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Abstract

Neural language models hold great promise as tools for computer-aided
programming, but questions remain over their reliability and the conse-
quences of overreliance. In the domain of natural language, prior work has
revealed these models can be sensitive to naturally-occurring variance and
malfunction in unpredictable ways. A more methodical examination is nec-
essary to understand their behavior on programming-related tasks. In this
work, we develop a methodology for systematically evaluating neural code
completion models using common source code transformations. We mea-
sure the distributional shift induced by applying those transformations to
a dataset of handwritten code fragments on four pretrained models, which
exhibit varying degrees of robustness under transformation. Preliminary
results from those experiments and observations from a qualitative analysis
suggest that while these models are promising, they should not be relied
upon uncritically. Our analysis provides insights into the strengths and
weaknesses of different models, and serves as a foundation for future work
towards improving the accuracy and robustness of neural code completion.

1 Introduction

Neural language models (NLMs) play an increasingly synergistic role in software engineering,
and are featured prominently in recent work on neural code completion (1). Code completion
is the task of automatically providing a list of potential completions for missing tokens in
source code. By training on a large corpus of source code, NLMs are capable of learning
syntax (3; 19), stylistic elements like coding conventions (13) as well as more complex
patterns like documentation (8). The same pretrained model can be applied to a variety of
programming tasks, such as code summarization and bug detection, by strategically placing
the holes and conditioning the model’s predictions on an appropriate sample space.
However, there are risks associated with using NLMs (7). In the natural language domain,
these models can be sensitive to stylistic variation, which is difficult to detect a priori and
may lull users into a false sense of complacency. Likewise, applying NLMs in an unfamil-
iar coding context may result in predictions which are misaligned with developer intent,
especially when the surrounding style, idioms, or APIs depart from the model’s original
training set. This phenomenon, called ‘domain mismatch’ or ‘overfitting’, is known to affect
statistical learning writ large and the specific factors responsible for its occurrence in source
code can be identified using domain-specific tests such as the ones we propose herein.
Inspired by recent work investigating the robustness of NLMs in both natural language (21)
and source code (14), we develop a methodology for systematically evaluating neural code
completion models using common source code transformations (SCTs). As a demonstration,
we define a set of semantics-preserving transformations, and measure the distributional shift
induced by applying them to a large collection of code fragments on four pretrained models.
We compare the same models and transformations across three downstream tasks, i.e., code
completion, document synthesis, and variable misuse detection. Our results provide insights
into the strengths and weaknesses of those models, and serve as a foundation for future work
towards improving the accuracy and robustness of neural code completion via retraining.
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2 Related Work

Recent work in neural language modeling has shown impressive progress in long-range
sequence prediction, starting with Vaswani et al.’s self-attention (20) mechanism, to the
BERT (4) and RoBERTa (10) architectures, now widely available in neural code completion
models such as CodeBERT (5) and GraphCodeBERT (6). Though impressive, these models
have known limitations, such as their inability to represent long-term dependencies and
their sensitivity to noise in the input space (18). Similar studies have been undertaken to
characterize the robustness of pretrained language models of source code (7).
Our work is complementary to these studies in that we focus on neural language models
and utilize structured program transformations as a kind of litmus test for detecting domain
mismatch. We probe the models’ understanding of source code using masked language
modeling (MLM) (16), constrained decoding to generate contextually-relevant text, and a
suite of semantically-preserving SCTs to measure the shift in prediction accuracy across three
downstream tasks. Each of these tasks may be viewed as a special case of sketch-based
program synthesis (17). Our approach also shares connections to automated software
testing, self-supervised learning, and natural language inference as we describe below.
First conceived in the software testing literature, metamorphic testing (2) is a concept
known in machine learning as self-supervision. When labels are scarce but invariant to
certain groups of transformation or metamorphic relations, given a finite labeled dataset, one
can generate an effectively limitless quantity of synthetic data by selecting and recombining
those transformations in a systematic manner. For example, computer vision models should
be invariant to shift, scale and rotation: given a small dataset of labeled images, we can
apply these transformations to generate much larger training or validation set. Could similar
kinds of transformations exist for code? One promising avenue is to consider term-rewriting.
Due to the precise distinction between syntax and semantics in programming languages,
it is possible to generate semantically-admissible perturbations without requiring a learned
similarity metric (e.g., word or sentence embedding). Using a simple term rewriting
system with a context-sensitive grammar allows us to reason about plausible variations to
source code. This idea is partly inspired by Josh Rule’s work, “The Child as a Hacker” (15),
whose thesis resonates with the authors’ own experience learning to program. Coupled
with a neural controller and some kind of interactive debugging mechanism, we believe this
approach offers a compelling alternative to imitation learning (à la supervision on a gigantic
corpus of text), and more faithfully resembles the way humans learn to write code.
Similar research has been undertaken (22; 11) to characterize the formal grammars which
neural language models can recognize in theory. Our work builds on this literature from a
practical standpoint: we investigate how neural code completion models respond to plausible
cosmetic variation in real-world code fragments. Though rudimentary, our work can be seen
as an early attempt to study how neural language models behave in realistic programming
scenarios and lays the foundation for future work towards bridging the gap between natural
and programming language understanding. By partitioning the Chomsky hierarchy into
fine-grained semantic categories, we hope to precisely characterize the expressive power of
neural code completion models via their understanding of programming language concepts.
Towards this end, we incorporate several ideas from programming language theory to
probe the models’ understanding of source code. For example, we leverage the concept of
contextual equivalence (12) to justify the validity of our SCTs. We borrow the concept
of capture-avoiding substitution from λ-calculus to prevent name collision under variable
renaming. We adapt ideas from flow analysis to reorder statements which share no dataflow
dependencies. Taken together, these ideas provide a principled way to reason about the
correctness of our transformations and their impact on the underlying program’s semantics.
We believe that ideas from PL theory have been largely overlooked by the ML for code
community and represent a significant opportunity for future research on code completion.
Last but not least, we tap into work on natural language inference and question-
answering (9). This work contains a rich set of ideas for testing program comprehension in
neural language models and may be useful for bug detection and automatic program repair.
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3 Background

The same program can be written in many possible ways. Often, those variants contain
superficial changes to the source code, but do not meaningfully alter the behavior of the
underlying program. No matter the context, neural language models should not become
suddenly confused when presented with a cosmetically altered program: a model trained on
a language semantically invariant to certain rewrites should itself exhibit invariance under
those same rewrites. However this property may not necessarily hold.
As documented by prior literature, neural language models can be prone to semantic drift
that is not supported by the underlying language semantics. The question becomes, how
do we estimate the robustness of those models to rewrites which are known a priori to be
cosmetic in nature? Our work addresses this question by identifying four classes of cosmetic
rewrites, applies them to a dataset of Java source code, and measures the relative drift of
four SoTA pretrained language models across three separate code completion tasks.
Our work identifies three high-level categories of source code transformations:

1. Syntactic, which may produce a valid or invalid parse tree. For example: simple
refactoring, typos, imbalanced parentheses, unparsable code.

2. Semantic, which may either preserve or alter the program’s meaning. For example:
functional code clones, dis-equal constant or expression rewriting.

3. Cosmetic, which is strictly superficial. For example: variable renaming, indepen-
dent statement reordering, extra documentation, dead code, or logging.

In contrast with syntactic or semantic transformations, cosmetic transformations are seman-
tically identical, syntactically valid and only superficially alter syntactic structure. We show
that even in this highly restrictive space of transformations, source code has many degrees
of freedom: two authors implementing the same function may select different variable names
or other cosmetic features, such as whitespaces, diagnostic statements or comments. Yet
our results suggest that even in this narrow space of transformations, SoTA neural code
completion models can be surprisingly sensitive to noise in the cosmetic domain.

4 Method

Our goal is to measure the robustness of SoTA neural code completion models on natural
code fragments exposed to various cosmetic transformations. Hence, we construct one SCT
from each of the following four categories of cosmetic changes:

1. Synonym renaming: substitutes variable names with synonyms.

2. Extraneous code: sprinkles non-essential statements into code.

3. Statement reordering: reorders dataflow independent statements.

4. Permute argument order: scrambles user-defined method arguments.

Put simply, we use the following rewriting criteria to implement our SCTs:

1. The RenameTokens SCT substitutes each CamelCase subword in the most fre-
quent user-defined token with a uniformly-sampled lemma from its WordNet hy-
pernym ego graph up to three hops away, representing an alternately-chosen (e.g.,
variable or function) name of similar meaning.

2. The AddExtraLogging SCT adds intermittent print statements in linear chains
of code, with a single argument synthesized by the code completion model for added
variation. More generally, this can be any superfluous statement which does not
change the runtime semantics.
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3. The SwapIndepLines SCT swaps adjacent lines of equal scope and indentation
which share no tokens in common. Although it may introduce semantic drift in
some code fragments, this SCT ideally represents an alternate topsort on the DFG.

4. The PermuteArguments SCT shuffles the arguments of a user-defined function of
dyadic or higher-arity, representing an alternate parameter order of a project-local
function (i.e., defined outside the standard library).

For a more technical description of our rewrite semantics, please refer to Appendix A.
Three tasks are considered. Each task uses a custom mask generator, allowing us to simulate
multiple downstream tasks with the same test harness, only modifying the mask locations
and admissible completions. Each task is scored with a task-appropriate metric. For single-
token completion, we compare the top-1 precision across the full vocabulary and all masks:

Precision@1 =
1

|Tokens|
∑

tok∈Tokens
Model(Code { tok 7→ <mask> }) = Code

For document synthesis, we use a variant of the ROUGE score measuring synonym overlap:

ROUGE-synonym = ∆Syn(Modelk(Code { ^//comment 7→ ^//<mask> }), ^//comment)

where Modelk denotes autoregressively sampling k consecutive tokens, and ∆Syn denotes
the unigram synonym overlap between the original and synthetic comments.
For question answering, i.e., variable misuse, we use mean reciprocal rank (MRR) with a
set of multiple-choice distractors sampled uniformly from the surrounding context:

MRR =
1

|Tokens|
∑

tok∈Tokens
Rank

(
tok,Model(Code { tok 7→ <mask> },hints)

)−1

For code completion, we uniformly sample and mask N individual tokens in both the original
and transformed code fragment for evaluation. We then collect the model’s highest-scoring
predictions for each mask location, and average the completion accuracy on the original and
transformed code fragment. An example may be found in Fig. 2.
Similarly, for document synthesis, we mask a naturally-occurring comment and autoregres-
sively synthesize a new one in its place, then compare the ROUGE-scores of the synthetic
documents before and after transformation. An example of may be found in Fig. 3.
Our dataset was constructed by cloning a hundred of the highest-starring Java repositories
hosted by GitHub organizations with over 100 forks and between 1 and 10 MB in size, sorted
by issue activity. Selecting projects matching these criteria will retrieve a diverse collection
of active repositories with enterprise-level code quality and reasonable stylistic diversity.
We executed a full factorial experiment consisting of four SCTs, four state-of-the-art pre-
trained models (GraphCodeBERT, CodeBERT, CodeBERT-Small, RoBERTa-Java) and
three downstream tasks (code completion and document synthesis). While the number
of samples may vary per-model and per-bucket, we provide the same wall clock time (360
minutes) and hardware resources (nVIDIA Tesla V100) to each model. The number of code
fragments each can evaluate in the allotted time varies depending on the architecture, but
in each case, the significant figures have mostly converged.
Figure 1 captures the results of this process. Each table represents a 2D slice of the hy-
percube corresponding to a single task, with dual box-and-whisker plots for each model,
before and after applying the transformation listed on the horizontal-axis. The raw data
cube generated by our experimental pipeline can be found in the Appendix B.
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5 Results and discussion

Figure 1: Semantic shift across all tasks (code completion, document synthesis and variable
misuse), models (GraphCodeBERT, CodeBERT, CodeBERT-Small, RoBERTa-Java) and
SCTs (Rename, AddExtraLogging, SwapIndepLines, PermuteArguments).

A careful examinination of the results in Fig. 1 allows us to draw the following conclusions:

• Models specifically intended to handle source code, (i.e., CodeBERT and Graph-
CodeBERT) are more robust than those designed for text alone (i.e., RoBERTa).

• RoBERTa would appear to be uniquely sensitive to PermuteArguments and
AddExtraLogging, a pathology which none of its code cousins shared.

• RenameTokens appears to have a detrimental effect across the board.
• SwapIndepLines seems to have a negligible effect. This result aligns with the word

order findings reported by Sinha et al. (16) in natural language.
• Our results lend credence to the relative model rankings reported by prior literature:

RoBERTa � CodeBERT < GraphCodeBERT.
• Document synthesis has a fairly high variance. This may be due to poor alignment

between the metric and the task. While comments are qualitatively passable, the
∆Sym metric does poorly at discriminating between good comments and bad ones.

For samples from the code and document synthesizer, we refer the reader to Appendix D.

6 Future work

Our SCTs can be viewed as “possible worlds” in the tradition of modal logic: the original au-
thor plausibly could have written the same procedure in a slightly different form. Although
we are unable to access all these worlds, we can posit the existence and likelihood of some,
and given a dataset of code fragments, begin to probe a candidate model’s predictions.
One intriguing avenue for future work would be to consider combinations of source code
transformations. This would vastly expand the cardinality of the validation set, enabling
us to access a much larger space of possible worlds, albeit potentially at the risk of lower
semantic admissibility, as arbitrary combinations of SCTs can quickly produce invalid code.
This presents an interesting engineering challenge and possible extension to this work.
Although we currently only use average precision, ROUGE-synonym and mean reciprocal
rank, it would be useful to report Kantorovich-Rubinstein distance and other probability
metrics. In addition to their utility for evaluating model robustness, these metrics can also
be used to retrain those same models, a direction we hope to explore in future work.
Finally, one could imagine using the code completion model itself to generate code for
testing the same model. We have implemented this functionality to a limited extent in the
AddExtraLogging SCT, in which the model synthesizes a single token to log, and the
InsertComment SCT, where the model inserts a short comment. While this approach
could be a useful way to generate additional training data, it would would require careful
monitoring and postprocessing to avoid introducing unintended feedback loops.
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7 Conclusion

Neural language models hold much promise for improved code completion, however compla-
cency can lead to increased reviewer burden or more serious technical debt if widely adopted.
While trade secrecy may prevent third-party inspection of pretrained models, users would
still like some assurance of their model’s robustness to naturally-occurring variance. Our
work helps to address this use case by treating the model as a black box: it does not require
direct access to the model parameters or training data to evaluate its generalization ability.
Our contributions in this work are twofold: we demonstrate that SoTA neural language
models for source code, despite their effectiveness on long-range sequence prediction tasks,
are unpredictable in the presence of specifically-constructed cosmetic variation. We also de-
scribe a systematic approach and open source implementation of a newly-developed software
toolkit which allows users to empirically probe a candidate model’s robustness to various
categories of syntactic and semantic source code transformations. Our results are fully
reproducible and can be found at: https://anonymous.4open.science/r/cstk-dl4c.
We have shown that despite their impressive performance on certain tasks, neural code
completion models are still susceptible to domain mismatch and can be sensitive to rewriting.
This can be identified by designing specific rewriting scenarios, such as the ones we propose,
that target the specific factors responsible for overfitting in source code. Our work can
help developers better understand the strengths and weaknesses of different models and
empirically compare the accuracy and robustness of neural code completion systems.
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A Rewrite semantics

We define the following four transformations to illustrate the idea of semantic invariance.

Γ ` function(args) function 6∈ StandardLibrary
PermuteArguments

Γ ` Code {function(args) 7→ function(args)}

Γ ` ␣line_1;
␣line_2; Tokens(line_1) ∩ Tokens(line_2) = ∅

SwapIndepLines
Γ ` ␣line_2;

␣line_1;

Γ ` var ∈ ScopedNames ␣line_1;
␣line_2;

AddExtraLogging

Γ `
␣line_3;
␣println(var);
␣line_1;

Γ ` var ∈ ScopedNames fresh ∈ Synonyms(var) \ ScopedNames
Rename

Γ ` Code {var 7→ fresh}

For example, let Code := int old = 0; while (<mask> < 10) {^^...} and assume we have a
pretrained language model Mθ : String → String which gives the completion:

Mθ[Code] ` Code {<mask> 7→ old} (1)

If we then rename the variable old to fresh inside the fragment Code, we would expect
our language model’s completion to shift in kind, a property we call name equivariance.
Importantly, we require fresh name generation to ensure capture-avoiding substitution:

Γ `Mθ code: Code {old 7→ fresh} : Name → !Name
NameEquivariance

Γ ` Mθ[code {old 7→ fresh}] = Mθ[code]{old 7→ fresh}

Consider another: if we reorder the arguments of a project-local function, we would expect
the model to perform identically over all masked tokens, said arguments notwithstanding:

Γ `Mθ code: Code fn(args): ProjectLocal
ArgOrderInvariance

Γ ` Mθ[code] = Mθ[code {fn(^^...) 7→ fn(�args)}]
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B Detailed Results

We ran three tasks, code completion, documentation synthesis and variable misuse.

Pretrained Language Model (µ, σ) Rename PermuteArgument SwapIndepLines AddExtraLogging

microsoft/codebert-base-mlm Before
After

(0.7224, 0.2768)
(0.6100, 0.3085)

(0.7194, 0.2191)
(0.6978, 0.2227)

(0.7089, 0.2624)
(0.7058, 0.2607)

(0.6996, 0.2077)
(0.7122, 0.2001)

microsoft/graphcodebert-base Before
After

(0.7230, 0.2767)
(0.6410, 0.2998)

(0.7227, 0.2173)
(0.7154, 0.2169)

(0.7088, 0.2624)
(0.7058, 0.2607)

(0.7050, 0.2047)
(0.7382, 0.1932)

dbernsohn/roberta-java Before
After

(0.7219, 0.2773)
(0.4951, 0.3165)

(0.7196, 0.2188)
(0.5995, 0.2632)

(0.7087, 0.2624)
(0.7058, 0.2607)

(0.6958, 0.2095)
(0.5479, 0.2577)

huggingface/CodeBERTa-small-v1 Before
After

(0.7226, 0.2771)
(0.5953, 0.3134)

(0.7216, 0.2149)
(0.7096, 0.2249)

(0.7088, 0.2624)
(0.7058, 0.2607)

(0.7004, 0.2095)
(0.7113, 0.2119)

Table 1: Mean and standard deviation for single-token code completion accuracy.

Pretrained Language Model (µ, σ) Rename PermuteArgument SwapIndepLines AddExtraLogging

microsoft/codebert-base-mlm Before
After

(0.0385, 0.2684)
(0.0430, 0.2996)

(0.0427, 0.3500)
(0.0411, 0.3091)

(0.0309, 0.2477)
(0.0419, 0.2959)

(0.0545, 0.4637)
(0.0510, 0.3839)

microsoft/graphcodebert-base Before
After

(0.0987, 0.3826)
(0.1026, 0.3590)

(0.0983, 0.3214)
(0.0982, 0.3212)

(0.0891, 0.4181)
(0.0989, 0.3549)

(0.0850, 0.3000)
(0.0974, 0.2221)

dbernsohn/roberta-java Before
After

(0.0827, 0.5086)
(0.0891, 0.5484)

(0.0727, 0.4453)
(0.0781, 0.4792)

(0.0793, 0.4769)
(0.0845, 0.5428)

(0.0680, 0.5349)
(0.0733, 0.4994)

huggingface/CodeBERTa-small-v1 Before
After

(0.1101, 0.3932)
(0.1143, 0.3645)

(0.1205, 0.4148)
(0.1170, 0.3668)

(0.0997, 0.3912)
(0.1125, 0.3811)

(0.1252, 0.5175)
(0.1230, 0.3891)

Table 2: Mean and standard deviation ROUGE-score for document synthesis.

Pretrained Language Model (µ, σ) Rename PermuteArgument SwapIndepLines AddExtraLogging

microsoft/codebert-base-mlm Before
After

(0.8150, 0.2502)
(0.7508, 0.2663)

(0.7692, 0.2947)
(0.7574, 0.2992)

(0.7935, 0.2683)
(0.7861, 0.2720)

(0.7568, 0.3086)
(0.7412, 0.3297)

microsoft/graphcodebert-base Before
After

(0.8196, 0.2478)
(0.7638, 0.2638)

(0.7758, 0.2873)
(0.7673, 0.2919)

(0.7952, 0.2670)
(0.7861, 0.2720)

(0.7529, 0.3071)
(0.7378, 0.3376)

dbernsohn/roberta-java Before
After

(0.8149, 0.2486)
(0.6708, 0.2282)

(0.7727, 0.2947)
(0.7148, 0.2399)

(0.7952, 0.2670)
(0.7861, 0.2720)

(0.7620, 0.3053)
(0.6797, 0.2580)

huggingface/CodeBERTa-small-v1 Before
After

(0.8182, 0.2480)
(0.7569, 0.2334)

(0.7736, 0.2934)
(0.8023, 0.2318)

(0.7954, 0.2670)
(0.7861, 0.2720)

(0.7578, 0.3053)
(0.8137, 0.2413)

Table 3: Mean and standard deviation MRR for variable misuse detection.

C Experimental architecture

Though primarily an empirical study, this work also showcases a software framework for
evaluating neural code completion models. It offers a number of advantages from an engi-
neering standpoint: due to its functional implementation, it is efficient, parallelizable and
highly modular, allowing others to easily reuse and extend our work with new benchmarks.
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The design of this framework is to our knowledge, unique, and merits some discussion. The
entire pipeline from data mining to preprocessing, evaluation and table generation is im-
plemented as a pure functional program in the point-free style. Given a code completion
model cc: String^->String, a list of code fragments, snps: List<String>, a masking pro-
cedure, msk: String^->String, an SCT, sct: String^->String, and a single metric over code
fragments, mtr: (String, String)^->Float, we measure the average relative discrepancy be-
fore and after applying sct to snps:

fun evaluate(cc, snps, msk, sct, mtr) = Δ(

zip(snps, snps | msk | cc) | mtr | average,

zip(snps | sct, snps | sct | msk | cc) | mtr | average

)

where | maps a function over a sequence, and zip zips two sequences into a sequence of
pairs. We assume snps and msk are fixed, and evaluate three neural code completion models
across four different SCTs, and three separate tasks.
Using our framework, it is possible to view the marginals of a rank-n tensor, representing
an n-dimensional hyper-distribution formed by the Cartesian product of all variables under
investigation (e.g., SCT, task, model). During evaluation, we sample these independent
variables uniformly using a quasirandom sequence to ensure entries are evenly populated.
We then record the first and second moments of the dependent variable of interest using a
sketch-based histogram. Results are continuously delivered to the user, who may preview
2D marginals of any pair and watch the error bounds grow tighter as additional samples
are drawn. This feature is indispensable when running on preemptible infrastructure and
can be trivially parallelized to increase the experiment’s statistical power or explore larger
swaths of the experimental design space.

D Examples

1.a) Original method 1.b) Synonymous variant

public void flush(int b) {

buffer.write((byte) b);

buffer.compact();

}

public void flush(int b) {

cushion.write((byte) b);

cushion.compact();

}

2.a) Multi-masked method 2.b) Multi-masked variant

public void <MASK>(int b) {

buffer.<MASK>((byte) b);

<MASK>.compact();

}

public void <MASK>(int b) {

cushion.<MASK>((byte) b);

<MASK>.compact();

}

3.a) Model predictions 3.b) Model predictions

public void output(int b) {

buffer.write((byte) b);

buffer.compact();

}

public void append(int b) {

cushion.add((byte) b);

cushion.compact();

}

Figure 2: Here, we apply the RenameTokens SCT, then mask various tokens in the
surrounding context and report the model’s predictions. In this example, the model correctly
predicts 2

3 masks in the original method and 1
3 after renaming.
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1.) Original method with ground truth document

public void testBuildSucceeds(String gradleVersion) {

setup(gradleVersion);

// Make sure the test build setup actually compiles

BuildResult buildResult = getRunner().build();

assertCompileOutcome(buildResult, SUCCESS);

}

2.) Synthetic document before applying SCT

public void testBuildSucceeds(String gradleVersion) {

setup(gradleVersion);

// build the tests with gradletuce compiler

BuildResult buildResult = getRunner().build();

assertCompileOutcome(buildResult, SUCCESS);

}

3.) Synthetic document after applying SCT

public void testBuildSucceeds(String gradleAdaptation) {

setup(gradleAdaptation);

// build the actual code for test suite generation

BuildResult buildResult = getRunner().build();

assertCompileOutcome(buildResult, SUCCESS);

}

Figure 3: Here, we apply the Rename SCT, then mask the comment on line 3 and autore-
gressively sample tokens from the decoder to generate two synthetic comments, one before
and one after applying the SCT. The stemmed synonym overlap is build, compile, test,

before applying the SCT and actual, build, test afterwards.

Initially, we seeded the document completion using ^//<MASK> and applied a greedy autore-
gressive decoding strategy, recursively sampling the softmax top-1 token and subsequently
discarding all malformed comments. This strategy turns out to have a very high rejec-
tion rate, due to its tendency to produce whitespace or unnatural language tokens (e.g.,
greedy decoding can lead to sequences like ^/////// ^// or temporarily disabled code, e.g.,
^//System.out.println("debug")). A simple fix is to select the highest-scoring prediction
with natural language characters. By conditioning the decoder on at least one alphabetic
character per token, one obtains more coherent documentation and rejects fewer samples
from the resulting comment. It is possible to construct a more sophisticated natural lan-
guage filter, however the authors did not explore this idea in great depth.

E Tokenization

Let Σ be any alphabet (in practice, CodeBERT uses UTF-8 although it is possible to encode
Chinese by switching to UTF-16). Let dict ⊂ Σ∗ ↔ Z be a bijection between certain strings
over Σ and the integers. Let bpe: Σ∗ → Z∗ be an encoder that maps strings Σ∗ to a list
of integers Z∗. bpe is defined as follows: bpe(s) := dict(s[1:p]) ⊕ bpe(s[p+1:|s^|]) where
p = max{i ∈ (1,|p^|]|s[1:i] ∈ dict}, ⊕ denotes list concatenation and s[a:b] denotes
the substring of s between indices a and b using 1-based indexing. dict has the following
property: ∀s ∈ Σ∗, bpe(s) = [i1, i2, . . . , in] implies dict

−1(i1) ⊕ dict
−1(i2) ⊕ dict

−1(. . .) ⊕
dict

−1(in) = s, i.e., bpe is a lossless compression scheme. Furthermore, dict typically has
the property that E[|bpe(s)|] � E[|s|] over s ∈ L ⊂ Σ∗ where L is a language (e.g., NL or
PL) in Σ∗, n.b., this is untrue if Σ∗ due to the pigeonhole principle.
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