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ABSTRACT

Diffusion Large Language Models (dLLMs) offer a promising alternative to au-
toregressive models, excelling in text generation tasks due to their bidirectional
attention mechanisms. However, their computational complexity, scaling as
O(L3) with sequence length L, poses significant challenges for long-sequence and
real-time applications, primarily due to the lack of compatibility with key-value
caching and the non-autoregressive nature of denoising steps. Existing accelera-
tion methods rely on static caching or parallel decoding strategies, which fail to
account for the dynamic behavior of token properties across layers and decod-
ing steps. We propose Dynamic-dLLM, a training-free framework that enhances
dLLM inference efficiency through two components: Dynamic Cache Updating
(DCU), which adaptively allocates cache-update budgets based on layer-wise to-
ken dynamics, and Adaptive Parallel Decoding (APD), which dynamically cali-
brates decoding thresholds to balance generation quality and efficiency. Extensive
experiments on models like LLaDA-8B-Instruct, LLaDA-1.5, and Dream-v0-7B-
Instruct across benchmarks such as MMLU, GSM8K, and HumanEval demon-
strate that Dynamic-dLLM significantly improves inference speed, attaining an
average speedup of exceeding 3× while maintaining performance. Dynamic-
dLLM outperforms state-of-the-art acceleration methods and provides a plug-and-
play solution for efficient dLLM deployment without compromising performance.
Code and models will be made publicly available.

(a) LLaDA-8B-Instruct (b) Dream-v0-7B-Instruct
Figure 1: The comparison in terms of tokens-per-second (TPS)

1 INTRODUCTION

Diffusion Large Language Models (dLLMs) have emerged as a compelling alternative to autoregres-
sive models (ARMS), demonstrating strong performance in text generation tasks. Notable examples
such as LLaDA (Nie et al., 2025; Zhu et al., 2025) and Dream (Ye et al., 2025) highlight the rapid
progress in this direction. A key advantage of dLLMs lies in their bidirectional attention mecha-
nisms, which enhance scalability and enable superior performance in handling complex scenarios,
such as the “reversal curse” (Berglund et al.), where traditional ARMs often struggle. This allows
dLLMs to capture richer contextual dependencies in challenging scenarios.
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(a) Layer input (b) Attention output

(c) Layer input (d) Attention output (e) Wrong prediction using fixed threshold

Figure 2: (a-b) Layer input similarity and attention output similarity across adjacent denoising steps.
The brighter region denotes a higher similarity, indicating most tokens are stable across steps. (c-d)
The number of tokens requiring updates across different steps. Differences across layers indicate
varying demands for the token update budget. (e) Existing parallel decoding methods may yield
wrong predictions as potential candidates have been discarded by the fixed threshold.

However, despite their strong performance in certain domains, dLLMs face a fundamental challenge:
their computational complexity scales as O(L3) with respect to sequence length L, significantly
exceeding the O(L2) cost of autoregressive models (ARs). This cubic scaling imposes a severe
bottleneck for long-sequence and real-time generation tasks, limiting the practical deployability of
dLLMs in latency-sensitive applications. The root cause lies in the non-autoregressive nature of
dLLMs, where each denoising step requires updating all tokens in parallel across the full sequence.
Besides, this paradigm hinders the caching of key-value activations from previous steps, rendering
dLLMs incompatible with the widely used KV-Cache mechanism.

Key observations. To address this issue, recent work has explored strategies for dLLM acceler-
ation. For example, (Liu et al., 2025b; Ma et al., 2025; Song et al., 2025) reduce redundancy by
caching internal token representations across decoding steps. Concurrently, (Wu et al., 2025) ac-
celerates inference by enabling parallel unmasking of multiple tokens within a single step. These
methods implicitly rely on specific token properties, such as feature stability and confidence, to
identify opportunities for optimization. However, they all rely on a static strategy across all lay-
ers and decoding steps, applying the same caching or unmasking criteria throughout the model and
generation process, thus overlooking the dynamic nature of token behavior during generation.

As illustrated in Figure 2(a-d), the token properties vary across different layers and steps. The
frequency of changes in the internal features of tokens differs across layers, while the distributions of
token confidence fluctuate across decoding steps. The static strategies adopted by existing methods
may fail to account for this dynamic behavior, leading to performance degradation. Therefore, this
observation prompts a critical question: how to design an adaptive method that dynamically aligns
with the model’s intrinsic layer-wise and step-wise token dynamics to improve the efficiency?

Our solution. In this work, we propose Dynamic-dLLM, a training-free framework for acceler-
ating dLLM inference. Dynamic-dLLM consists of two key components: Dynamic Cache Updating
(DCU) and Adaptive Parallel Decoding (APD).

Specifically, as tokens may exhibit heterogeneous dynamics across layers, instead of a static cache
updating strategy across all layers, we propose Dynamic Cache Updating (DCU) that allocates
cache-update budgets adaptively, ensuring that layers requiring frequent updates are prioritized,
while computational overhead is reduced in stable layers. In addition, the existing parallel decoding
strategy with fixed thresholds risks committing to tokens prematurely, as confidence estimates can
shift over time, leading to error propagation. To mitigate this, we introduce Adaptive Parallel De-
coding (APD) that dynamically calibrates decoding thresholds by tracking the evolving distribution
of prediction confidence, achieving a decent trade-off between the degradation of generation quality
caused by a low threshold and the inefficiency resulting from a high threshold.
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Extensive experiments across LLaDA-8B-Instruct, LLaDA-1.5, Dream-v0-7B-Instruct, and bench-
marks covering mathematics, science, coding, and general tasks demonstrate the effectiveness and
strong generalization capabilities of the proposed method. Notably, Dynamic-dLLM achieves a
maximum acceleration of up to 4.48×, with an average speedup exceeding 3× while still maintain-
ing performance, making it a plug-and-play training-free solution for enhancing the efficiency of
dLLMs without compromising performance. In summary, our contributions are as follows:

• In this study, we observe that the variations across layers and decoding steps of dLLM may
undermine the effectiveness of existing static rule-based acceleration methods.

• We propose Dynamic-dLLM, a training-free framework composed of Dynamic Cache Up-
dating (DCU) and Adaptive Parallel Decoding (APD), DCU adaptively allocates cache-
update budgets across layers, while APD dynamically calibrates decoding thresholds across
steps, jointly enabling efficient yet robust acceleration of dLLMs.

• Extensive experiments across diverse models and tasks show that Dynamic-dLLM substan-
tially improves inference efficiency while preserving the accuracy, outperforming state-of-
the-art acceleration methods.

2 BACKGROUND AND MOTIVATION

2.1 PRELIMINARIES OF DLLM

In this section, we introduce preliminaries regarding the inference process of dLLM (Nie et al.,
2025). The introduction of related work is presented in the Appendix D due to the page limit.

Given a prompt of length Lprompt tokens and a target generation length of Lgen tokens, let L =
Lprompt + Lgen. The dLLM generates the output in T iterative decoding steps, producing approx-
imately Lgen/T tokens per step. Let V denote the model’s vocabulary, and let [MASK] ∈ V be
a special placeholder token indicating positions to be predicted. Denote by xt ∈ VL the token
sequence at step t, where t = T, T − 1, . . . , 0. The initial sequence is constructed as:

xT = (x0, . . . , xLprompt−1, [MASK], . . . , [MASK]), (1)

where xi are the given prompt tokens. At each step t, the mask predictor fθ computes a distribution
over the vocabulary for each position:

zt = fθ(x
t) ∈ RL×|V|. (2)

Using greedy decoding, we can obtain the most probable token at each masked position:

x̂t
i = argmax

v∈V

(
Softmax(zti)

)
v
, if xt

i = [MASK]. (3)

A transition function S then updates the sequence to xt−1 by selectively replacing tokens based
on confidence scores, re-masking low-confidence predictions to refine them in subsequent steps:
xt−1 = S(x̂t,xt, t). The final output sequence x0 is yielded when t = 0.

2.2 KEY OBSERVATIONS

Despite recent progress in accelerating diffusion-style LLMs (dLLMs) (Liu et al., 2025b; Wu et al.,
2025; Ma et al., 2025; Song et al., 2025), two critical inefficiencies remain unaddressed.

Layer-wise Cache Update Needs Vary Significantly. Existing methods exploit temporal redun-
dancy by reusing cached intermediate features (e.g., query, key, value, attention output, FFN output)
from the previous step for a subset of tokens, assuming high feature similarity across steps. However,
as illustrated in Figure 2(a-d), the proportion of tokens requiring cache updates varies substantially
across layers, increasing monotonically from shallow to deep layers. This suggests that uniform or
heuristic caching strategies are suboptimal. Instead, a layer-adaptive cache update policy is essen-
tial for dynamically allocating computation budgets where they matter most.
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Figure 3: Dynamic-dLLM consists of two key components: Dynamic Cache Updating (DCU, upper
part) and Adaptive Parallel Decoding (APD, lower part). DCU reallocates cache update budget for
each layer at each step, while APD dynamically adjusts the decoding thresholds for all tokens.

Static Thresholding Hinders Parallel Decoding Efficacy. Parallel decoding strategy (e.g., Wu
et al. (2025)) unmask tokens once their confidence exceeds a fixed threshold. Yet, as shown in
Figure 2(e), the token with the highest confidence at an early step may not be the desired output and
will be revised later, often replaced by its “runner-up” prediction with the second-highest confidence
initially. Conversely, tokens whose top prediction exhibits clear dominance over alternatives, i.e.,
low entropy or large margin, can be safely finalized earlier, even if absolute confidence remains
below a static threshold. Therefore, to enable earlier commitment to stable predictions, thereby
expediting convergence without compromising accuracy, exploring the feasibility of a dynamic per-
token threshold, adjusting adaptively based on the predicted distribution (e.g., entropy or probability
margin), becomes essential.

3 METHOD

To overcome the limitations of existing approaches, we propose Dynamic-dLLM, a training-free
acceleration framework that dynamically optimizes dLLM inference along two dimensions: cache-
update management and parallel decoding scheduling.

Regarding cache-update management, we introduce a dynamic allocation mechanism for managing
cache updates, recognizing the varying dynamics across layers. This approach dynamically dis-
tributes the update budget among layers, prioritizing layers that require more frequent cache updates.
On the other hand, for optimizing the parallel decoding, we replace fixed confidence thresholds
with an adaptive per-token unmasking strategy, based on the predicted distribution of each token.
This strategy facilitates early commitment to confident predictions while postponing uncertain ones,
achieving a more balanced trade-off between speed and output quality.

The overview is presented in Figure 3. Sections 3.1 and 3.2 detail each component, respectively.

3.1 DYNAMIC CACHE UPDATING

Recent works (Liu et al., 2025b; Ma et al., 2025; Song et al., 2025) update a fixed or uniform number
of token caches across all layers. However, as demonstrated in Section 2.2, the demand for cache up-
dates varies significantly across layers. This observation motivates the need for a dynamic allocation
strategy that adapts the cache-update budget per layer according to the specific requirement.

In this section, we propose the Dynamic Cache Updating (DCU) strategy, which selectively updates
only those tokens whose representations undergo significant changes between consecutive inference
steps. Prior work (Liu et al., 2025b) identifies such tokens by measuring the cosine similarity be-
tween the current and cached Value vectors. While effective, this approach incurs non-negligible
computational overhead due to the explicit recomputation and comparison of Value vectors. Ideally,
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(a) Attention: 0.94 (b) FFN: 0.97 (c) Key: 0.99 (d) Value: 0.99

Figure 4: Spearman correlation values of layer inputs with intermediate features, including Key,
Value, Attention Output, and FFN Output. We visualized the cosine similarity between tokens’ fea-
ture vectors and their cached counterparts at adjacent steps, and compared the relationship between
layer input and (a) Attention Output, (b) FFN Output, (c) Key, (d) Value.

if token dynamics could be estimated without recomputing these vectors, cached values could be
safely reused, thereby reducing redundancy.

Inspired by Liu et al. (2025a), who observed a strong correlation between model inputs and outputs
in diffusion transformers (DiT) (Peebles & Xie, 2023a), we investigate the relationship between
layer inputs and intermediate features in dLLMs. As shown in Figure 4, the features cached (e.g.,
Key, Value, Attention Output, and FFN Output) exhibit high correlation with the corresponding layer
inputs. This implies that changes in layer inputs across steps serve as a reliable proxy for the un-
derlying dynamics of intermediate activations. Consequently, input-level differences can effectively
inform cache-update decisions without accessing or recomputing the cached features themselves.

Layer-Adaptive Cache Budget Allocation. To dynamically allocate the cache update budget
across layers, we first define a token-level dissimilarity metric, dt,li , estimating the change in the
representation of token xi at layer l between consecutive inference steps t and t+ 1. This metric is
computed using the cosine distance between the normalized token inputs at the respective steps:

dt,li = 1− (xt,l
i )⊤xt+1,l

i

∥xt,l
i ∥∥x

t+1,l
i ∥

(4)

A higher value of dt,li denotes a greater change in the token’s representation, suggesting a higher
need for cache update. Then, we aggregate the token-level variations into a layer-wise metric st,l.
This metric represents the average change in token representations within layer l:

st,l =
1

N

N−1∑
i=0

dt,li , (5)

where N is the sequence length. Subsequently, the cache update budget for layer l at step t, denoted
as Bt,l

layer, is then allocated proportionally to its measured dynamism at the previous step (t+1), st+1,l.
This allocation is normalized across all layers using the total available budget, Blayer×LayerNum:

Bt,l
layer = (Blayer × LayerNum) · st+1,l∑LayerNum−1

k=0 st+1,k
. (6)

For each layer l, the set of tokens scheduled for cache update at step t, denoted U t,l, is initialized as
an empty set at the start of the step: U t,l ← ∅. Then, layer l identifies the set St,l comprising the
top-Bt,l

layer tokens with the highest variation dt,li . These selected tokens are then added to the update
set: U t,l ← U t,l ∪ St,l.

Token Stuck in the Mud. Nevertheless, the layer-adaptive cache budget allocation strategy may
potentially make some tokens stuck in the mud. Specifically, if a token xi is not selected for an update
in layer l, its cached representation remains unchanged. Consequently, its input to layer l + 1 also
remains static, leading to a zero variation score dt,l+1

i = 0 for that layer. As the allocation strategy
prioritizes tokens with high dt,l+1

i , the token xi will only be updated in layer l + 1 if the number of
tokens exhibiting non-zero variation is insufficient to fill the allocated budget Bt,l+1

layer . Should this

5
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(a) Analysis of Distance (b) Layer 15 (c) Layer 24

Figure 5: Local property analysis of dLLMs (a) Relationship between the distance from key token
and the frequency of being decoded in the current step. The closer the token is to the key token,
the higher the probability of it being decoded. (b) The last two images respectively represent the
attention of response tokens to key token in layer 15 and 24. Red dot is the key token at this step.
The illustration shows that the tokens around the key token have higher attentions, which means that
the changes caused by decoding the key token affect those tokens more than others.

occur, and if xi is again not selected (e.g., chosen randomly among the low-priority tokens), it will
remain unchanged entering layer l+2, perpetuating the cycle. We refer to this phenomenon, where a
token fails to be updated across multiple consecutive layers due to consistently low variation scores
induced by prior missed updates, as a token becoming stuck in the mud.

Mandatory Update Window. As illustrated in Figure 5, there exists a spatial locality in the update
pattern: tokens surrounding the one unmasked in the previous step (the key token) are statistically
more likely to be updated in the current step. Let the position of the key token be p. To mitigate
the risk of the next key token (the token with the highest confidence to be unmasked in the current
step) becoming stuck in the mud, we introduce a Mandatory Update Window. This mechanism
ensures that a local region around the key token is always updated, regardless of the adaptive budget
allocation. Formally, we define a window of fixed size Bwindow centered on the key token’s position
p. The set of token positions covered by this window at a given step is

[
p− Bwindow

2 , p+ Bwindow
2

]
.

For each layer l, the caches for all tokens within this window are compulsorily added to the layer’s
update set U t,l:

U t,l ← U t,l ∪
{
xi

∣∣∣∣ p− Bwindow
2

≤ i ≤ p+
Bwindow

2

}
. (7)

This updated set U t,l then constitutes the final list of tokens whose caches will be recomputed for
layer l in the current step. By ensuring continuous updates within this local window, we reduce the
likelihood of critical tokens being overlooked and retain the response to local changes. The global
budget is subsequently distributed adaptively among the remaining tokens based on the layer-specific
variation metrics st,l for the following step.

3.2 ADAPTIVE PARALLEL DECODING

Section 2.2 highlights that the peak confidence of a token can vary significantly across decoding
steps in dLLMs. This inherent dynamism poses a challenge for fixed-threshold parallel decoding
methods (Wu et al., 2025), which rely on a static criterion and consequently suffer from decoding
inaccuracies due to mispredictions at certain steps.

To address this, we introduce the Adaptive Parallel Decoding mechanism that dynamically adjusts
the masking threshold for each token based on its local prediction stability. Each token xi starts with
an initial threshold τTi . The threshold at step t, denoted τ ti , is adapted from the threshold used at the
previous step t+ 1, τ t+1

i .

Adaptive Threshold via Confidence Concentration. The core idea is to modulate the threshold
based on the concentration of the token’s predicted probability distribution. Intuitively, a diffuse
distribution (a small gap between the highest and second-highest probabilities) suggests lower con-
fidence in the current prediction, warranting a stricter (higher) threshold to reduce unnecessary up-

6
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MMLU ARC-C GSM8k GPQA HE Avg.

LLaDA-8B-Instruct 60.92 88.53 78.21 32.17 38.54 59.67
Throughput (TPS, ↑) 10.19(1.0×) 25.49 (1.0×) 8.32 (1.0×) 7.60 (1.0×) 15.54 (1.0×) 1.0×

+ dLLM-Cache 61.33 88.49 78.78 31.84 37.99 59.69
Throughput (TPS, ↑) 23.54 (2.31×) 33.64 (1.32×) 25.28 (3.0×) 22.04( 2.90×) 28.44(1.83×) 2.27×

+ dKV-Cache 61.37 87.98 79.17 32.25 38.23 59.80
Throughput (TPS, ↑) 17.73 ( 1.74×) 29.82 (1.17×) 15.14 (1.82×) 14.44( 1.90×) 20.82 (1.34×) 1.59×

+ Fast-dLLM 61.39 88.05 78.44 32.01 38.21 59.62
Throughput (TPS, ↑) 26.29 (2.58×) 32.88 (1.29×) 22.74 (2.73×) 22.65( 2.98×) 27.82 (1.79×) 2.27×

+ Dynamic-dLLM (Ours) 60.95 88.09 78.24 31.98 38.33 59.51
Throughput (TPS, ↑) 30.16 (2.96×) 40.27 (1.58×) 27.21 (3.27×) 25.46 (3.35×) 30.61 (1.97×) 2.63×

+ Fast-dLLM* 61.08 88.32 76.62 32.21 37.87 59.22
Throughput (TPS, ↑) 32.30 (3.17×) 41.55 (1.63×) 31.36 (3.77×) 27.06(3.56×) 32.94 (2.12×) 2.85×

+ Dynamic-dLLM* (Ours) 60.89 87.79 78.01 31.89 38.08 59.33
Throughput (TPS, ↑) 34.14 (3.35×) 42.31 (1.66×) 37.29 (4.48×) 31.84(4.19×) 36.83(2.37×) 3.21×

Table 1: Results on LLaDA-8B-Instruct (Nie et al., 2025). Each cell includes the accuracy, decoding
throughput (TPS), with relative efficiency enhancement to the baseline. Best values in bold, subop-
timal values underlined. Results with * are obtained with parallel decoding.

dates. Conversely, a concentrated distribution indicates stability, permitting a reduced threshold for
early decoding. Let zti be the probability distribution over the vocabulary V for token xi at step
t, the index of the most likely token is: u = argmaxv∈V (zti)v . Thus, the concentration of this
distribution is quantified using the second-highest probability score:

cti = 1− max
v∈V\{u}

(
zti
)
v
. (8)

A larger value of cti signifies a more peaked and confident distribution. Based on this measure, the
decoding threshold for token xi at step t is adjusted as follows:

τ t
i = τ t+1

i − α · cti, (9)

where α is a positive hyperparameter controlling the sensitivity of the threshold adaptation. This
formulation ensures that tokens with highly concentrated distributions (large cti) have their thresh-
olds decreased, allowing for early decoding, while tokens with diffused distributions have increased
thresholds to prevent decoding errors.

Integration with Temporal Instability. In addition, the magnitude of historical shifts in a token’s
confidence distribution provides a strong signal for its likelihood of future revision. We quantify this
shift via the cosine distance between the token’s confidence distributions at adjacent steps:

Ht
i = 1− (zti)

⊤zt+1
i

∥zti∥ ∥z
t+1
i ∥

. (10)

A larger Ht
i indicates greater instability in the prediction, suggesting that the token may still be

undergoing refinement and thus warrants a stricter (higher) threshold to prevent early decoding. By
combining cti and Ht

i , the decoding threshold for token xi at step t is updated as:
τ t
i = τ t+1

i − α · cti + β ·Ht
i , (11)

where α, β ≥ 0 are hyperparameters balancing the influence of prediction confidence and temporal
instability.

Algorithms 1 and 2 in the Appendix outline the core mechanisms of Dynamic-dLLM for accelerating
dynamic LLMs (dLLMs) via Feature-Caching and Parallel Decoding, respectively. By explicitly
accounting for dynamism along both the layer and step dimensions, Dynamic-dLLM minimizes
redundant computation and thereby significantly accelerates the inference process of dLLMs.

4 EXPERIMENT

4.1 EXPERIMENT SETTINGS

We assessed the performance of Dynamic-dLLM using three typical dLLMs as baselines: LLaDA-
8B-Instruct, LLaDA-1.5 and Dream-7B-Instruct. If not otherwise specified, we default Blayer to 32,
and Bwindow to 32. More experimental details are shown in Appendix B.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

MMLU ARC-C GSM8k GPQA HE Avg.

LLaDA-1.5 61.42 88.51 81.62 33.61 40.24 61.08
Throughput (TPS, ↑) 10.18 (1.0×) 25.50 (1.0×) 8.30 (1.0×) 7.57 (1.0×) 15.54 (1.0×) 1.0×

+ dLLM-Cache 61.39 88.04 81.64 33.45 40.18 60.94
Throughput (TPS, ↑) 23.62 (2.32×) 33.92 (1.33×) 26.48 (3.19×) 21.88 (2.89×) 28.28 (1.82×) 2.31×

+ dKV-Cache 61.47 88.23 81.53 33.54 39.81 60.92
Throughput (TPS, ↑) 17.41 (1.71×) 29.33(1.15×) 15.27 (1.84×) 14.46 (1.91×) 20.67 (1.33×) 1.59×

+ Fast-dLLM 61.46 88.18 81.21 33.63 40.21 60.94
Throughput (TPS, ↑) 26.47 (2.60×) 33.15 (1.30×) 23.07 (2.78×) 22.56 (2.98×) 28.13 (1.81×) 2.29×

+ Dynamic-dLLM (Ours) 61.03 88.29 80.98 33.37 39.93 60.72
Throughput (TPS, ↑) 30.03(2.95×) 41.06 (1.61×) 27.31 (3.29×) 25.28 (3.34×) 30.77 (1.98×) 2.63×

+ Fast-dLLM* 61.22 88.31 80.94 33.43 40.06 60.79
Throughput (TPS, ↑) 32.17 (3.16×) 41.31(1.62×) 31.13 (3.75×) 27.10 (3.58×) 32.93 (2.12×) 2.85×

+ Dynamic-dLLM* (Ours) 61.34 88.02 81.03 32.97 40.01 60.67
Throughput (TPS, ↑) 34.20 (3.36×) 42.59(1.67×) 37.02 (4.46×) 31.57 (4.17×) 36.67(2.36×) 3.20×

Table 2: Results on LLaDA-1.5 (Zhu et al., 2025). Each cell includes the accuracy, decoding
throughput (TPS), with relative efficiency enhancement to the baseline. Best values in bold, subop-
timal values underlined. Results with * are obtained with parallel decoding.

MMLU ARC-C GSM8k GPQA HE Avg.

Dream-v0-7B-Instruct 73.34 89.63 77.47 34.08 56.82 66.27
Throughput (TPS, ↑) 9.97 (1.0×) 20.44 (1.0×) 8.05 (1.0×) 7.13 (1.0×) 14.95 (1.0×) 1.0×

+ dLLM-Cache 73.08 90.04 76.64 34.75 54.31 65.76
Throughput (TPS, ↑) 19.44 (1.95×) 24.32 (1.19×) 22.46 (2.79×) 19.54 (2.74×) 24.22 (1.62×) 2.06×

+ dKV-Cache 72.93 89.40 77.32 33.87 54.69 65.64
Throughput (TPS, ↑) 16.75( 1.68×) 22.07 (1.08×) 12.80 (1.59×) 10.62 (1.49×) 19.14 (1.28×) 1.42×

+ Fast-dLLM 72.14 90.11 76.81 33.99 55.70 65.75
Throughput (TPS, ↑) 18.74 (1.88×) 29.05 (1.47×) 21.50 (2.67×) 17.04 (2.39×) 20.18 (1.35×) 1.95×

+ Dynamic-dLLM (Ours) 72.09 89.25 77.28 33.17 54.93 65.34
Throughput (TPS, ↑) 25.82 (2.59×) 31.89 (1.56×) 25.52 (3.17×) 21.90 (3.07×) 27.81 (1.86×) 2.45×

+ Fast-dLLM* 71.97 89.98 76.95 33.34 56.78 65.80
Throughput (TPS, ↑) 30.11(3.02)× 32.50(1.59×) 28.90 (3.59×) 23.81 (3.34×) 31.99 (2.14×) 2.74×

+ Dynamic-dLLM* (Ours) 72.10 89.38 77.52 32.02 54.05 65.01
Throughput (TPS, ↑) 31.31 (3.14×) 32.91 (1.61×) 31.48 (3.91×) 25.88 (3.63×) 36.93 (2.47×) 2.95×

Table 3: Results on Dream-v0-7B-Instruct (Ye et al., 2025). Each cell includes the accuracy, de-
coding throughput (TPS), with relative efficiency enhancement to the baseline. Best values in bold,
suboptimal values underlined. Results with * are obtained with parallel decoding.

To comprehensively evaluate a model’s performance and efficiency, we employ two key metrics:
accuracy on benchmarks and throughput, with the latter measured in Tokens Per Second (TPS).
The benchmarks includes MMLU (5-shot)(Hendrycks et al., 2020), ARC-challenge (ARC-c, 0-
shot)(Clark et al., 2018), GPQA (5-shot)(Rein et al., 2024), GSM8k (4-shot)(Cobbe et al., 2021),
and HumanEval (HE, 0-shot)(Chen et al., 2021). For fair comparison, we divided the methods into
two groups, one using Feature-Cache(Liu et al., 2025b; Ma et al., 2025; Wu et al., 2025) and the
other using KV-Cache and parallel decoding(Wu et al., 2025). All experiments were performed on
NVIDIA Pro6000 GPUs.

4.2 MAIN RESULTS

Our results (baseline vs. alternative methods vs. our Dynamic-dLLM) are presented in Table 1, 2,
and 3. These results show that Dynamic-dLLM not only achieves the most significant throughput
improvement but also maintains performance.

With only feature cache enabled, Dynamic-dLLM delivers substantial speedups for high-priority
tasks without accuracy degradation. It achieves notable throughput boosts on benchmarks with an
average speedup of over 2.5× across all evaluated tasks for LLaDA-8B-Instruct , while maintaining
accuracy. When combined with parallel decoding, Dynamic-dLLM scales speedups. For LLaDA-
8B-Instruct on GSM8k, throughput hits 37.29 TPS (4.48× faster than the baseline’s 8.32 TPS), with
average speedup across tasks reaching 3.21× and robust accuracy.
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(a) Ablation of Blayer (b) Ablation of Bwindow (c) Ablation of Threshold

Figure 6: Ablation studies on key hyperparameters, investigating the respective effects on the
model’s performance (accuracy) and efficiency (throughput).

This superiority persists across models: LLaDA-1.5 achieves 4.46× speedup on GSM8k (37.02 vs.
8.30 TPS) with near-baseline accuracy (60.67% vs. 61.08%); Dream-v0-7B-Instruct gains 3.91×
speedup on GSM8k (31.48 vs. 8.05 TPS). These cross-model results demonstrate its generalization
capabilities.

4.3 ABLATION STUDIES

In this section, we present the ablation studies regarding the core designs of our method.

Impact of Blayer on Accuracy and Throughput. As shown in Figure 6a, we fix the Bwindow to 32
and do not use parallel decoding, and explore the impact of Blayer on accuracy and throughput. With
the gradual increase of Bwindow, the accuracy shows an upward trend, reaching a plateau around 32.
On the other hand, the throughput also rapidly decreases with the increase of Bwindow. Based on
observations, a value of 32 for Bwindow is a more trade-off choice.

Impact of Bwindow on Accuracy and Throughput. Similarly, we discussed the impact of Bwindow
on accuracy and throughput in Figure 6b. Bwindow is fixed to 32 and parallel decoding is disabled.
The impact of Bwindow on accuracy and throughput is roughly the same as that of Blayer, but the
smaller Bwindow has a more severe reduction in accuracy than Blayer. To ensure that the accuracy is
basically on par with the baseline, we have chosen 32 as the optimal value for Bwindow.

Dynamic Threshold vs. Fixed Threshold. We discussed the difference between fixed threshold
and dynamic threshold in Figure 6c. The accuracy of both is the same under all initialization. How-
ever, dynamic thresholds bring fewer inference steps than fixed thresholds in higher initialization.
With the maximum initialization of 0.9, which does not excessively descend performance, dynamic
thresholds can reduce inference steps by approximately 30% compared to the fixed thresholds.

5 CONCLUDING REMARKS

Summary. We present Dynamic-dLLM, a training-free framework for accelerating diffusion
LLMs by adapting to the dynamic behavior of tokens across layers and decoding steps. By in-
troducing dynamic cache updating and adaptive parallel decoding, our method significantly reduces
redundant computation while preserving generation quality. Extensive experiments across various
models and benchmarks covering mathematics, science, coding, and general tasks demonstrate the
effectiveness and strong generalization capabilities of the proposed method. In summary, Dynamic-
dLLM offers a general, plug-and-play solution toward efficient dLLM inference, highlighting the
importance of adaptive strategies in non-autoregressive generation.

Limitation & Future Work. While Dynamic-dLLM demonstrates strong performance across
standard language generation benchmarks, its capabilities in multi-modal understanding and com-
plex reasoning scenarios remain largely unexplored. In particular, the model’s current design is
tailored to unimodal textual inputs, and it is unclear how its core mechanisms generalize to set-
tings involving heterogeneous data modalities (e.g., vision, audio, or structured knowledge). Future
work should investigate how these principles can be reformulated or extended to address the unique
challenges of cross-modal alignment, representation fusion, and modality-specific computational
demands. Such extensions could unlock new avenues for building more flexible and efficient foun-
dation models capable of robust reasoning across diverse input types.

9
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A ALGORITHM SUPPLEMENT

The pseudocode of Dynamic-dLLM is shown in Algorithm 1 and 2.

Algorithm 1 Dynamic Cache Updating

Require: Mask predictor fθ, prompt c and initial masked sequence xT with length L, denoising
steps T , cache update budget Bwindow and Blayer, initial threshold τT .

Ensure: Final prediction x0

▷ /* Initialize caches at step t = T */
1: C ← InitializeCache(L,xT ) ▷ Cache Key, Value, Attention Output and FFN Output of L

tokens.
2: Generate prediction x̂T using model fθ ▷ Needs initial pass or separate handling
3: xT−1 ← S(x̂T ,xT , T )
4: for t = T − 1 down to 1 do
5: xlayer in ← xt ▷ Initial input for layer 0 at step t
6: for l in each layer in the Transformer network do
7: xt,l ← LayerNorm(xl

layer in)

8: U t,l ← ∅
9: U t,l ← U t,l = U t,l ∪

{
xi | p− Bwindow

2 ≤ i ≤ p+ Bwindow
2

}
▷ /* p is the position of token

unmasked in last step */
10: for each token j in sequence do

11: dt,lj = 1− (xt,l
j )⊤xt+1,l

j

∥xt,l
j ∥∥xt+1,l

j ∥
12: end for
13: st,l ← Mean

(
dt,l0 , dt,l1 , . . . , dt,lL−1

)
14: Bt,l

layer ← (Blayer × LayerNum) · st+1,l∑LayerNum−1
k=0 st+1,k

15: U t,l ← U t,l∪ indices of Bt,l
layer tokens with heightest dt,lj

16: xlayer out, C ← RefreshCache(xt
norm, l, C,U t,l)

17: xlayer in ← xlayer out ▷ Update input for the next layer
18: end for ▷ End layer loop
19: Generate prediction zt using final layer output xlayer out

20: xt−1, τ t−1 ← ParallelDecoding(zt,xt, τ t) ▷ Adaptive Parallel Decoding shown in 2
21: if all xt−1 unmasked then
22: break
23: end if
24: end for ▷ End step loop
25: return final prediction x0

B EXPERIMENT DETAILS

B.1 BENCHMARKS AND SETTINGS

Table 4 shows the specific setups for each benchmark, involving the count of decoding steps, block
length, and generation length. The benchmarks encompass MMLU (5-shot), ARC-C (0-shot),
GSM8K (4-shot), Math (4-shot), and HumanEval (0-shot). To examine the generalization and ro-
bustness of diverse approaches, we reduce task-dependent hyperparameter adjustments and instead
use a uniform setup for all benchmarks except HumanEval. Owing to its unique task characteristic,
HumanEval demands a greater number of decoding steps and a longer generation length.

B.2 IMPLEMENTATION DETAILS

We offer a thorough explanation of the parameter setups for the compared methods dKV-Cache and
dLLM-Cache across various models. According to the suggested configurations in the dKV-Cache
paper, we set the cache update interval to 8 for the LLaDA series and to 4 for the Dream series.
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Algorithm 2 Adaptive Parallel Decoding

Require: Prediction zt, parameters α, β, initial threshold τTn for every masked token n, masked
sequence xt

1: pt ← Softmax(zt) ▷ Probability distribution over V
2: for n = 0 to L− 1 do
3: psorted ← Sort(pt

n, descending)
4: cti ← 1− psorted[1]

▷ /* Calculate peak concentration */
5: end for ▷ End token loop

▷ /* Calculate confidence fluctuation (for adjacent steps) */
6: if t < T − 1 then
7: for i = 0 to L− 1 do
8: Ht

i ← 1− (zt
i)

⊤zt+1
i

∥zt
i∥∥z

t+1
i ∥ ▷ Cosine similarity

9: end for
10: end if

▷ /* Adaptive threshold adjustment */
11: if t < T − 1 then
12: τ ti = τ t+1

i − α · cti + β ·Ht
i

13: end if
14: Unmask all i with pti ≥ τ t, always unmask pti
15: return xt−1

For dLLM-Cache, the paper presents multiple parameter configurations, where Kp denotes the
prompt refresh interval and Kr represents the response refresh interval. specifically, For LLaDA-
8B-Instruct: Kp = 50, Kr = 7; For LLaDA-1.5: Kp = 100, Kr = 6; For Dream-v0-7B-Instruct:
Kp = 50, Kr = 2.

In addition, for Adaptive Parallel Decoding (APD) in Dynamic-dLLM, we set α = 0.001 and
β = 0.0008 based on extensive statistical analysis.

Datasets Steps Block Len Gen Len

MMLU 256 32 256
ARC-C 256 32 256
GSM8K 256 32 256
Math 256 32 256
HumanEval 512 32 512

Table 4: Configuration of Benchmarks

C EXAMPLE DESCRIPTION

As shown in Figure 7, in the absence of candidate, a fixed threshold can actually hinder early de-
coding of correct predictions, while Adaptive Parallel Decoding monitors the status of candidates in
real time and ends unnecessary steps early.
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Figure 7: Fixed threshold may hinder the early output of correct predictions, as shown in the figure.
The correctly predicted “good” cannot be decoded until its confidence exceeds the threshold 0.8,
which wastes n steps.

D RELATED WORK

Diffusion Large Language Models. Diffusion models, which excel in continuous data generation
through iterative denoising processes (Sohl-Dickstein et al., 2015; Ho et al., 2020), have recently
shown promising potential in natural language processing. Unlike their success in image domains
(Rombach et al., 2022; Peebles & Xie, 2023b), adapting these models to text generation faces fun-
damental challenges arising from the discrete token space and sequential dependencies inherent in
language. A key advancement in addressing these issues comes from discrete diffusion frameworks,
particularly Masked Diffusion Models (MDMs) that operate by progressively refining sequences
through context-aware mask prediction (Austin et al., 2021; Lou et al., 2023). Recent methodolog-
ical innovations have significantly expanded the capabilities of diffusion-based language models.
Scaling efforts have produced foundation models like LLaDA(Nie et al., 2025), an 8B parameter
bidirectional Transformer trained from scratch, and Dream(Ye et al., 2025) which leverages pre-
trained autoregressive weights, both achieving performance parity with similarly sized autoregres-
sive models.

Inference acceleration methods of dLLMs. Multiple studies have investigated strategies for speed-
ing up discrete diffusion large language models (dLLMs). Some studies using feature caching cut
down on computational costs by caching the internal features of tokens across different diffusion
steps. dLLM-Cache (Liu et al., 2025b) selects a fixed proportion of tokens for cache update for each
layer by sorting the cosine similarity of Value vector between adjacent steps. dKV-Cache (Ma et al.,
2025) puts the tokens decoded at each step into the cache and doeses not update them in later steps.
Fast-dLLM (Wu et al., 2025) puts tokens outside the current block to the cache and updates tokens
within the current block. The similarity of these methods is that they adopt the same cache update
strategy for all layers, which ignores the different requirements of each layer. In addition, Fast-
dLLM proposes the parallel decoding strategy, unmasking the tokens with confidence exceeding a
predetermined threshold, which has difficulty balancing quality and efficiency.

E Experimental Supplements

E.1 Stability Analysis of Hyperparameters

Stability Analysis of Blayer and Bwindow. To investigate the stability of parameter settings
across diverse scenarios, we conducted additional experiments. As shown in Table 5, when the
sequence length exceeds 1k, the accuracy of the default settings (Blayer = 32, Bwindow = 32)
exhibits a slight decline. However, with appropriate increases in these two parameters, the accu-
racy gradually recovers. Furthermore, when the sum of Blayer and Bwindow is fixed, different
proportional allocations between them lead to varying impacts on performance. Through these
experiments, we confirmed that setting Blayer equal to Bwindow yields optimal results. To en-
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Bwindow 32 64 128 192 64 0 256
Blayer 32 64 128 64 192 256 0
score 73.92 77.62 79.15 78.03 78.92 74.07 75.74

Table 5: Performance of DCU with different settings of Bwindow and Blayer, using 1024 generated
tokens on the GSM8K dataset with the LLaDA-8B-Instruct model.

gen len 256 512 1024

score(dynamic dLLM) 78.01 78.31 78.15
TPS 37.29 35.41 33.19
score(baseline) 78.21 78.98 79.11
TPS 8.78 7.62 6.21

Table 6: Performance scores under different generation lengths with α = 0.001, β = 0.0008

sure the method’s stability across different generation lengths, we propose an auto-tuning strat-
egy: Blayer = Bwindow = 1

8 × gen len (where gen len denotes the generation length).

Stability Analysis of α and β. For the hyperparameters α = 0.001 and β = 0.0008, we per-
formed experiments under different output length settings (256, 512, and 1024), while maintain-
ing Bwindow = 1

8 × gen len and Blayer = 1
8 × gen len (see Table 6). The results indicate that

there is almost no degradation in accuracy across these different generation lengths, verifying the
strong stability of α and β .

As per Equation 10, α and β regulate threshold adaptation to prediction confidence and temporal
instability, respectively. We conducted ablation experiments on GSM8K (gen len=256), with re-
sults in Table 7 (score=accuracy; NIS=Number of Inference Steps, fewer = faster). The optimal
range for α/β is the 10−3 order of magnitude. The model is sensitive to order-of-magnitude scaling
(severe quality loss with over-scaling) but stable to small variations within this range.

E.2 Analysis of Additional Latency

We present comprehensive metrics in Table 8, which details the performance scores (accuracy), av-
erage single-inference latency, and additional latency introduced by DCU and APD separately—all
evaluated on the GSM8K dataset across different generation lengths (gen len: 256, 512, 1024). As
shown in the Table 8, both DCU and APD introduce minimal additional latency, and this overhead
exhibits a clear linear scaling trend with generation length, which only accounts for a small portion
of the inference latency, far less than the gain it brings.

E.3 Performance in Low-resource Hardware

To address low-resource hardware deployment, we tested our method with the LLaDA-8B-Instruct
model on the GSM8K and HumanEval datasets using an RTX 4090 GPU. As shown in the Table 9,
our method still maintains a strong speed-accuracy trade-off under such cost-constrained settings,
demonstrating its practicality for deployment on non-high-end hardware.
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α β Score NIS

0.001 0.0008 78.01 95
0.01 0.008 69.75 54

0.1 0.08 59.76 16
0.001 0.0007 78.75 96
0.001 0.0005 78.85 95
0.001 0.0017 78.93 97

Table 7: Performance scores and Number of Inference Steps (NIS) under different combinations of
α and β, with 256 generate length on GSM8K

gen len
Baseline DCU APD

Score Time (s) Extra Time (s) Score Time (s) Extra Time (s) Score Time (s) Extra Time (s)

256 78.21 29.16 None 78.85 9.41 1.94 78.01 6.87 0.11
512 78.98 67.19 None 79.31 20.68 4.31 78.31 14.46 0.19
1024 79.11 164.90 None 79.15 47.36 8.90 78.15 30.85 0.33

Table 8: Performance metrics (scores and time-related data) of baseline, DCU, and APD under
different generation lengths (gen len). Time values are rounded to two decimal places.

Dataset LLaDA-8B-Instruct Dynamic-dLLM(DCU) Dynamic-dLLM

Score TPS Score TPS Score TPS

GSM8K 78.34 5.48 77.89 14.73 77.91 29.77
HumanEval 37.47 9.74 37.24 24.32 37.15 35.19

Table 9: Performance Scores and Inference Speed (TPS) of Different Methods on RTX 4090
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