cf

ymj,c log ŷ
m
j,c(a

m
j , x)

− 1

|Mg|
∑
m∈Mg

1

nm

nm∑
j=1

∑
c∈Cg

ymj,c log ŷ
m
j,c(a

m
j , x).

(8)

In order to construct setups with different δg/δf ratios, we introduce a disparity index κ, defined as
the proportion of objects from Cf among all available data on the server. Thus, κ = 1 means that
it contains only Cf , and κ = 1/2 corresponds to a completely homogeneous scenario (equal δf and
δg). Since it is impossible to estimate δf , δg analytically, we tune the parameters of each algorithm
to the fastest convergence.
In this work, we provide a comparison of our approaches with distributed learning methods, such
as ProxyProx (Woodworth et al., 2023), Accelerated Extragradient (AEG) (Kovalev
et al., 2022).

8
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8.1 MULTILAYER PERCEPTRON

Firstly, we use MLP to solve the MNIST (Deng, 2012) classification problem with Cf = {0, . . . , 3},
Cg = {4, . . . , 9}, |Mf | = |Mg|. To keep the task from being too simple, we consider the three-layer
network (784, 64, 10 parameters).

Figure 1: Comparison of state-of-the-art distributed methods on equation 8 with |Mf | = |Mg| = 32
and MNIST dataset. The criterion is the number of communication rounds over Mf . To show
robustness, we vary the disparity parameter κ.

Figure 1 demonstrates clear superiority of the proposed approach in terms of communication with
Mf . This effect is achieved through the dissimilar use of well- and poorly-conditioned clients. This
experiment demonstrates the potential of complexity separation techniques in processing real-world
federated learning scenarios, where the server represents different parts of the sample unevenly.

8.2 RESNET-18

In the second part of the experimental section, we consider CIFAR-10 (Krizhevsky et al., 2009)
with Cf = {4, . . . , 9}, Cg = {0, . . . , 3}, |Mf | = |Mg|. Since variance reduction in deep learning
is associated with various challenges (Defazio and Bottou, 2019), we focus on comparing the two
approaches: SC-Extragradient (Algorithm 1) and Accelerated Extragradient (Ko-
valev et al., 2022). To minimize equation 8, we implement two heads in ResNet-18 (He et al., 2016),
each corresponding to its respective set of classes. The weighted average classification accuracy for
objects from Cf and Cg is used as a metric. The curves for the examined strategies are presented in
Figure 2.

Figure 2: Comparison of Accelerated Extragradient and SC-AccExtragradient on
equation 8 with |Mf | = |Mg| = 5 and CIFAR-10 dataset. The criterion is the number of communi-
cation rounds over Mf . To show robustness, we vary the disparity parameter κ.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Sreangsu Acharyya, Arindam Banerjee, and Daniel Boley. Bregman divergences and triangle in-
equality. In Proceedings of the 2013 SIAM International Conference on Data Mining, pages
476–484. SIAM, 2013.

Zeyuan Allen-Zhu. Katyusha x: Practical momentum method for stochastic sum-of-nonconvex
optimization. arXiv preprint arXiv:1802.03866, 2018.

Yossi Arjevani and Ohad Shamir. Communication complexity of distributed convex learning and
optimization. Advances in neural information processing systems, 28, 2015.

Aleksandr Beznosikov and Alexander Gasnikov. Compression and data similarity: Combination
of two techniques for communication-efficient solving of distributed variational inequalities. In
International Conference on Optimization and Applications, pages 151–162. Springer, 2022.

Aleksandr Beznosikov, Eduard Gorbunov, and Alexander Gasnikov. Derivative-free method for
composite optimization with applications to decentralized distributed optimization. IFAC-
PapersOnLine, 53(2):4038–4043, 2020.

Aleksandr Beznosikov, Gesualdo Scutari, Alexander Rogozin, and Alexander Gasnikov. Distributed
saddle-point problems under data similarity. Advances in Neural Information Processing Systems,
34:8172–8184, 2021.

Aleksandr Beznosikov, Martin Takác, and Alexander Gasnikov. Similarity, compression and local
steps: three pillars of efficient communications for distributed variational inequalities. Advances
in Neural Information Processing Systems, 36, 2024.

Ekaterina Borodich, Georgiy Kormakov, Dmitry Kovalev, Aleksandr Beznosikov, and Alexander
Gasnikov. Optimal algorithm with complexity separation for strongly convex-strongly concave
composite saddle point problems. arXiv preprint arXiv:2307.12946, 2023.

Dmitry Bylinkin and Aleksandr Beznosikov. Accelerated methods with compressed com-
munications for distributed optimization problems under data similarity. arXiv preprint
arXiv:2412.16414, 2024.
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A AUXILLARY LEMMAS

Lemma 1. (Three-point equality), (Acharyya et al., 2013) . Given a differentiable function
h : Rd → R. We have

⟨x− y,∇h(y)−∇h(z)⟩ = Dh(x, z)−Dh(x, y)−Dh(y, z).

Lemma 2. (Allen-Zhu, 2018) Given a sequence D0, D1, ..., DN ∈ R, where N ∈ Geom(p). Then
EN [DN−1] = pD0 + (1− p)EN [DN ].

Lemma 3. (Allen-Zhu, 2018) If g is proper σ-strongly convex and zk+1 =
argminz∈R

[
1
2α∥z − zk∥2 + ⟨Gk+1, z⟩+ g(z)

]
, then for every x ∈ Rd we have

⟨Gk+1, zk − x⟩+ g(zk+1)− g(x) ≤ α

2
∥Gk+1∥2 +

∥zk − x∥2

2α
− (1 + σα)

2α
∥zk+1 − x∥2.

B PROOF OF THEOREM 1

Theorem 5. (Theorem 1) Consider Algorithm 1 for the problem 2 under Assumptions 1-4, , with the
following tuning:

θ ≤ 1

3(δf + δg)
, τ =

√
µθ, η = min

{
1

2µ
,
1

2

√
θ

µ

}
, α = µ. (9)

Let xk+1 satisfy:

E
[
∥∇Akθ(xk+1)∥2

]
≤ E

[
θ2

11
∥xk − arg min

x∈Rd
Akθ(x)∥2

]
.

Then the complexities in terms of communication rounds are

O

(√
δf
µ

log
1

ε
+
σ2

µε

)
for the nodes from Mf ,

and

O

(√
δg
µ

log
1

ε
+
σ2

µε

)
for the nodes from Mg.

Proof. We begin with writing the norm of the argument in the standard way, as is usually done in
convergence proofs:

1

η
∥xk+1 − x∗∥2 =

1

η
∥xk − x∗∥2 +

2

η
⟨xk+1 − xk, xk − x∗⟩+

1

η
∥xk+1 − xk∥2.

Next, we expand the scalar product using Line 8 and obtain
1

η
∥xk+1 − x∗∥2 =

1

η
∥xk − x∗∥2 + 2α⟨xk+1 − xk, xk − x∗⟩ − 2⟨ζk, xk − x∗⟩+

1

η
∥xk+1 − xk∥2

=
1

η
∥xk − x∗∥2 + 2α⟨xk+1 − xk, xk − x∗⟩ − 2⟨ζk, xk − x∗⟩

+ 2ηα2∥xk+1 − xk∥2 + 2η∥ζk∥2.
On the right hand, we have only two terms depending on ζk. The expectation over ζK of the scalar
product is easy to take, since xk, x∗ are independent of this random variable, and ζk itself gives an
unbiased estimate of ∇h(xk+1). We get

Eζk
[
1

η
∥xk+1 − x∗∥2

]
=
1

η
∥xk − x∗∥2 + 2α⟨xk+1 − xk, xk − x∗⟩ − 2⟨∇h(xk+1), xk − x∗⟩

+ 2ηα2∥xk+1 − xk∥2 + 2ηEζk
[
∥ζk∥2

]
.

(10)
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To deal with E
[
∥ζk∥2

]
, we use the smart zero technique, adding and subtracting ∇h(xk+1). We

have
Eζk

[
∥ζk∥2

]
=Eζk

[
∥(ζk −∇h(xk+1)) +∇h(xk+1)∥2

]
=Eζk

[
∥ζk −∇h(xk+1)∥2

]
+ ∥∇h(xk+1)∥2 + 2Eζk [⟨ζk −∇h(xk+1),∇h(xk+1)⟩]

=Eζk
[
∥ζk −∇h(xk+1)∥2

]
+ ∥∇h(xk+1)∥2.

Here, the scalar product is zeroed because Eζk [ζk] = ∇h(xk+1), and ∇h(xk+1) is independent of
ζk. Now we are ready to use Assumption 4 and obtain

Eζk
[
∥ζk∥2

]
≤ E

[
∥∇h(xk+1)∥2

]
+ σ2.

Substitute this into equation 10 and get

Eζk
[
1

η
∥xk+1 − x∗∥2

]
≤1

η
∥xk − x∗∥2 + 2α⟨xk+1 − xk, xk − x∗⟩ − 2⟨∇h(xk+1), xk − x∗⟩

+ 2ηα2∥xk+1 − xk∥2 + 2η∥∇h(xk+1)∥2 + 2ησ2.

Let us apply the formula for the square of the difference to 2α⟨xk+1 − xk, xk − x∗⟩. We obtain

Eζk
[
1

η
∥xk+1 − x∗∥2

]
≤1− ηα

η
∥xk − x∗∥2 − α∥xk+1 − xk∥2 + α∥xk+1 − x∗∥2

− 2⟨∇h(xk+1), xk − x∗⟩+ 2ηα2∥xk+1 − xk∥2 + 2η∥∇h(xk+1)∥2

+ 2ησ2.

Using Line 4, we rewrite the last remaining scalar product and get

Eζk
[
1

η
∥xk+1 − x∗∥2

]
≤1− ηα

η
∥xk − x∗∥2 − α∥xk+1 − xk∥2 + α∥xk+1 − x∗∥2

+ 2⟨∇h(xk+1), x∗ − xk⟩+
2(1− τ)

τ
⟨∇h(xk+1), x

k − xk⟩

+ 2ηα2∥xk+1 − xk∥2 + 2η∥∇h(xk+1)∥2 + 2ησ2.

(11)

To move on, we have to figure out what to do with the scalar product. Let us start with
2⟨∇h(xk+1), x− xk⟩ = 2⟨∇h(xk+1), x− xk+1⟩+ 2⟨∇h(xk+1), xk+1 − xk⟩.

In the first of the scalar products, we use strong convexity due to Assumption 1. We get

2⟨∇h(xk+1), x− xk⟩ ≤ [h(x)− h(xk+1)]− µ∥xk+1 − x∥2 + 2θ

〈
∇h(xk+1),

xk+1 − xk
θ

〉
.

Then, using the square of the difference once again, we obtain
2⟨∇h(xk+1), x− xk⟩ ≤[h(x)− h(xk+1)]− µ∥xk+1 − x∥2 + 2⟨∇h(xk+1), xk+1 − xk⟩

=[h(x)− h(xk+1)]− µ∥xk+1 − x∥2 − 1

θ
∥xk+1 − xk∥2 − θ∥∇h(xk+1)∥2

+ θ

∥∥∥∥xk+1 − xk
θ

+∇h(xk+1)

∥∥∥∥2 .
(12)

The last expression on the right hand is almost Akθ(xk+1) from Line 6. Let us take a closer look on
it: ∥∥∥∥xk+1 − xk

θ
+∇h(xk+1)

∥∥∥∥2 =

∥∥∥∥xk+1 − xk
θ

+∇(h− h1)(xk+1) +∇h1(xk+1)

∥∥∥∥2
=
∥∥∇Akθ(xk+1)− ξk +∇(h− h1)(xk+1)

∥∥2
=
∥∥∇Akθ(xk+1)− ξk +∇(h− h1)(xk+1)

∥∥2
≤3∥∇Akθ(xk+1)∥2 + 3∥ξk −∇(h− h1)(xk)∥2

+ 3∥∇(h− h1)(xk)−∇(h− h1)(xk+1)∥2.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Using Assumption 2, we obtain∥∥∥∥xk+1 − xk
θ

+∇h(xk+1)

∥∥∥∥2 ≤3∥∇Akθ(xk+1)∥2 + 3∥ξk −∇(h− h1)(xk)∥2

+ 3(δf + δg)
2∥xk+1 − xk∥2.

Note that now the right-hand side depends on the random variable ξk. Using Assumption 4, we write
the estimate for the mathematical expectation of the expression:

Eξk

[∥∥∥∥xk+1 − xk
θ

+∇h(xk+1)

∥∥∥∥2
]
≤ Eξk

[
3∥∇Akθ(xk+1)∥2 + 3(δf + δg)

2∥xk+1 − xk∥2
]
+ 3σ2.

(13)
Substituting equation 13 into equation 12, we obtain

Eξk [2⟨∇h(xk+1), x− xk⟩] ≤Eξk
[
[h(x)− h(xk+1)]− µ∥xk+1 − x∥2

− 1

θ

(
1− 3(δf + δg)

2θ2
)
∥xk+1 − xk∥2 − θ∥∇h(xk+1)∥2

+ 3θ∥Akθ(xk+1)∥2
]
+ 3θσ2.

Choosing θ ≤ 1/3(δf+δg), we get

Eξk [2⟨∇h(xk+1), x− xk⟩] ≤Eξk
[
[h(x)− h(xk+1)]− µ∥xk+1 − x∥2 − 2

3θ
∥xk+1 − xk∥2

− θ∥∇h(xk+1)∥2 + 3θ∥Akθ(xk+1)∥2
]
+ 3θσ2.

Note that

−∥a− b∥2 ≤ −1

2
∥a− c∥2 + ∥b− c∥2.

Thus, we have

Eξk [2⟨∇h(xk+1), x− xk⟩] ≤Eξk
[
[h(x)− h(xk+1)]− µ∥xk+1 − x∥2

− 1

3θ
∥xk − arg min

x∈Rd
Akθ(x)∥2 +

2

3θ
∥xk+1 − arg min

x∈Rd
Akθ(x)∥2

− θ∥∇h(xk+1)∥2 + 3θ∥Akθ(xk+1)∥2
]

+ 3θσ2.

Akθ is 1/θ-strongly convex. This implies
2

3θ
∥xk+1 − arg min

x∈Rd
Akθ(x)∥2 ≤ 2θ

3
∥∇Akθ(xk+1)∥2

Hence, we can write

Eξk [2⟨∇h(xk+1), x− xk⟩] ≤Eξk
[
[h(x)− h(xk+1)]− µ∥xk+1 − x∥2

− 1

3θ
∥xk − arg min

x∈Rd
Akθ(x)∥2 − θ∥∇h(xk+1)∥2

+
11θ

3
∥Akθ(xk+1)∥2

]
+ 3θσ2.

Using equation 4, we conclude:

Eξk [2⟨∇h(xk+1), x− xk⟩] ≤Eξk
[
[h(x)− h(xk+1)]− µ∥xk+1 − x∥2 − θ∥∇h(xk+1)∥2

]
+ 3θσ2.

(14)
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We take the expectation of equation 11 over ξk and substitute equation 14. Taking α = µ into
account, we obtain

Eζk,ξk
[
1

η
∥xk − x∗∥2

]
≤Eζk,ξk

[1− ηα

η
∥xk − x∗∥2 − α(1− 2ηα)∥xk+1 − xk∥2

+ 2η∥∇h(xk+1)∥2 + 2ησ2 + [h(x∗)− h(xk+1)]

+
1− τ

τ
[h(xk)− h(xk+1)]−

θ

τ
∥∇h(xk+1)∥2 +

3θ

τ
σ2
]
.

With our choice of parameters (see equation 9), we have

Eζk,ξk
[
1

η
∥xk − x∗∥2

]
≤Eζk,ξk

[1− ηα

η
∥xk − x∗∥2 +

1

τ
[h(x∗)− h(xk+1)]

+
1− τ

τ
[h(xk)− h(x∗)] +

4θ

τ
σ2
]
.

Multiplying this expression by τ , we obtain

Eζk,ξk
[
τ

η
∥xk − x∗∥2 + [h(xk+1)− h(x∗)]

]
≤Eζk,ξk

[τ
η
(1− ηα)∥xk − x∗∥2

+ (1− τ)[h(xk)− h(x∗)]
]
+

4θ

τ
σ2.

Denote

Φk =
τ

η
∥xk − x∗∥2 + [h(xk)− h(x∗)].

Using the choice of parameters as in equation 9, write down the result:

Eζk,ξk [Φk+1] ≤
(
1− 1

2

√
µθ

)
Φk + 4θσ2.

Thus, we have convergence to some neighborhood of the solution. To achieve the ”true” conver-
gence, we have to make a finer tuning of θ. Stich (2019) analyzed the recurrence sequence

0 ≤ (1− aγ)rk − rk+1 + cγ2, γ ≤ 1

d
and obtained (see Lemma 2 in (Stich, 2019))

arK+1 ≤ Õ
(
dr0 exp

{
−aK

d

}
+

c

aK

)
.

In our analysis, we have

γ =
√
θ, d =

1√
3(δf + δg)

, a =

√
µ

2
, c = 4σ2.

Thus, Algorithm 1 requires

O

(√
δf + δg
µ

log
1

ε
+
σ2

µε

)
epochs

to converge to an arbitrary ε-solution. Of these, the p fraction engages only Mf and the 1 − p uses
only Mg . Choosing p = δf/(δf+δg) and using δf < δg , we obtain

O

(√
δf
µ

log
1

ε
+
σ2

µε

)
communication rounds for Mf ,

and

O

(√
δg
µ

log
1

ε
+
σ2

µε

)
communication rounds for Mg.
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C DESCENT LEMMA FOR VARIANCE REDUCTION

Lemma 4. Consider an epoch of Algorithm 2. Consider ψ(x) = h1(x) − h(x) + 1/2θ∥x∥2, where
θ ≤ 1/2(δf+δg). Let xt+1 satisfy

E∥∇Atθ(xt+1)∥2 ≤ µ

17θ

∥∥∥∥arg min
x∈Rd

Atθ(x)− xt

∥∥∥∥2 .
Then the following inequality holds for every x ∈ Rd:

E [h(xT )− h(x)] ≤ E

[
qDψ(x, x0)− qDψ(x, xT ) + 8θ2

(
δ2f
p

+
δ2g

1− p

)
Dψ(x0, xT )

− µθ

3
Dψ(x, xT )

]
.

Proof. Let us differentiate the subproblem (Line 9):

∇Atθ(x) = et +
x− x0
θ

+∇h1(x).

After substituting et, we have

∇Atθ(x) = ξt − ζt +
x− x0
θ

+∇h1(x).

Next, we add and subtract the expressions: ∇h(x), ∇h(xt), ∇h1(xt). After grouping the terms, we
get

∇Atθ(x) = {[ξt − ζt]− [∇(h− h1)(xt)−∇(h− h1)(x0)]}

+
{
∇(h1 − h)(x) +

x

θ
−∇(h1 − h)(xt)−

xt
θ

}
+∇h(x).

(15)

In the conditions of Lemma 4, we defined distance generating function as

ψ(x) = h1(x)− h(x) +
1

2θ
∥x∥2.

It is not difficult to notice the presence of its gradient in equation 15. Thus, we have
∇Atθ(x) = {[ξt − ζt]− [∇(h− h1)(xt)−∇(h− h1)(x0)]}

+ {∇ψ(x)−∇ψ(xt)}
+∇h(x).

(16)

Now we can express ∇h(x). Using definition of strong convexity (Definition 3), we write

h(xt+1)− h(x) ≤ ⟨x− xt+1,−∇h(xt+1⟩ −
µ

2
∥xt+1 − x∥2.

Substituting equation 16, we obtain
h(xt+1)− h(x) ≤⟨x− xt+1, [ξt − ζt]− [∇(h− h1)(xt)−∇(h− h1)(x0)]⟩

+ ⟨x− xt+1,∇ψ(xt+1)−∇ψ(x)⟩ − ⟨x− xt+1,∇Atθ(xt+1)⟩

− µ

2
∥xt+1 − x∥2.

Rewriting the first scalar product using smart zero xk, we obtain
h(xt+1)− h(x) ≤⟨x− xt, [ξt − ζt]− [∇(h− h1)(xt)−∇(h− h1)(x0)]⟩

+ ⟨xt − xt+1, [ξt − ζt]− [∇(h− h1)(xt)−∇(h− h1)(x0)]⟩
+ ⟨x− xt+1,∇ψ(xt+1)−∇ψ(x)⟩ − ⟨x− xt+1,∇Atθ(xt+1)⟩

− µ

2
∥xt+1 − x∥2.
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Let us apply Young’s inequality to the second scalar product. We get
h(xt+1)− h(x) ≤⟨x− xt, [ξt − ζt]− [∇(h− h1)(xt)−∇(h− h1)(x0)]⟩

+
1

2α
∥xt+1 − xt∥2 +

α

2
∥[ξt − ζt]− [∇(h− h1)(xt)−∇(h− h1)(x0)]∥2

+ ⟨x− xt+1,∇ψ(xt+1)−∇ψ(x)⟩ − ⟨x− xt+1,∇Atθ(xt+1)⟩

− µ

2
∥xt+1 − x∥2.

After that, we apply Young’s inequality again, now to ⟨x − xt+1,∇Atθ(xt+1). This allows us to
write
h(xt+1)− h(x) ≤⟨x− xt, [ξt − ζt]− [∇(h− h1)(xt)−∇(h− h1)(x0)]⟩

+
1

2α
∥xt+1 − xt∥2 +

α

2
∥[ξt − ζt]− [∇(h− h1)(xt)−∇(h− h1)(x0)]∥2

+ ⟨x− xt+1,∇ψ(xt+1)−∇ψ(x)⟩+ 1

µ
∥∇Atθ(xt+1)∥2 −

µ

4
∥xt+1 − x∥2.

Next, we use the three-point equality (Lemma 1) and obtain
h(xt+1)− h(x) ≤⟨x− xt, [ξt − ζt]− [∇(h− h1)(xt)−∇(h− h1)(x0)]⟩

+
1

2α
∥xt+1 − xt∥2 +

α

2
∥[ξt − ζt]− [∇(h− h1)(xt)−∇(h− h1)(x0)]∥2

+Dψ(x, xt)−Dψ(x, xt+1)−Dψ(xt+1, xt) +
1

µ
∥∇Atθ(xt+1)∥2

− µ

4
∥xt+1 − x∥2.

(17)
Note that equation 17 contains expressions that depend on the choice between f − f1 and g − g1
(ik). We get rid of it by passing to the mathematical expectation. Let us consider some terms of
equation 17 separately. We note that

Eit [⟨x− xt, [ξt − ζt]− [∇(h− h1)(xt)−∇(h− h1)(x0)]⟩] = 0, (18)
since x, xt are do not depend on it and ξt−ζt is unbiased estimator of ∇(h−h1)(xt)−∇(h−h1)(x0)
(see our explanations in the main text). Moreover, carefully looking at α2 ∥[ξt−ζt]−[∇(h−h1)(xt)−
∇(h− h1)(x0)]∥2, we notice

Eit
[α
2
∥[ξt − ζt]− [∇(h− h1)(xt)−∇(h− h1)(x0)]∥2

]
≤α
2
Eit
[
∥ξt − ζt∥2

]
≤α
2

1

p
∥∇(f − f1)(xt)−∇(f − f1)(x0)∥2

+
α

2

1

1− p
∥∇(g − g1)(xt)−∇(g − g1(x0)∥2 .

Here, the first transition takes advantage of the fact that ξt − ζt estimates ∇(h− h1)(xt)−∇(h−
h1)(x0) in the unbiased way. Given Hessian similarity (Assumption 2), this implies

Eit
[α
2
∥[ξt − ζt]− [∇(h− h1)(xt)−∇(h− h1)(x0)]∥2

]
≤ α

2

(
δ2f
p

+
δ2g

1− p

)
∥xt − x0∥2.

(19)
Substituting equation 18 and equation 19 into equation 17, we obtain

Eit [h(xt+1)− h(x)] ≤Eit

[
Dψ(x, xt)−Dψ(x, xt+1)−Dψ(xt+1, xt) +

1

2α
∥xt+1 − xt∥2

+
α

2

(
δ2f
p

+
δ2g

1− p

)
∥xt − x0∥2 +

1

µ
∥∇Atθ(xt+1)∥2 −

µ

4
∥xt+1 − x∥2

]
.

(20)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Since θ ≤ 1/2(δf+δg), it holds that

0 ≤ 1− θ/(δf+δg)

2θ
∥x− y∥2 ≤ Dψ(x, y) ≤

1 + θ/(δf+δg)

2θ
∥x− y∥2, ∀x, y ∈ Rd. (21)

Thus, we can estimate

−Dψ(xt+1, xt) ≤ −1− θ/(δf+δg)

2θ
∥xt+1 − xt∥2.

Substituting it into equation 20 and taking α = 2θ
1−θ/(δf+δg)

, we get

Eit [h(xt+1)− h(x)] ≤Eit

[
Dψ(x, xt)−Dψ(x, xt+1)−

1− θ/(δf+δg)

4θ
∥xt+1 − xt∥2

+
1

µ
∥∇Atθ(xt+1)∥2 +

θ

1− θ/(δf+δg)

(
δ2f
p

+
δ2g

1− p

)
∥xt − x0∥2

− µ

4
∥xt+1 − x∥2

]
.

Since θ ≤ 1/2(δf+δg), we have

−1− θ/δf+δg

4θ
∥xt+1 − xt∥2 ≤ − 1

8θ
∥xt+1 − xt∥2.

Further, we note that

−∥a− b∥2 ≤ −1

2
∥a− c∥2 + ∥b− c∥2.

Combining all the remarks, we obtain

Eit [h(xt+1)− h(x)] ≤Eit

[
Dψ(x, xt)−Dψ(x, xt+1) +

θ

1− θ/(δf+δg)

(
δ2f
p

+
δ2g

1− p

)
∥xt − x0∥2

+
1

µ
∥∇Atθ(xt+1)∥2 −

1

16θ
∥xt − arg min

x∈Rd
Atθ(x)∥2

+
1

8θ
∥xt+1 − arg min

x∈Rd
Atθ(x)∥2 −

µ

4
∥xt+1 − x∥2

]
.

(22)

Let us look carefully at the second row of the expression. Since Atθ is 1/θ-strongly convex, it holds
that

1

8θ
∥xt+1 − arg min

x∈Rd
Atθ(x)∥2 ≤ θ

8
∥∇Atθ(xt+1)∥2.

Thus,
1

µ
∥∇Atθ(xt+1)∥2 −

1

16θ
∥xt − arg min

x∈Rd
Atθ(x)∥2 +

1

8θ
∥xt+1 − arg min

x∈Rd
Atθ(x)∥2

≤8 + θµ

8µ

[
∥∇Atθ(xt+1)∥2 −

µ

2θ(µθ + 8)
∥xt − arg min

x∈Rd
Atθ(x)∥2

]
≤8 + θµ

8µ

[
∥∇Atθ(xt+1)∥2 −

µ

17θ
∥xt − arg min

x∈Rd
Atθ(x)∥2

]
.
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Taking equation 5 into account, we get rid of this term in the obtained estimate. We rewrite equa-
tion 22 as

Eit [h(xt+1)− h(x)] ≤Eit

[
Dψ(x, xt)−Dψ(x, xt+1)

+
θ

1− θ/(δf+δg)

(
δ2f
p

+
δ2g

1− p

)
∥xt − x0∥2

− µ

4
∥xt+1 − x∥2

]
.

For (T − 1)-th iteration we have

EiT−1
[h(xT )− h(x)] ≤EiT−1

[
Dψ(x, xT−1)−Dψ(x, xT )

+
θ

1− θ/(δf+δg)

(
δ2f
p

+
δ2g

1− p

)
∥xT−1 − x0∥2

− µ

4
∥xT − x∥2

]
.

As discussed above, T − 1 is the geometrically distributed random variable. Thus, we can write the
mathematical expectation by this quantity as well and use the tower-property. We have

E [h(xT )− h(x)] ≤E

[
Dψ(x, xT−1)−Dψ(x, xT )

+
θ

1− θ/(δf+δg)

(
δ2f
p

+
δ2g

1− p

)
∥xT−1 − x0∥2

− µ

4
∥xT − x∥2

]
.

Using Lemma 2, we obtain

E [h(xT )− h(x)] ≤E

[
Dψ(x, x0)−Dψ(x, xT ) +

θ

1− θ/(δf+δg)

(
δ2f
p

+
δ2g

1− p

)
∥xT − x0∥2

− µ

4
∥xT − x∥2

]
.

Taking θ ≤ 1/2(δf+δg) and equation 21 into account, we write

E [h(xT )− h(x)] ≤ E

[
qDψ(x, x0)− qDψ(x, xT ) + 8θ2

(
δ2f
p

+
δ2g

1− p

)
Dψ(x0, xT )

− µθ

3
Dψ(x, xT )

]
.

This is the required.

D PROOF OF THEOREM 2

Now we are ready to prove the convergence of VRCS. Let us repeat the statement.

Theorem 6. (Theorem 2) Consider Algorithm 6 for the problem 2 under Assumptions 1-2 and the
conditions of Lemma 4, with the following tuning:

θ =
1

4

√
p(1− p)q

pδ2g + (1− p)δ2f
, p = q =

δ2f
δ2f + δ2g

. (23)
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Algorithm 6 VRCS

1: Input: x0 ∈ Rd
2: Parameters: p, q ∈ (0, 1), θ > 0
3: for k = 0, . . . ,K − 1 do
4: xk+1 =VRCS1ep(p, q, θ, xk)
5: end for
6: Output: xK

Then the complexities in terms of communication rounds are

O
(
δf
µ

log
1

ε

)
for the nodes from Mf ,

and

O
((

δg
δf

)
δg
µ

log
1

ε

)
for the nodes from Mg.

Proof. Let us apply Lemma 4 twice (Note that Dψ(xk, xk) = 0):

E [h(xk+1)− h(x∗)] ≤E

[
qDψ(x∗, xk)− qDψ(x∗, xk+1) + 8θ2

(
δ2f
p

+
δ2g

1− p

)
Dψ(xk, xk+1)

− µθ

3
Dψ(x∗, xk+1)

]
,

E [h(xk+1)− h(xk)] ≤E

[
− qDψ(xk, xk+1) + 8θ2

(
δ2f
p

+
δ2g

1− p

)
Dψ(xk, xk+1)

− µθ

3
Dψ(xk, xk+1)

]
,

We note that −µθ
3 Dψ(xk, xk+1) ≤ 0 due to the strong convexity of ψ (see equation 21). Summing

up the above inequalities, we obtain

E [2h(xk+1)− h(xk)− h(x∗)] ≤E

[
qDψ(x∗, xk)−

(
q +

µθ

3

)
Dψ(x∗, xk+1)

+

(
16θ2

(
δ2f
p

+
δ2g

1− p

)
− q

)
Dψ(xk, xk+1)

]
.

We have to get rid of Dξ(xk, xk+1). Thus, we have to fine-tune θ as

θ ≤
√
p(1− p)q

4
√
pδ2g + (1− p)δ2f

.

Thus, we have

θ = min

 1

2(δf + δg)
,

√
p(1− p)q

4
√
pδ2g + (1− p)δ2f

 .

With choive of parameters given in equation 23, we have√
p(1− p)q

4
√
pδ2g + (1− p)δ2f

≤ 1

2(δf + δg)
,

which indeed allows us to consider

θ =

√
p(1− p)q

4
√
pδ2g + (1− p)δ2f

.
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Thus, we have

E
[
[h(xk+1)− h(x∗)] + q

(
1 +

µθ

3q

)
Dψ(x∗, xk+1)

]
≤ E

[
qDψ(x∗, xk) +

1

2
[h(xk)− h(x∗)]

]
.

With our choice of parameters (see equation 23), we can note(
1 +

µθ

3q

)−1

≤ 1− µθ

6q

and conclude that Algorithm 6 requires

Õ
(
q

µθ

)
iterations

to achieve an arbitrary ε-solution. Iteration of VRCS consists of the communication across all de-
vices and then the epoch, at each iteration of which only Mf or Mg is engaged. The round length is
on average 1/q. Thus, VRCS requires

Õ
(
q

µθ

(
1 +

p

q

))
rounds for Mf ,

and

Õ
(
q

µθ

(
1 +

1− p

q

))
rounds for Mg.

With our choice of parameters (see 23) we have

Õ
(
δf
µ

)
rounds for Mf ,

and

Õ
((

δg
δf

)
δg
µ

)
rounds for Mg.

Remark 1. The analysis of Algorithm 6 allows different complexities to be obtained, thus allowing
adaptation to the parameters of a particular problem. For example, by varying p and q, one can get

Õ
(
δg
µ

)
, Õ
(
δg
µ

)
or Õ

(√
δfδg
µ

)
, Õ
(√

δfδg
µ

)
. Unfortunately, it is not possible to obtain Õ

(
δf
µ

)
over Mf and Õ

(
δg
µ

)
over Mg simultaneously.

E PROOF OF THEOREM 3

Theorem 7. (Theorem 3) Consider Algorithm 3 for the problem 2 under Assumptions 1-2 and the
conditions of Lemma 4, with the following tuning:

θ =
1

4

√
p(1− p)q

pδ2g + (1− p)δ2f
, τ =

√
θµ

3q
, α =

√
θ

3µq
, p = q =

δ2f
δ2f + δ2g

. (24)

Then the complexities in terms of communication rounds are

O

(√
δf
µ

log
1

ε

)
for the nodes from Mf ,

and

O

((
δg
δf

)3/2
√
δg
µ

log
1

ε

)
for the nodes from Mg.
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Proof. We start with Lemma 4, given that yk+1 = VRCS1ep(p, q, θ, xk+1). Let us write

E [h(yk+1)− h(x)] ≤E

[
qDψ(x, xk+1)− qDψ(x, yk+1) + 8θ2

(
δ2f
p

+
δ2g

1− p

)
Dψ(xk+1, yk+1)

− µ

4
∥yk+1 − x∥2

]
.

(25)
Using three-point equality (see Lemma 1), we note
qDψ(x, xk+1)− qDψ(x, yk+1) = q⟨x− xk+1,∇ψ(yk+1)−∇ψ(xk+1)⟩ − qDψ(xk+1, yk+1).

Substituting it into equation 25, we obtain

E [h(yk+1)− h(x)] ≤E

[
q⟨x− xk+1,∇ψ(yk+1)−∇ψ(xk+1)⟩ −

µ

4
∥yk+1 − x∥2

+

{
8θ2

(
δ2f
p

+
δ2g

1− p

)
− q

}
Dψ(xk+1, yk+1)

]
.

With our choice of θ (see equation 24), we have{
8θ2

(
δ2f
p

+
δ2g

1− p

)
− q

}
Dψ(xk+1, yk+1) ≤ −q

2
Dψ(xk+1, yk+1).

Thus, we can write

E [h(yk+1)− h(x)] ≤E

[
q⟨x− xk+1,∇ψ(yk+1)−∇ψ(xk+1)⟩ −

µ

4
∥yk+1 − x∥2

− q

2
Dψ(xk+1, yk+1)

]
.

We suggest to add and subtract zk in the scalar product to get

E [h(yk+1)− h(x)] ≤E

[
q⟨x− zk,∇ψ(yk+1)−∇ψ(xk+1)⟩

+ q⟨zk − xk+1,∇ψ(yk+1)−∇ψ(xk+1)⟩

− µ

4
∥yk+1 − x∥2 − q

2
Dψ(xk+1, yk+1)

]
.

(26)

Looking carefully at Line 4, we note that

zk − xk+1 =
1− τ

τ
(xk+1 − yk).

Substituting it into equation 26, we get

E [h(yk+1)− h(x)] ≤E

[
q⟨x− zk,∇ψ(yk+1)−∇ψ(xk+1)⟩

+
1− τ

τ
q⟨xk+1 − yk,∇ψ(yk+1)−∇ψ(xk+1)⟩

− µ

4
∥yk+1 − x∥2 − q

2
Dψ(xk+1, yk+1)

]
.

(27)

Next, let us analyze q⟨xk+1 − yk,∇ψ(yk+1) − ∇ψ(xk+1)⟩. It is not difficult to see that this term
appears in Lemma 4 if we substitute x = yk. Writing it out, we obtain

E [q⟨xk+1 − yk,∇ψ(yk+1)−∇ψ(xk+1)⟩] ≤ E
[
[h(yk)− h(yk+1)]−

q

2
Dψ(xk+1, yk+1)

]
.
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Plugging this into equation 27, we derive

E [h(yk+1)− h(x)] ≤E

[
q⟨x− zk,∇ψ(yk+1)−∇ψ(xk+1)⟩+

1− τ

τ
[h(yk)− h(yk+1)]

− µ

4
∥yk+1 − x∥2 − q

2τ
Dψ(xk+1, yk+1)

]
.

Note that Gk+1 = q(∇ψ(xk+1)−∇ψ(yk+1)). Thus, we have

E [h(yk+1)− h(x)] ≤E

[
⟨zk − x,Gk+1⟩+

1− τ

τ
[h(yk)− h(yk+1)]−

µ

4
∥yk+1 − x∥2

− q

2τ
Dψ(xk+1, yk+1)

]
.

(28)

Next, we apply Lemma 3 to Line 8 in order to evaluate

⟨zk − x,Gk+1⟩ −
µ

4
∥yk+1 − x∥2 ≤⟨zk − x,Gk+1⟩ −

µ

4
∥yk+1 − x∥2 + µ

4
∥yk+1 − zk+1∥2

≤α
2
∥Gk+1∥2 +

1

2α
∥zk − x∥2 + 1 + 0.5α

2α
∥zk+1 − x∥2.

(29)

We also have to estimate ∥Gk+1∥2.

∥Gk+1∥2 ≤q2∥∇ψ(xk+1)−∇ψ(yk+1)∥2 ≤ q2
2(1 + θ(δf + δg))

θ
Dψ(xk+1, yk+1)

≤3q2

θ
Dψ(xk+1, yk+1).

(30)

Substituting equation 30 and equation 29 into equation 28, we conclude

E
[
1

τ
[h(yk+1)− h(x)] +

1 + 0.5µα

2α
∥zk+1 − x∥2

]
≤E

[
1− τ

τ
[h(yk)− h(x)] +

1

2α
∥zk − x∥2

− q

2τ

(
1− 3αqτ

θ

)
Dψ(xk+1, yk+1)

]
.

With our choice of parameters (see equation 24), we have

1− 3αqτ

θ
= 0

Moreover, µα < 1 (with our choice of α) and therefore,(
1 +

µα

2

)−1

≤ 1− µα

4
.

Thus, we conclude that Algorithm 3 requires

Õ
(√

q

θµ

)
iterations

to achieve an arbitrary ε-solution. The same as in Algorithm 2, iteration of AccVRCS consists of
the communication across all devices and then the epoch with random choice of Mf or Mg . Thus,
AccVRCS requires

Õ
(√

q

µθ

(
1 +

p

q

))
rounds for Mf ,

and

Õ
(√

q

µθ

(
1 +

1− p

q

))
rounds for Mg.

After substituting equation 24, this results in

Õ

(√
δf
µ

)
rounds for Mf ,
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and

Õ

((
δg
δf

)3/2
√
δg
µ

)
rounds for Mg.

F PROOF OF THEOREM 4

Theorem 8. Consider Algorithm 5 for the problem 6 under Assumptions 2-3, with the following
tuning:

θg ≤
1

2δg
, τg =

1

2

√
θg
θ
, αg =

1

θ
, ηg = min

{
θ

2
,
1

4

θg
τg

}
; (31)

and let xt+1 satisfy: ∥∥∥Btθg (xt+1)
∥∥∥2 ≤ 2

10θ2g

∥∥∥∥xt − arg min
x∈Rd

Btθg (x)

∥∥∥∥2 .
Then it takes

O
(√

θδg log
1

ε

)
communication rounds

over only Mg to achieve ∥∇Akθf (xt+1)∥2 ≤ ε.

Proof. The proof is much the same as the proof of Theorem 1 (see Appendix B). Nevertheless, we
give it in the full form. We start with

1

ηg
∥xt+1 − x∗∥2 =

1

ηg
∥xt − x∗∥2 +

2

ηg
⟨xt+1 − xt, xt − x∗⟩+

1

ηg
∥xt+1 − xt∥2.

Next, we use Line 6 to obtain
1

ηg
∥xt+1 − x∗∥2 =

1

ηg
∥xt − x∗∥2 + 2αg⟨xt+1 − xt, xt − x∗⟩+ 2⟨∇Akθ(xt+1), xt − x∗⟩

+
1

ηg
∥xt+1 − xt∥2.

After that, we apply the formula for square of difference to the first scalar product and get
1

ηg
∥xt+1 − x∗∥2 =

1

ηg
∥xt − x∗∥2 + αg∥xt+1 − x∗∥2 − αg∥xt+1 − xt∥2

− αg∥xt − x∗∥2 + 2⟨∇Akθ(xt+1), xt − x∗⟩+
1

ηg
∥xt+1 − xt∥2.

Let us take a closer look at the last norm. Using Line 6, we obtain
1

ηg
∥xt+1 − xt∥2 ≤ 2ηgα

2
g∥xt+1 − xt∥2 + 2η∥∇Akθ(xt+1)∥2.

Taking the choice of parameters (see equation 31) into account, we can write
1

ηg
∥xt+1 − x∗∥2 ≤1− ηgαg

ηg
∥xt − x∗∥2 + αg∥xt+1 − x∗∥2 + 2⟨∇Akθ(xt+1), xt − x∗⟩

+ 2ηg∥∇Akθ(xk+1)∥2.
It remains to use Line 4 to write out the remaining scalar product. We have

1

ηg
∥xt+1 − x∗∥2 ≤1− ηgαg

ηg
∥xt − x∗∥2 + αg∥xt+1 − x∗∥2 + 2⟨∇Akθ(xt+1), x∗ − xt⟩

+
2(1− τg)

τg
⟨∇Akθ(xt+1), xt − xt⟩+ 2ηg∥∇Akθ(xk+1)∥2.

(32)

As in the proof of Theorem 1, we have to deal with the scalar products. Let us write

⟨∇Akθ(xt+1), x− xt⟩ = ⟨∇Akθ(xt+1), x− xt+1⟩+ ⟨∇Akθ(xt+1), xt+1 − xt⟩.
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We have already mentioned in the main text that Akθ is 1/θ-strongly convex. Indeed, ∇2Akθ(x) ⪰ 1
θ .

Thus, we can apply the definition of strong convexity (see Assumption 1) to the first scalar product:

⟨∇Akθ(xt+1), x− xt⟩ ≤ [Akθ(xt+1)−Akθ(x)]−
1

θ
∥xt+1 − x∥2 + θg

〈
∇Akθ(xt+1),

xt+1 − xt
θg

〉
.

Next, we write out the remaining scalar product, exploiting the square of the difference, and obtain

⟨∇Akθ(xt+1), x− xt⟩ ≤[Akθ(xt+1)−Akθ(x)]−
1

θ
∥xt+1 − x∥2 − θg∥∇Akθ(xt+1)∥2

− 1

θg
∥xt+1 − xt∥2 + θg

∥∥∥∥∇Akθ(xt+1) +
xt+1 − xt

θg

∥∥∥∥2 . (33)

Let us look carefully at the last norm and notice∥∥∥∥∇Akθ(xt+1) +
xt+1 − xt

θg

∥∥∥∥2 =

∥∥∥∥∇qg(xt+1) +∇(g − g1)(xt+1) +
xt+1 − xt

θg

∥∥∥∥2
=
∥∥∥∇Btθg (xt+1) +∇(g − g1)(xt+1)−∇(g − g1)(xt)

∥∥∥2
≤2∥∇Btθg (xt+1)∥2 + 2∥∇(g − g1)(xt+1)−∇(g − g1)(xt)∥2.

Next, we apply the Hessian similarity (see Definition 1) and obtain∥∥∥∥∇Akθ(xt+1) +
xt+1 − xt

θg

∥∥∥∥2 ≤ 2∥∇Btθg (xt+1)∥2 + 2δ2g∥xt+1 − xt∥2 (34)

Substituting equation 34 into equation 33, we get

⟨∇Akθ(xt+1), x− xt⟩ ≤[Akθ(xt+1)−Akθ(x)]−
1

θ
∥xt+1 − x∥2 − θg∥∇Akθ(xt+1)∥2

+ 2θg∥∇Btθg (xt+1)∥2 −
1

θg

(
1− 2θ2gδ

2
g

)
∥xt+1 − xt∥2.

With θ ≤ 1/2θg (see equation 31), we have

⟨∇Akθ(xt+1), x− xt⟩ ≤[Akθ(xt+1)−Akθ(x)]−
1

θ
∥xt+1 − x∥2 − θg∥∇Akθ(xt+1)∥2

+ 2θg∥∇Btθg (xt+1)∥2 −
1

2θg
∥xt+1 − xt∥2.

Note that

−∥a− b∥2 ≤ −1

2
∥a− c∥2 + ∥b− c∥2.

Thus, we can write

⟨∇Akθ(xt+1), x− xt⟩ ≤[Akθ(xt+1)−Akθ(x)]−
1

θ
∥xt+1 − x∥2 − θg∥∇Akθ(xt+1)∥2

+ 2θg∥∇Btθg (xt+1)∥2 −
1

4θg
∥xt − arg min

x∈Rd
Btθg (x)∥

2

+
1

2θg
∥xt+1 − arg min

x∈Rd
Btθg (x)∥

2.

Btθg is 1/θg-strongly convex. This implies

⟨∇Akθ(xt+1), x− xt⟩ ≤[Akθ(xt+1)−Akθ(x)]−
1

θ
∥xt+1 − x∥2 − θg∥∇Akθ(xt+1)∥2

+
5θg
2

∥∇Btθg (xt+1)∥2 −
1

4θg
∥xt − arg min

x∈Rd
Btθg (x)∥

2.

The criterion helps to eliminate the last two terms. We conclude

⟨∇Akθ(xt+1), x− xt⟩ ≤[Akθ(xt+1)−Akθ(x)]−
1

θ
∥xt+1 − x∥2 − θg∥∇Akθ(xt+1)∥2.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

We are ready to estimate the scalar products in equation 32. Let us write
1

ηg
∥xt+1 − x∗∥2 ≤1− ηgαg

ηg
∥xt − x∗∥2 +

(
αg −

1

θ

)
∥xt+1 − x∗∥2

+

(
2ηg −

θg
τg

)
∥∇Akθg (xt+1)∥2

+ [Akθ(xt+1)−Akθ(x∗)] +
1− τg
τg

[Akθ(xt+1)−Akθ(xt)].

Denote Φk = 1
ηg
∥xt − x∗∥2 + 1

τg
[Akθ(xt) − Akθ(x∗)] With the proposed choice of parameters (see

equation 31), we have

Φk+1 +
θg
2τg

∥∇Akθ(xk+1)∥2 ≤

(
1− 1

2

√
θg
θ

)
Φk

≤

(
1− 1

2

√
θg
θ

)[
Φk +

θg
2τg

∥∇Akθ(xt)∥2
]
.

Rolling out the recursion and noting that θg
2τg

∥∇Akθ(xK)∥2 ≤ ΦK +
θg
2τg

∥∇Akθ(xK)∥2, we obtain
linear convergence of Algorithm 5 by the gradient norm. It requires

O
(√

θδg log
1

ε

)
rounds over only Mg

to converge to an arbitrary ε-solution.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

Language models were used to improve text quality (mostly to correct grammatical errors). LLMs
were not used to obtain theoretical results or write code.
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