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Abstract

Our commonsense knowledge about objects in-
cludes their typical visual attributes; we know
that bananas are typically yellow or green, and
not purple. Text and image corpora, being
subject to reporting bias, represent this world-
knowledge to varying degrees of faithfulness.
In this paper, we investigate to what degree uni-
modal (language-only) and multimodal (image
and language) models capture a broad range of
visually salient attributes. To that end, we cre-
ate the Visual Commonsense Tests (ViComTe)
dataset covering 5 property types (color, shape,
material, size, and visual co-occurrence) for
over 5000 subjects. We validate this dataset
by showing that our grounded color data cor-
relates much better than ungrounded text-only
data with crowdsourced color judgments pro-
vided by Paik et al. (2021). We then use our
dataset to evaluate pretrained unimodal models
and multimodal models. Our results indicate
that multimodal models better reconstruct at-
tribute distributions, but are still subject to re-
porting bias. Moreover, increasing model size
does not enhance performance, suggesting that
the key to visual commonsense lies in the data.1

1 Introduction

The observation that human language understand-
ing happens in a rich multimodal environment has
led to an increased focus on visual grounding in
natural language processing (NLP) (Baltrusaitis
et al., 2019; Bisk et al., 2020), driving comparisons
between traditional unimodal text-only models and
multimodal models which take both text and image
inputs. In this work, we explore to what extent uni-
modal and multimodal models are able to capture
commonsense visual concepts across five types of
relations: color, shape, material, size, and visual co-
occurrence (cf. Fig. 1). We further explore how this

*Joint Advising
1The dataset and code is available at https://github.

com/ChenyuHeidiZhang/VL-commonsense.

ability is influenced by reporting bias (Gordon and
Van Durme, 2013), the tendency of large corpora
to over- or under-report events. We define visual
commonsense as knowledge about generic visual
concepts, e.g. “knobs are usually round”, and we
measure this knowledge via frequency distributions
over potential properties (e.g. round, square, etc).
A visually-informed language model should be able
to capture such properties. Our color, shape, mate-
rial, and co-occurrence data are mined from Visual
Genome (Krishna et al., 2016), and our size data
are created from object lists. They contain a large
number of examples of per-object attribute distri-
butions and “object-attribute” pairs.

Paik et al. (2021) evaluate language models’
color perception using a human-annotated color
dataset (CoDa), finding that reporting bias nega-
tively influences model performance and that mul-
timodal training can mitigate those effects. In this
work, we confirm those findings while extending
the evaluation to a broader range of visually salient
properties, resulting in a more comprehensive met-
ric for visual commonsense. In order to elicit visual
commonsense from language models, we utilize
soft prompt tuning (Qin and Eisner, 2021), which
trains optimal templates by gradient descent for
each model and relation type that we explore. We
also utilize knowledge distillation to enhance a text-
only model’s visual commonsense ability, where
the vision-language model serves as the teacher.

The major contributions of this work are: (1)
we design a comprehensive analytic dataset, Vi-
ComTe, for probing English visual commonsense,
that is applicable to any language model; (2) we use
ViComTe to study models’ ability to capture empir-
ical distributions of visually salient properties. We
examine unimodal language models, multimodal
vision-language (VL) models, and a knowledge-
distilled version of a VL model; and (3) we ana-
lyze the effects of reporting bias on the visually-
grounded vs. ungrounded datasets and models.

https://github.com/ChenyuHeidiZhang/VL-commonsense
https://github.com/ChenyuHeidiZhang/VL-commonsense
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Figure 1: We compare unimodal and multimodal models’ abilities to capture visual commonsense knowledge. The
commonsense knowledge is evaluated on five relation types: color, shape, material, size, and visual co-occurrence.
We compare the model outputs with the gold distribution from ViComTe, which is mined from Visual Genome.

2 Related Work

2.1 Vision-Language Modeling

Recent advances in vision-language (VL) model-
ing have led to increased success on benchmark
tasks. Most VL models learn joint image and text
representations from cross-modal training of trans-
formers with self-attention, including LXMERT
(Tan and Bansal, 2019), ViLBERT (Lu et al., 2019),
VisualBERT (Li et al., 2019), UNITER (Chen et al.,
2020), etc. Oscar (Li et al., 2020) additionally uses
object tags in images as anchor points to facilitate
the learning of image-text alignments and VinVL
(Zhang et al., 2021) presents an improved object
detection model. CLIP (Radford et al., 2021) learns
by predicting caption-image alignment from a large
internet corpus of (image, text) pairs.

While our work uses textual prompt tuning tech-
niques, there have also been work on visual prompt
engineering to enhance the performance of pre-
trained vision-language models. Zhou et al. (2021)
model context in prompts as continuous represen-
tations and learn to optimize that context. Yao
et al. (2021) develop a cross-modal prompt tuning
framework that reformulates visual grounding as a
fill-in-the-blank problem for both image and text.

2.2 Visual Commonsense

In one of the early attempts at learning visual com-
monsense, Vedantam et al. (2015) measure the plau-
sibility of a commonsense assertion in the form
of (obj1, relation, obj2) based on its similarity

to known plausible assertions, using both visual
scenes and accompanying text. Zellers et al. (2021)
learn physical commonsense via interaction, and
use this knowledge to ground language. Frank et al.
(2021) probe whether VL models have learned to
construct cross-modal representations from both
modalities via cross-modal input ablation.

Note that our definition of visual commonsense
differs from that of Zellers et al. (2019), where
the model is required to perform commonsense
reasoning based on an image. Our definition of
visual commonsense is more similar to the idea
of stereotypic tacit assumptions (Prince, 1978) –
the propositional beliefs that humans hold about
generic concepts, such as “dogs have to be walked”.
Weir et al. (2020) probe neural language models for
such human tacit assumptions and demonstrate the
models’ success. We extend this intuition to visual
concepts and explore how visual information may
help language models to capture such assumptions.

There has also been earlier work on the McRae
feature norms (McRae et al., 2005), in which hu-
man annotators wrote down attributes that describe
the meaning of words. For instance, “car” can be
labeled as “has four wheels” and “apple” can be
labeled as “is green”. Silberer et al. (2013) expand
the McRae dataset into a set of images and their
visual attributes and construct visually grounded
distributional models that can represent image fea-
tures with visual attributes.

Zhu et al. (2020) examine the “language prior”
problem in Visual Question Answering models,



where models tend to answer based on word fre-
quencies in the data, ignoring the image contents.
In this work, we explore to what extent such a lan-
guage prior is recruited absent a visual input.

2.3 Reporting Bias
Pretrained language models such as BERT (Devlin
et al., 2019) are trained on billions of tokens of text,
capturing statistical regularities present in the train-
ing corpora. However, their textual training data
can suffer from reporting bias, where the frequency
distribution of specific events and properties in text
may not reflect the real-world distribution of such
properties (Gordon and Van Durme, 2013). For
example, while grass is typically green, this may
be under-reported in web corpora (as it is assumed
to be true), and while motorcycle crashes may be
more common in the real world, plane crashes are
mentioned far more in news text (Gordon and Van
Durme, 2013). Misra et al. (2016) highlight the
reporting bias in “human-centric” image annota-
tions and find that the noise in annotations exhibits
a structure that can be modeled.

3 Dataset: ViComTe

3.1 Dataset Mining
For each relation color, shape, material, size, and
object co-occurrence, our data take the form of
(subject, object) tuples extracted from object dis-
tributions per subject. The goal is to predict the
object and its distribution from the subject and re-
lation. Table 1 summarizes the number of classes
and subject-object pairs for each relation.2

Color, Shape, Material For color, shape, and
material, the subject is a noun and the object is
the color, shape, or material property of the noun,
mined from attributes of Visual Genome (VG) (Kr-
ishna et al., 2016).3 We manually create a list of
single-word attributes for each relation, and only
VG subjects that are matched with a specific at-
tribute for more than a threshold number of times
are recorded, in order to avoid noise in the dataset.
The thresholds for color, material, and shape are 5,
2, and 1, respectively, chosen based on the avail-
ability of attributes of each relation in VG. VG
attributes are filtered with the following steps: (1)
attribute “Y colored / made / shaped” is treated as
“Y”; (2) select only the last word for compound

2See Appendix A.1 for more information on the object
classes.

3Licensed under CC-BY 4.0.

attributes (e.g. treat “forest green” as “green”); (3)
similar attributes are merged into a main attribute
class (e.g. “maroon” and “crimson” become “red”).

The above procedure produces a distribution
over the set of attributes for each subject noun.
From that distribution, a (subject, object) data in-
stance is generated for each subject where the ob-
ject is the attribute that associates with it the most.
See the first three rows of Table 1 for examples.

Size Size is separated into size_smaller and
size_larger, where the subject is a noun and
the object is another noun that is smaller or larger,
respectively, than the subject. To form the size
dataset, we obtain a set of concrete nouns that ap-
pears in VG, which we manually classify into 5 size
categories (tiny, small, medium, large, and
huge). Typical objects in each category includes
pill, book, table, lion, mountain, respectively. We
randomly pick two nouns from different categories
to form a (subject, object) pair.

Visual Co-occurrence The visual co-occurrence
dataset is generated in a similar way to the color,
shape, and material datasets. Co-occurrence dis-
tribution is extracted from Visual Genome where
two objects that occur in the same scene graph to-
gether for more than 8 times are recorded, and a
(subject, object) instance is generated for each sub-
ject, where the object is the noun that co-occurs
with the subject the most.

3.2 Data Grouping

Following Paik et al. (2021), we split the color,
shape, and material datasets each into three groups:
SINGLE, MULTI, and ANY. The SINGLE group is
for subjects whose most common attribute covers
more than 80% of the probability, e.g., the color of
snow is almost always white. The MULTI group is
defined as subjects not in the SINGLE group where
more than 90% of the probability falls in the top
4 attribute classes, e.g., the color of a penguin in
Fig. 1. The rest of the subjects are in the ANY

group. Lower model performance for the SINGLE

group would indicate the influence of reporting bias.
For example, if the model is unable to correctly
capture the distribution of the color of snow, it is
likely because the color of snow has low probability
of being reported in the training corpus, as people
know it is white by default.



Relation # Classes # (subj, obj) Pairs Ex Template Ex (subj, obj) Pair
color 12 2877 [subj] can be of color [obj] (sky, blue)
shape 12 706 [subj] has shape [obj] . (egg, oval)
material 18 1423 [subj] is made of [obj] . (sofa, cloth)
size (smaller) 107 2000 [subj] is smaller than [obj] . (book, elephant)
size (larger) 107 2000 [subj] is larger than [obj] . (face, spoon)
co-occurrence 5939 2108 [subj] co-occurs with [obj] . (fence, horse)

Table 1: Summary of the ViComTe dataset and the manual templates, including the number of classes, (subject,
object) pairs, and an example pair for each relation.

Source Group Spearman ρ # Subjs Avg # Occ Top5 # Occ Btm5 # Occ Acc@1
VG All 64.3 ± 23.9 355 1252.6 64.6 308.6

SINGLE 62.2 ± 24.0 131 494.9 64.6 1181.6 80.2
MULTI 69.3 ± 20.7 136 1156.1 2062.2 347.0
ANY 58.4 ± 27.1 88 2529.6 8452.4 1213.4

Wikipedia All 33.4 ± 30.6 302 543.6 1758.0 49.8
SINGLE 29.6 ± 29.9 110 352.2 345.8 35.0 35.5
MULTI 33.9 ± 30.9 119 500.8 1242.0 27.6
ANY 38.2 ± 30.4 73 902.0 3000.2 161.2

Table 2: Evaluation of ViComTe (mined from VG) and Wikipedia-mined color datasets by comparing with the
human-annotated dataset CoDa. Reported are the average Spearman correlation (×100), number of common
subjects, average number of occurrences of the common subjects, average number of occurrences of subjects with
top- and bottom-5 Spearman correlations, and the percentage of top-1 attributes being matched for the single group.
ViComTe has higher correlations with human annotations.

3.3 Templates

In order to elicit model response and extract target
objects and distributions from text, we manually
design a set of templates for each relation. There
are 7 templates for color, shape, and material each,
8 for size, and 4 for visual co-occurrence. See
Table 1 for example templates.

3.4 Wikipedia Data

In order to compare text-based and visually-
grounded data, we mine the color, shape, and ma-
terial datasets from Wikipedia data, which is typ-
ically used in model pretraining. To mine these
text-based datasets, we combine the sets of sub-
jects in VG, take the manual list of attributes as
objects again, and extract (subject, object) pairs if
the pair matches any of the pre-defined templates.
In Section 3.5 we will show the advantages of the
VG-mined dataset over this text-based dataset.

3.5 Dataset Evaluation

To ensure the validity of ViComTe, we compare
our color dataset with the human-annotated CoDa
dataset (Paik et al., 2021), which we assume is
close to real-world color distributions and has mini-
mal reporting bias. We see a reasonably strong cor-
relation with CoDa, indicating that the ViComTe
dataset is a good and cost-effective approximation
to human annotations.

Metrics We report the Spearman’s rank-order
correlation between the two distributions in com-
parison, averaged across all subjects. The Spear-
man correlation is used instead of the Pearson cor-
relation since for our purpose the rank of the object
distributions is more important than the exact val-
ues, which may change due to data variability. The
top-1 accuracy (Acc@1) is the percentage of the
objects with the highest probability in the source
distributions matching those in the target distribu-
tions. These two metrics are also used in later
sections when evaluating model distributions.

Analysis Table 2 shows the detailed results of the
evaluation of the ViComTe and Wikipedia color
datasets by comparing with the human-annotated
dataset, CoDa. We can see that ViComTe has much
higher Spearman correlation with CoDa, as well as
substantially higher top-1 accuracy for the SINGLE

group. The correlation is expected to be low for the
ANY group, because objects in the ANY group can
have many possible colors.

Reporting bias is present in both datasets, as the
average number of occurrences of SINGLE group
subjects are much fewer than that of the MULTI

and ANY group subjects. Counter-intuitively, for
ViComTe, the highly-correlated SINGLE group sub-
jects have fewer average occurrences than the ones
with low correlations. This is contrary to our ex-
pectation that more frequent objects would better



reflect the human-perceived distribution and can
be explained by SINGLE subjects being easier to
represent even without a large amount of data.

One example where the Wikipedia distribution
diverges from the CoDa distribution is “penguin”,
whose most likely color in CoDa is black, fol-
lowed by white and gray; however, its top color
in Wikipedia is blue, because “blue penguin” is a
specific species with an entry in Wikipedia, even if
it is not as common as black and white penguins.
One example where the VG distributions diverge
from CoDa is “mouse”, because in VG, most oc-
currences of “mouse” are computer mice, which
are most commonly black, whereas when asked
about the word “mouse”, human annotators typi-
cally think about the animal, so that the most likely
colors in CoDa are white and gray.4

3.6 Dataset splits

Each of the color, shape, material, size, and co-
occurrence datasets is split into 80% training data
and 20% test data. All evaluation metrics are re-
ported on the test set. The training set is used for
the logistic regression and the soft prompt tuning
algorithm (Section 4.2).

4 Probing Visual Commonsense

4.1 Models

We examine 7 pretrained transformer-based models
and 2 variations of them, trained on a variety of
data. BERT (Devlin et al., 2019), ALBERT (Lan
et al., 2020), and RoBERTa (Liu et al., 2019) are
trained on text only using a masked language mod-
eling objective (MLM). Oscar (Li et al., 2020) is
a vision-language model based on the BERT ar-
chitecture, trained with an combined MLM and
contrastive loss on text-image pairs. VisualBERT
(Li et al., 2019) is another vision-language model
based on BERT that learns joint representation of
images and text. Tan and Bansal (2020) introduce
the “vokenization” method, which aligns language
tokens to their related images, mitigating the short-
comings of models trained on visually-grounded
datasets in text-only tasks. Since our task is purely
text-based, we also experiment with a pretrained
vokenization model (BERT + VLM on Wiki). Fi-
nally, we use representations from CLIP (ViT-B/32)
(Radford et al., 2021), which is trained with a con-
trastive image-caption matching loss.

4Additional examples are provided in Appendix A.3.

Distilled Oscar As our experiments involve ex-
clusively textual inputs, we develop a knowledge-
distilled version of Oscar (“Distilled”) which cor-
rects for the lack of image input in our task. Knowl-
edge distillation (Hinton et al., 2015; Sanh et al.,
2019) is the process of transferring knowledge from
one model to another, where the student model is
trained to produce the output of the teacher model.
Here, we use Oscar as the teacher and BERT as
the student. The training data is part of the Os-
car pretraining corpus: COCO (Lin et al., 2014),
Flickr30k (Young et al., 2014), and GQA (Hud-
son and Manning, 2019), and the Distilled Oscar
model has access to the text data only. We use the
Kullback-Leibler loss to measure the divergence
between the output logits of BERT and Oscar, and
optimize the pretrained BERT on that loss to match
the outputs of Oscar. Configurable parameters are
set the same as for Oscar pretraining.

CaptionBERT Since VL models are trained
largely on caption data, it could be that the differ-
ences between a text-only model and a VL model
come not from a difference in modalities – text vs.
images and text – but from a difference in domain –
webtext vs. image captions. In order to disentangle
the effects of the domain difference from those of
visual inputs, we train a BERT model from scratch
(“CaptionBERT”) on Oscar’s caption-based text
data (the same data as for the Distilled model). If
CaptionBERT, which does not have exposure to
visual inputs, performs better than BERT and simi-
larly to VL models (which are trained with visual
inputs), it would suggest that the training domain
matters more than the modality. If, on the other
hand, CaptionBERT performs worse than VL mod-
els, it would highlight the importance of modality.

4.2 Evaluation Methods

We compare the visual commonsense abilities
of pretrained unimodal and multimodal models.
Given a list of prompts and a subject word, each
model outputs the distribution of the target word.
Following Paik et al. (2021), we apply zero-shot
probes to models that are trained on a language
modeling objective, and conduct representation
probes for those that are not. We report the predic-
tion accuracy and the Spearman correlation of the
output distribution with the true distribution.

We use models trained with an MLM objective
(BERT, Distilled, etc) directly for zero-shot predic-



tion of masked tokens.5 For Oscar we add a word-
prediction head on top of it. The results across
templates are aggregated in two modes. In the
“best template” mode, for each example, the high-
est Spearman correlation among all templates is
reported, and the top-1 result is regarded as correct
if the true target object is the same as the top-1
result of any of the templates. In the “average tem-
plate” mode, the output distribution is the mean of
the distributions across all templates.

Since CLIP is not trained on a token-prediction
objective, we implement logistic regression on top
of the frozen encoder output, to predict the target
attribute or object. The input is each of the tem-
plates with the subject [X] filled with an input in
the dataset. Like Paik et al. (2021), to give the
model ample chance of success, we take the tem-
plate that results in the best test accuracy score,
report that accuracy and the Spearman correlation
associated with that template. For the classifica-
tion head, we use the Scikit-Learn implementation
of Logistic Regression (random_state=0, C=0.316,
max_iter=2000) (Pedregosa et al., 2011).

Soft prompt tuning In order to overcome the
limitation of self-designed prompts, we incorporate
prompt tuning technique that learns soft prompts
by gradient descent, from Qin and Eisner (2021).6

The algorithm minimizes the log loss:∑
(x,y)∈Er

− log
∑
t∈Tr

p(y|t, x)

for a set of example pairs Er and template set Tr.

4.3 Size Evaluation

The size dataset differs from the other datasets in
that we use relative sizes (X is larger/smaller than
Y), as absolute size information is hard to obtain.
Thus, we use two evaluation strategies for size.

Rank partition First, as in the previous predic-
tion task, given a template such as “[X] is larger
than [Y]” and an object [X], we ask the model to
predict the distribution of [Y], taking only the dis-
tribution D of nouns in the size dataset. For the
current object [X], we take the nouns in size cat-
egories that are smaller than the category of [X]
(Nsm), and those that are in larger categories (Nlg).

5For the target words that contain more than one subword
tokens, we use the first token as the target.

6https://github.com/hiaoxui/
soft-prompts

Let the length of Nsm be m and the length of Nlg

be n. Then for the “larger” templates, we compute
the average percentage of overlap between the top
n objects in D and Nlg and that between the bot-
tom m objects in D and and Nsm. For the “smaller”
templates, the “top” and “bottom” are reversed.

Adjective projection The second approach fol-
lows that of van Paridon et al. (2021), which
projects the word to be evaluated onto an adjective
scale. In this case, we compute the word embed-
dings of the adjectives “small” and “large” and the
nouns from models, so the scale is

−−→
large − −−−→

small
and the projection is calculated by cosine similar-
ity. For instance, for the example noun “bear”, the
projection score is given by:

cos_sim(
−−→
large −−−−→

small,
−−→
bear)

With good word embeddings, larger nouns are ex-
pected to have higher projection scores. The va-
lidity of the adjective scales from word representa-
tions is shown by Kim and de Marneffe (2013).

4.4 Measuring Model Reporting Bias

We measure the reporting bias of our models by
comparing model performance on datasets with
different levels of reporting bias and on the SINGLE,
MULTI, ANY groups of the ViComTe dataset.

We assume that CoDa contains no reporting bias,
in which case we can interpret Table 2 as showing
that ViComTe contains a relatively small amount of
it, and Wikipedia contains a relatively large amount.
Thus, a larger correlation of model outputs with
ViComTe and a smaller one with Wikipedia would
indicate less model reporting bias.

Also, since the SINGLE group subjects are those
whose attribute distribution concentrates on a sin-
gle attribute, these subject-attribute pairs are less
likely to be reported in text corpora or even image
annotations. Therefore, lower model correlation on
the SINGLE group than the MULTI and the ANY

groups would be a sign of model reporting bias.

5 Results

The experimental results show that multimodal
models outperform text-only models, suggesting
their advantage in capturing visual commonsense.
However, all models are subject to the influence of
reporting bias, as they correlate better with the dis-
tributions from Wikipedia than those from CoDa

https://github.com/hiaoxui/soft-prompts
https://github.com/hiaoxui/soft-prompts


Color Shape Material Cooccur

Tune Model Spearman ρ Acc@1 Spearman ρ Acc@1 Spearman ρ Acc@1 Spearman ρ
BERTb 26.1 ± 31.0* 11.7 38.7 ± 15.1 6.7 33.7 ± 19.6 30.0 4.7 ± 3.5
Oscarb 26.4 ± 30.7* 24.0 45.9 ± 14.1 53.0 38.6 ± 17.5 43.3 9.8 ± 6.9

No Distilled 34.8 ± 27.3 27.5 46.2 ± 14.2 37.3 36.1 ± 20.2 37.7 10.1 ± 7.5
BERTl 37.6 ± 30.3 30.3 42.7 ± 17.1 28.4 36.6 ± 19.1 35.7 5.2 ± 3.8
Oscarl 31.8 ± 28.3 17.1 40.0 ± 16.9 38.1 39.2 ± 17.1 40.5 9.7 ± 6.7
BERTb 48.0 ± 22.9 47.4 49.2 ± 12.7* 76.1 41.2 ± 15.3 45.2 11.3 ± 7.9
Oscarb 58.1 ± 21.1 67.9 50.4 ± 11.5* 81.3 45.3 ± 14.3 66.2 12.7 ± 9.3

Yes Distilled 57.1 ± 21.9 64.6 50.5 ± 12.3 82.8 45.4 ± 14.8 66.2 13.0 ± 10.1
BERTl 37.6 ± 30.3 30.3 49.2 ± 12.6 78.4 43.7 ± 15.1 53.3 11.4 ± 8.0
Oscarl 57.6 ± 21.6 65.3 50.1 ± 12.2 81.3 45.2 ± 15.2 65.8 12.8 ± 9.6

Table 3: Spearman correlation and top-1 accuracy (both × 100) of zero shot probing, before and after soft prompt
tuning (“N” and “Y” for the “Tune” column). This is the “average template” case where the output distribution is
the mean of distributions across all templates. The Spearman correlation reported is the mean across all subjects ±
standard deviation, comparing the output distribution and the Visual Genome distribution. The subscripts b and l
indicate the size of the model, and Distilled is the BERT model after distilling from Oscar. Asterisk indicates where
there is no significant difference between BERTb and Oscarb (t-test p-value > 0.05).

and ViComTe. Prompt tuning and knowledge dis-
tillation substantially enhance model performance,
while increasing model size does not.

5.1 Results with MLM Objective

Color, Shape, Material The resulting model per-
formance for the “average template” mode is shown
in Table 3. Prompt tuning is done in this mode
only. Note that because the top-1 accuracy is
taken among all possible classes of each relation,
it should be interpreted together with the number
of classes (Table 1).

We can see from Table 3 that Oscar does better
than BERT in almost all cases. Significant differ-
ence between Oscar (base) and BERT (base) is seen
in most cases. Also, after soft prompt tuning, both
the Spearman correlation and the accuracy substan-
tially improved. Although there is considerable
variation of the Spearman correlations, we find con-
sistent improvement per example with both prompt
tuning and multimodal pretraining (Appendix A.2).

Table 3 also shows that knowledge distillation
helps improve the performance of BERT in all
cases, and the distilled model can sometimes even
outperform the teacher model, Oscar. Moreover,
the large version of each model does not always
outperform its base counterpart, suggesting that in-
creasing the size of the model does not enhance the
model’s ability to understand visual commonsense.
Instead, training with visually grounded data does.

Fig. 2 illustrates the Spearman correlations of
different models with the color distributions from
CoDa, ViComTe and Wikipedia, under the “best
template” mode.7 All models correlate moderately

7Appendix A.2 contains further details.
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Figure 2: Spearman correlations (×100) for color, under
the “best template” case, for base models on CoDa, VG,
and Wikipedia. While all models correlate the best with
Wikipedia, BERT is the most biased.

with all three datasets, with the highest correlations
to Wikipedia, indicating text-based reporting bias
in all model types. BERT has the largest correla-
tion gap between Wikipedia and CoDa, whereas
the visually-grounded models have smaller gaps,
indicating less reporting bias in VL models.

Visual Co-occurrence Table 3 also contains the
results on visual co-occurrence before and after
prompt tuning. Only the Spearman correlations are
reported, because the top-1 accuracy is meaningless
due to the large number of possible co-occurring
objects with any noun.

Before prompt tuning, BERT has small Spear-
man correlations, suggesting that it may contain
little knowledge about the visual co-occurrence
relationship. Oscar demonstrates more such knowl-
edge under the zero-shot setting. After prompt
tuning, all model performances improve.



Color Shape Material Co-occur

Model Spearman ρ Acc@1 Spearman ρ Acc@1 Spearman ρ Acc@1 Spearman ρ
BERTb 48.0 ± 21.6 51.4 53.2 ± 13.4 78.4 41.3 ± 15.6 51.1 30.2 ± 11.7
Oscarb 52.5 ± 20.8 63.1 54.4 ± 14.8 80.6 43.2 ± 14.4 63.0 31.2 ± 12.1
CLIP 51.9 ± 20.8 63.8 54.5 ± 13.9 79.9 42.9 ± 15.0 63.0 31.3 ± 11.6

Table 4: Spearman correlation and top-1 accuracy (both × 100) with a logistic regression head on model encoder
outputs. Oscar and CLIP have comparable performance, both slightly better than BERT.

Color Shape Material

Group Model Spearman ρ Acc@1 Spearman ρ Acc@1 Spearman ρ Acc@1
SINGLE BERTb 36.8 ± 19.0 54.8 48.3 ± 12.3 83.0 35.9 ± 14.3 51.6

Oscarb 39.9 ± 15.3 60.3 49.3 ± 11.6 87.0 38.5 ± 12.8 65.1
CLIP 41.0 ± 15.2 66.3 49.2 ± 14.5 90.0 38.1 ± 12.8 64.1

MULTI BERTb 49.7 ± 21.2 42.3 65.9 ± 16.9 59.5 53.8 ± 16.2 51.3
Oscarb 51.2 ± 19.9 50.6 65.2 ± 17.4 64.9 56.2 ± 13.0 53.9
CLIP 50.5 ± 21.1 55.4 64.6 ± 18.9 67.6 56.2 ± 14.3 59.2

ANY BERTb 56.5 ± 19.5 46.1 100.0 ± 0 – 58.7 ± 15.2 35.7
Oscarb 62.5 ± 18.9 58.4 100.0 ± 0 – 60.4 ± 17.1 35.7
CLIP 60.3 ± 18.2 55.8 100.0 ± 0 – 63.5 ± 20.5 21.4

Table 5: Per-group Spearman correlation and top-1 accuracy (both × 100) with a logistic regression head on model
encoder outputs. Note that the ANY group for shape only has one example, so the accuracy is less meaningful and is
omitted. All models have higher correlations in the MULTI and ANY groups than the SINGLE group, which is a sign
of reporting bias.

5.2 Results with Classification Head
Table 4 shows the results of BERT, CLIP, and Oscar
when topped with a classification head. We observe
that Oscar and CLIP achieve similar performance
and both outperform BERT. Note that, while Visual
Genome is part of Oscar’s pretraining corpus and
one might suspect that that gives it an advantage,
CLIP is trained on a large corpus from web search
that is unrelated to Visual Genome. Therefore, we
can conclude that multimodal models pretrained on
both images and text outperform text-only models.

Table 5 breaks down the results in Table 4 into
three subject groups. Oscar and CLIP outperform
BERT in almost all cases. The top-1 accuracy is
higher for the SINGLE group than for the MULTI

and ANY groups, perhaps because the SINGLE

group subjects have only one most likely target
attribute, which may be easier to predict. Note
that the Spearman correlations for all three models
become higher from group SINGLE to MULTI to
ANY. Paik et al. (2021) argue that higher corre-
lation for the ANY and MULTI groups is a sign
of model reporting bias, as objects in those two
groups are more often reported. Thus, the results
here indicate that reporting bias is still present in
multimodal models.

5.3 Results: Size Relation
Table 6 shows results of the rank partition method
(Section 4.3), before and after prompt tuning. Sur-

Tune Model Larger Smaller
N BERTb 80.0 67.1

Oscarb 79.5 67.7
Distilled 84.6 60.7
BERTl 80.9 66.1
Oscarl 79.4 70.7

Y BERTb 69.9 55.7
Oscarb 70.6 57.3
Distilled 70.6 57.3
BERTl 70.0 55.7
Oscarl 70.6 57.3

Table 6: Percent correct for size relation, for “larger”
and “smaller” templates, before and after soft prompt
tuning. Interestingly, tuning does not help with size.

prisingly, prompt tuning does not help in this case.
Moreover, the performance for the “larger” tem-
plates is higher than that of the “smaller” templates,
suggesting that the models contain inherent prefer-
ence towards the “larger” templates.

Fig. 3 shows the results of the adjective projec-
tion method.8 For BERT and Oscar, we use the
average embedding of the subword tokens of the
nouns projected onto that of the adjectives “large”
and “small”. For CLIP, we take the textual encoder
outputs as the embeddings, resulting in a different
score range from that of BERT and Oscar. The
results show the following trend: larger objects are
projected onto the “large” end of the spectrum, al-
though the trend is sometimes broken towards the
“huge” end. This may be due to the “huge” group

8Appendix A.2 contains per-object plot for BERT vs Oscar.
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Figure 3: The size projection scores, where the x-axis
indicates the object groups. Outliers are omitted. All
three models perform reasonably well, as larger objects
have higher cosine similarities in general.

including nouns such as “pool” and “house” which
can be modified by a relative size indicator “small”.

5.4 Analysis and Limitations

In Table 3, the accuracy of BERT for shape is par-
ticularly low (only 6.7%), despite that shape has
only 12 classes. We hypothesize that this is due
to reporting bias on shape in the text corpora that
BERT is trained on. This hypothesis is supported
by mining sentences from Wikipedia that contain
(noun, attribute) pairs, where we see that the rela-
tion shape has fewer number of occurrences than
material and color (Appendix A.3).

We also investigate whether the advantage of
the visually-grounded models over pure-language
models comes from the domain difference between
web corpora and image captions, or the presence of
actual visual input. Although its teacher is trained
with visual inputs, the Distilled model is trained
only on captions data and its performance matches
that of Oscar, so we hypothesize that grounded
training data enhance models’ ability to capture
visual commonsense. The CaptionBERT results
support the hypothesis in favor of domain differ-
ence, since it performs better than BERT in both
CoDa and VG (Fig. 2). Nevertheless, the visual
inputs also have an effect, as Oscar has a higher
correlation than CaptionBERT on CoDa. Thus, it
seems that both domain and modality affect the
ultimate model performance.

Finally, although multimodal models show im-
provement on the task, sometimes the improvement
is not significant and the resulting correlations are
still weak. Further work is needed to enhance the
visual commonsense abilities of the models and

mitigate reporting bias, and our datasets can serve
as an evaluation method.

6 Conclusion

In this paper, we probe knowledge about visu-
ally salient properties from pretrained neural net-
works. We automatically extract dataset of five
visual relations: color, shape, material, size, and co-
occurrence, and show that our ViComTe dataset has
a much higher correlation with human perception
data for color than data mined from Wikipedia. We
then apply several probing techniques and discover
that visually-supervised models perform better than
pure language models, which indicates that they
can better capture such visual properties. Distilling
the knowledge from a visually-supervised model
into a pure language model results in comparable
performance with the teacher model.

We also observe less reporting bias in both
visually-grounded text (VG-mined datasets) than
Wikipedia text and visually-grounded models
(Oscar, DistilledOscar, VisualBERT, and CLIP)
than pure language models. However, visually-
grounded models are still subject to the influence
of reporting bias, as seen in the per-group analysis,
where both types of models perform better for the
MULTI group than the SINGLE group.
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A Appendix

A.1 List of Objects

Table 7 shows the list of all possible attributes for
relations color, shape, and material. Table 8 shows
the list of objects in the five categories of relation
size. Visual co-ocurrence has a large number of
objects that are not listed here for space reasons.

Relation Classes
Color black, blue (aqua, azure, cyan, indigo, navy),

brown (khaki, tan), gray (grey),
green (turquoise), orange (amber),
pink (magenta), purple (lavender, violet),
red (burgundy, crimson, maroon, scarlet),
silver, white (beige),
yellow (blond, gold, golden)

Shape cross, heart, octagon, oval,
polygon (heptagon, hexagon, pentagon),
rectangle, rhombus (diamond), round (circle),
semicircle, square, star, triangle

Material bronze (copper), ceramic, cloth, concrete,
cotton, denim, glass, gold, iron, jade,
leather, metal, paper, plastic, rubber,
stone (cobblestone, slate), tin (pewter),
wood (wooden)

Table 7: List of all objects for relation color, shape, and
material. Inside the parentheses are the attributes that
are grouped into the object class.

Size Objects
Tiny ant, leaf, earring, candle, lip, ear, eye,

nose, pebble, shrimp, pendant, spoon, dirt,
pill, bee

Small bird, tomato, pizza, purse, bowl, cup,
mug, tape, plate, potato, bottle, faucet,
pot, knob, dish, book, laptop, menu,
flower, pillow, clock, teapot, lobster, duck,
balloon, helmet, hand, face, lemon, microphone,
foot, towel, shoe

Medium human, door, dog, cat, window, lamp,
chair, tire, tv, table, desk, sink, guitar,
bicycle, umbrella, printer, scooter, pumpkin,
monitor, bag, coat, vase, deer, horse, kite

Large elephant, car, tree, suv, pillar, stairway,
bed, minivan, fireplace, bus, boat, cheetah,
wall, balcony, bear, lion

Huge building, airplane, plane, clocktower, tower, earth,
pool, mountain, sky, road, house, hotel,
tank, town, city, dinasour, whale, school

Table 8: List of objects in five size categories.

A.2 Additional Probing

Best template mode Table 9 contains zero-shot
results under the “best template” mode, for BERT
(base), Oscar (base), BERT distilled from Oscar,
RoBERTa (base), ALBERT (base), Vokenization,
and VisualBERT (base). These results demonstrate

similar trends as the ones in the “average template”
mode.
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Figure 4: Spearman correlation per object class for
BERT and CLIP with the logistic regression head, for
color, shape, and material. The error margins are the
standard deviations.

Per-object analysis Fig. 4 illustrates the fine-
grained Spearman correlation ± standard deviation
per object group for BERT and CLIP.
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Figure 5: The size projection scores from BERT and Os-
car, where each point is one object. Cosine similarities
are correlated between Oscar and BERT.

Size per-object Fig. 5 shows how the per-object
projection scores on the size spectrum from BERT
and Oscar are correlated.



Color Shape Material Cooccur

Model Spearman ρ Acc@1 Spearman ρ Acc@1 Spearman ρ Acc@1 Spearman ρ
BERTb 47.5 ± 21.6 41.8 48.2 ± 12.0 64.3 41.9 ± 15.4 55.3 6.1 ± 4.0
Oscarb 50.0 ± 19.8 59.8 52.7 ± 10.0 89.3 46.5 ± 13.7 74.6 10.1 ± 7.2
Distilled 53.7 ± 21.3 57.7 51.4 ± 11.1 74.3 46.0 ± 13.6 74.6 10.4 ± 7.8
RoBERTab 44.8 ± 19.8 41.6 45.4 ± 12.4 69.3 33.0 ± 15.5 39.1 1.1 ± 1.4
ALBERTb 20.2 ± 24.8 13.4 29.8 ± 15.7 13.6 25.0 ± 17.9 27.8 6.6 ± 5.1
Vokenization 47.6 ± 20.9 51.6 49.8 ± 13.1 72.9 39.4 ± 16.0 52.5 6.0 ± 3.7
VisualBERT 52.4 ± 19.8 65.3 48.7 ± 12.9 66.4 43.4 ± 15.5 59.5 10.7 ± 8.1
CaptionBERT 55.8 ± 20.6 70.0 51.3 ± 11.8 91.4 42.6 ± 15.4 54.6 10.2 ± 7.5

Table 9: Spearman correlation and top-1 accuracy (both × 100) of zero shot probing. This is the “best template”
case discussed in Section 4.1.

Per-Subject Comparison Fig. 6 and Fig. 7 show
how the Spearman correlations of 10 individual
subjects improve after soft prompt tuning and after
multimodal pretraining. Consistent improvement
can be seen in color, material, and cooccurrence.
Although we report average Spearman correlations
in Table 3 and there are large standard deviations,
here we show that when improvement is observed
collectively, it is also consistent across subjects.
With shape, the improvement is less obvious (45.9
to 50.4 for prompt tuning and 49.2 to 50.4 for mul-
timodal pretraining).

A.3 Error Analysis
Data The three subjects with the highest and low-
est Spearman correlation are shown in Fig. 8 and
Fig. 9.

Wikipedia Table 10 shows the number of (noun,
attribute) pairs of the three relation types in
Wikipedia. Shape has fewer occurrences than ma-
terial and color.

Color Shape Material
Total 331480 195921 307879
Avg 12 27623.3 16326.8 24634.7

Table 10: First row is the total number of occurrences
of (noun, attribute) pairs for relations shape, material,
and color in Wikipedia. Second row is the average num-
ber of occurrences across the top 12 attributes for each
relation. Shape has the fewest number of occurrences.

Model Table 11 shows the errors made by BERT
and Oscar in the “average template” mode before
prompt tuning. Overall, subjects with low correla-
tion are those that are less often reported in Visual
Genome as well as in textual data.

A.4 Resources
BERT, RoBERTa, ALBERT We use the Hug-
gingface implementations of BERT, RoBERTa, and

ALBERT.

Oscar See the GitHub repository for the code
and pretrained Oscar: https://github.com/
microsoft/Oscar.

CLIP We use the CLIP model released by
OpenAI: https://github.com/openai/
CLIP.

Vokenization See the GitHub repository for
the pretrained model: https://github.com/
airsplay/vokenization.

https://github.com/microsoft/Oscar
https://github.com/microsoft/Oscar
https://github.com/openai/CLIP
https://github.com/openai/CLIP
https://github.com/airsplay/vokenization
https://github.com/airsplay/vokenization
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Figure 6: Spearman correlation of 10 subjects for each relation type before and after soft prompt tuning, with Oscar
(base). Almost all individual subject has increased correlation after prompt tuning, except in relation shape.
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Figure 7: Spearman correlation of 10 subjects for each relation type with BERT (base) and Oscar (base), after soft
prompt tuning. Almost all individual subject has higher correlation with Oscar than with BERT, except in relation
shape.

High Corr Subjs Low Corr Subjs

Relation BERTb Oscarb BERTb Oscarb
Color lace, jacket, design balloon, jacket, apple flush, water faucet, muffler hinge, leg, slack
Shape mirror, vase, container chair, pizza, vase connector, log, knot banana, toast, phone
Material wall, tray, board fence, wall, shelf sheep, fabric, patch elephant, rug, patch

Table 11: Three subjects each with high and low correlations for relations color, shape, and material.
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Figure 8: VG vs. CoDa distribution of 3 subjects with
the lowest and highest correlation, ordered by probabil-
ity of colors in CoDa.
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Figure 9: Wikipedia vs. CoDa distribution of 3 subjects
with the lowest and highest correlation, ordered by prob-
ability of colors in CoDa.


