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ABSTRACT

Federated Learning (FL) is notorious for its vulnerability to Byzantine attacks.
Most current Byzantine defenses share a common inductive bias: among all the
gradients, the majorities are more likely to be honest. However, such a bias is a
poison to Byzantine robustness due to a newly discovered phenomenon in this pa-
per – gradient skew. We discover that the substantial honest gradients skew away
from the optimal gradient (the average of honest gradients) as a result of het-
erogeneous data distribution. This gradient skew phenomenon allows Byzantine
gradients to hide within the skewed honest gradients and thus be recognized as the
majority. As a result, Byzantine defenses are deceived into perceiving Byzantine
gradients as honest. Motivated by this observation, we propose a novel skew-
aware attack called STRIKE: first, we search for the skewed honest gradients;
then, we construct Byzantine gradients within the skewed honest gradients. Ex-
periments on three benchmark datasets validate the effectiveness of our attack.

1 INTRODUCTION

Federated Learning (FL) (McMahan et al., 2017; Li et al., 2020) emerged as a privacy-aware learning
paradigm, in which data owners, i.e., clients, repeatedly use their private data to compute local
gradients and upload them to a central server. The central server collects the uploaded gradients
from clients and aggregates these gradients to update the global model. In this way, clients can
collaborate to train a model without exposing their private data.

Unfortunately, FL is susceptible to Byzantine attacks due to its distributed nature (Blanchard et al.,
2017; Guerraoui et al., 2018). A malicious party can control a small subset of clients, i.e., Byzantine
clients, to degrade the utility of the global model. During the training phase, Byzantine clients
can send arbitrary messages to the central server to bias the global model. A wealth of defenses
(Blanchard et al., 2017; Pillutla et al., 2019; Shejwalkar & Houmansadr, 2021) have been proposed
to defend against Byzantine attacks in FL. They aim to estimate the optimal gradient, i.e., the average
of gradients from honest clients, in the presence of Byzantine clients.

Most existing defenses (Blanchard et al., 2017; Shejwalkar & Houmansadr, 2021; Karimireddy et al.,
2022) share a common inductive bias: the majority gradients are more likely to be honest. Generally,
they assign higher weights to the majority gradients. Then they compute the global gradient and use
it to update the global model. As a result, the output global gradient of defenses is biased towards
the majority of gradients.

However, this inductive bias of Byzantine defenses is harmful to Byzantine robustness in FL
due to the presence of gradient skew. In practical FL, data across different clients is non-
independent and identically distributed (non-IID), which gives rise to heterogeneous honest gra-
dients (McMahan et al., 2017; Li et al., 2020; Karimireddy et al., 2022). On closer inspection,
we find that these heterogenous honest gradients are highly skewed. In Figure 1, we use Locally
Linear Embedding (LLE) (Roweis & Saul, 2000) to visualize the honest gradients on CIFAR-
10 dataset (Krizhevsky et al., 2009) when data is non-IID split. Detailed setups and more re-
sults are provided in Appendix A. As shown in Figure 1, substantial honest gradients skew away
from the optimal gradient. We term this phenomenon as ”gradient skew”. When honest gradi-
ents are skewed, the defenses’ bias towards majority gradients is a poison to Byzantine robustness.
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Figure 1: The LLE visualization of honest gradi-
ents in the non-IID setting on CIFAR-10. Sub-
stantial honest gradients (blue circles) are skewed
away from the optimal gradient (green star). In
this case, we can hide Byzantine gradients (pink
crosses) within the skewed honest gradients to cir-
cumvent defenses.

In fact, we can hide Byzantine gradients within
the skewed majority of honest gradients as
shown in Figure 1. In this case, the bias of de-
fenses would drive the global gradient close to
the skewed honest gradients but far from the op-
timal gradient.

In this paper, we study how to exploit the gradi-
ent skew in the more practical non-IID setting
to circumvent Byzantine defenses. We first for-
mulate the definition of gradient skew and theo-
retically analyze the vulnerability of Byzantine
defenses under the skew. Based on the above
analysis, we design a novel two-Stage aTtack
based on gRadIent sKEw called STRIKE. In
particular, STRIKE hides Byzantine gradients
within the skewed honest gradients as shown
in Figure 1. STRIKE can take advantage of
the gradient skew in FL to break Byzantine de-
fenses.

In summary, our contributions are:

• To the best of our knowledge, we are the first to discover the gradient skew phenomenon in
FL: substantial honest gradients are skewed away from the optimal gradient. We theoreti-
cally analyze the vulnerability of Byzantine defenses under gradient skew. In particular, we
can circumvent defenses by hiding Byzantine gradients within the skewed honest gradients.

• Based on the theoretical analysis, we propose a two-stage Byzantine attack called STRIKE.
In the first stage, STRIKE searches for the skewed honest gradients under the guidance of
Karl Pearson’s formula. In the second stage, STRIKE constructs the Byzantine gradients
within the skewed honest gradients by solving a constrained optimization problem.

• Experiments on three benchmark datasets validate the effectiveness of the proposed attack.
For instance, STRIKE attack improves upon the best baseline by 57.84% against DnC on
FEMNIST dataset when there are 20% Byzantine clients.

2 RELATED WORKS

Byzantine attacks. Blanchard et al. (2017) first disclose the Byzantine vulnerability of FL. Baruch
et al. (2019) observe that the variance of honest gradients is high enough for Byzantine clients to
compromise Byzantine defenses. Based on this observation, they propose a LIE attack that hides
Byzantine gradients within the variance. Xie et al. (2020) further utilize the high variance and
propose an IPM attack. Particularly, they show that when the variance of honest gradients is large
enough, IPM can make the inner product between the aggregated gradient and the honest average
negative. However, this result is restricted to a few defenses, i.e., Median Yin et al. (2018), Trmean
Yin et al. (2018), and Krum Blanchard et al. (2017). Fang et al. (2020) establish an omniscient
attack called Fang. However, the Fang attack requires knowledge of the Byzantine defense, which is
unrealistic in practice. Shejwalkar & Houmansadr (2021) propose Min-Max and Min-Sum attacks
that solve a constrained optimization problem to determine Byzantine gradients. From a high level,
both Min-Max and Min-Sum aim to maximize the perturbation to a reference benign gradient while
ensuring the Byzantine gradients lie within the variance. Karimireddy et al. (2022) propose a Mimic
attack that takes advantage of data heterogeneity in FL. In particular, Byzantine clients pick an
honest client to mimic and copy its gradient. The above attacks take advantage of the large variance
of honest gradients to break Byzantine defenses. However, they all ignore the skew nature of honest
gradients in FL and fail to exploit this vulnerability.

Byzantine resilience. El-Mhamdi et al. (2021); Karimireddy et al. (2022) provide state-of-the-art
theoretical analysis of Byzantine resilience under data heterogeneity. El-Mhamdi et al. (2021) dis-
cuss Byzantine resilience in a decentralized, asynchronous setting. Farhadkhani et al. (2022) provide
a unified framework for Byzantine resilience analysis, which enables comparison among different
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defenses on a common theoretical ground. Karimireddy et al. (2022) improve the error bound of
Byzantine resilience to be upper-bounded by the fraction of Byzantine clients, which recovers the
standard convergence rate when there are no Byzantine clients. They all share a common bias: the
majority of gradients are more likely to be honest. However, this bias is a poison to Byzantine ro-
bustness in the presence of gradient skew. In practical FL, the distribution of honest gradients is
highly skewed due to data heterogeneity. Therefore, existing defenses are especially vulnerable to
attacks that are aware of gradient skew.

3 NOTATIONS AND PRELIMINARY

3.1 NOTATIONS

∥·∥ denotes the ℓ2 norm of a vector. For vector v, (v)k represents the k-th coordinate of v. Model
parameters are denoted by w and gradients are denoted by g. We use ḡ to denote the optimal gradi-
ent, i.e., the average of honest gradients, and ĝ denotes the global gradients obtained by Byzantine
defenses. We use subscript i to denote client i and use superscript t to denote communication round
t.

3.2 PRELIMINARY

Federated learning. Suppose that there are n clients and a central server. The goal is to optimize
the global loss function L(·):

min
w
L(w), where L(w) =

1

n

n∑
i=1

Li(w). (1)

Here w is the model parameter, and Li(·) is the local loss function on client i for i = 1, . . . , n.

In communication round t, the central server distributes global parameter wt to the clients. Each
client i performs several epochs of SGD to minimize its local loss function Li(·) and update its local
parameter to wt+1

i . Then, each client i computes its local gradient gt
i and sends it to the server.

gt
i = wt

i −wt+1
i , i = 1, . . . , n. (2)

After receiving the uploaded local gradients, the server aggregates the local gradients and updates
the global model to wt+1.

ḡt =
1

n

n∑
i=1

gt
i , wt+1 = wt − ḡt. (3)

Byzantine attack model. Assume that among the total n clients, f fixed clients are Byzantine
clients. Let B ⊆ {1, . . . , n} denote the set of Byzantine clients and H = {1, . . . , n} \ B denote the
set of honest clients. In each communication round, Byzantine clients can send arbitrary messages
to bias the global model. The local gradients that the server receives in the t-th communication
round are

gt
i =

{∗, i ∈ B,
wt −wt+1

i , i ∈ H, (4)

where ∗ represents an arbitrary message. Following Baruch et al. (2019); Xie et al. (2020), we
consider the setting where the attacker only has the knowledge of honest gradients.

Byzantine resilience. Blanchard et al. (2017) show that the popular mean aggregation rule is not
resilient to Byzantine attacks. Thus, the server replaces the mean aggregation rule in Equation (3)
with a robust AGgregation Rules (AGR) A, e.g., Krum (Blanchard et al., 2017), Median (Yin et al.,
2018), to compute the global gradient ĝt and update the global model to wt+1.

ĝt = A(gt
1, . . . , g

t
n), wt+1 = wt − ĝt. (5)

A body of recent works (Farhadkhani et al., 2022; Karimireddy et al., 2022; Allouah et al., 2023)
have theoretically defined Byzantine resilience for general robust AGRs. Particularly, we adopt the
definition from Farhadkhani et al. (2022) in this work for analysis. We also discuss how our analysis
can apply to other definitions of Byzantine resilience in Appendix B.2.
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Definition 1 ((f, λ)-resilient). Given f < n and λ ≥ 0, an AGR A is (f, λ)-resilient if for any
collection of n vectors {g1, . . . , gn} and any set G ⊆ {1, . . . , n} of size n− f ,

∥A(g1, . . . , gn)− ḡG∥ ≤ λmax
i,j∈G

∥gi − gj∥, (6)

where ḡG =
∑

i∈G gi/(n− f) is the average of gradients {gi | i ∈ G}.

Essentially, a smaller λ means better resilience (Farhadkhani et al., 2022).

4 VULNERABILITY OF ROBUST AGRS UNDER GRADIENT SKEW

In this section, we show that when honest gradients are skewed, we can establish Byzantine attacks
to circumvent robust AGgregation Rules (AGRs). First, we verify the existence of gradient skew in
FL and formally define gradient skew. Then, we show how to exploit the gradient skew to launch
Byzantine attacks and circumvent robust AGRs.

4.1 GRADIENT SKEW IN FL DUE TO NON-IID DATA

Plenty of works (Baruch et al., 2019; Xie et al., 2020; Karimireddy et al., 2022) have explored how
large variance can be harmful to Byzantine robustness. However, to the best of our knowledge, none
of the existing works is aware of the skewed nature of honest gradients in the non-IID setting and
how gradient skew can threaten Byzantine robustness.

We take a close look at the distribution of honest gradients in the non-IID setting (without attack).
To construct our FL setup, we split CIFAR-10 (Krizhevsky et al., 2009) dataset in a non-IID manner
among 100 clients. For more setup details, please refer to Appendix A.1. We run FedAvg (McMa-
han et al., 2017) for 200 communication rounds. We randomly sample a communication round and
use Locally Linear Embedding (LLE) (Roweis & Saul, 2000) to visualize the gradients in this com-
munication round in Figure 1. From Figure 1, we observe that the majority of honest gradients (blue
circles) skew away from the optimal gradient (green stars). More visualization results can be found
in Appendix A.2. We name this phenomenon ”gradient skew”.

We formulate the definition of gradient skew for further analysis. The idea behind this definition is to
measure the skewness of honest gradients by the distance between the majority of honest gradients
and the optimal gradient, i.e., the average of honest gradients.
Definition 2 ((f, γ)-skewed). The set of honest gradients {gi | i ∈ H} is called (f, γ)-skewed if
there exists a set S ⊆ H of size n− 2f 1 such that

E [∥ḡS − ḡ∥2] ≥ γρ2S , (7)

where ḡ =
∑

i∈H gi/(n − f), ḡS =
∑

i∈S gi/(n − 2f), and ρ2S = E [maxi,j∈S∥gi − gj∥2]
is a measure of gradient heterogeneity introduced by El-Mhamdi et al. (2021). Here, gradients
{gi | i ∈ S} are called the skewed honest gradients, and γ is called the skewness of honest gradients
{gi | i ∈ H}.

In Definition 2, γ measures the skew degree of the honest gradients. A larger γ indicates a higher
skew degree. We provide an example in Appendix B to help better understand the gradient skew.

4.2 ROBUST AGRS ARE BRITTLE UNDER GRADIENT SKEW

When the honest gradients are skewed, robust AGRs are extremely vulnerable. In fact, we can hide
Byzantine gradients within the skewed honest gradients. This attack strategy makes Byzantine gradi-
ents stealthy and difficult to detect. The skewed nature of honest gradients further allows Byzantine
gradients to deviate the global gradient away from the optimal gradient. The above argument can be
formulated as the following lower bound.

1The size of the skewed honest gradients |S| = n − 2f is carefully chosen as follows: We aim to deceive
robust AGR into believing that Byzantine gradients and skewed honest gradients are honest, and the other
honest gradients are Byzantine. There are n− f honest gradients and f Byzantine gradients. Thus the number
of skewed honest gradients is determined by |S| = (n− f)− f = n− 2f .
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Proposition 1 (Vulnerability under skew). Given any (f, λ)-resilient AGR A, γ = Ω(λ2), if the set
of honest gradients {gi | i ∈ H} is (f, γ)-skewed, then there exist Byzantine gradients {gi | i ∈ B}
such that

E[∥A(g1, . . . , gn)− ḡ∥2] ≥ Ω(
γ

λ2
· f2

(n− f)2
· ρ2S). (8)

where ḡ =
∑

i∈H gi/(n− f) is the optimal gradient, ρ2S = E[maxi,j∈S∥gi − gj∥2], S is the index
set of the skewed honest gradients.

The detailed proof is provided in Appendix B.1.2. Proposition 1 suggests that when the honest
gradients are skewed, we can always launch Byzantine attacks to deviate the global gradient from
the optimal gradient. Moreover, the more skewed the honest gradients are, the farther the global
gradient is from the optimal gradient. An interesting result in Proposition 1 is that smaller λ leads
to a larger lower bound in Equation (8), which implies that our attack is even more effective on
robust AGRs with stronger resilience. This is because the global gradient obtained by robust AGRs
with stronger resilience is closer to the majority of uploaded gradients (including Byzantine and
honest). And the majority of uploaded gradients are away from the optimal gradients under our
attack. Therefore, a robust AGR with stronger resilience is even more sensitive to our attack.

We further show that the above vulnerability enables us to prevent the global model from converg-
ing to the optimum for any L-smooth global loss function and unbiased honest gradients. These
assumptions are standard in Byzantine robust learning (Karimireddy et al., 2021; Farhadkhani et al.,
2022).
Assumption 1 (L-smooth). The loss function is L-smooth, i.e.,

∥∇L(w)−∇L(w′)∥ ≤ L∥w −w′∥, ∀w,w′ ∈ Rd. (9)

Assumption 2 (Unbias). The stochastic gradients sampled from any local data distribution are un-
biased estimators of local gradients for all clients, i.e.,

E[gt
i ] = ∇Li(w

t), ∀i = 1, . . . n, t = 0, . . . , T − 1. (10)

Now we present our main result.
Proposition 2. Given any (f, λ)-resilient AGR A, L-smooth global loss function L, and learning
rate η ≤ 1/L, γ = Ω(λ2), if honest gradients {gt

i | i ∈ H} are (f, γ)-skewed for all t = 0, . . . , T −
1, then there exist Byzantine gradients {gt

b | b ∈ B, t = 0, . . . , T − 1} such that the global model
parameter is bounded away from the global optimum w∗:

E[∥wt −w∗∥2] ≥ Ω(η2(1− Lη)2 · γ
λ2
· f2

(n− f)2
· ρ2), t = 1, . . . , T, (11)

where wt is the parameter of global model in the t-th communication round, w∗ is the global
optimum of global loss function L, ρ2 = mint=0,...,T−1 E[maxi,j∈St∥gt

i − gt
j∥2], and St is the

index set of the skewed honest gradients in t-th communication round.

The proof of Proposition 2 can be found in Appendix B.1.3. Proposition 2 indicates that under
gradient skew, we can establish Byzantine attacks to keep the global model away from the optimum.
The lower bound in Proposition 2 is also aligned with the one in Proposition 1: a larger skewness γ
would lead to a larger lower bound, and so does a smaller λ. Note that we do not require the loss
function to be convex, which implies that Proposition 2 also applies to more challenging non-convex
loss functions.

5 PROPOSED ATTACK

In this section, we introduce the proposed two-Stage aTtack based on gRadIent sKEw called
STRIKE. As discussed in Section 4, the attack principle of STRIKE is to hide Byzantine gradients
within the skewed gradients. To achieve this goal, we carry out STRIKE attack in two stages: in the
first stage, we search for the skewed honest gradients; in the second stage, we construct Byzantine
gradients within the skewed honest gradients found in the first stage. The procedure of STRIKE
attack is shown in Algorithm 1 in Appendix C.
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Figure 2: Illustration of the proposed two-stage attack STRIKE: in the first stage, STRIKE searches
for the skewed honest gradients; in the second stage, STRIKE hides Byzantine gradients within the
skewed honest gradients.

Search for the skewed honest gradients. To hide the Byzantine gradient in the skewed honest
gradients, we first need to find the skewed honest gradients. Naively searching the skewed honest
gradients according to Definition 2 is computationally expensive. Therefore, we perform a heuristic
search motivated by Karl Pearson’s formula (Knoke et al., 2002; Moore et al., 2009). Figure 2a
illustrates the search procedure in this stage.

As visualized in Figure 1, gradients are densely distributed within the skewed honest gradients,
which implies that the population mode coincides with the skewed honest gradients with high prob-
ability. Karl Pearson’s formula (Knoke et al., 2002; Moore et al., 2009) implies that the mode and
median lie on the same side of the mean. Therefore, we search for the skewed honest gradients along
the direction usearch defined as:

usearch = gmed − ḡ, (12)

where gmed is the coordinate-wise median of honest gradients {gi | i ∈ H}, i.e., the k-th coordinate
of gmed is (gmed)k = median{(gi)k | i ∈ H}, and ḡ =

∑
i∈H gi/(n − f) is the average of honest

gradients.

For each honest gradient gi, we compute its scalar projection pi on the searching direction usearch:

pi = ⟨gi,
usearch

∥usearch∥
⟩, ∀i ∈ H, (13)

where ⟨·, ·⟩ represents the inner product. The n − 2f gradients with the highest scalar projection
values are identified as the skewed honest gradients. The goal is to have AGR consider the selected
n− 2f gradients as honest and the unselected f gradients as Byzantine. Let S denote index set, that
is

S = Set of (n− 2f) indices of the gradients with the highest scalar projection pi, (14)

then the skewed honest gradients are {gi | i ∈ S}.
Hide Byzantine gradients within the skewed honest gradients. In this stage, we aim to hide
Byzantine gradients {gi | i ∈ B} within the skewed honest gradients {gi | i ∈ S} identified in stage
1. The primary goal of our attack is to disguise Byzantine gradients and the skewed honest gradients
{gi | i ∈ B ∪ S} as honest gradients. Meanwhile, the secondary goal is to maximize the attack
effect, i.e., maximize the distance between these ”fake” honest gradients and the optimal gradient.
The hiding procedure in this stage is illustrated in Figure 2b.

According to Definition 1, robust AGRs are sensitive to the diameter of gradients. Therefore, we
ensure that the Byzantine gradients lie within the diameter of the skewed honest gradients in order
not to be detected.

∥gb − gs∥ ≤ max
i,j∈S

∥gi − gj∥, ∀b ∈ B, s ∈ S. (15)
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Meanwhile, we want to maximize the attack effect. Therefore, we need to maximize the distance
between ḡS∪B =

∑
i∈S∪B gi/(n− f) and the optimal gradient.

max
{gb|b∈B}

∥ḡS∪B − ḡ∥. (16)

In summary, our objective can be formulated as the following constrained optimization problem.

max
{gb|b∈B}

∥ḡS∪B − ḡ∥ s.t.
{
ḡS∪B =

∑
i∈S∪B gi/(n− f)

∥gb − gs∥ ≤ maxi,j∈S ∥gi − gj∥, ∀b ∈ B, s ∈ S (17)

Equation (17) is too complex to be solved due to the high complexity of its feasible region. There-
fore, we restrict {gb | b ∈ B} to the following form:

gb = ḡS + α · sign(ḡS − ḡ)⊙ σS , ∀b ∈ B, (18)

where ḡS =
∑

i∈S gi/(n − 2f) is the average of the skewed honest gradients, α is a non-negative
real number that controls the attack strength, sign(·) returns the element-wise indication of the sign
of a number, ⊙ is the element-wise multiplication, and σS is the element-wise standard deviation
of skewed honest gradients {gi | i ∈ S}. ḡS lies within the feasible region of Equation (17), which
ensures that {gb | b ∈ B} are feasible when α = 0. sign(ḡS − ḡ) controls the element-wise attack
direction, and ensures that gb is farther away from the optimal gradient ḡ under a larger α. σS
controls the element-wise attack strength and ensures that Byzantine gradients are covert in each
dimension.

With the restriction in Equation (18), Equation (17) can be simplified to the following optimization
problem,

maxα s.t. ∥ḡS + α · sign(ḡS)⊙ σS − gs∥ ≤ max
i,j∈S

∥gi − gj∥, ∀s ∈ S, (19)

which can be easily solved by the bisection method described in Appendix D. While α that solves
Equation (19) is theoretically provable (as shown in Appendix B.1.2, the proof of Proposition 1),
we find in practice that an adjusted attack strength can further improve the effect of STRIKE. We
use an additional hyperparameter ν(> 0) to control the attack strength of STRIKE. STRIKE sets
gb = ḡS + να · sign(ḡS) ⊙ σS − gi for all b ∈ B and uploads Byzantine gradients to the server.
Higher ν implies higher attack strength. We discuss the performance of STRIKE with different ν in
Appendix E.2.1.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUPS

Datasets. Our experiments are conducted on three real-world datasets: CIFAR-10 (Krizhevsky
et al., 2009), a subset of ImageNet (Russakovsky et al., 2015) refered as ImageNet-12 (Li et al.,
2021b) and FEMNIST (Caldas et al., 2018). Please refer to Appendix E.1.1 for more details about
the data distribution.

Baseline attacks. We consider six state-of-the-art attacks: BitFlip (Allen-Zhu et al., 2020), LIE
(Baruch et al., 2019), IPM (Xie et al., 2020), Min-Max (Shejwalkar & Houmansadr, 2021), Min-
Sum (Shejwalkar & Houmansadr, 2021), and Mimic (Karimireddy et al., 2022). The detailed hy-
perparameter settings of these attacks are shown in Appendix E.1.2.

Evaluated defenses. We evaluate the performance of our attack on the following robust AGRs:
Multi-Krum Blanchard et al. (2017), Median Yin et al. (2018), RFA Pillutla et al. (2019), Aksel
Boussetta et al. (2021), CClip Karimireddy et al. (2021) DnC Shejwalkar & Houmansadr (2021),
and RBTM El-Mhamdi et al. (2021). Besides, we also consider bucketing Karimireddy et al. (2022)
and NNM Allouah et al. (2023), two simple yet effective schemes that adapt existing robust AGRs
to the non-IID setting. The detailed hyperparameter settings of the above robust AGRs are listed in
Appendix E.1.3.

More detailed setups are deferred to Appendix E.1.

7



Under review as a conference paper at ICLR 2024

Table 1: Accuracy (mean±std) under different attacks against different defenses on CIFAR-10,
ImageNet-12, and FEMNIST. The best attack performance is in bold (the lower, the better).

CIFAR-10

Attack Multi-Krum Median RFA Aksel CClip DnC RBTM

BitFlip 54.76 ± 0.06 53.73 ± 2.05 56.04 ± 3.13 51.99 ± 2.04 54.44 ± 0.46 60.81 ± 0.56 55.21 ± 3.72
LIE 57.89 ± 0.22 49.20 ± 3.27 53.90 ± 5.43 46.73 ± 4.86 63.11 ± 0.43 61.58 ± 2.85 58.84 ± 0.64
IPM 47.55 ± 1.75 51.68 ± 1.85 55.36 ± 2.10 56.85 ± 2.07 58.75 ± 5.59 62.30 ± 3.60 48.43 ± 0.17
MinMax 59.44 ± 3.41 57.27 ± 0.63 60.20 ± 1.63 57.17 ± 5.50 59.38 ± 5.15 62.53 ± 2.67 57.72 ± 2.94
MinSum 55.47 ± 1.70 52.27 ± 0.53 54.59 ± 2.38 56.43 ± 1.74 54.70 ± 1.96 61.89 ± 1.62 46.78 ± 0.32
Mimic 56.00 ± 4.26 52.55 ± 0.89 53.61 ± 0.86 57.19 ± 2.50 51.00 ± 0.11 62.10 ± 5.22 46.77 ± 2.52
STRIKE (Ours) 42.90 ± 1.97 48.29 ± 0.40 52.92 ± 1.75 38.31 ± 0.47 50.67 ± 0.27 59.16 ± 1.84 44.82 ± 0.97

ImageNet-12

Attack Multi-Krum Median RFA Aksel CClip DnC RBTM

BitFlip 59.62 ± 0.73 58.56 ± 4.80 59.71 ± 5.00 61.64 ± 1.98 14.87 ± 1.58 59.78 ± 1.50 58.49 ± 1.99
LIE 62.66 ± 0.30 51.41 ± 1.52 60.99 ± 1.22 54.14 ± 3.14 16.19 ± 3.95 67.85 ± 2.87 67.12 ± 0.39
IPM 52.66 ± 2.01 59.20 ± 2.44 61.25 ± 0.62 59.17 ± 1.27 14.33 ± 5.95 66.31 ± 3.60 55.93 ± 0.57
MinMax 68.17 ± 1.91 67.76 ± 0.07 63.05 ± 0.75 59.33 ± 3.85 20.99 ± 3.07 68.05 ± 1.59 65.99 ± 1.26
MinSum 57.50 ± 3.09 58.78 ± 2.10 64.04 ± 0.69 67.15 ± 0.32 16.38 ± 2.70 68.69 ± 1.18 61.70 ± 1.62
Mimic 66.86 ± 0.04 59.39 ± 6.07 60.45 ± 7.09 58.94 ± 1.27 11.35 ± 2.26 69.07 ± 4.69 55.26 ± 1.30
STRIKE (Ours) 27.24 ± 1.63 42.98 ± 1.62 43.30 ± 3.13 38.11 ± 1.02 8.33 ± 1.85 53.40 ± 4.94 38.81 ± 0.65

FEMNIST

Attack Multi-Krum Median RFA Aksel CClip DnC RBTM

BitFlip 82.67 ± 5.13 71.57 ± 3.61 83.41 ± 4.33 81.42 ± 3.45 83.85 ± 8.50 83.58 ± 5.20 82.58 ± 6.08
LIE 68.11 ± 6.86 58.38 ± 7.06 66.19 ± 7.93 38.48 ± 3.32 73.03 ± 3.86 77.42 ± 5.60 53.35 ± 5.17
IPM 84.12 ± 3.06 72.60 ± 8.42 83.42 ± 4.13 78.28 ± 7.37 84.93 ± 4.41 83.03 ± 5.02 83.21 ± 6.42
MinMax 68.42 ± 5.91 66.44 ± 5.88 71.55 ± 5.98 34.22 ± 4.94 72.12 ± 4.39 75.40 ± 3.78 59.23 ± 3.41
MinSum 62.06 ± 3.13 65.46 ± 3.66 70.36 ± 7.24 44.91 ± 3.90 75.40 ± 4.88 77.11 ± 3.61 68.10 ± 8.86
Mimic 83.15 ± 3.46 74.00 ± 4.79 83.87 ± 3.00 79.06 ± 7.21 83.94 ± 5.25 82.22 ± 5.40 81.92 ± 3.40
STRIKE (Ours) 22.13 ± 7.78 55.19 ± 3.49 39.43 ± 5.06 16.58 ± 3.63 18.88 ± 4.30 17.56 ± 5.95 39.33 ± 11.98

6.2 EXPERIMENT RESULTS

Attacking against various robust AGRs. Table 1 demonstrates the performance of seven different
attacks against seven robust AGRs on CIFAR-10, ImageNet-12, and FEMNIST datasets. From Ta-
ble 1, we can observe that our STRIKE attack generally outperforms all the baseline attacks against
various defenses on all datasets, verifying the efficacy of our STRIKE attack. On ImageNet-12 and
FEMNIST, the improvement of STRIKE over the best baselines is more significant. We hypoth-
esize that this is because the skew degree is higher on ImageNet-12 and FEMNIST compared to
CIFAR-10. Since STRIKE exploits gradient skew to launch Byzantine attacks, it is more effective
on ImageNet-12 and FEMNIST. DnC demonstrates almost the strongest resilience to previous base-
line attacks. This is because these attacks fail to be aware of the skew nature of honest gradients
in FL. By contrast, our STRIKE attack can take advantage of gradient skew and circumvent DnC
defense. The above observations clearly validate the superiority of STRIKE.

Attacking against robust AGRs with bucketing. Figure 3 demonstrates the performance of seven
different attacks against the bucketing scheme (Karimireddy et al., 2022) with different robust AGRs.
The results demonstrate that our STRIKE attack works best against Multi-Krum, RFA, and Ak-
sel. When attacking against DnC, Median, and RBTM, only MinSum attack is comparable to our
STRIKE attack.

Attacking against robust AGRs with NNM. Table 2 compare the performance of STRKE attack
against top-3 strongest attacks against the NNM scheme (Karimireddy et al., 2022) under the top-3
most robust robust AGRs. The results suggest that the proposed STRIKE attack still outperforms
other baseline attacks against NNM.

Imparct of ν on STRIKE attack. We study the influence of ν on ImageNet-12 dataset. We report
the test accuracy under STRIKE attack with ν in {0.25 ∗ i | i = 1, . . . , 8} against seven different
defenses on ImageNet-12. As shown in Figure 6, the performance of STRIKE is generally compet-
itive with varying ν. In most cases, simply setting ν = 1 can beat almost all the attacks (except for
CClip, yet we observe that the performance is low enough to make the model useless).

The effectiveness of STRIKE attack under different non-IID levels. We vary Dirichlet con-
centration parameter β in {0.1, 0.2, 0.5, 0.7, 0.9} to study how our attack behaves under different
non-IID levels. We additionally test the performance in the IID setting. As shown in Figure 7, the
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Attack NNM + Median NNM + RFA NNM + DnC

BitFlip 57.14 58.55 53.68
LIE 58.04 58.68 58.87
Mimic 66.15 67.43 69.35
STRIKE 39.61 40.38 38.91

Table 2: Accuracy under different attacks against different defenses on ImageNet-12. The best
results are in bold (The lower, the better).
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Figure 3: Accuracy under different attacks against seven robust AGRs with bucketing on ImageNet-
12. The lower, the better.

accuracy generally increases as β decreases for all attacks. The accuracy under our STRIKE attack
is consistently lower than that of all the baseline attacks. Besides, we also note that the accuracy
gap between our STRIKE attack and other baseline attacks gets smaller when the non-IID level
decreases. We hypothesize the reason is that gradient skew becomes milder as the non-IID level
decreases, which aligns with our theoretical results in Propositions 1 and 2. Even in the IID setting,
our STRIKE attack is competitive compared to other baselines.

The performance of STRIKE attack with different Byzantine client ratio. We vary the number
of Byzantine clients f in {5, 10, 15, 20} and fix the total number of clients n to be 50. In this
way, Byzantine client ratio f/n varies in {0.1, 0.2, 0.3, 0.4} to study how our attack behaves under
different Byzantine client ratio. As shown in Figure 8, the accuracy generally decreases as f/n
increases for all attacks. The accuracy under our STRIKE attack is consistently lower than that
under all the baseline attacks.

The performance of STRIKE attack with different client number. We vary the number of total
clients n in {10, 30, 50, 70, 90} and set the number of Byzantine clients f = 0.2n accordingly. The
results are plotted in Figure 9 in Appendix E.2.4. As shown in Figure 9, the accuracy generally
decreases as client number n increases for all attacks. The accuracy under our STRIKE attack is
consistently lower than that under all the baseline attacks with different number of clients.

7 CONCLUSION

In this paper, we theoretically analyze the vulnerability of existing defenses in the non-IID setting
due to the skewed nature of honest gradients. Based on the analysis, we propose a novel attack called
STRIKE that can exploit the vulnerability. Generally, STRIKE hides Byzantine gradients within the
skewed honest gradients. To this end, STRIKE first searches for the skewed honest gradients, and
then constructs Byzantine gradients within the skewed honest gradients by solving a constrained
optimization problem. Empirical studies on three real-world datasets confirm the efficacy of our
STRIKE attack. The STRIKE relies on the gradient skew phenomenon, which is closely related to
non-IIDness of data distribution. When the data is IID, the performance could be limited. Therefore,
defenses that can alleviate non-IID can potentially mitigate our STRIKE attack.

9
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ETHICS AND BROADER IMPACT

The proposed skew-aware Byzantine attack STRIKE can present a threat to federated learning. Our
goal with this work is thus to preempt these harms and encourage Byzantine defenses that are robust
to skew-aware attacks in the future.

REPRODUCIBILITY STATEMENT

The implementation code is provided in Supplementary Materials. All datasets and the code plat-
form (PyTorch) we use are public. Detail experiment setups are provided in the Appendix E.
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A VISUALIZATION OF GRADIENT SKEW

In order to gain insight into the gradient distribution, we use Locally Linear Embedding (LLE) 2

(Roweis & Saul, 2000) to visualize the gradients. From the visualization results, we observe that
the distribution of gradient is skewed throughout FL training process when the data across different
clients is non-IID. In this section, we first provide the detailed experimental setups of the observation
experiments and then present the visualization results.

We also visualize the Byzantine gradients together with honest gradients under STRIKE attack
against Median AGR on CIFAR-10 in the non-IID setting in Figure 5. The visualization shows
that Byzantine gradients can hide within the skewed honest gradients well. This justifies that the
heuristic search in the first stage of STRIKE attack can effectively find the skewed honest gradients.

A.1 EXPERIMENTAL SETUPS

For CIFAR-10, we set the number of clients n = 100 and the Dirichlet concentration parameter
β = 0.1. For ImageNet-12, we set the number of clients n = 50 and the Dirichlet concentration
parameter β = 0.1. For FEMNIST, we adopt its natural data partition as introduced in Section 6.1.
For all three datasets, we set the number of Byzantine clients f = 0. For CIFAR-10 and FEMNIST,
we sample 100 clients to participate in training in each communication round. More visualized
gradients would help us capture the characteristic of gradient distribution. For ImageNet-12, we
sample 50 clients in each communication round. This is because we train ResNet-18 on ImageNet-
12 and LLE on 100 gradients of ResNet-18 would be intractable due to the high dimensionality.
Other setups align with Table 5.

For LLE, we set the number of neighbors to be k = 0.1m, where m is the number of sampled
clients, to capture both local and global geometry of gradient distribution.

A.2 GRADIENT VISUALIZATION RESULTS

On each dataset, we run FedAvg for T communication round. Among the total T communication
rounds, we randomly sample 6 rounds for visualization. For each round, we use LLE to visualize
all the gradients and the optimal gradient (the average of all gradients) in this round. Please note
that LLE is not linear. Therefore, the optimal gradient after the LLE may not be the average of all
uploaded gradients after LLE. The visualization results are posted in Figure 4 below. In Figure 4,
the substantial gradients skew away from the optimal gradient. These results imply that the gradient
distribution is skewed during the entire training process.

B THEORETICAL ANALYSIS: EXPLOIT GRADIENT SKEW TO CIRCUMVENT
BYZANTINE DEFENSES

We first recall all the definitions and assumptions for the integrity of this section.

Definition 1 ((f, λ)-resilient). Given f < n and λ ≥ 0, an AGR A is (f, λ)-resilient if for any
collection of n vectors {g1, . . . , gn} and any set G ⊆ {1, . . . , n} of size n− f ,

∥A(g1, . . . , gn)− ḡG∥ ≤ λmax
i,j∈G

∥gi − gj∥, (20)

where ḡG =
∑

i∈G gi/(n− f) is the average of gradients {gi | i ∈ G}.

2Compared to LLE, t-SNE (Van der Maaten & Hinton, 2008) is a more popular visualization technique.
Since t-SNE adjusts Gaussian bandwidth to locally normalize the density of data points, t-SNE can not capture
the distance information of data. However, gradient skew relies heavily on distance information. Therefore,
t-SNE is not appropriate for the visualization of gradient skew. In contrast, LLE can preserve the distance
information of data distribution.
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Figure 4: Visualization of gradient skew on three benchmark datasets.
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Figure 5: Visualization of STRIKE attack on CIFAR-10 datasets. The visualization shows that
Byzantine gradients can hide within the skewed honest gradients well, which justifies that the heuris-
tic search in the first stage of STRIKE attack can effectively find the skewed honest gradients.

Definition 2 ((f, γ)-skewed). The set of honest gradients {gi | i ∈ H} is called (f, γ)-skewed if
there exists a set S ⊆ H of size n− 2f such that

E[∥ḡS − ḡ∥2] ≥ γρ2S , (21)

where ḡ =
∑

i∈H gi/(n−f), ḡS =
∑

i∈S gi/(n−2f), and ρ2S = E[maxi,j∈S∥gi − gj∥2] is a mea-
sure of gradient heterogeneity introduced by El-Mhamdi et al. (2021). Here, gradients {gi | i ∈ S}
are called the skewed honest gradients (of honest gradients), and γ is called the skewness of honest
gradients {gi | i ∈ H}.

Below, we provide an example to help have a better understanding of gradient skew.

Example. We consider the following simple example where there are n clients in total of which f
are Byzantine and n− f are honest. Assume that

• for client i ∈ {1, ..., f} holding gradient gi ∼ N (µ1, σ
2I).

• for client i ∈ {f + 1, ..., n− 2f} holding gradient gi ∼ N (µ2, σ
2I).

Here, ∼ represents a random vector following a distribution, N (µ, σ2I) represents the normal dis-
tribution with mean µ and covariance matrix σ2I , µ1 and µ2 are vectors, σ2 > 0 is the variance
and I represents identity matrix.

In this example, the skewness is

γ =
1

2
(

1

n− f
+

1

n− 2f
+

f2

(n− f)2
· ∥µ1 − µ2∥2

σ2
). (22)

Assumption 1 (L-smooth). The loss function is L-smooth, i.e.,

∥∇L(w)−∇L(w′)∥ ≤ ∥w −w′∥, ∀w,w′ ∈ Rd. (23)

Assumption 2 (Unbias). The stochastic gradients sampled from any local data distribution are un-
biased estimators of local gradients for all clients, i.e.,

E[gt
i ] = ∇L(wt), ∀i = 1, . . . n, t = 0, . . . , T − 1. (24)
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B.1 PROOFS

B.1.1 SUPPORTING LEMMA

We start with proving the lemma stated below.
Lemma 1. Given any d-dimensional random vectors X and Y , the following inequalities hold:

(
√
E[∥X∥2]−

√
E[∥Y ∥2])2 ≤ E[∥X + Y ∥2] ≤ (

√
E[∥X∥2] +

√
E[∥Y ∥2])2 (25)

Proof. E[∥X + Y ∥2] can be written as follows,

E[∥X + Y ∥2] = E[∥X∥2 + ∥Y ∥2 + 2⟨X,Y ⟩] = E[∥X∥2] + E[∥Y ∥2] + 2E[⟨X,Y ⟩]. (26)

According to the Cauchy–Schwarz inequality, we have

|E[⟨X,Y ⟩]| ≤ E[|⟨X,Y ⟩|] ≤ E[∥X∥∥Y ∥] ≤
√
E[∥X∥2]E[∥Y ∥2]. (27)

That is

−
√

E[∥X∥2]E[∥Y ∥2] ≤ E[⟨X,Y ⟩] ≤
√
E[∥X∥2]E[∥Y ∥2]. (28)

Combine Equation (26) and Inequality (28), then we have

E[∥X + Y ∥2] ≥ E[∥X∥2] + E[∥Y ∥2]− 2
√

E[∥X∥2]E[∥Y ∥2] = (
√

E[∥X∥2]−
√

E[∥Y ∥2])2,
(29)

and

E[∥X + Y ∥2] ≤ E[∥X∥2] + E[∥Y ∥2] + 2
√

E[∥X∥2]E[∥Y ∥2] = (
√

E[∥X∥2] +
√

E[∥Y ∥2])2.
(30)

B.1.2 PROOF OF PROPOSITION 1

We recall the proposition statement below.
Proposition 1 (Vulnerability under skew). Given any (f, λ)-resilient AGR A, γ = Ω(λ2), if the set
of honest gradients {gi | i ∈ H} is (f, γ)-skewed, then there exist Byzantine gradients {gi | i ∈ B}
such that

E[∥A(g1, . . . , gn)− ḡ∥2] ≥ Ω(
γ

λ2
· f2

(n− f)2
· ρ2S). (31)

where ḡ =
∑

i∈H gi/(n− f) is the optimal gradient, ρ2S = E[maxi,j∈S∥gi − gj∥2], S is the index
set of the skewed honest gradients.

Proof. According to Definition 2, there exists S ⊆ H of size n− 2f and γ > 1 such that

E[∥ḡS − ḡ∥2] = γρ2S . (32)

For all i ∈ B, we set Byzantine gradient gi = ḡS . We then show that, under this attack, the
aggregation error is lower-bounded as shown in Equation (8).

We consider the average and heterogeneity of the forged honest gradients {gi | i ∈ S ∪ B}.
The average is computed as follows.

ḡB∪S =
1

n− f

∑
i∈B∪S

gi (33)

=
1

n− f
(
∑
i∈B

gi +
∑
i∈S

gi) (34)

=
1

n− f
(f ḡS + (n− 2f)ḡS) (35)

= ḡS . (36)
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Then we consider the heterogeneity of gradients {gi | i ∈ S ∪ B} ρS∪B.

For all b ∈ B and i ∈ S,

∥gb − gi∥2 = ∥ḡS − gi∥2 (37)

= ∥ 1

n− 2f

∑
j∈S

gj − gi∥2 (38)

= ∥ 1

n− 2f

∑
j∈S

(gj − gi)∥2 (39)

≤ 1

n− 2f

∑
j∈S
∥gj − gi∥2 (40)

≤ max
j∈S
∥gj − gi∥2 (41)

where Inequality (40) comes from the Cauchy inequality.

Then for the heterogeneity of {gi | i ∈ S ∪ B}, we have:

ρ2B∪S =E[ max
i,j∈B∪S

∥gi − gj∥2] (42)

=E[max
i,j∈S

∥gi − gj∥2] (43)

=ρ2S . (44)

For notation simplicity, we denote A(g1, . . . , gn) by ĝ. Then we can lower bound E[∥ĝ − ḡ∥2] as
follows

E[∥ĝ − ḡ∥2] = E[∥(ḡ − ḡS∪B)− (ĝ − ḡS∪B∥))2] (45)

= E[∥(ḡ − ḡS)− (ĝ − ḡS∪B∥))2] (46)

≥ (
√

E[∥ḡ − ḡS∥]2 −
√
E[∥ĝ − ḡS∪B∥2])2. (47)

Here, Equation (46) is due to Equation (33), Inequality (47) relies on Lemma 1

We can lower bound term
√
E[∥ḡ − ḡS∥2]−

√
E[∥ĝ − ḡS∪B∥2] as follows.√

E[∥ḡ − ḡS∥2]−
√

E[∥ĝ − ḡS∪B∥2] ≥
√
γ · ρ2S −

√
λ2ρ2S∪B (48)

=
√
γ · ρ2S −

√
λ2ρ2S (49)

= (

√
γ

λ
− 1)λρS (50)

≥ (

√
γ

λ
− 1)

f

n− f
· ρS (51)

= Ω(

√
γ

λ
· f

n− f
· ρS) (52)

where Equation (48) results from Equation (32) and Equation (6), Equation (49) relies on Equa-
tion (44). In Inequality (51), we use the fact λ ≥ f/(n− f) from Farhadkhani et al. (2022).

We combine Inequality (47) and Equation (52) for the final conclusion in Equation (8):

E[∥ĝ − ḡ∥2] = Ω(
γ

λ2
· f2

(n− f)2
· ρ2S). (53)

B.1.3 PROOF FOR PROPOSITION 2

We recall the proposition statement below.
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Proposition 2. Given any (f, λ)-resilient AGR A, L-smooth global loss function L, and learning
rate η ≤ 1/L, γ = Ω(λ2), if honest gradients {gt

i | i ∈ H} are (f, γ)-skewed for all t = 0, . . . , T −
1, then there exists Byzantine gradients {gt

b | b ∈ B, t = 0, . . . , T − 1} such that the global model
parameter is bounded away from the global optimum w∗:

E[∥wt −w∗∥2] ≥ Ω(η2(1− Lη)2 · γ
λ2
· f2

(n− f)2
· ρ2), t = 1, . . . , T, (54)

where wt is the parameter of global model in the t-th communication round, w∗ is the global
optimum of global loss function L, ρ2 = mint=0,...,T−1 E[maxi,j∈St∥gt

i − gt
j∥2], and St is the

index set of the skewed honest gradients in t-th communication round.

Remark 1. In practice, the learning rate is typically vanishing with increasing the training round
T to ensure convergence (Karimireddy et al., 2022). Therefore, the lower bound in Equation (54)
vanishes with the increasing communication rounds, which is consistent with the upper bound in
Theorem V in (Karimireddy et al., 2022) that shows the model will finally converge to a stationary
point under arbitrary attack when applying a vanishing learning rate. In fact, no Byzantine attack
can break the upper bound in (Karimireddy et al., 2022). The lower bound, although vanishes
with increasing communication rounds, can still show how much the attack can hinder the training
process. Thus, it is still meaningful in the field of Byzantine robustness.

Proof. According to Proposition 1, for all t = 0, . . . , T − 1, there exist Byzantine gradients
{gt

i | i ∈ B} such that

E[∥ĝt − ḡt∥2] ≥ C · γ
λ2
· f2

(n− f)2
· (ρt)2, (55)

where C is a constant, and (ρt)2 = maxi,j∈St∥gt
i − gt

j∥2, and St is the skewed honest gradients in
t-th communication round. Let ρ2 = mint=1,...,T−1(ρ

t)2, then we have

E[∥ĝt − ḡt∥2] ≥ C · γ
λ2
· f2

(n− f)2
· ρ2, (56)

We prove Equation (8) in the following two different cases.

Case 1. E[∥wt −w∗∥2] < Cη2γf2ρ2/4λ2(n− f)2.

Since wt+1 = wt − ηĝt, we can rewrite ∥wt+1 −w∗∥2 as follows.

∥wt+1 −w∗∥2 = ∥(wt − ηĝt)−w∗∥2 (57)

= ∥(∇L(wt)− ηĝt) + (wt −w∗ − η∇L(wt))∥2 (58)

= ∥(∇L(wt)− ηĝt) + (wt −w∗ − η(∇L(wt)−∇L(w∗)))∥2. (59)

In Equation (59) we use the fact that∇L(w∗) = 0.

Combine Equation (59) and Lemma 1, we can lower bound E[∥wt+1 −w∗∥2] as follows,

E[∥wt+1 −w∗∥2] = ∥(∇L(wt)− ηĝt) + (wt −w∗ − η(∇L(wt)−∇L(w∗)))∥2 (60)

≥ (η
√
E[∥∇L(wt)− ĝt∥2]︸ ︷︷ ︸

A

−
√
E[∥wt −w∗ − η(∇L(wt)−∇L(w∗))∥2]︸ ︷︷ ︸

B

)2.

(61)

To obtain a further lower bound for Equation (61) amounts to give lower and upper bound for terms
A and B, respectively.

To lower bound term A, again we use Lemma 1,

E[∥∇L(wt)− ĝt∥2] = E[∥(ḡt − ĝt) + (∇L(wt)− ḡt)∥2] (62)

≥ (
√

E[∥ḡt − ĝt∥2]−
√

E[∥∇L(wt)− ḡt∥2])2 (63)

≥ (
√
C ·
√
γ

λ
· f

n− f
· ρ− σ√

n− f
)2. (64)
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Here, σ2 =
∑

i∈H Var[gt
i ]/(n − f) is the average variance of stochastic gradients. Inequality (64)

is a combined result of Equation (56) and the law of large numbers.

We apply Lemma 1 to upper-bound term B as follows,

E[∥wt −w∗ − (∇L(wt)−∇L(w∗))∥2] ≤ E[(∥wt −w∗∥+ η · L∥wt −w∗∥)2] (65)

= (1 + Lη)2E[∥wt −w∗∥2] (66)

≤ (1 + Lη)2 · C
4
· η2 · γ

λ2
· f2

(n− f)2
· ρ2 (67)

Combine Inequality (64) and Inequality (67), we have

E[∥wt+1 −w∗∥2] ≥(η(
√
C ·
√
γ

λ
· f

n− f
· ρ− σ√

n− f
)− η(1 + Lη)

2
·
√
Cγ

λ
· f

n− f
· ρ)2

(68)

= (
η(1− Lη)

2
·
√
Cγ

λ
· f

n− f
· ρ− σ√

n− f
)2 (69)

= Ω(η2(1− Lη)2 · γ
λ2
· f2

(n− f)2
· ρ2) (70)

Here Equation (70) uses the fact that SGD variance σ2 is negligible with respect to the gradient
heterogeneity ρ2.

Case 2. E[∥wt −w∗∥2] ≥ Cη2γf2ρ2/4λ2(n−f)2. In this case, we let Byzantine gradients behave
honestly such that ĝt = ḡt. Then E[∥wt+1 −w∗∥2] can be lower-bounded as follows.

E[∥wt+1 −w∗∥2] = E[∥(wt − ηḡt)−w∗∥2] (71)

= E[∥wt −w∗ − η(∇L(wt)−∇L(w∗))− η(ḡt −∇L(wt))∥2] (72)

≥ (
√
E[∥wt −w∗ − η(∇L(wt)−∇L(w∗))∥2]− η

√
E[∥ḡt −∇L(wt)∥2])2.

(73)

In Equation (72) we use the fact that∇L(w∗) = 0, and Equation (73) comes from Lemma 1

We first lower-bound E[∥wt −w∗ − η(∇L(wt)−∇L(w∗))∥2],

E[∥wt −w∗ − η(∇L(wt)−∇L(w∗))∥2] ≥ E[(∥wt −w∗∥ − η · L∥wt −w∗∥)2] (74)

= (1− Lη)2E[∥wt −w∗∥2] (75)

≥ (1− Lη)2 · C
4
· η2 · γ

λ2
· f2

(n− f)2
· ρ2 (76)

Then we upper-bound E[∥ĝt −∇L(wt)∥2]

E[∥ĝt −∇L(wt)∥2] = E[∥ḡt −∇L(wt)∥2] (77)

≤ σ2

n− f
(78)

Here, σ2 =
∑

i∈H Var[gt
i ]/(n− f) is the average variance of stochastic gradients.

Combining Equation (76) and Equation (78), we have

E[∥wt+1 −w∗∥2] ≥ (
η(1− Lη)

2
·
√
Cγ

λ
· f

n− f
· ρ− η

σ√
n− f

)2 (79)

= Ω(η2(1− Lη)2 · γ
λ2
· f2

(n− f)2
· ρ2) (80)

Here Equation (80) uses the fact that SGD variance σ2 is negligible with respect to the gradient
heterogeneity ρ2.
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In both cases, we have

E[∥wt+1 −w∗∥2] = Ω(η2(1− Lη)2 · γ
λ2
· f2

(n− f)2
· ρ2), t = 0, . . . , T − 1, (81)

which completes the proof.

B.2 APPLICATION TO OTHER DEFINITIONS OF BYZANTINE RESILIENCE

In this section, we discuss how our analysis applies to other definitions of Byzantine resilience. In
particular, we consider the definitions of Byzantine resilience in recent works of Karimireddy et al.
(2022); Allouah et al. (2023).

B.2.1 CIRCUMVENT (δmax, c)-AGRS

The following formulation of Byzantine resilience in Karimireddy et al. (2022) improves the upper
bound by the fraction of Byzantine clients, and thus can recover the standard convergence rate when
there are no Byzantine clients.
Definition 3 ((δmax, c)-AGR). A robust AGR gA is called a (δmax, c)-AGR if, given any input
{g1, . . . , gn} of which a subset of at least size |G| > (1 − δ)n for δ ≤ δmax < 0.5 and satisfies
E[∥gi − gj∥] ≤ ρ2, the output ĝ of AGR A satisfies:

E[∥ĝ − ḡG∥2] ≤ cδρ2 where ĝ = Aδ(g1, . . . , gn), ḡG =
∑
i∈G

gi/(n− f). (82)

We show that any (δmax, c)-AGR A also satisfies the resilience defined in Definition 1

Proposition 3. Any (δmax, c)-AGR A is (f, λ)-resilient for any f ≤ δmaxn and λ =
√
cδ.

Proof. Consider any deterministic vectors {g1, . . . , gn}, f ≤ δmaxn, and subset G ⊆ {1, . . . , n} of
size n− f . According to Definition 3, we have

∥ĝ − ḡG∥2 ≤ cδρ2 (83)

where ĝ = Aδ(g1, . . . , gn), ḡG =
∑

i∈G gi/(n − f), δ = f/n, and ρ2 ≥ maxi,j∈G ∥gi − gj∥2
The expectation is dropped since input vectors {g1, . . . , gn}, f ≤ δmaxn are deterministic. We take
ρ2 = maxi,j∈G ∥gi − gj∥ take the square root of both sides of Inequality (83), then we have

∥ĝ − ḡG∥ ≤
√
cδ max

i,j∈G
∥gi − gj∥. (84)

Therefore, A is (f, λ)-resilient for any f ≤ δmaxn and λ =
√
cf/n.

Combining Proposition 3 with Proposition 1 and Proposition 2, the following corollaries are obvious.
Corollary 1. Given any (δmax, c)-AGR A with δmax ≥ f/n, if the set of honest gradients {gi | i ∈
H} is (f, γ)-skewed, then there exist Byzantine gradients {gi | i ∈ B} such that

E[∥A(g1, . . . , gn)− ḡ∥2] ≥ Ω(
γ

c
· f

n− f
· ρ2S). (85)

where ḡ =
∑

i∈H gi/(n− f) is the optimal gradient, ρ2S = E[maxi,j∈S∥gi − gj∥2], S is the index
set of the skewed honest gradients.
Corollary 2. Given any (δmax, c)-resilient AGRA with δmax ≥ f/n, L-smooth global loss function
L, and learning rate η ≤ 1/L, if honest gradients {gt

i | i ∈ H} are (f, γ)-skewed for all t =
0, . . . , T − 1, then there exists Byzantine gradients {gt

b | b ∈ B, t = 0, . . . , T − 1} such that the
global model parameter is bounded away from the global optimum w∗:

E[∥wt −w∗∥2] ≥ Ω(η2(1− Lη)2 · γ
c
· f

n− f
· ρ2), t = 1, . . . , T, (86)

where wt is the parameter of global model in the t-th communication round, and w∗ is the global
optimum of global loss function L.
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B.2.2 CIRCUMVENT (f, κ)-ROBUST AGRS

The following notion of Byzantine resilience in Allouah et al. (2023) is also a unified robustness
criterion that is fine-grained to obtain tight convergence guarantees.
Definition 4 ((f, κ)-robust). Let f < n/2 and κ ≥ 0, a robust AGR gA is called (f, κ)-robust] if
for any input {g1, . . . , gn} and any set G ⊆ G of size n− f , the output ĝ of AGR A satisfies:

∥A(g1, . . . , gn)− ḡG∥ ≤
κ

n− f

∑
i∈S
∥gi − ḡG∥2 where ḡG =

∑
i∈G

gi/(n− f). (87)

We show that any (f, κ)-robust A also satisfies the resilience defined in Definition 1.
Proposition 4. Any (f, κ)-robust AGR A is (f, λ)-resilient for λ =

√
κ.

Proof. Given any deterministic vectors {g1, . . . , gn} and subset G ⊆ {1, . . . , n} of size n − f .
According to Definition 4, we have

∥ĝ − ḡG∥2 ≤
κ

n− f

∑
i∈S
∥gi − ḡG∥2 ≤

κ

n− f

∑
i∈S

max
j∈G
∥gi − gj∥ ≤ κmax

i,j∈G
∥gi − gj∥2 (88)

We take take the square root of both sides of Inequality (88), then we have

∥ĝ − ḡG∥ ≤
√
κmax

i,j∈G
∥gi − gj∥ (89)

Therefore, A is (f, λ)-resilient for λ =
√
κ.

Combining Proposition 4 with Proposition 1 and Proposition 2, the following corollaries are obvious.
Corollary 3. Given any (f, κ)-robust AGR A, if the set of honest gradients {gi | i ∈ H} is (f, γ)-
skewed, then there exist Byzantine gradients {gi | i ∈ B} such that

E[∥A(g1, . . . , gn)− ḡ∥2] ≥ Ω(
γ

κ
· f2

(n− f)2
· ρ2S). (90)

where ḡ =
∑

i∈H gi/(n− f) is the optimal gradient, ρ2S = E[maxi,j∈S∥gi − gj∥2], S is the index
set of the skewed honest gradients.

Corollary 4. Given any (f, κ)-robust AGR A, L-smooth global loss function L, and learning rate
η ≤ 1/L, if honest gradients {gt

i | i ∈ H} are (f, γ)-skewed for all t = 0, . . . , T − 1, then there
exists Byzantine gradients {gt

b | b ∈ B, t = 0, . . . , T − 1} such that the global model parameter is
bounded away from the global optimum w∗:

E[∥wt −w∗∥2] ≥ Ω(η2(1− Lη)2 · γ
κ
· f2

(n− f)2
· ρ2), t = 1, . . . , T, (91)

where wt is the parameter of global model in the t-th communication round, w∗ is the global
optimum of global loss function L, ρ2 = mint=0,...,T−1 E[maxi,j∈St∥gt

i − gt
j∥2], and St is the

index set of the skewed honest gradients in t-th communication round.

C ALGORITHM OF THE PROPOSED STRKE ATTACK

D BISECTION METHOD TO SOLVE EQUATION (19)

In this section, we present the bisection method used to solve Equation (19). We define f(·) as
follows.

f(α) = max
i∈S
∥ḡS + α · sign(ḡS)⊙ σS − gi∥ − max

i,j∈S
∥gi − gj∥, α ∈ [0,+∞). (92)

We can easily verify the following facts: 1. f(0) ≤ 0, f(α) → +∞ when α → +∞; 2. f(·)
is continuous; 3. f(·) has unique zero point in [0,+∞). Therefore, optimizing Equation (19) is
equivalent to finding the zero point of f(·), which can be easily solved by bisection method in ??.
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Algorithm 1 STRIKE Attack

Require: Honest gradients {gi | i ∈ H}, hyperparameter ν > 0 that controls attack strength (de-
fault ν = 1)
gmed ← Coordinate-wise median of {gi | i ∈ H} ▷ Stage 1: search for the skewed majority
usearch ← gmed − ḡ
for i ∈ H do

pi ← ⟨gi,usearch/∥usearch∥⟩
end for
S ← Set of n− f indices of honest gradients with the highest pi
ḡS ←

∑
i∈S gi/(n− 2f) ▷ Stage 2: hide Byzantine gradients within the skewed majority

σS ← Coordinate-wise standard deviation of {gi | i ∈ S}
solve Equation (19) for α
for b ∈ B do

gb ← ḡS + να · sign(ḡS − ḡ)⊙ σS
end for
return Byzantine gradients {gb | g ∈ B}

Theoretically, the final optimization problem of the proposed STRIKE attack in Eq. (19) can be
effectively solved by a bisection algorithm as discussed in Appendix C. The computation cost is
O(− log ϵ), where ϵ is the error of α. In experiments, we perform bisection only 8 times and make
the error of α within 1%. Empirically, the attack time for STRIKE is 12.11s (13.47s for MinMax,
13.35s for MinSum) on ImageNet-12.

In contrast, benign clients perform local updates to compute local gradients. The computation cost
depends on the local data size, model architecture, batch size, number of local epochs, etc. In our
setting, the average local update time is 15.14s on CIFAR-10, 11.76s on ImageNet-12 and 27.13s on
FEMNIST. Tests are performed on a single A100 GPU.

E EXPERIMENTAL SETUPS AND ADDITIONAL EXPERIMENTS

E.1 EXPERIMENTAL SETUPS

E.1.1 DATA DISTRIBUTION

For CIFAR-10 Krizhevsky et al. (2009) and ImageNet-12, we use Dirichlet distribution to generate
non-IID data by following Yurochkin et al. (2019); Li et al. (2021a). For each class c, we sample
qc ∼ Dirn(β) and allocate a (qc)i portion of training samples of class c to client i. Here, Dirn(·)
denotes the n-dimensional Dirichlet distribution, and β > 0 is a concentration parameter. We follow
Li et al. (2021a) and set the number of clients n = 50 and the concentration parameter β = 0.5 as
default.

For FEMNIST, the data is naturally partitioned into 3,597 clients based on the writer of the
digit/character. Thus, the data distribution across different clients is naturally non-IID. For each
client, we randomly sample a 0.9 portion of data as the training data and let the remaining 0.1
portion of data be the test data following Caldas et al. (2018).

E.1.2 HYPERPARAMETER SETTING OF BASELINES ATTACKS

The compared baseline attacks are: BitFlip (Allen-Zhu et al., 2020), LIE (Baruch et al., 2019),
IPM (Xie et al., 2020), Min-Max (Shejwalkar & Houmansadr, 2021), Min-Sum (Shejwalkar &
Houmansadr, 2021), and Mimic (Karimireddy et al., 2022). The hyperparameter setting of the
above attacks is listed in the following table.

E.1.3 THE HYPERPARAMETER SETTING OF EVALUATED DEFENSES

The performance of our attack is evaluated on seven recent robust defenses: Multi-Krum Blanchard
et al. (2017), Median Yin et al. (2018), RFA Pillutla et al. (2019), Aksel Boussetta et al. (2021),
CClipKarimireddy et al. (2021) DnC Shejwalkar & Houmansadr (2021), and RBTM El-Mhamdi
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Table 3: The hyperparameter setting of six baseline attacks. N/A represents there is no hyperparam-
eter required for this attack.

Attacks Hyperparameters

BitFlip N/A
LIE z = 1.5
IPM ε = 0.1
Min-Max γinit = 10, τ = 1× 10−5,∇p: coordinate-wise standard deviation
Min-Sum γinit = 10, τ = 1× 10−5, ∇p: coordinate-wise standard deviation
Mimic N/A

et al. (2021). The hyperparameter setting of the above defenses is listed in the following table. we

Table 4: The hyperparameter setting of seven evaluated defenses. N/A represents there is no hyper-
parameter required for this defense.

Defenses Hyperparameters

Multi-Krum N/A
Median N/A
RFA T = 8
Aksel N/A
CClip L = 1, τ = 10
DnC c = 1,niters = 1, b = 1000
RBTM N/A

also consider a simple yet effective bucketing scheme (Karimireddy et al., 2022) that adapts existing
defenses to the non-IID setting. We follow the original paper and set the bucket size to be s = 2.

E.1.4 EVALUATION

We use top-1 accuracy, i.e., the proportion of correctly predicted testing samples to total testing
samples, to evaluate the performance of global models. The lower the accuracy, the more effective
the attack. We run each experiment five times and report the mean and standard deviation of the
highest accuracy during the training process.

E.1.5 COMPUTE

All experiments are run on the same machine with Intel E5-2665 CPU, 32GB RAM, and four
GeForce GTX 1080Ti GPU.

E.1.6 OTHER SETUPS

The number of Byzantine clients of all datasets is set to f = 0.2 · n. We test STRIKE with ν ∈
{0.25 · i | i = 1, . . . , 8} and report the lowest test accuracy (highest attack effectiveness).

The hyperparameter setting for datasets FEMNIST (Caldas et al., 2018), CIFAR-10 (Krizhevsky
et al., 2009) and ImageNet-12 (Russakovsky et al., 2015) are listed in below Table 5.
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Table 5: Hyperparameter setting for FEMNIST, CIFAR-10 and ImageNet-12. # is the number sign.
For example, # Communication rounds represents the number of communication rounds.

Dataset FEMNIST CIFAR-10 ImageNet-12

Architecture CNN
(Caldas et al., 2018)

AlexNet
(Krizhevsky et al., 2017)

ResNet-18
(He et al., 2016)

# Communication
rounds 800 200 200

# Sampled Clients 10 50 50

# Local epochs 1 1 1
Optimizer SGD SGD SGD
Batch size 128 128 128
Learning rate 0.5 0.1 0.1
Momentum 0.5 0.9 0.9
Weight decay 0.0001 0.0001 0.0001
Gradient clipping Yes Yes Yes
Clipping norm 2 2 2

E.2 ADDITIONAL EXPERIMENTS

E.2.1 PERFORMANCE UNDER VARYING HYPERPARAMETER ν

We study the influence of ν on ImageNet-12 dataset. We report the test accuracy under STRIKE
attack with ν in {0.25∗i | i = 1, . . . , 8} against seven different defenses on ImageNet-12 in Figure 6.
We also report the lowest test accuracy (best performance) of six baseline attacks introduced in
Section 6.1 as a reference. Please note that a lower accuracy implies higher attack effectiveness.

As shown in the Figure 6, the performance of STRIKE is generally competitive with varying ν.
In most cases, simply setting ν = 1 can beat other attacks (except for CClip, yet we observe that
the performance is low enough to make the model useless). The impact of ν value is different for
different robust AGRs: for Median and RFA, the accuracy is relatively stable under different νs; for
CClip and Multi-Krum, the accuracy is lower with larger νs; for Aksel and DnC, the accuracy first
decreases and then increases as ν increases.
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Figure 6: Accuracy under STRIKE attack with ν in {0.25 ∗ i | i = 1, . . . , 8} against seven different
defenses on ImageNet-12. The gray dashed line in each figure represents the lowest test accuracy
(best performance) of six baseline attacks introduced in Section 6.1. We include it as a reference.
The lower the accuracy, the more effective the attack. Other experimental setups align with the main
experiment as introduced in Section 6.1.
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E.2.2 PERFORMANCE UNDER DIFFERENT NON-IID LEVELS

As shown in Table 1, DnC demonstrates the strongest robustness against various attacks on all
datasets. Therefore, we fix the defense to be DnC in this experiment. As discussed in Ap-
pendix E.2.1, simply setting ν = 1 yields satisfactory performance of our STRIKE attack. Thus, we
fix ν = 1 in this experiment. We vary Dirichlet concentration parameter β in {0.1, 0.2, 0.5, 0.7, 0.9}
to study how our attack behaves under different non-IID levels. Lower β implies a higher non-IID
level. We additionally test the performance in the IID setting. Other setups align with the main
experiment as introduced in Section 6.1. The results are posted in Figure 7 below.

As shown in Figure 7, the accuracy generally increases as β decreases for all attacks. The accuracy
under our STRIKE attack is consistently lower than all the baseline attacks. Besides, we also note
that the accuracy gap between our STRIKE attack and other baseline attacks gets smaller when the
non-IID level decreases. We hypothesize the reason is that gradient skew is milder as the non-IID
level decreases, which aligns with our theoretical results in Propositions 1 and 2. Even in the IID
setting, our STRIKE attack is competitive compared to other baselines.
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Figure 7: Accuracy under different attacks against DnC under different non-IID levels on Ima-
geNet12. Lower β implies a higher non-IID level. ”IID” implies that the data is IID distributed. The
lower, the better. Other setups align with the main experiment as introduced in Section 6.1.

E.2.3 PERFORMANCE UNDER DIFFERENT BYZANTINE CLIENT RATIO

As shown in Table 1, DnC demonstrates the strongest robustness against various attacks on all
datasets. Therefore, we fix the defense to be DnC in this experiment. As discussed in Ap-
pendix E.2.1, simply setting ν = 1 yields satisfactory performance of our STRIKE attack. Thus,
we fix ν = 1 in this experiment. We vary the number of Byzantine clients f in {5, 10, 15, 20}
and fix the total number of clients n to be 50. In this way, Byzantine client ratio f/n varies in
{0.1, 0.2, 0.3, 0.4} to study how our attack behaves under different Byzantine client ratio. Other se-
tups align with the main experiment as introduced in Section 6.1. The results are posted in Figure 8
below.

As shown in Figure 8, the accuracy generally decreases as f/n increases for all attacks. The accu-
racy under our STRIKE attack is consistently lower than all the baseline attacks. The results suggest
that all attacks are more effective when there are more Byzantine clients. Meanwhile, our attack is
the most effective under different Byzantine client number.

24



Under review as a conference paper at ICLR 2024

0.1 0.2 0.3 0.4
Byzantine Client Ratio f/n

0

20

40

60
Te

st
 A

cc
ur

ac
y 

(%
)

Performance under Different Byzantine Client Ratio

BitFlip
LIE
IPM
MinMax
MinSum
Mimic
STRIKE (Ours)

Figure 8: Accuracy under different attacks against DnC under different Byzantine client ratio on
ImageNet12. The lower, the better. Other setups align with the main experiment as introduced in
Section 6.1.

E.2.4 PERFORMANCE UNDER DIFFERENT CLIENT NUMBER

As shown in Table 1, DnC demonstrates the strongest robustness against various attacks on all
datasets. Therefore, we fix the defense to be DnC in this experiment. As discussed in Ap-
pendix E.2.1, simply setting ν = 1 yields satisfactory performance of our STRIKE attack. Thus, we
fix ν = 1 in this experiment. We vary the number of total clients n in {10, 30, 50, 70, 90} and set
the number of Byzantine clients f = 0.2n accordingly. In this way, We can study how our attack
behaves under different client number. Other setups align with the main experiment as introduced
in Section 6.1. The results are posted in Figure 9 below.

As shown in Figure 9, the accuracy generally decreases as client number n increases for all attacks.
The accuracy under our STRIKE attack is consistently lower than all the baseline attacks under
different client number.
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Figure 9: Accuracy under different attacks against DnC under different client number on Ima-
geNet12. The lower, the better. Other setups align with the main experiment as introduced in
Section 6.1.
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