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Abstract

AI-based systems entail combinations of foundation models and other mechanisms,
like tools, memory systems, and surrounding prompt scaffolding. This can be
described as a chain of interconnected different components, for example AI
agents and multi-agent workflows. While these chains commodify building AI
applications and systems, they present a key challenge: individual components may
exhibit different behaviours when connected to each other than when separated,
affecting the properties of the overall system. This means that isolated evaluations
and audits of each part do not ensure a safe and reliable overall system. This paper
describes how effects of components interacting can cascade throughout systems
and result in evaluation challenges, and a discusses on benefits of cascade-level
analyses for (private) governance.

1 AI Systems as Cascading Socio-Technical Chains
AI-based systems deployments increasingly rely on the combination of interconnected components, i.e.
foundation models being combined with other components like guardrails and classifiers, databases
being added through retrieval systems, browsing- or programming-based tools or increasingly complex
prompt scaffolding techniques. These componentsinteract to form complex chains [1] where outputs
from one component become inputs to one or more other ones [2; 3]. Analysing interactions
between mechanisms and overall in these complex systems requires frameworks acknowledging these
architectures and their effects.

We define mechanisms here as socio-technical components within AI-based system that perform
specific functions, including RAG systems, system prompts, guardrails, and tool-use frameworks.
‘Agents’, for example, can be described as chains: they combine foundation models like large language
models (LLMs) with ‘pools’ [4] of tools, examples, memories, and other mechanisms. Multi-agent
workflows could also be seen as a kind of chain where singular agents make up one mechanism. Take
OpenAI’s ‘AgentKit’ [5], where customers define logic between agents and other tools (see Figure 1).

These chains grow more complex as different mechanisms are controlled by different stakeholders
[6], e.g. foundation model developers, application developers, end-users, fitting into broader ‘AI
supply chains’ [7; 1; 8]. An inherent problem in AI supply/value chains [9] is non-modularity:
unlike traditional supply chains, AI system mechanisms cannot be evaluated just on their own, since
the properties of mechanisms can change through connection to other mechanisms [7; 1]. When
mechanisms are connected and interact (at interaction points), effects arise that neither mechanism
would produce alone and that current evaluation paradigms of foundation models and deployed AI-



Figure 1: Example workflow of the ‘AgentKit’ by OpenAI [5]

based applications fail to capture. These effects could be transformations of data or model behaviour,
but they could also be monitoring, logging [10], access controls, or reconfigurations that occur as
data, instructions, requests, and control flow through the chain [3].

Subsequently, what constitutes ‘one mechanism’ depends on the observer’s (so different stakeholders’)
level of access and abstraction: within an agent, multiple mechanisms connect, while in a multi-agent
framework, one agent may function as one mechanism. Similarly, an external auditor might only have
access to an API as one mechanism, while internal audits consider multiple interacting mechanisms.

When unexpected or harmful outcomes arise from these cascades, it can be difficult to assess
responsibility, trace harms, or ensure safety; this requires governance mechanisms that address core
challenges of AI cascades. As AI-based systems become ever more complex and widely deployed,
the gap between component-level oversight and cascade-level behaviour will only widen, making
cascade-aware governance increasingly urgent. We next set out some key considerations towards this.

2 Requirements and Limitations for Cascade-Level Insight and Oversight

Cascade-level governance needs to grapple with three core challenges: (i) Non-modularity, as
properties emerge from mechanism interactions rather than summing of individual parts, meaning
components cannot be evaluated in isolation [2], (ii) distributed visibility, as no single actor sees the
full chain [7; 3] (foundation model providers, application developers, and end-users each have partial
views and control [8; 11]), and (iii) varying levels of abstraction, since a mechanism audited at one
access level may consist of several mechanisms that can be audited separately at another.

Current governance mechanisms tend to target either foundation models or specific applications,
which can miss intermediate mechanisms and their interaction points.This creates attribution chal-
lenges when determining responsibility (‘accountability horizon’ [7], [11]), inspection limitations
as regulators lack access to full mechanism stacks [12; 13], and incident reporting that does not
capture cascade-level effects [14]. Generally, we lack tooling to trace cascading effects through
multi-mechanism systems, be it through a flow of data or control of said data.

Understanding AI systems as cascades reveals governance opportunities at multiple levels. When
organizations recognize how their components interact within larger chains [15], they gain better
visibility into system behaviour and potential failure modes. This cascade-aware perspective benefits
both public and private governance: regulators can better target intervention points, while industry
actors can coordinate around shared interaction standards to better pre-empt and manage issues before
they occur and incident response protocols when certain issues do inevitably occur [14].

Governance at any level could benefit from viewing AI-based systems through a ‘cascading lens’ as
it supports understanding of how specific mechanisms interact, where failures originate or propagate,
and which interaction points and thus intervention points matter most. Private governance is well
situated here as it can operate closer to the speed and technical specificity cascade-level oversight
requires. As a starting point, we flag several mechanisms that could profit from this view:

• Technical standards and protocols: Recognition of failure patterns emerging at interaction points,
• Cooperative frameworks: Clarity on stakeholder coordination needs based on cascading effects,
• Contractual measures: Anticipation of obligation gaps emerging from non-modular interactions,
• Industry certifications and procurement policies: Systematic identification, documentation and
meaningful communication of mechanism interactions and their effects
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3 Conclusion
For better understanding and audits of AI-based systems, private governance and public governance
will benefit from taking cascading effects into account. We detail three challenges inherent therein
that warrant attention: (i) non-modularity, (ii) distributed visibility, and (iii) abstraction levels. We
urge the development of cascade-aware governance frameworks, both public and private.

References
[1] Aspen Hopkins, Sarah H. Cen, Andrew Ilyas, Isabella Struckman, Luis Videgaray, and Alek-
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