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Fig. 1: Tool-as-Interface. We propose a scalable data collection and policy learning framework designed to transfer diverse, intuitive, and
natural human play into effective visuomotor policies. The framework enables robots to learn robust policies that can operate effectively
under challenging conditions, such as base and camera movement, and achieve high performance on a variety of complex manipulation tasks.

Abstract—Tool use is critical for enabling robots to perform
complex real-world tasks, and leveraging human tool-use data
can be instrumental for teaching robots. However, existing data
collection methods like teleoperation are slow, prone to control
delays, and unsuitable for dynamic tasks. In contrast, human
play—where humans directly perform tasks with tools—offers
natural, unstructured interactions that are both efficient and
easy to collect. Building on the insight that humans and robots
can share the same tools, we propose a framework to transfer
tool-use knowledge from human play to robots. Using two RGB
cameras, our method generates 3D reconstruction, applies Gaus-
sian splatting for novel view augmentation, employs segmentation
models to extract embodiment-agnostic observations, and lever-
ages task-space tool-action representations to train visuomotor
policies. We validate our approach on diverse real-world tasks,
including meatball scooping, pan flipping, wine bottle balancing,
and other complex tasks. Our method achieves a 71% higher
average success rate compared to diffusion policies trained with
teleoperation data and reduces data collection time by 77%,
with some tasks solvable only by our framework. Compared to
hand-held gripper, UMI [13], our method cuts data collection
time by 41%. Additionally, our method bridges the embodiment
gap, improves robustness to variations in camera viewpoints and
robot configurations, and generalizes effectively across objects
and spatial setups.

I. INTRODUCTION

Tool use is essential to how humans interact with and
transform their environment [56, 35]. For instance, humans
use a pan to fry food and flip it, ensuring even cooking on
both sides. Despite its significance, tool use beyond parallel
jaw grippers remains underexplored in robotics, with research
primarily focused on simpler tasks like grasping and pick-

and-place operations [5, 40, 9, 31, 30]. In this paper, we focus
on cost-effective data collection and efficient training of robot
policies to rapidly acquire tool-use skills.

Imitation learning provides a promising pathway for robots
to acquire tool-use skills by directly learning from human
demonstrations [18, 22, 23, 25]. The paradigm excels in
handling diverse tool-use tasks, as it bypasses the need for
task-specific programming by relying solely on human demon-
strations. However, its full potential hinges on addressing key
challenges in collecting high-quality training data. Various
teleoperation systems [28, 48, 7, 17, 25, 44, 70, 57, 34,
55, 39, 8] and hand-held grippers [54, 16, 46, 41, 37] have
been developed to facilitate the collection of high-quality data.
Teleoperation methods, such as kinematic replication and hand
or body retargeting, show great potential [71, 19, 63, 52, 42].
However, their reliance on direct access to robot hardware
limits both practicality and scalability. Hand-held grippers [49,
13] offer an alternative by enabling demonstrations in diverse
environments. While they reduce dependency on robotic sys-
tems, their high costs and the technical expertise required for
tasks like 3D printing and assembly restrict their accessibility
to a specialized group of users.

To address these limitations, we turn to human play — a
natural, intuitive method through which humans interact with
their environment during everyday activities without relying
on external devices or specialized setups. Human play refers
to the natural process in which humans use their hands to
operate tools and interact with and manipulate the environment
freely. Unlike controlled demonstrations that require expensive
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hardware or meticulous preparation, human play involves the
spontaneous use of tools to interact with the environment.
Human play is an accessible, scalable, and cost-effective
approach to data collection, requiring no prior knowledge
or technical expertise, such as 3D printing or assembly,
from participants. However, existing methods struggle to fully
harness the potential of human play. Key challenges include
the embodiment gap and the reliance on single-view data,
which limits the insights that can be drawn from human play
data [51, 3, 33, 4, 53, 36, 47].

Our framework addresses these challenges by leveraging
the observation that humans and robots can share the same
tools. We propose a novel approach that utilizes human play
data to train robust and adaptable robot policies for diverse
tool-use tasks (Figure 1). Our method minimizes reliance on
expensive hardware, making data collection more scalable and
accessible to non-experts. By capturing 3D information using
two RGB cameras and generating 3D reconstructions, our
method enables view-invariant policy learning through novel
view augmentation. To facilitate direct policy transfer from
human play to robotic systems, we employ a segmentation
model to filter out embodiment-specific information. Addi-
tionally, we leverage task-space tool-action representations to
ensure robustness to variations in robot base configurations.

Our contributions are as follows:
1) We propose a novel framework that leverages two-view

human play data to enable scalable, intuitive, and cost-
effective data collection for training robot policies on
complex tool-use tasks.

2) We validate the effectiveness of our approach across a
range of challenging real-world tool-use tasks, including
nail hammering, meatball scooping, pan flipping, wine
bottle balancing, and soccer ball kicking. Our method
achieves a 71% improvement in success rate and reduces
data collection time by 77% compared to diffusion
policies trained on SpaceMouse [14] or Gello [63]
data, with some tasks solvable only by our method.
Our method also outperforms handheld grippers like
UMI [13], reducing collection time by 41%.

3) We provide an extensive analysis of our method’s ro-
bustness under varying conditions, including changes
in camera poses, robot base movements, and human-
induced perturbations. Additionally, we conduct ablation
studies to evaluate the effects of different design choices
on policy performance, including embodiment segmen-
tation, random cropping, and novel view augmentation.

II. RELATED WORKS

A. Data Collection for Robot Learning

High-quality data is essential for training robots to learn
and generalize across tasks. Simulation data has been widely
used for its cost-effectiveness and scalability [72, 38, 24, 69],
but the gap between simulation and real-world performance
remains a persistent challenge. To overcome this, many
researchers have turned to real-world teleoperated

demonstrations, which offer more reliable transferability
by minimizing the domain gap between training and testing
environments [73, 11, 12, 48, 62]. Advancements in leader-
follower devices, like ALOHA [71, 19] and GELLO [63], have
simplified robot demonstration data collection but remain tied
to specific robot platforms. More recently, portable tools such
as hand-held grippers, e.g., UMI [13] and LEGATO [49], have
emerged as a promising alternative for in-the-wild data collec-
tion. Yet, their high cost and the need for custom robot mod-
ifications continue to limit widespread adoption. Tool-based
policy representations have emerged as an effective way to
collect data for robot learning. MimicTouch uses tactile-based
tools for contact-rich manipulation [67], while ScrewMimic
models bimanual tasks as constrained screw motions for
learning from human videos [2]. However, tactile methods
require extra hardware, and the screw motion assumption may
not hold. Another line of work by Wen et al. [59] aims to learn
category-level representations from a single demo to transfer
pose trajectories across similar objects [59], but assumes a
static target (e.g., battery slot), limiting real-world applicability
in real-world tasks where the spatial configuration of objects
may change. Unlike these methods, our method only requires
natural human data, without assuming access to tactile sensors
or requiring constrained screw motion models, making it
significantly more cost-effective, scalable, and accessible.

B. Cross-Embodiment Policy Learning

Cross-embodiment policy learning enables robots to transfer
policies across embodiments, such as those with different
kinematic structures [21, 45, 66]. Prior work has explored
conditioning policies on embodiment representations using
multi-embodiment datasets [15, 58, 68, 10, 20, 45, 1], but these
approaches often face challenges in effectively leveraging
human play data. Recent approaches utilize human play, such
as estimating point flow from human video [61] or generating
latent plan or high-level plans from human data [32, 57].
However, their dependence on robot data for low-level control
limits scalability when robot data is expensive or difficult to
collect. Additionally, prior works highlight the importance of
masking human and robot embodiments for visual consis-
tency [3, 27]. However, Bahl et al. [3] relies on predefined
motion primitives, while Kareer et al. [27] still requires robot
data with human data as augmentation. Our approach adopts
a similar masking idea but enables robots to learn freely, even
agile motions from human videos, without any robot data.
Another line of work tokenizes observation inputs and action
outputs into a unified transformer network, enabling general-
ized policy learning across embodiments [50, 65]. However,
these methods require large models and extensive datasets,
making them resource-intensive and time-consuming to train,
and lack the capability for direct policy transfer between
embodiments. Overall, reliance on robot-specific hardware
and data restricts scalability and accessibility. In contrast, our
method leverages natural human play, eliminating the need for
robot data as a training source.
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Fig. 2: Policy Design. Human play data was collected using two RGB cameras and processed through the foundation model MASt3R [29] to
generate 3D reconstructions. Using 3D Gaussian splatting, we sampled novel views to augument the dataset. The human hand (embodiment)
was segmented out from the images to create embodiment-agnostic observations, which serve as inputs to the policy. To label actions for
policy training, a pose estimation model (FoundationPose [60] in this work) was used to extract the tool’s pose in the camera frame, T camera

tool .
A coordinate transformation was then applied to compute the tool’s pose in the task space, T task

tool . Finally, a diffusion policy was implemented
as the visuomotor policy to enable effective learning and execution.

III. PROBLEM STATEMENT

We formulate the robotic manipulation task as a Markov De-
cision Process, where the goal is to learn a policy π : Or → A
that enables a robot to perform a given task. The robot’s
observation space, Or, consists of a single-view RGB image
Ir ∈ R128×128×3 and proprioception data xr ∈ SE(3). To
train the policy, we use an imitation dataset composed of
N human play, denoted as D = {(Oh

0 , O
h
1 , . . . )}Nn=1. Each

human play observation Oh consists of two RGB images
captured from different viewpoints: Oh = {Iv1, Iv2}, where
Ivi ∈ R480×640×3. We preprocess the dataset to get the
action by using a 6D pose estimation and tracking model,
resulting in D = {(Oh

0 , a0, O
h
1 , a1, . . . )}Nn=1, where each

action a ∈ SE(3).
Our objective is to train a robot to perform the same task as

demonstrated in the human dataset while overcoming the em-
bodiment differences. We assume that the tool is rigid, the tool
and the end effector are rigidly attached during deployment,
and the transformation between the tool and the end effector
is estimated once before deployment. Our approach aims to
allows the robot generalize task execution across embodiments
while retaining the core skills demonstrated by humans.

IV. OUR ROBOT POLICY LEARNING FRAMEWORK

Our framework enables the direct transfer of human play
data into deployable robot policies. It is designed to fulfill the
following key objectives:

• Support for Dynamic and High-Precision Tasks: Hu-
man play, with its inherent fluidity, enables the execution
of highly dynamic tasks. Examples include flipping an
egg in a pan or performing other actions that require
swift, accurate, and natural motions — challenges that
are often difficult to address with traditional teleoperation
systems or handheld grippers.

• Robustness: The framework ensures robust performance
under dynamic conditions, enabling reliable task execu-
tion even with moving or shaking cameras. While broader
deployment on mobile platforms such as quadrupeds or
humanoids remains an open challenge, our design and
experimental results suggest strong potential for general-
ization to dynamic environments.

• Generalization Across Robotic Embodiments and Ob-
ject Categories: The framework demonstrates broad
generalizability, validated on robotic platforms such as
the UR5e and Kinova Gen3. It extends its capabilities to
manipulate a wide range of object categories, showcasing
its adaptability to various tasks, setups, and environments.

• Affordability and Accessibility: The framework requires
only two monocular RGB cameras, such as smartphones,
webcams, or RealSense cameras. With approximately
7.14 billion smartphones worldwide — covering around
90% of the global population — this setup is accessible to
almost anyone [26]. By relying solely on RGB cameras,
the framework eliminates the need for designing, printing,
or manufacturing additional hardware during the data col-
lection, ensuring a cost-effective and inclusive solution.

• Intuitive and Natural Interaction: Users can interact
naturally, without the need for specialized equipment or
additional tools. Using their bare hands and common
tools, participants can intuitively perform a variety of
tasks. Our approach removes technical barriers associated
with 3D printing and other hardware setups, fostering a
seamless, user-friendly experience for data collection.

The following sections outline the framework’s design (Fig-
ure 2), its underlying principles, and logistical considerations
for development and deployment.



A. Tool Usage for Data Collection and Manipulation

Humans naturally and intuitively use tools for everyday
tasks such as cooking, eating, cleaning, and interacting with
the world. Tools act as extensions of human actions, enabling
diverse interaction with objects. The natural relationship be-
tween tools and objects provides an ideal interface for training
robots to mimic human actions using tools, with minimal
gap between human and robot tool usage. While grasping
and pick-and-place tasks have been extensively studied in
previous works, our work focuses on enabling robots to use
the same tools humans commonly employ to interact with their
environment effectively with the following benefits:

• Minimized Embodiment Gap: Abstracting actions to
the tool pose reduces morphological dependency, en-
abling policies to generalize across embodiments.

• Scalable Data Collection: Simplifies the data collection
process by eliminating the need for costly robot-specific
demonstrations, making our method more accessible.

During data collection, humans can naturally use tools with
their hands without requiring additional devices. For robot
deployment, the tool can be attached to the robot in two ways:

• Rigid Grasping: Grasping or picking, which has been
extensively studied in prior works, is demonstrated in our
Kinova Gen3 robot experiments and involves the robot
securely grasping the tool.

• Customized Fast Tool Changer: Designed for versatil-
ity, the tool changer is compatible with any robot that
uses the ISO 9409-1-50-4-M6 flange, as demonstrated in
our UR5e experiments.

B. Embodiment-Agnostic Perception

To encourage cross-embodiment transfer, we adopt a strat-
egy that reduces the perception gap between the training
and deployment phases. During training, human play data
is collected, featuring human hands interacting with tools
and objects. In deployment, robots execute the learned tasks.
As showcased in our experiments, the visual differences be-
tween human hands and robotic end-effectors can introduce
discrepancies that hinder generalization. To address this, we
employ Grounded-SAM [43] to segment and mask out the
embodiments in each phase. During training, human hands
are masked, while during deployment, the robotic embodi-
ments are masked, which ensures that the remaining parts
of the scene in both training and testing phases appear vi-
sually similar. By aligning perception across embodiments,
the framework mitigates distractions caused by embodiment-
specific features, enabling better generalization to human-to-
robot policy transfer.

C. View Augmentation

We use cameras for data collection due to their availability.
With approximately 7.14 billion smartphones equipped with
cameras, our approach can scale effectively [26]. However,
using data from a single camera introduces challenges such as
a lack of 3D perception and sensitivity to camera pose.

a) 3D Reconstruction: To address these issues, we use
MASt3R [29], an image-matching model that reconstructs
accurate 3D environments from two RGB images. This elim-
inates the need for additional depth sensors, which are less
common and consume more power compared to RGB sensors.
We use two cameras to capture demonstration data. Then
MASt3R processes the images to reconstruct a 3D point cloud
without requiring camera extrinsics or intrinsics, and globally
align point maps within a multi-view 3D reconstruction frame-
work. The process results in high-quality 3D representations.

b) Data Augmentation: Using 3D Gaussian splatting, we
model the scene and synthesize novel viewpoints from human
play data, which effectively augments the dataset, generating
additional perspectives even if the training data was captured
from only two views. These synthetic viewpoints provide the
robot with a multi-angle understanding of the scene, allowing
the policy to be trained on a more diverse and comprehensive
set of visual inputs. Additionally, we apply random cropping
to the images for data augmentation before feeding them
into the policy network, following the approach from diffu-
sion policy [11, 12]. Random cropping further improves the
method’s robustness, enabling the policy to generalize better
to variations in visual inputs.

D. Action Representation for Tool Manipulation

To support general tool usage, we propose a task-frame,
tool-centric action representation denoted as T task

tool . This repre-
sentation focuses on the tool being manipulated, independent
of human or robot morphology or camera pose. A visual
depiction of the coordinate systems is provided in Figure 3.

Using a 6D pose estimation model (e.g., Foundation-
Pose [60]), we determine the tool’s pose in the camera
frame, T camera

tool . To make the policy robust to camera and base
movement, we transform this into the task frame:

T task
tool = T task

cameraT
camera
tool ,

where T task
camera represents the transformation from the camera

to the task frame.

E. Training and Deploying Robot Policies

We use diffusion policy [11] as our policy representation to
predict T task

tool , trained using the ACCESS system [6]. During
deployment, for stationary robots, the task frame aligns with
the base frame. For robots with moving base, base movement
is compensated using T base

task . The final end-effector pose in the
robot base frame, used as the control command for the robot
controller, is computed as:

T base
eef = T base

task T
task
tool T

tool
eef ,

where T tool
eef is the fixed transformation between the tool and

the robot end-effector.

V. POLICY EVALUATIONS

Our experimental evaluations aim to assess the effectiveness
of our framework for deploying robot policy learning across
three key dimensions:



TABLE I: Benchmark Attributes of Real-World Tasks. These benchmarks evaluate the precision, adaptability, and capability of our
framework to address tasks requiring high precision, handling extreme dynamics, utilizing extrinsic dexterity, performing in contact-rich
scenarios, and overcoming gravity.

Benchmark High-Precision Extreme Dynamics Using Extrinsic Dexterity Contact-Rich Overcoming Gravity

Task 1: Nail Hammering "

Task 2: Meatball Scooping " " "

Task 3: Pan Flipping (Egg, Bun, Patty) " " " "

Task 4: Wine Balancing " " " "

Task 5: Soccer Ball Kicking "

Camera

Tool

Task

EEF

Base

Fig. 3: Coordinate System Diagram. This diagram illustrates the
Camera frame, Tool frame, Task space frame, End-Effector (EEF)
frame, and Base frame. We use T task

tool as the action representation for
the visuomotor policy output.

• Capabilities: What skills can our framework enable
robots to acquire, and how robust are the policies under
challenging conditions like a moving camera or base?

• Effectiveness: How well does our framework achieve its
objectives outlined in Section IV? Can it support reliable
and scalable policy learning for complex tasks while
streamlining data collection for highly dynamic, contact-
rich, or dexterous scenarios?

• Policy Execution Efficiency: How efficiently do the
trained policies execute tasks? Does our framework en-
able smoother and more natural motion trajectories? Can
it achieve faster and more fluid task completion compared
to baseline methods?

To evaluate our framework for learning from direct human
play, we developed a set of real-world robotic task domains
using two embodiments: Kinova Gen3 and UR5e. These tasks
are designed to test various aspects of policy capabilities,
efficiency and effectiveness. Table I summarizes the key
characteristics of these tasks. Visual input for the policies is
provided by two RealSense D415 cameras. We describe the
tasks in detail, highlighting their challenges and the specific
capabilities we aim to test.
Baselines: The primary focus of this work is to demonstrate
the effectiveness and efficiency of learning directly from hu-
man play without relying on robot-generated data. We compare
our approach against two baselines: a diffusion policy trained
on robot demonstrations, and UMI [13], a hand-held gripper-
based data collection method. The robot demonstration dataset
is collected using either a SpaceMouse or Gello interface

TABLE II: Task Success Rates and Completion Times. Success
rates are the number of successful trials out of total episodes,
and average completion times are based on successful trials. “DP”
refers to the diffusion policy trained on teleoperation data. “Not
Feasible” tasks denote cases where teleoperation failed due to extreme
dynamics, precision, or reactivity demands. Our method consistently
achieves higher success rates and shorter completion times.

Task Method Success Rate Time (s)

Hammer Nailing DP 0/13 -
Ours 13/13 11.0

Meatball Scooping DP 5/12 42.0
Ours 10/12 12.4

Pan Flipping - Egg DP Not Feasible -
Ours 12/12 1.5

Pan Flipping - Burger Bun DP Not Feasible -
Ours 9/12 1.9

Pan Flipping - Meat Patty DP Not Feasible -
Ours 10/12 2.3

Wine Balancing DP Not Feasible -
Ours 8/10 30.9

Soccer Ball Kicking DP Not Feasible -
Ours 6/10 2.0

under the same data collection time. Additionally, we perform
ablation studies to analyze the impact of key components,
such as random cropping of images before policy training,
novel view synthesis-based data augmentation, and the effects
of embodiment segmentation. To further illustrate the advan-
tages of our approach, we compare trajectory rollouts for a
meatball-scooping episode, highlighting how our method is
more sample-efficient and less prone to distribution shifts by
eliminating excessive waypoints.
Evaluation Metrics: During testing, we introduce two types
of variations: (1) randomizing the initial spatial configurations
of objects in each task to assess policy generalization, and (2)
varying camera positions to evaluate the robustness of policies
to different viewpoints. All methods, including the baseline
and ablation variants, are tested under the same conditions.
Performance is evaluated using two metrics: success rate,
which measures the proportion of successfully completed task
trials and reflects policy effectiveness, and task completion
time, which captures the average duration to complete tasks
and reflects policy efficiency.

VI. EXPERIMENT RESULTS

In our experiments, we demonstrate that our framework is
both effective and efficient for training robots with advanced
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Fig. 4: Policy Testing Across Camera Poses in Nail Hammering. (a) Camera poses for data collection and evaluation. (b-d) Performance
ranges for methods trained with/without random cropping (RC) and view augmentation (VA).
TABLE III: Task success rates comparing our method with the
hand-held gripper-based method on Nail Hammering.

Method Demo Duration & Count Success Rate

UMI [13] ∼180 seconds (25 demos) 0/13
UMI ∼720 seconds (100 demos) 13/13
Ours ∼180 seconds (40 demos) 13/13

capabilities. Furthermore, leveraging human play data enables
robots to perform smoother movements and acquire skills
that are challenging or even impossible to achieve with
robot-generated data.

A. Capabilities and Effectiveness

Table II presents the results of our real-world robot tasks,
showing that our framework consistently outperforms baseline
methods by achieving significantly higher success rates across
all evaluated scenarios. We further compare our method with
a stronger hand-held gripper baseline, UMI [13], as shown in
Table III. In our default setup, SLAM-based mapping failed
due to low environmental texture. To address this limitation,
we added a textured background to support reliable mapping
for UMI. For the nail hammering task, we evaluated UMI
using 25 demonstrations (matching our collection time) and
100 demonstrations (to assess its ideal performance). UMI
failed all 13 trials with 25 demonstrations but succeeded in
all 13 trials with 100. UMI could not be applied to the wine
balancing task due to contact-induced tool displacement, nor to
the pan flipping task due to tool inertial slippage. In the soccer
kicking task, large and fast motions made it nearly impossible
to localize the demonstration trajectory within the initial map.

B. Policy Execution Efficiency

Our framework demonstrates exceptional efficiency in task
execution, achieving faster task completion times and produc-
ing smoother action motions compared to baseline methods,
as shown in Table II. The efficiency is largely attributed to
the nature of human play data, which captures the fluidity and
speed of real-world human activities, resulting in smoother and
more natural trajectories in the training dataset. In contrast,
previous approaches relying on teleoperated data often suffer
from significantly slower speeds and less natural motions, lim-
iting their effectiveness in dynamic scenarios. By leveraging
the realistic dynamics of human play, our framework not only
accelerates task execution but also enhances motion quality,
making it better suited for real-world applications.

C. Benefits of Tool-Based Action Representation in Task Space

We observed that using the tool in the camera frame
as the action representation allows the policy to perform
comparably to prior works when the camera is stationary.
However, the success rate drops to zero when the camera is
moving. Tracking the camera pose in real time during motion
is non-trivial, leading to incorrect calculations of the end-
effector position in the base frame. When the base moves,
policies relying on the tool in the base frame fail entirely,
achieving zero success. These failures occur because such
policies assume a fixed relative transformation between the
base and the workspace, an assumption invalidated by base
motion. In contrast, representing actions using the tool in
task space enables the policy to remain effective under base
perturbations. Our approach demonstrates robust performance
when camera poses vary, when the base moves, and even
during simultaneous shaking of the camera and base.

D. Effects of Random Cropping and View Augmentation

Our experiments show that random cropping (RC) and
view augmentation (VA) enhance policy robustness to diverse
camera poses. Training with RC improves resilience to minor
camera perturbations, such as small movements or shaking,
while VA extends robustness by exposing the model to a
broader range of camera configurations during training. We
evaluated these techniques on the nail hammering task and
present the results in Figure 4, comparing three models: one
trained with both RC and VA, one with RC only, and one
without either technique. The combined use of RC and VA
significantly expands the working range of camera configu-
rations, including those with substantial deviations from the
original viewpoint. The robustness arises from the model’s
exposure to a diverse set of camera poses during training.

E. Generalization

Object Generalization: Our method generalizes effectively to
different objects in pan flipping tasks, including a toy egg, a
3D-printed meat patty, and a real burger bun. With only 13
demonstrations, the policy succeeds by leveraging a simple
but effective strategy: tilting the pan to slide the object into
a corner, then flicking the pan to propel and flip the object.
Our manipulation approach for pan flipping enables robust
generalization across diverse object types.
Tool Generalization: To assess the generalization ability of
our policy across different tools, we conducted a pan-flipping
experiment using a burger bun and five pans: large, medium,
small, tiny, and square. For each pan, we collected 12 trials
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Fig. 5: Robustness to Camera and Base Movement. (a) Camera Pose Robustness: The policy demonstrated the ability to handle camera
shaking across three tasks—meatball scooping, nail hammering, and pan flipping. The first row shows the camera view, while the second row
provides a scene overview with the shaking motion. (b) Robot Base Robustness: The policy successfully compensated for base shaking, even
when the shaking frequency exceeded the robot’s control frequency. (c) Chicken Head Stabilization: At lower base movement frequencies,
the end effector displayed a stabilization effect similar to a chicken’s steady head. (d) Combined Robustness: The policy maintained task
performance under simultaneous camera and base shaking.

with varying initial configurations and reported the success
rates (Fig. 7). The policy was trained on demonstrations using
the large, medium, and square pans, and evaluated on all five.
Results indicate that our method exhibits some generalization
across both pan sizes and shapes (circular vs. square). High
success rates were observed with the large and medium pans.
However, performance declined on smaller pans, likely due to
their limited surface area. The square pan also showed lower
success rates, as its shallow edges allowed the bun to slide out
during flipping.

Our method generalizes effectively to different objects in
pan flipping tasks, including a toy egg, a 3D-printed meat

patty, and a real burger bun. With only 13 demonstrations, the
policy succeeds by leveraging a simple but effective strategy:
tilting the pan to slide the object into a corner, then flicking the
pan to propel and flip the object. Our manipulation approach
for pan flipping enables robust generalization across diverse
object types.

F. Robustness

Camera Pose Robustness: We evaluated the policy’s ability to
handle camera pose variations by introducing camera shaking
in three tasks: meatball scooping, nail hammering, and pan
flipping (egg), as shown in Figure 5(a). The first row shows the
camera view, while the second row shows the scene overview



(a) Nail Tracking

(b) Multiple Meatball Scooping

(c) Adaptive Egg Flipping

Human tosses another meatball Human throws a third meatball

Human moves nail; robot adjusts Nail repositioned

Human flips egg back

Fig. 6: Human Perturbation Robustness. This figure showcases the robot’s ability to handle human-induced perturbations across three
tasks: (1) In nail hammering, the robot successfully followed a manually moved nail; (2) In meatball scooping, it located and scooped
meatballs even when additional ones were thrown into the pan mid-task; and (3) In egg flipping, the robot consistently flipped the egg back
after human intervention repositioned it. These results highlight the policy’s robustness to unpredictable human perturbations.
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and the shaking motion. Despite the disturbances, the policy
successfully completed all tasks. This robustness stems from
random cropping during training, which allows the policy to
adapt to partially cropped inputs and minor visual changes.
Robot Base Robustness: To evaluate robustness to base
movement, we manually shook the robot base during task
execution (Figure 5(b)). When the shaking frequency exceeded
the control frequency, the end effector oscillated with the base.
However, the task-space action design enabled the robot to
compensate for these movements and maintain task success.
Additionally, as shown in Figure 5(d), the policy remained
effective even when both camera and base shaking were
applied simultaneously.
Chicken Head Stabilization: At lower frequencies of base
movement, where the shaking was slower than the robot’s
control frequency, the end effector exhibited a stabilization
effect similar to a chicken’s head remaining steady [64], as
shown in Figure 5(c). The behavior highlights the robot’s
ability to maintain precise control during mild perturbations.
Human Perturbation Robustness: We further tested the
policy’s resilience to human-induced perturbations across three
tasks, as shown in Figure 6. In the nail hammering task, the
robot successfully tracked and followed a manually moved
nail by a human. During meatball scooping, the robot located

and scooped meatballs, even when additional meatballs were
thrown into the pan mid-task. For egg flipping, the robot
consistently flipped the egg back each time a human intervened
and returned the egg to different initial positions. These results
underscore the policy’s robustness in maintaining reliable
performance under real-time human interactions.

VII. CONCLUSION

In this work, we presented a novel framework for human-
to-robot imitation learning that leverages human play data to
bridge the embodiment gap and enables robust policy training
for diverse tool-use tasks. Unlike traditional data collection
methods, which are often costly, hardware-dependent, and
require technical expertise, our framework democratizes data
collection by removing the need for specialized equipment
or prior knowledge. Our approach makes data collection
more accessible and scalable, empowering broader adoption
in robotic learning. We validated our framework across a
range of challenging tasks, including nail hammering, meat-
ball scooping, pan flipping with various objects, wine bottle
balancing, and soccer ball kicking. The results demonstrate
the framework’s superior performance, robustness to variations
in camera poses and base movements, and adaptability to
different embodiments, such as 6-DOF and 7-DOF robots. By
enhancing accessibility, scalability, and reliability, our work
lays a strong foundation for advancing robotic manipulation
in complex, real-world scenarios.
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