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ABSTRACT

There has been an exponential increase in the data generated worldwide. Insights
into this data led by machine learning (ML) have given rise to exciting applica-
tions such as recommendation engines, conversational agents, and so on. Often,
data for these applications is generated at a rate faster than ML pipelines can con-
sume it. In this paper, we propose Density Sketches(DS) - a cheap and practical
approach to reducing data redundancy in a streaming fashion. DS creates a suc-
cinct online summary of data distribution. While DS does not store the samples
from the stream, we can sample unseen data on the fly from DS to use for down-
stream learning tasks. In this sense, DS can replace actual data in many machine
learning pipelines analogous to generative models. Importantly, unlike generative
models, which do not have statistical guarantees, the sampling distribution of DS
asymptotically converges to underlying unknown density distribution. Addition-
ally, DS is a one-pass algorithm that can be computed on data streams in compute
and memory-constrained environments, including edge devices.

1 INTRODUCTION

With the advent of big data, the rate of data generation is exploding. For instance, Google has
around 3.8 million search queries per minute, amounting to over 5 billion data points or terabytes of
data generated daily. Any processing over this data, such as using the training of a recommendation
model, would suffer from data explosion. By the time existing data is consumed, newer data is
already available. In such cases, we need to discard a lot of data. One of the critical research
directions is how to reduce data storage. In this paper, we present Density Sketches (DS): an efficient
and online data structure for reducing redundancy in data.

Often data comes from an underlying unknown distribution, and one of the challenges in data reduc-
tion is maintaining this distribution. In DS, we approximately store the data distribution in the form
of a sketch. Using this DS, we can perform point-wise density estimation queries. Additionally, we
can sample synthetic data from this sketch to use in downstream machine learning tasks. This paper
shows that data sampled from DS asymptotically converges to the underlying unknown distribution.
We can also view density sketches through the lens of coresets. Specifically, DS is a compressed
version of grid coresets. Grid coresets are the oldest form of coresets, giving lower additive errors
than modern coresets. However, grid coresets are generally prohibitive as they are exponential in
dimension (d). DS enables us to approximate grid coresets with the dependence of memory usage
depending on the actual variety in the data instead of being exponential in d. Also, DS provides a
streaming construction for this coreset.

In this paper, we focus more on the density estimation and sampling aspects of DS. Sampling from
a distribution described using data requires estimating the underlying distribution. Popular methods
to infer the distribution and sample from it belong to the following three categories: 1. Parametric
density estimation (Friedman et al., [2001) 2. Non-parametric estimation - Histograms and Kernel
Density Estimators (KDE) (Scott, 2015) 3. Learning-based approaches such as Variational Auto En-
coders (VAE), Generative Adversarial Networks (GANs), and related methods (Goodfellow et al.}
2014;2016). Generally, parametric estimation is not suitable to model most real data as it can lead to
significant, unavoidable bias from the choice of the model (Scott, [2015). Learning the distribution,
e.g., via neural networks, is one solution to this problem. Although learning-based methods have
recently found remarkable success, they do not have any theoretical guarantees for the distribution
of generated samples. Histograms and KDEs, on the other hand, are theoretically well understood.
These statistical estimators of density are known to uniformly converge to the underlying true dis-
tribution almost surely. This paper focuses on such estimators, which have theoretical guarantees.
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Storage of histograms and sampling from them is expensive because of an exponential number of
partitions (also known as bins). Apart from this, histograms also suffer from the bin-edge problem:
a slight variation in data can lead to significant differences in the estimation of densities. KDEs are
used to solve the bin-edge problem. KDE gives a smoother estimate of density. While sampling from
a KDE is efficient, KDE is expensive to store. KDE requires us to store the entire data. Coresets
for KDE are a good solution to the storage problems of KDE. However, the construction of coresets
is typically quite expensive. In this work, we propose Density Sketches(DS) - a compressed sketch
of density constructed in an efficient streaming manner. DS does not store actual samples of the
data. But we can still efficiently produce samples from a KDE for specific kernels, which, in turn,
approximates f(z). Being a compressed sketch, we can tune the accuracy-storage trade-off of DS,
and we analyze this trade-off in the theorem

2 PROBLEM STATEMENT AND RELATED WORK

Problem Statement: Formally, we want to create a data structure that has the following properties
: (1) It sketches density information. (2) The sketch size is much smaller than the data size and does
not scale linearly with it. (3) The construction is streaming and efficient. (4) We do not store any
samples in the data structure created (for privacy reasons). (5) We want the sampling distribution,
say fg(x) obtained by sampling from these data structures to approximate the true underlying
distribution f(x).

The problem we aim to solve can be considered a data reduction problem and has been widely pur-
sued in literature. The set of existing approaches can be broadly classified into two sections. (1)
Sampling based / Coresets : Approaches such as clustering/importance sampling (Charikar &
Siminelakis| |2017; |Cortes & Scott, 20165 |Chen et al., 2012) and coresets for KDE (Phillips & Tai,
2020; 2018)) fall under this category. These approaches aim to find a small set of possibly weighted
samples for a specific objective function such that the result obtained by applying the function to
this small set is within a small approximation error of the result obtained by applying the objective
function on a complete dataset. The issue with these approaches is that of efficiency. Most of these
algorithms require complicated computation over the entire data. Some streaming algorithms were
recently proposed for coresets for KDE (Karnin & Libertyl |2019). However, even these algorithms
need to perform O(m) (m is compactor size) computationally expensive operations per sample for
large chunks of size (), making them unsuitable for our purposes. (2) Dimensionality reduction:
These approaches aim to reduce the width of the data matrix. Approaches such as Principle Com-
ponent Analysis (PCA) are computationally expensive and require iterative computation over the
entire dataset. Random projections are an efficient streaming algorithm for dimensionality reduc-
tion. However, this approach leads to compressed data that increases linearly with the original data
size. As we can see, existing approaches fall short of the requirements in our problem statement.

3 BACKGROUND

3.1 HISTOGRAMS AND KERNEL DENSITY ESTIMATION

Histograms and KDE (Scott, 2015} |Scott & Sain) 2004) are popular methods to estimate the density
of a distribution given a finite i.i.d. sample of n points in R¢ drawn from the true density, say f(z).

Histogram: Histogram divides the support S C R? of the data into multiple partitions. It then

uses the counts in every partition to predict the density, f 1 (z), at a point z. Formally the density
predicted at the point x € S is given by

A _ C(bin(x))
fu(x) = 7V (bin(x))

where bin(z) identifies the partition of x, C(b) and V(b) measures the the number of samples in
partition b and the volume of partition b respectively. f (z) integrates to 1 and hence fy () is also
an estimate of the underlying density function f(z). Regular histograms use hyper-cube partitions
of width B aligned with the data axes. As B increases, the bias of the estimate increases, and its
variance decreases. Histograms suffer from bin-edge problems where a slight change in data across
the bin’s edge can change predictions significantly.

Kernel Density Estimation(KDE): KDE provides a smoother estimate of f(x) which resolves the
bin-edge problem of histograms. For a positive semi-definite kernel function k(z,y) : R*x R — R
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and data, say D, the KDE at point x is defined as

fx(z) = KDE(z) = %ik(%%) where z; € D

i=1

Kernel functions are positive, symmetric, and may be normalized to integrate to 1. Gaus-
sian, Epanechnikov, Uniform, (Friedman et al. [2001) are some of the most widely used
kernels. A smoothing parameter B also parameterizes the kernel function and deter-
mines the standard deviation parameter for the Gaussian kernel function. For uniform
and Epanechnikov kernel functions, B is the window width around z where the kernel
1S non-zero. As B increases, the bias of KDE increases, and its variance decreases.
Histograms estimator and KDE both uniformly
converge to underlying true distribution asymp-
totically. However, both suffer from the curse hi(a) hs(a) hala) Hafa)

Count Sketch

of dimensionality. To get a decent estimate of ~ msert@e¢)  (a.c)

density in high dimensions, the number of sam- A, hi(a)] + = gi(a)c

ples needed is exponential in dimensions. For Range

the density estimation task, dimensions of 4-50 £ v

are considered large. (Wang & Scott, 2019) 3 v :

3.2 COUNT SKETCHES Querya * : . M
¢ = gi(a)Ali, h;(a)] - . . .

The count sketch (CS) (Cormode & Muthukr- REEEREE L RO

ishnan|, [2009; (Charikar et al.| 2002), along with c(a) = median(ey, ez, c3,¢4)

its variants, is one of the most popular proba-
bilistic data structures used for the heavy hitter
problem. Given a stream of (a¢, ¢;) key-value pairs, a; € U, CS stores the compressed total counts
for each of the keys in a small K x R array of integers and can be queried to retrieve this total count,
C(at). CS offers a probabilistic solution in memory logarithmic in a total number of unique keys.
There is a standard memory accuracy trade-off for CS. Let m be the number of distinct keys and C
be the vector of counts indexed by each key. For count median sketch (Charikar et al., [2002), the
(€, 6) guarantee P(|C(a) — C(a)| > €||C]||2) < ¢ is achieved using O(% 3 (logm + log |U])) space.
(Chakrabatil |2020). As seen from the above equation, the approximation accuracy for a particular
key depends on how it compares to the ||C||5. Specifically, CS can give an excellent approximation
for keys with the highest values in a setting where most other keys have very low values. More
discussion on CS can be found in Appendix F.

Figure 1: Countsketch, sketching, and query

3.3 LOCALITY SENSITIVE HASHING

Locality-sensitive hashing(LSH)(Darrell et al., |2005)) is a popular approach to solving approximate
near-neighbor problems. If a function h : &/ — {0, ...r — 1} for some r, is randomly drawn from the
LSH family £, the probability of collision of the hash values for two distinct elements a1 and as is

Prec(h(ar)==h(az2)) x Sim(ay, az)

Where Sim(aq,as) is some similarity metric corresponding to the LSH family. The probability of
collision is referred to as the kernel of the LSH family, generally denoted by ¢(.,.). Most ker-
nels are positive, bounded, symmetric, and reflective. We can use p independent LSH functions,
hi, ha,...h, to obtain a LSH function, h(P)(a) = (hy(a), ha(a), ..., hy(a)). The function h(P) has
kernel 9(,.,) = &(.,.)?. We call p the power of the LSH function. Popular LSH functions for
U = R are L2-LSH, L1-LSH and SRP (signed random projection). More details on LSH functions
can be found in (Darrell et al., 2005)

3.4 UNIFORM SAMPLING FROM CONVEX POLYTOPES

Uniform sampling from convex spaces is a well-studied problem (Bélisle et al.l |1993; |Chen et al.,
2017). For general convex polytopes, this is achieved by finding a point inside the polytope using
convex feasibility algorithms and then running an MCMC walk inside the polytope to generate a
point with uniform probability. In the case of regular convex polytopes like hypercubes and paral-
lelopiped, uniform sampling is much simpler. Sampling a data point at random in a d-dimensional
hypercube of width 1 is equivalent to uniformly sampling d real values in the interval [0, 1]. For
sampling within a d-dimensional parallelopiped, we first locate (d — 1)-dimensional hyperplane par-
allel to each face at a distance drawn uniformly from [0, B] where B is the width of parallelopiped
in that direction. The sampled point is the intersection of these (d — 1)-dimensional hyperplanes.

3
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Table 1: bin(z) for different partitioning schemes

Partitioning Scheme Parameters bin(z) : RY - N Sampling s € R? from b € N?
Regular histogram BeR bin(z); = |z;/B] ri~UQO.1),r € R
g & cou s=DB(b+r)
. N d . . r; ~U(0,1),r € R?
Aligned histogram BeR bin(z); = |z;/Bi] s=Bo(b+r)
W e Rixd r; ~U(0,1),r € R?
L1/L2-LSH Be R ¢ c R bm(x)l = (|_<SC7 Wz> + tl)/BZJ y=Bo (b + T)

s =solve(Ws =y — t)
MCMC with constraints,
SRP W ¢ Rkxd bin(x); = (sign({x, W;)) sign({z, W,)) = b;

+ bounding box

4 DENSITY SKETCHES

In DS, we aim to build a compressed non-parametric estimation object in an efficient streaming
fashion. As KDEs give a better approximation of underlying function f(z) than histograms, we
want to build DS as a compressed KDE object. To achieve this, we use a nice connection between
KDE and Histograms with an LSH-based partition function.

4.1 HISTOGRAM WITH LSH-BASED PARTITION AND KERNEL DENSITY ESTIMATES

Any LSH function on R? will partition the space into different bins. Specifically, if power d L1/L2-
LSH, these partitions will be polytopes in R?. Similarly, power k SRP would give conical partitions
with hyper-plane boundaries. We can employ a histogram-based estimation strategy on the top of
these randomly drawn partitions. The density estimate using such a histogram would be

. 1 &
— Z(x; € bi h €D

fu(z) x - ; (z in(xz)) where z
where Z is a indicator function. This estimate of the density has an expected value (over random
partitions) equal to the KDE estimate, say f,(x) with the corresponding LSH kernel, ¢(., .)

1 _ 1 s
By(fu(@) = 3 Plas € bin(@)) = = >~ d(ws,2) = fola)
i=1 i=1

The expectation is over random partitions. This connection between randomized histograms and
KDE was first observed in (Coleman & Shrivastaval, 2020). To better approximate KDE, we can
combine results from multiple histograms with independent LSH functions. For example, if we use
m independent histograms, say Hq, Ho, ..., H,,, then the density estimate can be written as

P50 = =3 o)
i=1

We can sample a data point from this set by first choosing a histogram randomly and then sampling
a point from that histogram. One can check that the sampling distribution, thus obtained, is fl(j,m) ().

4.2 CONSTRUCTING DENSITY SKETCHES

Now that we have reduced the problem of KDE approximation to histograms, we will now show
how to obtain a compressed representation of a histogram in a streaming fashion. We also show how
to generate samples from this representation. First, let us establish some notation we will use

Notation: (1) Data D consists of n i.i.d samples of dimension d drawn from true distribution f(z) :
S C R* — R. (2) bin(z): ID of the partition in which point x falls. In the case of p-power LSH
functions, bin(z) : R? — NP, and each bin can be identified with a unique tuple of p integers. In
a regular histogram, we have a tuple of d integers. For example, in regular histogram with width B,
bin(x); = |x;/B]. bin is generally parameterised with bandwidth parameter B which measures the
size of the partition. Some partitioning schemes and sampling algorithms are mentioned in Table
(3) A CS M with range R and repetitions K as described in section 3. (4) H: Augmented min-heap
of size H used with M. Hence for a given partitioning scheme (bin, B), DS is parameterized by
(K, R, H) and includes two data structures M (K, R) and H(H).



Under review as a conference paper at ICLR 2023

Count Sketch M Heap H
n X fm——> p?;i‘:i)"_":d ________ [ Y Partition count
Il * - ¢ l ' 1 Ll
2,8 501
fala)  CBE) . @9
« 1@ == | b b Sy | st |
' :
Rl v 1 Range + : : 1.1 50
U » T T
! Area = B? 5 1 v : (-1,0) 21 :
e I : E ' (41 7 v
' & : : v
. S Z(bin(z) € H)(C(B(z
; . : ey — bintz) € HC(BE)
. -1 2 -c3 -c4 : nph?
\/ X, Data Stream é(B(x))

& = median(cy, ¢z, c3,¢4) f((z) =5
Figure 2: Overview of the sketching algorithm

The histogram has an exponential (in d) number of partitions. Hence, in high dimensions, it is
impractical to store histograms. However, most high dimensional real data is clustered and thus has
highly sparse histograms. This does not help with histograms, as post-pruning of histograms still
requires us to build and enumerate them. Nevertheless, the sparsity in histogram makes it a good
candidate for heavy hitter problems. We use CS, M, to store a compressed version of the histogram.
Unfortunately, sampling with just M does not have an efficient solution. We maintain a set of heavy
partitions for sampling in the min-heap H. We will discuss sampling in later subsections.

sketching M : As shown in figure {] and algorithm [I] we process the data in a streaming fashion.
For each data point, say x, we find the partition b = bin(x). We increment the count of b by 1 by
inserting (b, 1) into M. Along with each insertion, we also update 7. If the # is not at its capacity,

we insert this b into the heap along with its updated count C (b). If the heap is at its capacity, we
check b’s updated count against the minimum of the . If b’s count is greater, we pop the minimum

element from the heap and insert (b, C(D)).

4.3  fo(z): ESTIMATE OF DENSITY AT A POINT

We can use M for querying the density estimate at a particular point. The algorithm for querying
is presented in Algorithm 2 and is explained in figure 2] Reusing notation from [3.1] the density
predicted by the histogram can be written as f (z). When using the sketch, instead of actual
C(bin(z)), we would use its estimate from M. Let this estimate be C(bin(z)). Then we can write
the density predicted using count-sketch as fc (z)

; _ C(bin(z)) P _ C(bin(x))
@) = emay % = i)

We know from CS literature that C(bin(z)) is closely distributed around C(bin(z)) and so we can
expect fo(x) to be close to f(x) and hence to f(x). Note that though fo(x) is a good estimate of
density at a point x, the function fc(.) is not a density function as it does not integrate to 1.

4.4 fé (z): ESTIMATE OF DENSITY FUNCTION

To obtain a density function from the sketches, we have to normalize the function fc(x) over the
support. We can write f£(z) as

o ; o C(x)) C() C(x)
x) x C(x T) = — = — = - -
fo(x) (z) fo(@) [ C(2)da V(bin(2)) Y epims) C(0) V(bin(x))n

It is easy to check the integral can be written as the sum over all the bins in the support. As is clear
from the equations for f () and fc(z), n = 2 bebins(s) C(b) - is replaced by i = 37y s C(b)
to get a density function. We can check that 7 is an estimate of n using an estimate of count for each
bin from the DS.

4.5 fg(x): SAMPLING FROM DENSITY SKETCHES

M is a good enough representation for querying the density at a point. However, it is not the best
data structure to generate samples efficiently. One naive way of sampling from these sketches is to
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Algorithm 1: Constructing density sketch Algorithm 2: query fc(y), y € RY

of f(x) Result: fo(y)
y € R?
Result: Density Sketch (DS) b = biny
f(z): R — R : true distribution ¢ = M.query(b)

T1,... 2, ~ f(z): sample drawn from f(x)  return (c¢/(nV(b)))
bin(x) : S — N¢: partition function

. . d
M : CS with range R, repetitions K AlgorlAthm 3: sample y € R® such

‘H(H) : min-heap to store top H partitions y~ fs(z)
Result: y: sample from fg(y)
fori < Itondo P : categorical distribution over bins s.t.
b = binz; - P(b) = (H[b]/ny) ifbe H
Minsert(b, 1) - Pb)=0ifb¢ H
¢ = M.query(b) b~ P

H.update(b, c) y = UniformRandomPoint(b)

return y

randomly select a point in support of f(z) and then do a rejection sampling using estimate fc (z).
However, given the enormous volume of support in high dimensions, this method is bound to be
immensely inefficient. Another way is to choose a partition with probability proportional to the
count of elements in that partition and then sample a random point from this chosen partition. It is
easy to check that the probability of sampling a point x in this manner, precisely, is f 1 (x) if we use

exact counts and fé(m) if we use approximate counts from CS. However, given that number of bins
is exponential in dimension, sampling a bin proportional to its counts requires prohibitive memory
and computation. This is why we needed a CS in the first place. Here, we further approximate the
distribution by storing only top H partitions which contain most data points and discarding other
partitions. As mentioned in |1} we can efficiently maintain top H partitions with an augmented
heap H. We then sample a partition present in this heap with probability proportional to its count
and sample a random data point from this partition (Algorithm 3). The probability of sampling a
data point whose bin is not present augmented heap is then zero. The distribution of this sampling
algorithm is,

Fs(x) = Z(bin(z) € H)m

where N, = ) oy ¢ () is the count-sketch estimate of the total number of elements captured in all
partitions present in the heap. Z(.) is the indicator function with values 0 or 1 evaluating the boolean
statement inside it. Let pj, = 7, /7 be the capture ratio of heap. It is easy to see that as the capture
ratio tends to 1, fg(z) tends to f(*}(z) Note that f(z) is a density function.

5 ANALYSIS

Histogram and Kernel Density Estimators are well-studied non-parametric estimators of density.
Both of these estimators are shown to be capable of approximating a large class of functions (Scott,
2015). For example, with the condition of Lipschitz Continuity on f(x), we can prove that point-

wise MSE(fy () converges to 0 at a rate of O(n~2/3). Better results can be obtained for functions
that have continuous derivatives. In our analysis, we make assumptions along those made in (Scott,
2015)); specifically, the existence and boundedness of all function-dependent terms that appear in the
theorems below. We refer the reader to (Scott, 2015) for an in-depth discussion on assumptions.

We restrict our analysis to convergence in probability for all the estimators discussed in this paper,
which is the standard (Scott, 2015). In this section, we consider the regular histogram partitioning
scheme and show that our sampling distribution f s () is an approximation of underlying distribution
f(x) and converge to it. However, a similar analysis holds even for random partitioning schemes /
KDE and is skipped here.

Mean integrated square error(MISE): MISE of an estimator of function is a widely used tool to
analyze the performance of a density estimator.

MISE() = B | [(7(0) - 1(a) P
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A density estimator, with MISE asymptotically tending to zero, is a consistent estimator of true
density and converges to it in probability. We would use this tool to make statements about the
convergence of our estimators. By Fubini’s theorem, MISE is equal to IMSE (Integrated mean
square error).

MISE(f) = IMSE(f) = [ B[(f(x) - £(a))")] do
We now present our main result of the paper,
Theorem 1 (Main Theorem: fs(x) to f(x)). The probability density function of sampling, fs(z),
using a DS over regular histogram of width B, with parameters(K,R,H) created with n i.i.d samples
from original density function f(x), has an IMSE given by

IMSE(fs(z)) < 12(1 — pp)? + 3(1 + 2¢) <n; + @ +o0 <;> + 7;%)

B2%d
v30439 (2090w ) woc (102600 + 5VA [ g@ienn)
zeS
with probability (1 —§) , where 6 = E;Z}"(PR, Ny zp IS the number of non-empty bins in histogram, py,

is the estimated capture ratio as described in sectionand G(g) is roughness defined as [ g(x)*dx

The dependence of IMSE on properties of f(z), such as roughness, is standard (Scott, [2015) and
cannot be avoided.

Interpretation The estimator fs(z) of f(z) is obtained by a series of approximations from f(z) —

fu(z) = folz) — fé(a:) — fs(z). Hence to interpret this result, we break down the result above
into multiple theorems enabling the reader to easily notice which step of approximations leads to
what terms in the theorem above. We provide these details in Appendix. We notice a few things
from the theorem below

» Similar to the standard analysis for histograms, the curse of dimensionality also manifests in
our theorem. B should go to zero and n should increase faster than the rate at which B [Monzp
decreases (condition 1). As compared to standard histograms, this requires n to grow faster. With
these conditions on B and n, it is clear how the second and third terms go to zero.

» The magnitude of the fourth term is controlled via e. The above statement is true for any § and
e that are related via the expression § = (n,.,/(e?nKR)). Choose arbitrarily small € and 4,
and we can achieve it with large enough n/n,,,,, or by providing more intermediate resources and
making K R large enough. For a fixed resource K R, this term goes to zero asymptotically with n
growing faster than n,,.,,, which is a sub-condition of condition 1.

* The term 12(1— py,)? shows the effect of truncation that occurs due to using only heavy partitions.
As can be seen, this term is data dependent, and IMSE does not depend directly on H (number of
partitions) but p;,. Suppose we can capture the entire data in the heap (i.e., setting H=n,,.,,), then
the term adds no penalty to IMSE. H, via p;, controls the accuracy-memory trade-off of DS.

6 DISCUSSION

curse of dimensionality: As DS are built over Histograms, they inherit the curse from Histograms:
i.e., the number of samples needed increases exponentially with dimension. With increased data
collection, the issue of the unavailability of large amounts of data is fast vanishing. We want to
emphasize that DS’ advantages are best seen when data is humongous. DS can absorb tons of data
and give better density estimates and samples without increasing memory usage. Also, most real
data in high dimensions is clustered or stays on a low-dimensional manifold. DS, throw away empty
bins, and only store the histogram’s populated bins. DS can deal with the curse of dimensionality
better than Histograms. DS on original data space: Some data types, like images, do not reside
in a space where the usual distances or cosine similarities imply conceptual similarity. On these
data types, DS will not perform well. One way is to learn a transformation and create sketches of
the transformed data. While this will give better performance in practice, we might lose theoretical
guarantees for certain transformations.

7 EXPERIMENTS

Visualization of samples from density sketches: In the first set of experiments, we provide a sanity
check for DS in the form of visualization of data generated from DS. (1) In the first experiment,
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(a) sample drawn from true distribution (b) sample drawn from Density Sketch

(d) MNIST Sample from Density Sketch using con-

(c) MNIST Sample from Density Sketch using L2- ical partitions (multiple signed random projections
LSH partitioning width: 0.01,0.1,1,10 from top to (SRP)). The rows have varying number of SRPs used
bottom - increasing from top to bottom

Figure 4: Visualization of samples drawn from Density Sketch. (a-b) DS captures density infor-
mation. (c) Higher power LSH functions lead to fine DS behaving like random sample (d) Coarser
partitions lead to samples that resemble “avg” of samples in data

figure [4] (a) shows the samples drawn from the actual multi-gaussian distribution, whereas figure [
(b) shows the samples drawn from the DS built on the samples from the true distribution. In this
experiment, we use L2-L.SH partitions with a B=0.25, K=3, R=50000, and H=3000. As can be seen,
the two samples are indistinguishable. So DS does capture the density information. (2) Figure [
(c) shows some samples drawn from DS built over the MNIST dataset (Chang & Linl 201T) with
varying bin-width sizes. (again R=50000, K=3 and H=5000) . We should notice that MNIST with
784 dimensions and 60K samples is not an ideal dataset for DS. In fact, with L2-LSH partitions the
data would be so scattered that every sample is contained in its bin. If we make the bin-width finer,
we should sample data points very close to the random sample from the original data. So in the worst
conditions, DS converges to a random sample which we know is a good representation of data. [4](d)
shows results again with MNIST. However, here we have created conical partitions (created using
multiple signed random projections). While L2-LSH partitions use power 784 L.2-L.SH functions, in
this experiment, we use a smaller number of SRP functions(10-25, increases as we go to lower rows
in the image), thus promoting clustering. As expected, this coarse partitioning does show significant
clustering; hence, the images drawn from the partitions look like the average of multiple samples
from the original data. The results support that DS can create samples that resemble the original
data.

Evaluation of Samples on Classification Tasks: For most datasets, it is not possible to inspect
samples visually. Hence we evaluate the quality of samples from DS by using them to train classi-
fication models. In these experiments, the data loader of the training algorithm is replaced with a
sampler from DS. This sampler returns a training batch when requested by the algorithm. All the
experiments are performed on Tesla P-100 GPUs with 16GB memory.

Datasets: We choose big datasets from the liblinear website (Chang & Linl, 201T)), which satisfy the
constraints of 1) data dimension less than 100 and 2) the number of samples per class greater than
1,000,000. Large Datasets is the main application domain for DS. Thus, we have datasets of Higgs
(10M samples, 28 dimensions) and Susy (5M samples, 18 dimensions) for our experiments.
Baselines: For baselines, we consider random samples of the same size and Liberty coresets pro-
posed by (Karnin & Liberty, 2019) to compare DS performance. For Liberty coresets, we use
m = 100 as for larger m the process is very slow. Dimensionality reduction via random projections
is another streaming algorithm. Still, in these datasets, we cannot get significant compression using
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Figure 5: (a-d) Performance of density sketches, Liberty coresets and random sample on downstream
classification task. The bar widths refer to 2 x std. DS performs consistently better at all memory
sizes (e) Performance of DS is stable with K,R configs for decent budget KR=1000000, (f) Optimal
B exists for DS performance. larger and smaller values of B lead to performance degradation

dimensionality reduction (it can be dx at best, where d is the dimension). So we cannot compare
against this method. For a more detailed discussion on baselines, refer to appendix D.

Results: The DS has parameters: partition function(bandwidth B). We use L2-LSH partitions,
sketch parameters K, R, and heap parameter H in all our experiments. The memory of the DS
used for sampling is affected by only the heap parameter (see appendix F for details on memory
computation). In figure Ekf), we use the config (K=4,R=250000,H=100000) and vary B. It is clear
from the figure that B=0.001 works best for these datasets. Lower and higher values of B affect the
performance adversely. Larger B implies that we will capture more space than needed in a single
partition, and smaller B implies that we will capture lesser data in the heap. So it is expected that a
sweet spot for B exists. In figure 5[e), we fix (B=0.01,H=100000, KR=1000000) and vary K from
1 to 64. We can see that for a reasonable memory budget the results are stable with varying K. For
the experiments in figure Eka—d) we fix (B=0.01, K=5, R=250000) and vary H. This gives us DS of
different sizes. We plot test accuracy and losses for DS, random samples and Liberty coresets for
different sizes of memory used. The width of the band signifies the 2 x std-dev of performance on
three independent runs. As can be seen, for the “Higgs” dataset, the model’s accuracy achieved on
original data of size 2.5GB can be closely reached by using a DS of size SOMB. So we get around
50x compression | We see similar results for datasets of “Susy” (100x compression, 0.8GB) as
well. The results show that DS is much more informative than Random Sample and Liberty Core-
sets. For more details on running the experiments (data processing, memory measurements, etc.),
refer to Appendix F.

Estimation of statistical properties of dataset: We also perform the experiments on the covariance
estimation task. The observations are similar to the classification experiment. DS performs better
than the corresponding random sample. The results are presented in Appendix F for the shortage of
space.

8 CONCLUSION

In this paper, we talk about Density Sketches, a streaming algorithm to construct a summary of den-
sity distribution from data. We show that new samples generated from this sketch asymptotically
converge to the underlying distribution. Thus, DS comes with theoretical guarantees. Additionally,
the cheap nature of online updates in Density Sketches, makes it an attractive alternative to con-
structing coresets for the data. In terms of coresets, DS can be viewed as a compressed form of
randomized grid-coresets - one of the oldest forms of coresets.
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Table 2
Notation Description
f(x) true density distribution
fr(z) histogram estimate of f(x)
bin(x) partition id of point x
bins(.S) enumerates all bins in the support S
C(b) count of elements in the bin id b
C(x) count of elements in the bin(z)
C(b) estimate count of elements in the bin id b
V(b) volume of bin id b
D data
E(,) kernel function: R x R — R
B B € R, scalar bin width
B B © R? vector of bin widths in different directions
h(x) U{0,...R — 1} hash function
g(x) U — {—1,+1} hash function
W € RF*? | weight matrix for SRP / L1-L2 LSH
7 indicator function
E Expected value
fo(z) KDE estimate with kernel ¢
M Count sketch
K, R parameters of count sketch
n total number elements
n CS estimate of total number of elements
np number of elements in the heap
nh CS estimate of number of elements in the heap
Ph capture ratio defined by 7, /7t

A APPENDIX

A.1 NOTATION
A.2 THEOREM 2 : fy TO f

While estimating true distribution f(z) : R? — R, the integrated mean square error (IMSE) for the
estimator fg (x) using regular histogram with width h and number of samples n, is

- 1 G(f) 1 h2d
< _ - 4 7V — i
IMSE(fn) < 5+ == +o( |+ ==G(IVfll2)
Specifically, we have integrated variance (IV) and integrated square bias (ISB) as follows

: 1 G(f) 1

v =— 4+ —= —

(fu) nhd + n to n

and
A h2%d
ISB(fm) < Tg(HVsz)
where G(¢) is the roughness of the function ¢ defined as G(¢) = [ ¢*(z)dx

Proof. Letx € S where S is the support of the distribution. Let bin(x) determine the bin of point z,
bins(S) enumerate all the bins that lie inside the support S of the distribution f(z) . Let V' (bin(x))
is volume of bin in which z lies. Equivalently, we can also use V'(b) to denote volume of bin b. For
standard histogram, V' (b) = h?

fu(x) = m ;I(xi € bin(z)) (1)

12
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First let us consider the integrated variance.
vV = / Var(fp(2))de = / Var(fx (z))dz 2)
zes bebins(s) ¥ TE

For a particular bin b, the variance is constant at all values of z inside it. Also for a particular x in
bin b, we can write the following for Var(fy (x)) using independence of samples.

Var(fp(x)) = mVar(I(xi € bin(z)) (3)

Also Var(Z(z; € b)) = pp(1 — pp) where p, is the probability of x; lying in bin b. That is,
Py = [y, f(2)dx

Using this in equation 2

1
IV = V(b)) ——=ps(1 — 4
E ( )nVQ(b)Pb( D) 4
bebins(.S)
Simplifying,
1
IV = ——pp(1 —

E' V(b)pb( o) o)

bebins(S)

For standard histogram V' (b) is same across bins,

1
IV = - ;
ol 2 D ) (6)
bebins(S) bebins(S)
1
= 1— 2
bebins(S)
Using mean value theorem, we can write, p, = V() f (&) for some point &, € b.
dopi= > VO(&@)?=V0) > VO)/(&) ®)
bebins bebins bebins

Using Riemann Integral approximation , we can write the following as the bin size reduces,
> VOSEr = [ Pladso) ©
bebins z€S

Jyeg f2(x)dx is also known as the roughness of the function. Let us denote it using G(f). Hence

1
IV = D) (1=V(b) (G(f) +0(1))) (10)
1 G(f) 1
V="vey T <n) (i
Putting V' (b) = h?
w:nlm_gg)_o(i) (12)

V=0 <1> (13)

Now let us look at the ISB for this estimator, ISB(fx (z))

ISB(fi(2)) = / (E(fu(x) - f(x)))*dx (14)

zeS

13
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Let us look at the expected value of the estimator,

E(fu(z)) = —V(bjl(w)) / T (15)

Recall that 2 € R?. Using 2nd order multivariate taylor series expansion of this f(¢) around x, we
get,

7t = F(@) + (= 2,V f(@) + 5 (0~ 2) TH(F @)t~ ) (16)

Here H(f(t)) is the hessian of f att. Without the loss of generality let us look at the bin(z) = [0, h]?
that is the bin at the origin. Let us say it is by

F(0)dt = 7 (x) + B — 2, V() + O(h**?) a7)

tebo

Using eq 17 in eq 15, we get

p h
E(fu(@)) = f(2) + (5 — ), Vf(2)) + O(h?) (18)
Hence, just keeping the leading term , we have
. h
Bias(fu(¢) = (5 — ), VF(2) (19)
Now,
. h 2
/ Bias(fg (z))%dx = / ((( - ZL’) ,Vf(x))) dx (20)
z€bo TEbg 2
Using Cauchy-Schwarz inequality, we get
p h
[ Biastiuta)do < [ (G - 2)BIVfa)ds e
x€bg T€bo
As [h/2,h/2,...h/2] is a mid point of the bin. The max norm of z — h/2 can be h\/d/2
. h2d
[ Biastiuta)fde < 5 [ Vi) 3ds 2)
xE€bg z€bo
Now looking at ISB
. - h2d
SB(f) = 3 [ Bias(fu)de <0 [ 9513 @3)
bEbins zebo zes
5 h2d
1SB(fu) < "G f1) @)

A.3 THEOREM 3: fc TO fy

While estimating true distribution f(x) : R* — R, the integrated mean square error (IMSE) for the

estimator fc(x) using regular histogram with width h, number of samples n, and countsketch with
range R, repetitions K and mean recovery, is

PN 3 Nnzp
IMSE(fc) = IMSE(fg) + K Rnhd

where n,, ., is the number of non-zero partitions. Specifically, we have

r P Npzp — 1
IV(fe) =1V(fu) + m
and R )
ISB(fc) =1SB(fn)
where n,, ., is the number of non-zero bins/partitions. ]

14
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Proof. Consider a Countsketch with range R and just one repetition (i.e. K = 1). Let it be
parameterized by the randomly drawn hash functions ¢ : bins(S) — {0,1,2,...,R — 1} and
s : bins(S) — {—1,+1}. Let C(bin(z)) >~ , (Z(z; € bin(z)) is the count of elements that lie
inside the bin(x)

The estimate of density at point x can then be written as

fo(z) = m (C (bin(x)) + ZZ(% ¢ bin(z) A g(bin(z;)) = g(bin(x)))s(bin(xﬁ)s(bin(x)))

(25)
We can rewrite this as ,

fol@) = fulo)+ (Zf(zz ¢ bin(x) A g(bin(;)) = g(bin(x)))s(bin(m))s(bin(an»)

b1n
(26)
As E(s(b)) = 0, it can be clearly seen that.
E(fo(x)) = E(fn(x)) 27)
Hence, it follows that ) )
ISB(fo(z)) = ISB(fm(2)) (28)

It can be checked that each of the terms in the summation for right hand side of equation[26]including

the terms in fy(x) are independent to each other . i.e. covariance between them is zero. Hence we
can write the variance of our estimator as,

Var(fe(z)) = Var(fg(z))+ (29)
1 . . .
T (7 (1 ¢ bin(x) A g(bin(z;)=g(bin(x)) ) s(bin(z;))s(bin()) ) (30)
Var(fe(z)) = Var(fg(z))+ (31)
1 . 2
TOmEE (I(x ¢ bin(x) A g(bin(z;))=g(bin(x))) > (32)

As square of indicator is just the indicator,

Var(fo(x)) = Var(fu (z))+ (33)

mza (I(z ¢ bin(z) A g(bin(xi)):g(bin(x)))) (34)

Var(fo(w) = Var(fo (@) + s (1= o)) ) G9)

Hence, IV is
V(fole) = V() + | s (1= o) ) (6)
. . 1 1
W(fole) = V) + 32 | t-mp) @)
V(fel@) = Viia)+ Y —mm-mp) G8)
bebins(S)

15
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Assuming standard partitions. V' (b) = h¢ for all b
1 (pap—1)

IV(fe(x)) =IV(fu(z)) + R (39)
With mean recovery, with K repetitions, the analysis can be easily extended to get IV as
A P 1 (npep—1)
v =1V — 40
(fo@) = V(Fu @) + g (40)
The ISB remains same in this case. O

A.4 THEOREM 4: fg; TO fc

While estimating true distribution f(z) : R — R, the IMSE for the estimator f () using reg-
ular histogram with width & and number of samples n and countsketch with parameters (R:range,

K :repetitions), is related to the estimator fe (z) as follows

IMSE(fc(z)) — e(N + 2M) < IMSE(f% (z)) < IMSE(fc(z)) 4 e(N + 2M)

Specifically, X R R

IV(fo(z)) —2eM < IV(f5(z) <IV(fo(x)) 4 2eM
and

ISB(fo(x)) — eN <ISB(f&(x)) <ISB(fo (@) + €N
where

MSIV(fc(ﬂf))+2(g(f)+7g(|\VfH +hf/ )1V £12))

N = (1+18B(fo()))

with probability (1 — &) where § = =25

Proof. Let us look at the estimator
" C(bin(a)) cooom
f = o 1)
O Sy T,am

where 2 = 37, C(b) and n = 3, C(b) O

n and its relation to n:  Let us first analyse 7 and how it is related to n.

h = > Z( 2 € 0) + (T(wi ¢ A glbin(z:)) == g(v))s(bin(z:))s(0)) )
bebms(S) bebins(S) =1
(42)
n = ZI(JQ €b)+Z(x; ¢ bAg(bin(z;)) == g(b))s(bin(z;))s(b) 43)
b,i

Note that E(71) = n. For varaince, observe that most of the terms in the summation have covariance
0, except the terms Cov(Z(x; € by),Z(x; € by)) which are negatively correlated. Hence

Var(n Z Var(Z(z; € b)) + Var(Z(x; ¢ b A g(bin(x;))! = g(b))s(bin(x;))s(b))+

(44)
2 Z Cov(Z(z; € b1), Z(x; € ba))

i,b1,b2,b1#b2
‘We know that

Var(Z(z; €b)) =ps(1l —pp)

Var(Z(z; ¢ b A g(bin(z;)) == g(b))s(bin(z;))s(b)) = E(Z(z; ¢ b A g(bin(z;))! = g(b))?) = LRP”
Cov(Z(w; € b1),Z(w; € bz)) = —Ppb, Db,

16
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Hence, we pluggin in the values in previous equation

Var(n) =n Zpb 1—p)+n > pops (45)
b1,b2,b17#b2
Var(n) =n(1 - Zpb + nz — Py 2n Z Dby Dby (46)
bl b2
Var(n) = Zpb —2n Z Dby Dby ) } 47
b1 b2
Var(n) = n{( Z Db (48)
Var(n) Z 1- pb (49)
b
R n(nnzp 1) n(nnzp)
= 50
Var(n) i < 7 (50)
Using Chebyshev’s inequality , we have
R Var(n
P(|n—n| >en) < W(Z) (5D
A n’l’LZ
P(Jn—n| > en) < eQn]p% (52)
Hence with probability (1 — §), § = %*%, 7 is within e multiplicative error.
relation of pointwise Bias and ISB  With probability 1 — 4,
fe(@) _ 5 fo(@)
< <
T4e Sfo@=T7 (3
As expectations respect inequalities
E(fo(x)) 2 E(fc(x))
< <
1+e — E(fe(z) < 1-e¢ 9
E(fe(x s E(fo(z
BUC@) _ t2) < Bias(faay < PUEE) _ pay 59)
1+e¢ 1—e¢
Bias(f — . Bias(f
ins(fol@) —ef(@) _ poo oo Biastie(r) +ef(x) 56
1+e€ 1—e¢
€ —€

Integrating expressions again respects inequalities

ISB(fc(x)) = [ f(x) S ISB(fc(x)) + € [ f(x)
— < ISB(fe(a)) < — (5
ISB(f, - . ISB(f +
ISBUE) ~€ < 15p(fy(ay) < TBUEN L 9
Using first order taylor expansion of %Jre and ignore square terms
(1 = ISB(fe(z)) — € < ISB(f5(2)) < (1 +)ISB(fe(x)) + € (60)

ISB(fo(x)) = e(1+ISB(fo(x))) < ISB(f&(x)) < ISB(fo(x)) +e(1+ ISB(fo(x))) (61)
Hence, ) . .
15B(fe(x)) —eN < ISB(fc(x)) < ISB(fe(@)) +eN (62)
where
N = (1 + ISB(fc()))

17
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Point wise variance and IV  Using the similar arguments

E(f2(x)  E*(fo(@) e E(f3(x)  E*(fo(@))
(1—}6—'6)2 - (1 —06)2 SVaT(fC(gj))S (1 56)2 - (1+CE)2

(63)

Again making first order taylor expansions of denominator and ignoring square terms

Var(fe(x))=2¢(E(fé(@)+E*(fo(x))) < Var(f&(z)) < Var(fc(fv))+2(E(f3~(x)+E2(ch(6§))))

Since, Var(fe(z)) = E(f¢(2)) = E*(fe ()
Var(fo(z))=2¢(Var(fo(x))+2E(fo(x))) < Var(f&(x)) < Var(fo(x))+2¢(Var(fo(x)) +2E*(fe (2)))

(65)
IV (fo(e))-26(1V (fel@)+2 | B fele)) < IV(fela)) < V(o) +2e1V (fe(w)+2 / | Ee@)
(66)
Let us now figure out the [ _o E?(fo(x))
/ E*(fo(a / B2(fu(x)) (67)
From equation 18, E(fy(2))2 = f(2)? + <<< ), V@) + 2f @) ((E — 2), V(@)
/ B <90+ W GV F) + nvd / D)V 2) (68)
Hence, R R R
IV(fo(z)) — 2eM < IV(f2(x)) < IV(fo(z)) + 2eM (69)
Where
M < IV(fe(@)) + 2600 + 26(1V f112)) + hv/d / DIV 0)
A.5 LEMMA 1

Estimators fg(x) and f& (), obtained from the Density Sketch with parameters(R,K,H) using his-
togram of width h built over n i.i.d samples drawn from true distribution have a relation

/ () — fs(a)ldz = 21— pn)

where py, is the capture ratio as defined in section 3

/Ifé( — fs(@ Idx—Z/ |[fé(x) = fs(@)|da (71)

bebins Y TE

Jliew —fswiaz= 5[ (o) - fswlas+ [ lietw) - fotwiar

bebins(H) bgbins(H)
(72)

we know that for z € b, b ¢ bins(H), fs(z) = 0. Hence,

Jliew - iswlas= 3> [l - fewlaz+ ¥ Dde (73

bebins(H) b¢bins(H) ZL’Eb

18
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fLE b fc x)dzx is the probability of a data point lying in that bucket according to fc( x)

[liet@) - Fs@liz = 3 /€b|fc fslar+ Y %

bebins(H) b¢bins(H)

For points x € b,b € bins(H), f&(x) i = fs(x) * 11, Hence, fs(x) = ﬁfé(a:)

Jlie@ - ds@liz= ¥ [ fe@-vasr 32

bebins(H) ” TE€b bbins(H) "

o . é

1z - fs@las = ¥ s Y @
bebins(H) xeb bezns(H)

[l - ds@lis = (-1 Y %a 32

n
bebins(H) b¢bins(H)

A.6 THEOREM 5

(74)

(75)

(76)

(77)

(78)

(79

(80)

(81)

The IMSE of estimator fg(x) obtained from the Density Sketch with parameters(R,K,H) using

histogram of width h built over n i.i.d samples drawn from true distribution f(x) is
IMSE(fs(x)) < 12(1 = pn)* + 3IMSE(f&(x))

where py, is the capture ratio as defined in

Proof. Giving a very loose relation between fg and f. We can write
[Gst@) = f@)dn = [((Fsto) = Folw) = (Fo (o) ~ f@)Pie
[(Gsto) = f@pde <3 [(Fsto) - fotw)?do+3 [ (Fole) - f(@)Pds
[st@) = g2 <3 [ 1(Gst) - fe@Nian? +3 [ (Gte) - @) ds
[(Gs()— @) < 120 - 43 / (fo(@) - f(@))d

IMSE = MISE(fs(x)) < 12(1 — p)? + 3IMSE(f&(x))

19
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B THEOREM 1 (MAIN THEOREM) COMBINES ALL OTHER THEOREMS

This theorem directly relates the distribution fs (z) to the true distribution f(x). We will combine
the following statements

R 2
MSE(f) < 5 + T8+ (1) + 000912 7)
IMSE(fo(z)) = IMSE(fy (2)) + —2r (88)

K Rnh

[IMSE(f¢()) — IMSE(fe ()] < e(N + 2M) with probability (1 — §),8 = ZLZE (89)
€E“n

IMSE(fs) < 12(1 — pp)? + 3IMSE(/2 () (90)
where,
. 2
M <V (fee)) +2607) + 26V T 2)) + hva / )V f]2))

N = (1 +18B(fc(@)))

Let us now combine them
IMSE(fs(z)) < 12(1 — pn)? + 3IMSE(f& (2)) (91)

IMSE(fs(2)) < 12(1 — pp)? + 3(IMSE(fC(:17)) Fe(N+ 2M)> 92)

IMSE(fS(l')) < 12(1 — ph)2 + 3<IMSE(fH) + Mnzp — 1

T b e(N + 2M)) (93)

IMSE(fs(z)) < 12(1—pj,)*+3 ( 2(1 + @ +o (i) + %g(HVng)) nK”éj hdl + (N +2M)

(94)

N = (1 +1SB(fc))

h2d

N <14 = 56(191])
M < 1V(fe) +20(0) + LTSI + W[ (F@I 1)
M < IV (fa) + iy +20(0) + SRSl + W[ (F@ )
Mgnlmﬁgjf)ﬂ(l)ﬁ[gg 260+ 619 71) +hf/ )|V £]2)

IMSE(fs(z)) < 12(1 - ph)

1 h2d Npzp — 1
(ma + A (n) + 79UV + g )

+3e( 14+ 2501w )+
2(9(||Vf||)+2d+g(f)+ (3) + St v 2000+ oqori + v [
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IMSE(fs(2)) <12(1 — py)*+

1 nzp
30420 + £ o) +
h2d
3(1+36)—~G(IVfll2)+

3¢(1+20(f) + hv/d / @I 1)

C OTHER BASE LINES

Coresets: We considered a comparison with sophisticated data summaries such as coresets. Briefly,
a coreset is a collection of (possibly weighted) points that can be used to estimate functions over
the dataset. To use coresets to generate a synthetic dataset, we would need to estimate the KDE.
Unfortunately, coresets for the KDE suffer from practical issues such as a large memory cost to
construct the point set. Despite recent progress toward coresets in the streaming environment|Phillips
& Tail (2020), coresets remain difficult to implement for real-world KDE problems |Charikar &
Siminelakis| (2017)).

Clustering and Importance Sampling: Another reasonable strategy is to represent the dataset as a
collection of weighted cluster centers, which may be used to compute the KDE and sample synthetic
points. Unfortunately, algorithms such as k-means clustering are inappropriate for large streaming
datasets and do not have the same mergeability properties as our sketch. Furthermore, such tech-
niques are unlikely to substantially improve over random sampling when the samples is spread
sufficiently well over the support of the distribution. An alternative approach is to select points
from the dataset based on importance sampling |Charikar & Siminelakis| (2017), geometric prop-
erties (Cortes & Scott| (2016), and other sampling techniques (Chen et al.[| (2012). However, recent
experiments show that for many real-world datasets, random samples have competitive performance
when compared to point sets obtained via importance sampling and cluster-based approaches |Cole-
man & Shrivastaval (2020).

Dimensionality Reduction: One can also apply sketching algorithms to compress a dataset by re-
ducing the dimension of each data point via feature hashing, random projections or similar meth-
ods|Achlioptas|(2003). However, this is unlikely to perform well in our evaluation since our datasets
are already relatively low-dimensional. Such algorithms also fail to address the streaming setting,
where IV can grow very large, because the size of the compressed representation is linear in V.
Finally, most dimensionality reduction algorithms do not easily permit the generation of more syn-
thetic data in the original metric space.

D DIFFERENTIALLY PRIVATE DENSITY SKETCHES

In order to make the density sketch differentially private, we add noise to the distribution stored by
density sketch. This is achieved by adding noise to the underlying count sketch array (K x R matrix
of integers). Let the function mapping histogram of the data to the density sketch (before the heap
construction) be denoted as f : NIXI — ZKR where X is the set of all partitions. We fill first
define an discrete analog of laplacian noise.

Definition 1 (Double geometric distribution). The double geometric distribution parameterized by
p € (0, 1) is defined as follows on the support of all integers.
1

P(elp) = 5 (1= p)"p (95)

Algorithm to make Density Sketches private: Each cell of sketch (K x R) matrix is added an
i.i.d noise drawn from the double geometric distribution. We will prove that this noise addition
makes the function M = f + noise differentially private. Heap construction can be considered as
an post processing operation on the density sketch matrix. Hence, the sampling distribution is then
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differentially private. (Note that heap construction algorithm also needs to be modified in practical
settings to ensure that it carries the differential privacy properties. But this is achievable)

Theorem 2 (Differential privacy). The density sketches constructed with addition of double geomet-
ric noise with p = 1 — e~/ where K is the number of repetitions in the sketch is (¢, 0) differentially
private.

Proof. Consider the 11 metric for computing the distance between datasets. Consider any arbitrary
pair x,y which satisfy ||z — y||1 = 1. In the histogram view of data, it is easy to check that a distance
of 1 can exist if and only if there is an additional row in either x or y and all other data points
are same. Without loss of generality we can write = y U {d} where d is the extra data point.
As the constructed count sketch does not depend on the order of insertion, we can say that count
sketch for x, i.e. f(x), is obtained from count sketch for y by sketching additional data point into it.
Also, because of countsketch’s mergeable property, we can write f(z) = f(y) + f({d}). Hence
If (@)= f(W)lli = | f({d})]]1. As sketching a single entry changes exactly one element of each row
of countsketch by 1. || f({d})||s = K. Hence sensitivity of the function fis Af = K

P(zlp) = 5—

Now Let us consider the privacy achieved with this error. Let M be the final randomized algorithm
with computation of f and adding noise. We are interested in the following quantity with x,y such
that ||z — y[, = 1.

We use the double geometric distribution as defined above for noise.
1 B
7(1 —p)"'p (96)

PM(z)=2) ILPM(x); = z)
PM(y) =2) ILP(M(y)i = 2)
1Ll — p)lf @)=zl
o 1T, ( _p)|f(y)¢—zi|
I ( _p)‘f(x)i—zi‘_‘f(y)i_zi‘
= ( _p)||f(l‘)—ZH1—Hf(y)—ZH1
As 11-norm is a distance metric we can write
PM@) =2) _y _ 5@ =slh =172l
PM(y) = =)

> (1 fp)llf(x)ff(y)lh
= (1-p>¥
Ifweputp =1— e /20)
PM(z) = )
P(M(y) =
PM(y) = 2)
< e 97
PM(z)=2) = °© ©7)
Hence M (x) is (e, 0)- differentially private. Hence we have that the countsketch produced by the
sketching algorithm with added double geometric noise is (¢, 0)- differentially private when we have

\/

why heaps are differentially private? If the data is bounded in R? (d is the dimension of the
data), then it is easy to check that there is a cell in R?, which contains all the data, It follows
that the number of partitions inside this cell is finite. So we can consider heap construction as
iteratively going through each partition and noting down its count. Once we do that, we sort all
the partitions according to the counts and keep top H elements. In this sense, we can consider
heap construction as a post processing over count sketch. From the proposition 2.1 [Dwork, Roth],
we know that post processing maintains differential privacy. Hence the heap we create is (¢, 0)
differentially private
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