
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DYNAMIC-DLLM: DYNAMIC CACHE-BUDGET AND
ADAPTIVE PARALLEL DECODING FOR TRAINING-
FREE ACCELERATION OF DIFFUSION LLM

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion Large Language Models (dLLMs) offer a promising alternative to au-
toregressive models, excelling in text generation tasks due to their bidirectional
attention mechanisms. However, their computational complexity, scaling as
O(L3) with sequence length L, poses significant challenges for long-sequence and
real-time applications, primarily due to the lack of compatibility with key-value
caching and the non-autoregressive nature of denoising steps. Existing accelera-
tion methods rely on static caching or parallel decoding strategies, which fail to
account for the dynamic behavior of token properties across layers and decod-
ing steps. We propose Dynamic-dLLM, a training-free framework that enhances
dLLM inference efficiency through two components: Dynamic Cache Updating
(DCU), which adaptively allocates cache-update budgets based on layer-wise to-
ken dynamics, and Adaptive Parallel Decoding (APD), which dynamically cali-
brates decoding thresholds to balance generation quality and efficiency. Extensive
experiments on models like LLaDA-8B-Instruct, LLaDA-1.5, and Dream-v0-7B-
Instruct across benchmarks such as MMLU, GSM8K, and HumanEval demon-
strate that Dynamic-dLLM significantly improves inference speed, attaining an
average speedup of exceeding 3× while maintaining performance. Dynamic-
dLLM outperforms state-of-the-art acceleration methods and provides a plug-and-
play solution for efficient dLLM deployment without compromising performance.
Code and models will be made publicly available.

(a) LLaDA-8B-Instruct (b) Dream-v0-7B-Instruct
Figure 1: The comparison in terms of tokens-per-second (TPS)

1 INTRODUCTION

Diffusion Large Language Models (dLLMs) have emerged as a compelling alternative to autoregres-
sive models (ARMS), demonstrating strong performance in text generation tasks. Notable examples
such as LLaDA (Nie et al., 2025; Zhu et al., 2025) and Dream (Ye et al., 2025) highlight the rapid
progress in this direction. A key advantage of dLLMs lies in their bidirectional attention mecha-
nisms, which enhance scalability and enable superior performance in handling complex scenarios,
such as the “reversal curse” (Berglund et al.), where traditional ARMs often struggle. This allows
dLLMs to capture richer contextual dependencies in challenging scenarios.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) Layer input (b) Attention output

(c) Layer input (d) Attention output (e) Wrong prediction using fixed threshold

Figure 2: (a-b) Layer input similarity and attention output similarity across adjacent denoising steps.
The brighter region denotes a higher similarity, indicating most tokens are stable across steps. (c-d)
The number of tokens requiring updates across different steps. Differences across layers indicate
varying demands for the token update budget. (e) Existing parallel decoding methods may yield
wrong predictions as potential candidates have been discarded by the fixed threshold.

However, despite their strong performance in certain domains, dLLMs face a fundamental challenge:
their computational complexity scales as O(L3) with respect to sequence length L, significantly
exceeding the O(L2) cost of autoregressive models (ARs). This cubic scaling imposes a severe
bottleneck for long-sequence and real-time generation tasks, limiting the practical deployability of
dLLMs in latency-sensitive applications. The root cause lies in the non-autoregressive nature of
dLLMs, where each denoising step requires updating all tokens in parallel across the full sequence.
Besides, this paradigm hinders the caching of key-value activations from previous steps, rendering
dLLMs incompatible with the widely used KV-Cache mechanism.

Key observations. To address this issue, recent work has explored strategies for dLLM acceler-
ation. For example, (Liu et al., 2025b; Ma et al., 2025; Song et al., 2025) reduce redundancy by
caching internal token representations across decoding steps. Concurrently, (Wu et al., 2025) ac-
celerates inference by enabling parallel unmasking of multiple tokens within a single step. These
methods implicitly rely on specific token properties, such as feature stability and confidence, to
identify opportunities for optimization. However, they all rely on a static strategy across all lay-
ers and decoding steps, applying the same caching or unmasking criteria throughout the model and
generation process, thus overlooking the dynamic nature of token behavior during generation.

As illustrated in Figure 2(a-d), the token properties vary across different layers and steps. The
frequency of changes in the internal features of tokens differs across layers, while the distributions of
token confidence fluctuate across decoding steps. The static strategies adopted by existing methods
may fail to account for this dynamic behavior, leading to performance degradation. Therefore, this
observation prompts a critical question: how to design an adaptive method that dynamically aligns
with the model’s intrinsic layer-wise and step-wise token dynamics to improve the efficiency?

Our solution. In this work, we propose Dynamic-dLLM, a training-free framework for acceler-
ating dLLM inference. Dynamic-dLLM consists of two key components: Dynamic Cache Updating
(DCU) and Adaptive Parallel Decoding (APD).

Specifically, as tokens may exhibit heterogeneous dynamics across layers, instead of a static cache
updating strategy across all layers, we propose Dynamic Cache Updating (DCU) that allocates
cache-update budgets adaptively, ensuring that layers requiring frequent updates are prioritized,
while computational overhead is reduced in stable layers. In addition, the existing parallel decoding
strategy with fixed thresholds risks committing to tokens prematurely, as confidence estimates can
shift over time, leading to error propagation. To mitigate this, we introduce Adaptive Parallel De-
coding (APD) that dynamically calibrates decoding thresholds by tracking the evolving distribution
of prediction confidence, achieving a decent trade-off between the degradation of generation quality
caused by a low threshold and the inefficiency resulting from a high threshold.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Extensive experiments across LLaDA-8B-Instruct, LLaDA-1.5, Dream-v0-7B-Instruct, and bench-
marks covering mathematics, science, coding, and general tasks demonstrate the effectiveness and
strong generalization capabilities of the proposed method. Notably, Dynamic-dLLM achieves a
maximum acceleration of up to 4.48×, with an average speedup exceeding 3× while still maintain-
ing performance, making it a plug-and-play training-free solution for enhancing the efficiency of
dLLMs without compromising performance. In summary, our contributions are as follows:

• In this study, we observe that the variations across layers and decoding steps of dLLM may
undermine the effectiveness of existing static rule-based acceleration methods.

• We propose Dynamic-dLLM, a training-free framework composed of Dynamic Cache Up-
dating (DCU) and Adaptive Parallel Decoding (APD), DCU adaptively allocates cache-
update budgets across layers, while APD dynamically calibrates decoding thresholds across
steps, jointly enabling efficient yet robust acceleration of dLLMs.

• Extensive experiments across diverse models and tasks show that Dynamic-dLLM substan-
tially improves inference efficiency while preserving the accuracy, outperforming state-of-
the-art acceleration methods.

2 BACKGROUND AND MOTIVATION

2.1 PRELIMINARIES OF DLLM

In this section, we introduce preliminaries regarding the inference process of dLLM (Nie et al.,
2025). The introduction of related work is presented in the Appendix D due to the page limit.

Given a prompt of length Lprompt tokens and a target generation length of Lgen tokens, let L =
Lprompt + Lgen. The dLLM generates the output in T iterative decoding steps, producing approx-
imately Lgen/T tokens per step. Let V denote the model’s vocabulary, and let [MASK] ∈ V be
a special placeholder token indicating positions to be predicted. Denote by xt ∈ VL the token
sequence at step t, where t = T, T − 1, . . . , 0. The initial sequence is constructed as:

xT = (x0, . . . , xLprompt−1, [MASK], . . . , [MASK]), (1)

where xi are the given prompt tokens. At each step t, the mask predictor fθ computes a distribution
over the vocabulary for each position:

zt = fθ(x
t) ∈ RL×|V|. (2)

Using greedy decoding, we can obtain the most probable token at each masked position:

x̂t
i = argmax

v∈V

(
Softmax(zti)

)
v
, if xt

i = [MASK]. (3)

A transition function S then updates the sequence to xt−1 by selectively replacing tokens based
on confidence scores, re-masking low-confidence predictions to refine them in subsequent steps:
xt−1 = S(x̂t,xt, t). The final output sequence x0 is yielded when t = 0.

2.2 KEY OBSERVATIONS

Despite recent progress in accelerating diffusion-style LLMs (dLLMs) (Liu et al., 2025b; Wu et al.,
2025; Ma et al., 2025; Song et al., 2025), two critical inefficiencies remain unaddressed.

Layer-wise Cache Update Needs Vary Significantly. Existing methods exploit temporal redun-
dancy by reusing cached intermediate features (e.g., query, key, value, attention output, FFN output)
from the previous step for a subset of tokens, assuming high feature similarity across steps. However,
as illustrated in Figure 2(a-d), the proportion of tokens requiring cache updates varies substantially
across layers, increasing monotonically from shallow to deep layers. This suggests that uniform or
heuristic caching strategies are suboptimal. Instead, a layer-adaptive cache update policy is essen-
tial for dynamically allocating computation budgets where they matter most.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 3: Dynamic-dLLM consists of two key components: Dynamic Cache Updating (DCU, upper
part) and Adaptive Parallel Decoding (APD, lower part). DCU reallocates cache update budget for
each layer at each step, while APD dynamically adjusts the decoding thresholds for all tokens.

Static Thresholding Hinders Parallel Decoding Efficacy. Parallel decoding strategy (e.g., Wu
et al. (2025)) unmask tokens once their confidence exceeds a fixed threshold. Yet, as shown in
Figure 2(e), the token with the highest confidence at an early step may not be the desired output and
will be revised later, often replaced by its “runner-up” prediction with the second-highest confidence
initially. Conversely, tokens whose top prediction exhibits clear dominance over alternatives, i.e.,
low entropy or large margin, can be safely finalized earlier, even if absolute confidence remains
below a static threshold. Therefore, to enable earlier commitment to stable predictions, thereby
expediting convergence without compromising accuracy, exploring the feasibility of a dynamic per-
token threshold, adjusting adaptively based on the predicted distribution (e.g., entropy or probability
margin), becomes essential.

3 METHOD

To overcome the limitations of existing approaches, we propose Dynamic-dLLM, a training-free
acceleration framework that dynamically optimizes dLLM inference along two dimensions: cache-
update management and parallel decoding scheduling.

Regarding cache-update management, we introduce a dynamic allocation mechanism for managing
cache updates, recognizing the varying dynamics across layers. This approach dynamically dis-
tributes the update budget among layers, prioritizing layers that require more frequent cache updates.
On the other hand, for optimizing the parallel decoding, we replace fixed confidence thresholds
with an adaptive per-token unmasking strategy, based on the predicted distribution of each token.
This strategy facilitates early commitment to confident predictions while postponing uncertain ones,
achieving a more balanced trade-off between speed and output quality.

The overview is presented in Figure 3. Sections 3.1 and 3.2 detail each component, respectively.

3.1 DYNAMIC CACHE UPDATING

Recent works (Liu et al., 2025b; Ma et al., 2025; Song et al., 2025) update a fixed or uniform number
of token caches across all layers. However, as demonstrated in Section 2.2, the demand for cache up-
dates varies significantly across layers. This observation motivates the need for a dynamic allocation
strategy that adapts the cache-update budget per layer according to the specific requirement.

In this section, we propose the Dynamic Cache Updating (DCU) strategy, which selectively updates
only those tokens whose representations undergo significant changes between consecutive inference
steps. Prior work (Liu et al., 2025b) identifies such tokens by measuring the cosine similarity be-
tween the current and cached Value vectors. While effective, this approach incurs non-negligible
computational overhead due to the explicit recomputation and comparison of Value vectors. Ideally,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(a) Attention: 0.94 (b) FFN: 0.97 (c) Key: 0.99 (d) Value: 0.99

Figure 4: Spearman correlation values of layer inputs with intermediate features, including Key,
Value, Attention Output, and FFN Output. We visualized the cosine similarity between tokens’ fea-
ture vectors and their cached counterparts at adjacent steps, and compared the relationship between
layer input and (a) Attention Output, (b) FFN Output, (c) Key, (d) Value.

if token dynamics could be estimated without recomputing these vectors, cached values could be
safely reused, thereby reducing redundancy.

Inspired by Liu et al. (2025a), who observed a strong correlation between model inputs and outputs
in diffusion transformers (DiT) (Peebles & Xie, 2023a), we investigate the relationship between
layer inputs and intermediate features in dLLMs. As shown in Figure 4, the features cached (e.g.,
Key, Value, Attention Output, and FFN Output) exhibit high correlation with the corresponding layer
inputs. This implies that changes in layer inputs across steps serve as a reliable proxy for the un-
derlying dynamics of intermediate activations. Consequently, input-level differences can effectively
inform cache-update decisions without accessing or recomputing the cached features themselves.

Layer-Adaptive Cache Budget Allocation. To dynamically allocate the cache update budget
across layers, we first define a token-level dissimilarity metric, dt,li , estimating the change in the
representation of token xi at layer l between consecutive inference steps t and t+ 1. This metric is
computed using the cosine distance between the normalized token inputs at the respective steps:

dt,li = 1− (xt,l
i)⊤xt+1,l

i

∥xt,l
i ∥∥x

t+1,l
i ∥

(4)

A higher value of dt,li denotes a greater change in the token’s representation, suggesting a higher
need for cache update. Then, we aggregate the token-level variations into a layer-wise metric st,l.
This metric represents the average change in token representations within layer l:

st,l =
1

N

N−1∑
i=0

dt,li , (5)

where N is the sequence length. Subsequently, the cache update budget for layer l at step t, denoted
as Bt,l

layer, is then allocated proportionally to its measured dynamism at the previous step (t+1), st+1,l.
This allocation is normalized across all layers using the total available budget, Blayer×LayerNum:

Bt,l
layer = (Blayer × LayerNum) · st+1,l∑LayerNum−1

k=0 st+1,k
. (6)

For each layer l, the set of tokens scheduled for cache update at step t, denoted U t,l, is initialized as
an empty set at the start of the step: U t,l ← ∅. Then, layer l identifies the set St,l comprising the
top-Bt,l

layer tokens with the highest variation dt,li . These selected tokens are then added to the update
set: U t,l ← U t,l ∪ St,l.

Token Stuck in the Mud. Nevertheless, the layer-adaptive cache budget allocation strategy may
potentially make some tokens stuck in the mud. Specifically, if a token xi is not selected for an update
in layer l, its cached representation remains unchanged. Consequently, its input to layer l + 1 also
remains static, leading to a zero variation score dt,l+1

i = 0 for that layer. As the allocation strategy
prioritizes tokens with high dt,l+1

i , the token xi will only be updated in layer l + 1 if the number of
tokens exhibiting non-zero variation is insufficient to fill the allocated budget Bt,l+1

layer . Should this

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(a) Analysis of Distance (b) Layer 15 (c) Layer 24

Figure 5: Local property analysis of dLLMs (a) Relationship between the distance from key token
and the frequency of being decoded in the current step. The closer the token is to the key token,
the higher the probability of it being decoded. (b) The last two images respectively represent the
attention of response tokens to key token in layer 15 and 24. Red dot is the key token at this step.
The illustration shows that the tokens around the key token have higher attentions, which means that
the changes caused by decoding the key token affect those tokens more than others.

occur, and if xi is again not selected (e.g., chosen randomly among the low-priority tokens), it will
remain unchanged entering layer l+2, perpetuating the cycle. We refer to this phenomenon, where a
token fails to be updated across multiple consecutive layers due to consistently low variation scores
induced by prior missed updates, as a token becoming stuck in the mud.

Mandatory Update Window. As illustrated in Figure 5, there exists a spatial locality in the update
pattern: tokens surrounding the one unmasked in the previous step (the key token) are statistically
more likely to be updated in the current step. Let the position of the key token be p. To mitigate
the risk of the next key token (the token with the highest confidence to be unmasked in the current
step) becoming stuck in the mud, we introduce a Mandatory Update Window. This mechanism
ensures that a local region around the key token is always updated, regardless of the adaptive budget
allocation. Formally, we define a window of fixed size Bwindow centered on the key token’s position
p. The set of token positions covered by this window at a given step is

[
p− Bwindow

2 , p+ Bwindow
2

]
.

For each layer l, the caches for all tokens within this window are compulsorily added to the layer’s
update set U t,l:

U t,l ← U t,l ∪
{
xi

∣∣∣∣ p− Bwindow
2

≤ i ≤ p+
Bwindow

2

}
. (7)

This updated set U t,l then constitutes the final list of tokens whose caches will be recomputed for
layer l in the current step. By ensuring continuous updates within this local window, we reduce the
likelihood of critical tokens being overlooked and retain the response to local changes. The global
budget is subsequently distributed adaptively among the remaining tokens based on the layer-specific
variation metrics st,l for the following step.

3.2 ADAPTIVE PARALLEL DECODING

Section 2.2 highlights that the peak confidence of a token can vary significantly across decoding
steps in dLLMs. This inherent dynamism poses a challenge for fixed-threshold parallel decoding
methods (Wu et al., 2025), which rely on a static criterion and consequently suffer from decoding
inaccuracies due to mispredictions at certain steps.

To address this, we introduce the Adaptive Parallel Decoding mechanism that dynamically adjusts
the masking threshold for each token based on its local prediction stability. Each token xi starts with
an initial threshold τTi . The threshold at step t, denoted τ ti , is adapted from the threshold used at the
previous step t+ 1, τ t+1

i .

Adaptive Threshold via Confidence Concentration. The core idea is to modulate the threshold
based on the concentration of the token’s predicted probability distribution. Intuitively, a diffuse
distribution (a small gap between the highest and second-highest probabilities) suggests lower con-
fidence in the current prediction, warranting a stricter (higher) threshold to reduce unnecessary up-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

MMLU ARC-C GSM8k GPQA HE Avg.

LLaDA-8B-Instruct 60.92 88.53 78.21 32.17 38.54 59.67
Throughput (TPS, ↑) 10.19(1.0×) 25.49 (1.0×) 8.32 (1.0×) 7.60 (1.0×) 15.54 (1.0×) 1.0×

+ dLLM-Cache 61.33 88.49 78.78 31.84 37.99 59.69
Throughput (TPS, ↑) 23.54 (2.31×) 33.64 (1.32×) 25.28 (3.0×) 22.04(2.90×) 28.44(1.83×) 2.27×

+ dKV-Cache 61.37 87.98 79.17 32.25 38.23 59.80
Throughput (TPS, ↑) 17.73 (1.74×) 29.82 (1.17×) 15.14 (1.82×) 14.44(1.90×) 20.82 (1.34×) 1.59×

+ Fast-dLLM 61.39 88.05 78.44 32.01 38.21 59.62
Throughput (TPS, ↑) 26.29 (2.58×) 32.88 (1.29×) 22.74 (2.73×) 22.65(2.98×) 27.82 (1.79×) 2.27×

+ Dynamic-dLLM (Ours) 60.95 88.09 78.24 31.98 38.33 59.51
Throughput (TPS, ↑) 30.16 (2.96×) 40.27 (1.58×) 27.21 (3.27×) 25.46 (3.35×) 30.61 (1.97×) 2.63×

+ Fast-dLLM* 61.08 88.32 76.62 32.21 37.87 59.22
Throughput (TPS, ↑) 32.30 (3.17×) 41.55 (1.63×) 31.36 (3.77×) 27.06(3.56×) 32.94 (2.12×) 2.85×

+ Dynamic-dLLM* (Ours) 60.89 87.79 78.01 31.89 38.08 59.33
Throughput (TPS, ↑) 34.14 (3.35×) 42.31 (1.66×) 37.29 (4.48×) 31.84(4.19×) 36.83(2.37×) 3.21×

Table 1: Results on LLaDA-8B-Instruct (Nie et al., 2025). Each cell includes the accuracy, decoding
throughput (TPS), with relative efficiency enhancement to the baseline. Best values in bold, subop-
timal values underlined. Results with * are obtained with parallel decoding.

dates. Conversely, a concentrated distribution indicates stability, permitting a reduced threshold for
early decoding. Let zti be the probability distribution over the vocabulary V for token xi at step
t, the index of the most likely token is: u = argmaxv∈V (zti)v . Thus, the concentration of this
distribution is quantified using the second-highest probability score:

cti = 1− max
v∈V\{u}

(
zti
)
v
. (8)

A larger value of cti signifies a more peaked and confident distribution. Based on this measure, the
decoding threshold for token xi at step t is adjusted as follows:

τ t
i = τ t+1

i − α · cti, (9)

where α is a positive hyperparameter controlling the sensitivity of the threshold adaptation. This
formulation ensures that tokens with highly concentrated distributions (large cti) have their thresh-
olds decreased, allowing for early decoding, while tokens with diffused distributions have increased
thresholds to prevent decoding errors.

Integration with Temporal Instability. In addition, the magnitude of historical shifts in a token’s
confidence distribution provides a strong signal for its likelihood of future revision. We quantify this
shift via the cosine distance between the token’s confidence distributions at adjacent steps:

Ht
i = 1− (zti)

⊤zt+1
i

∥zti∥ ∥z
t+1
i ∥

. (10)

A larger Ht
i indicates greater instability in the prediction, suggesting that the token may still be

undergoing refinement and thus warrants a stricter (higher) threshold to prevent early decoding. By
combining cti and Ht

i , the decoding threshold for token xi at step t is updated as:
τ t
i = τ t+1

i − α · cti + β ·Ht
i , (11)

where α, β ≥ 0 are hyperparameters balancing the influence of prediction confidence and temporal
instability.

Algorithms 1 and 2 in the Appendix outline the core mechanisms of Dynamic-dLLM for accelerating
dynamic LLMs (dLLMs) via Feature-Caching and Parallel Decoding, respectively. By explicitly
accounting for dynamism along both the layer and step dimensions, Dynamic-dLLM minimizes
redundant computation and thereby significantly accelerates the inference process of dLLMs.

4 EXPERIMENT

4.1 EXPERIMENT SETTINGS

We assessed the performance of Dynamic-dLLM using three typical dLLMs as baselines: LLaDA-
8B-Instruct, LLaDA-1.5 and Dream-7B-Instruct. If not otherwise specified, we default Blayer to 32,
and Bwindow to 32. More experimental details are shown in Appendix B.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

MMLU ARC-C GSM8k GPQA HE Avg.

LLaDA-1.5 61.42 88.51 81.62 33.61 40.24 61.08
Throughput (TPS, ↑) 10.18 (1.0×) 25.50 (1.0×) 8.30 (1.0×) 7.57 (1.0×) 15.54 (1.0×) 1.0×

+ dLLM-Cache 61.39 88.04 81.64 33.45 40.18 60.94
Throughput (TPS, ↑) 23.62 (2.32×) 33.92 (1.33×) 26.48 (3.19×) 21.88 (2.89×) 28.28 (1.82×) 2.31×

+ dKV-Cache 61.47 88.23 81.53 33.54 39.81 60.92
Throughput (TPS, ↑) 17.41 (1.71×) 29.33(1.15×) 15.27 (1.84×) 14.46 (1.91×) 20.67 (1.33×) 1.59×

+ Fast-dLLM 61.46 88.18 81.21 33.63 40.21 60.94
Throughput (TPS, ↑) 26.47 (2.60×) 33.15 (1.30×) 23.07 (2.78×) 22.56 (2.98×) 28.13 (1.81×) 2.29×

+ Dynamic-dLLM (Ours) 61.03 88.29 80.98 33.37 39.93 60.72
Throughput (TPS, ↑) 30.03(2.95×) 41.06 (1.61×) 27.31 (3.29×) 25.28 (3.34×) 30.77 (1.98×) 2.63×

+ Fast-dLLM* 61.22 88.31 80.94 33.43 40.06 60.79
Throughput (TPS, ↑) 32.17 (3.16×) 41.31(1.62×) 31.13 (3.75×) 27.10 (3.58×) 32.93 (2.12×) 2.85×

+ Dynamic-dLLM* (Ours) 61.34 88.02 81.03 32.97 40.01 60.67
Throughput (TPS, ↑) 34.20 (3.36×) 42.59(1.67×) 37.02 (4.46×) 31.57 (4.17×) 36.67(2.36×) 3.20×

Table 2: Results on LLaDA-1.5 (Zhu et al., 2025). Each cell includes the accuracy, decoding
throughput (TPS), with relative efficiency enhancement to the baseline. Best values in bold, subop-
timal values underlined. Results with * are obtained with parallel decoding.

MMLU ARC-C GSM8k GPQA HE Avg.

Dream-v0-7B-Instruct 73.34 89.63 77.47 34.08 56.82 66.27
Throughput (TPS, ↑) 9.97 (1.0×) 20.44 (1.0×) 8.05 (1.0×) 7.13 (1.0×) 14.95 (1.0×) 1.0×

+ dLLM-Cache 73.08 90.04 76.64 34.75 54.31 65.76
Throughput (TPS, ↑) 19.44 (1.95×) 24.32 (1.19×) 22.46 (2.79×) 19.54 (2.74×) 24.22 (1.62×) 2.06×

+ dKV-Cache 72.93 89.40 77.32 33.87 54.69 65.64
Throughput (TPS, ↑) 16.75(1.68×) 22.07 (1.08×) 12.80 (1.59×) 10.62 (1.49×) 19.14 (1.28×) 1.42×

+ Fast-dLLM 72.14 90.11 76.81 33.99 55.70 65.75
Throughput (TPS, ↑) 18.74 (1.88×) 29.05 (1.47×) 21.50 (2.67×) 17.04 (2.39×) 20.18 (1.35×) 1.95×

+ Dynamic-dLLM (Ours) 72.09 89.25 77.28 33.17 54.93 65.34
Throughput (TPS, ↑) 25.82 (2.59×) 31.89 (1.56×) 25.52 (3.17×) 21.90 (3.07×) 27.81 (1.86×) 2.45×

+ Fast-dLLM* 71.97 89.98 76.95 33.34 56.78 65.80
Throughput (TPS, ↑) 30.11(3.02)× 32.50(1.59×) 28.90 (3.59×) 23.81 (3.34×) 31.99 (2.14×) 2.74×

+ Dynamic-dLLM* (Ours) 72.10 89.38 77.52 32.02 54.05 65.01
Throughput (TPS, ↑) 31.31 (3.14×) 32.91 (1.61×) 31.48 (3.91×) 25.88 (3.63×) 36.93 (2.47×) 2.95×

Table 3: Results on Dream-v0-7B-Instruct (Ye et al., 2025). Each cell includes the accuracy, de-
coding throughput (TPS), with relative efficiency enhancement to the baseline. Best values in bold,
suboptimal values underlined. Results with * are obtained with parallel decoding.

To comprehensively evaluate a model’s performance and efficiency, we employ two key metrics:
accuracy on benchmarks and throughput, with the latter measured in Tokens Per Second (TPS).
The benchmarks includes MMLU (5-shot)(Hendrycks et al., 2020), ARC-challenge (ARC-c, 0-
shot)(Clark et al., 2018), GPQA (5-shot)(Rein et al., 2024), GSM8k (4-shot)(Cobbe et al., 2021),
and HumanEval (HE, 0-shot)(Chen et al., 2021). For fair comparison, we divided the methods into
two groups, one using Feature-Cache(Liu et al., 2025b; Ma et al., 2025; Wu et al., 2025) and the
other using KV-Cache and parallel decoding(Wu et al., 2025). All experiments were performed on
NVIDIA Pro6000 GPUs.

4.2 MAIN RESULTS

Our results (baseline vs. alternative methods vs. our Dynamic-dLLM) are presented in Table 1, 2,
and 3. These results show that Dynamic-dLLM not only achieves the most significant throughput
improvement but also maintains performance.

With only feature cache enabled, Dynamic-dLLM delivers substantial speedups for high-priority
tasks without accuracy degradation. It achieves notable throughput boosts on benchmarks with an
average speedup of over 2.5× across all evaluated tasks for LLaDA-8B-Instruct , while maintaining
accuracy. When combined with parallel decoding, Dynamic-dLLM scales speedups. For LLaDA-
8B-Instruct on GSM8k, throughput hits 37.29 TPS (4.48× faster than the baseline’s 8.32 TPS), with
average speedup across tasks reaching 3.21× and robust accuracy.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Ablation of Blayer (b) Ablation of Bwindow (c) Ablation of Threshold

Figure 6: Ablation studies on key hyperparameters, investigating the respective effects on the
model’s performance (accuracy) and efficiency (throughput).

This superiority persists across models: LLaDA-1.5 achieves 4.46× speedup on GSM8k (37.02 vs.
8.30 TPS) with near-baseline accuracy (60.67% vs. 61.08%); Dream-v0-7B-Instruct gains 3.91×
speedup on GSM8k (31.48 vs. 8.05 TPS). These cross-model results demonstrate its generalization
capabilities.

4.3 ABLATION STUDIES

In this section, we present the ablation studies regarding the core designs of our method.

Impact of Blayer on Accuracy and Throughput. As shown in Figure 6a, we fix the Bwindow to 32
and do not use parallel decoding, and explore the impact of Blayer on accuracy and throughput. With
the gradual increase of Bwindow, the accuracy shows an upward trend, reaching a plateau around 32.
On the other hand, the throughput also rapidly decreases with the increase of Bwindow. Based on
observations, a value of 32 for Bwindow is a more trade-off choice.

Impact of Bwindow on Accuracy and Throughput. Similarly, we discussed the impact of Bwindow
on accuracy and throughput in Figure 6b. Bwindow is fixed to 32 and parallel decoding is disabled.
The impact of Bwindow on accuracy and throughput is roughly the same as that of Blayer, but the
smaller Bwindow has a more severe reduction in accuracy than Blayer. To ensure that the accuracy is
basically on par with the baseline, we have chosen 32 as the optimal value for Bwindow.

Dynamic Threshold vs. Fixed Threshold. We discussed the difference between fixed threshold
and dynamic threshold in Figure 6c. The accuracy of both is the same under all initialization. How-
ever, dynamic thresholds bring fewer inference steps than fixed thresholds in higher initialization.
With the maximum initialization of 0.9, which does not excessively descend performance, dynamic
thresholds can reduce inference steps by approximately 30% compared to the fixed thresholds.

5 CONCLUDING REMARKS

Summary. We present Dynamic-dLLM, a training-free framework for accelerating diffusion
LLMs by adapting to the dynamic behavior of tokens across layers and decoding steps. By in-
troducing dynamic cache updating and adaptive parallel decoding, our method significantly reduces
redundant computation while preserving generation quality. Extensive experiments across various
models and benchmarks covering mathematics, science, coding, and general tasks demonstrate the
effectiveness and strong generalization capabilities of the proposed method. In summary, Dynamic-
dLLM offers a general, plug-and-play solution toward efficient dLLM inference, highlighting the
importance of adaptive strategies in non-autoregressive generation.

Limitation & Future Work. While Dynamic-dLLM demonstrates strong performance across
standard language generation benchmarks, its capabilities in multi-modal understanding and com-
plex reasoning scenarios remain largely unexplored. In particular, the model’s current design is
tailored to unimodal textual inputs, and it is unclear how its core mechanisms generalize to set-
tings involving heterogeneous data modalities (e.g., vision, audio, or structured knowledge). Future
work should investigate how these principles can be reformulated or extended to address the unique
challenges of cross-modal alignment, representation fusion, and modality-specific computational
demands. Such extensions could unlock new avenues for building more flexible and efficient foun-
dation models capable of robust reasoning across diverse input types.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

BIBLIOGRAPHY

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in neural information processing
systems, 34:17981–17993, 2021.

L Berglund, M Tong, M Kaufmann, M Balesni, AC Stickland, T Korbak, and O Evans. The reversal
curse: Llms trained on “a is b” fail to learn “b is a”. arxiv 2023. arXiv preprint arXiv:2309.12288.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Feng Liu, Shiwei Zhang, Xiaofeng Wang, Yujie Wei, Haonan Qiu, Yuzhong Zhao, Yingya Zhang,
Qixiang Ye, and Fang Wan. Timestep embedding tells: It’s time to cache for video diffusion
model. In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 7353–
7363, 2025a.

Zhiyuan Liu, Yicun Yang, Yaojie Zhang, Junjie Chen, Chang Zou, Qingyuan Wei, Shaobo Wang,
and Linfeng Zhang. dllm-cache: Accelerating diffusion large language models with adaptive
caching. arXiv preprint arXiv:2506.06295, 2025b.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion language modeling by estimating
the ratios of the data distribution. 2023.

Xinyin Ma, Runpeng Yu, Gongfan Fang, and Xinchao Wang. dkv-cache: The cache for diffusion
language models. arXiv preprint arXiv:2505.15781, 2025.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai
Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint
arXiv:2502.09992, 2025.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4195–4205, 2023a.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4195–4205, 2023b.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. In First Conference on Language Modeling, 2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Jascha Sohl-Dickstein, Eric A Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. JMLR.org, 2015.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yuerong Song, Xiaoran Liu, Ruixiao Li, Zhigeng Liu, Zengfeng Huang, Qipeng Guo, Ziwei He,
and Xipeng Qiu. Sparse-dllm: Accelerating diffusion llms with dynamic cache eviction. arXiv
preprint arXiv:2508.02558, 2025.

Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv cache
and parallel decoding. arXiv preprint arXiv:2505.22618, 2025.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7b: Diffusion large language models. arXiv preprint arXiv:2508.15487, 2025.

Fengqi Zhu, Rongzhen Wang, Shen Nie, Xiaolu Zhang, Chunwei Wu, Jun Hu, Jun Zhou, Jianfei
Chen, Yankai Lin, Ji-Rong Wen, et al. Llada 1.5: Variance-reduced preference optimization for
large language diffusion models. arXiv preprint arXiv:2505.19223, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

CONTENTS

Contents 12

A Algorithm Supplement 13

B Experiment Details 13

B.1 Benchmarks and Settings . 13

B.2 Implementation Details . 13

C Example Description 14

D Related Work 15

E Experimental Supplements 15

E.1 Stability Analysis of Hyperparameters . 15

E.2 Analysis of Additional Latency . 16

E.3 Performance in Low-resource Hardware . 16

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A ALGORITHM SUPPLEMENT

The pseudocode of Dynamic-dLLM is shown in Algorithm 1 and 2.

Algorithm 1 Dynamic Cache Updating

Require: Mask predictor fθ, prompt c and initial masked sequence xT with length L, denoising
steps T , cache update budget Bwindow and Blayer, initial threshold τT .

Ensure: Final prediction x0

▷ /* Initialize caches at step t = T */
1: C ← InitializeCache(L,xT) ▷ Cache Key, Value, Attention Output and FFN Output of L

tokens.
2: Generate prediction x̂T using model fθ ▷ Needs initial pass or separate handling
3: xT−1 ← S(x̂T ,xT , T)
4: for t = T − 1 down to 1 do
5: xlayer in ← xt ▷ Initial input for layer 0 at step t
6: for l in each layer in the Transformer network do
7: xt,l ← LayerNorm(xl

layer in)

8: U t,l ← ∅
9: U t,l ← U t,l = U t,l ∪

{
xi | p− Bwindow

2 ≤ i ≤ p+ Bwindow
2

}
▷ /* p is the position of token

unmasked in last step */
10: for each token j in sequence do

11: dt,lj = 1− (xt,l
j)⊤xt+1,l

j

∥xt,l
j ∥∥xt+1,l

j ∥
12: end for
13: st,l ← Mean

(
dt,l0 , dt,l1 , . . . , dt,lL−1

)
14: Bt,l

layer ← (Blayer × LayerNum) · st+1,l∑LayerNum−1
k=0 st+1,k

15: U t,l ← U t,l∪ indices of Bt,l
layer tokens with heightest dt,lj

16: xlayer out, C ← RefreshCache(xt
norm, l, C,U t,l)

17: xlayer in ← xlayer out ▷ Update input for the next layer
18: end for ▷ End layer loop
19: Generate prediction zt using final layer output xlayer out

20: xt−1, τ t−1 ← ParallelDecoding(zt,xt, τ t) ▷ Adaptive Parallel Decoding shown in 2
21: if all xt−1 unmasked then
22: break
23: end if
24: end for ▷ End step loop
25: return final prediction x0

B EXPERIMENT DETAILS

B.1 BENCHMARKS AND SETTINGS

Table 4 shows the specific setups for each benchmark, involving the count of decoding steps, block
length, and generation length. The benchmarks encompass MMLU (5-shot), ARC-C (0-shot),
GSM8K (4-shot), Math (4-shot), and HumanEval (0-shot). To examine the generalization and ro-
bustness of diverse approaches, we reduce task-dependent hyperparameter adjustments and instead
use a uniform setup for all benchmarks except HumanEval. Owing to its unique task characteristic,
HumanEval demands a greater number of decoding steps and a longer generation length.

B.2 IMPLEMENTATION DETAILS

We offer a thorough explanation of the parameter setups for the compared methods dKV-Cache and
dLLM-Cache across various models. According to the suggested configurations in the dKV-Cache
paper, we set the cache update interval to 8 for the LLaDA series and to 4 for the Dream series.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 2 Adaptive Parallel Decoding

Require: Prediction zt, parameters α, β, initial threshold τTn for every masked token n, masked
sequence xt

1: pt ← Softmax(zt) ▷ Probability distribution over V
2: for n = 0 to L− 1 do
3: psorted ← Sort(pt

n, descending)
4: cti ← 1− psorted[1]

▷ /* Calculate peak concentration */
5: end for ▷ End token loop

▷ /* Calculate confidence fluctuation (for adjacent steps) */
6: if t < T − 1 then
7: for i = 0 to L− 1 do
8: Ht

i ← 1− (zt
i)

⊤zt+1
i

∥zt
i∥∥z

t+1
i ∥ ▷ Cosine similarity

9: end for
10: end if

▷ /* Adaptive threshold adjustment */
11: if t < T − 1 then
12: τ ti = τ t+1

i − α · cti + β ·Ht
i

13: end if
14: Unmask all i with pti ≥ τ t, always unmask pti
15: return xt−1

For dLLM-Cache, the paper presents multiple parameter configurations, where Kp denotes the
prompt refresh interval and Kr represents the response refresh interval. specifically, For LLaDA-
8B-Instruct: Kp = 50, Kr = 7; For LLaDA-1.5: Kp = 100, Kr = 6; For Dream-v0-7B-Instruct:
Kp = 50, Kr = 2.

In addition, for Adaptive Parallel Decoding (APD) in Dynamic-dLLM, we set α = 0.001 and
β = 0.0008 based on extensive statistical analysis.

Datasets Steps Block Len Gen Len

MMLU 256 32 256
ARC-C 256 32 256
GSM8K 256 32 256
Math 256 32 256
HumanEval 512 32 512

Table 4: Configuration of Benchmarks

C EXAMPLE DESCRIPTION

As shown in Figure 7, in the absence of candidate, a fixed threshold can actually hinder early de-
coding of correct predictions, while Adaptive Parallel Decoding monitors the status of candidates in
real time and ends unnecessary steps early.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 7: Fixed threshold may hinder the early output of correct predictions, as shown in the figure.
The correctly predicted “good” cannot be decoded until its confidence exceeds the threshold 0.8,
which wastes n steps.

D RELATED WORK

Diffusion Large Language Models. Diffusion models, which excel in continuous data generation
through iterative denoising processes (Sohl-Dickstein et al., 2015; Ho et al., 2020), have recently
shown promising potential in natural language processing. Unlike their success in image domains
(Rombach et al., 2022; Peebles & Xie, 2023b), adapting these models to text generation faces fun-
damental challenges arising from the discrete token space and sequential dependencies inherent in
language. A key advancement in addressing these issues comes from discrete diffusion frameworks,
particularly Masked Diffusion Models (MDMs) that operate by progressively refining sequences
through context-aware mask prediction (Austin et al., 2021; Lou et al., 2023). Recent methodolog-
ical innovations have significantly expanded the capabilities of diffusion-based language models.
Scaling efforts have produced foundation models like LLaDA(Nie et al., 2025), an 8B parameter
bidirectional Transformer trained from scratch, and Dream(Ye et al., 2025) which leverages pre-
trained autoregressive weights, both achieving performance parity with similarly sized autoregres-
sive models.

Inference acceleration methods of dLLMs. Multiple studies have investigated strategies for speed-
ing up discrete diffusion large language models (dLLMs). Some studies using feature caching cut
down on computational costs by caching the internal features of tokens across different diffusion
steps. dLLM-Cache (Liu et al., 2025b) selects a fixed proportion of tokens for cache update for each
layer by sorting the cosine similarity of Value vector between adjacent steps. dKV-Cache (Ma et al.,
2025) puts the tokens decoded at each step into the cache and doeses not update them in later steps.
Fast-dLLM (Wu et al., 2025) puts tokens outside the current block to the cache and updates tokens
within the current block. The similarity of these methods is that they adopt the same cache update
strategy for all layers, which ignores the different requirements of each layer. In addition, Fast-
dLLM proposes the parallel decoding strategy, unmasking the tokens with confidence exceeding a
predetermined threshold, which has difficulty balancing quality and efficiency.

E Experimental Supplements

E.1 Stability Analysis of Hyperparameters

Stability Analysis of Blayer and Bwindow. To investigate the stability of parameter settings
across diverse scenarios, we conducted additional experiments. As shown in Table 5, when the
sequence length exceeds 1k, the accuracy of the default settings (Blayer = 32, Bwindow = 32)
exhibits a slight decline. However, with appropriate increases in these two parameters, the accu-
racy gradually recovers. Furthermore, when the sum of Blayer and Bwindow is fixed, different
proportional allocations between them lead to varying impacts on performance. Through these
experiments, we confirmed that setting Blayer equal to Bwindow yields optimal results. To en-

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Bwindow 32 64 128 192 64 0 256
Blayer 32 64 128 64 192 256 0
score 73.92 77.62 79.15 78.03 78.92 74.07 75.74

Table 5: Performance of DCU with different settings of Bwindow and Blayer, using 1024 generated
tokens on the GSM8K dataset with the LLaDA-8B-Instruct model.

gen len 256 512 1024

score(dynamic dLLM) 78.01 78.31 78.15
TPS 37.29 35.41 33.19
score(baseline) 78.21 78.98 79.11
TPS 8.78 7.62 6.21

Table 6: Performance scores under different generation lengths with α = 0.001, β = 0.0008

sure the method’s stability across different generation lengths, we propose an auto-tuning strat-
egy: Blayer = Bwindow = 1

8 × gen len (where gen len denotes the generation length).

Stability Analysis of α and β. For the hyperparameters α = 0.001 and β = 0.0008, we per-
formed experiments under different output length settings (256, 512, and 1024), while maintain-
ing Bwindow = 1

8 × gen len and Blayer = 1
8 × gen len (see Table 6). The results indicate that

there is almost no degradation in accuracy across these different generation lengths, verifying the
strong stability of α and β .

As per Equation 10, α and β regulate threshold adaptation to prediction confidence and temporal
instability, respectively. We conducted ablation experiments on GSM8K (gen len=256), with re-
sults in Table 7 (score=accuracy; NIS=Number of Inference Steps, fewer = faster). The optimal
range for α/β is the 10−3 order of magnitude. The model is sensitive to order-of-magnitude scaling
(severe quality loss with over-scaling) but stable to small variations within this range.

E.2 Analysis of Additional Latency

We present comprehensive metrics in Table 8, which details the performance scores (accuracy), av-
erage single-inference latency, and additional latency introduced by DCU and APD separately—all
evaluated on the GSM8K dataset across different generation lengths (gen len: 256, 512, 1024). As
shown in the Table 8, both DCU and APD introduce minimal additional latency, and this overhead
exhibits a clear linear scaling trend with generation length, which only accounts for a small portion
of the inference latency, far less than the gain it brings.

E.3 Performance in Low-resource Hardware

To address low-resource hardware deployment, we tested our method with the LLaDA-8B-Instruct
model on the GSM8K and HumanEval datasets using an RTX 4090 GPU. As shown in the Table 9,
our method still maintains a strong speed-accuracy trade-off under such cost-constrained settings,
demonstrating its practicality for deployment on non-high-end hardware.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

α β Score NIS

0.001 0.0008 78.01 95
0.01 0.008 69.75 54

0.1 0.08 59.76 16
0.001 0.0007 78.75 96
0.001 0.0005 78.85 95
0.001 0.0017 78.93 97

Table 7: Performance scores and Number of Inference Steps (NIS) under different combinations of
α and β, with 256 generate length on GSM8K

gen len
Baseline DCU APD

Score Time (s) Extra Time (s) Score Time (s) Extra Time (s) Score Time (s) Extra Time (s)

256 78.21 29.16 None 78.85 9.41 1.94 78.01 6.87 0.11
512 78.98 67.19 None 79.31 20.68 4.31 78.31 14.46 0.19
1024 79.11 164.90 None 79.15 47.36 8.90 78.15 30.85 0.33

Table 8: Performance metrics (scores and time-related data) of baseline, DCU, and APD under
different generation lengths (gen len). Time values are rounded to two decimal places.

Dataset LLaDA-8B-Instruct Dynamic-dLLM(DCU) Dynamic-dLLM

Score TPS Score TPS Score TPS

GSM8K 78.34 5.48 77.89 14.73 77.91 29.77
HumanEval 37.47 9.74 37.24 24.32 37.15 35.19

Table 9: Performance Scores and Inference Speed (TPS) of Different Methods on RTX 4090

17

	Introduction
	Background and Motivation
	Preliminaries of dLLM
	Key Observations

	Method
	Dynamic Cache Updating
	Adaptive Parallel Decoding

	Experiment
	Experiment Settings
	Main Results
	Ablation Studies

	Concluding Remarks
	Bibliography
	Algorithm Supplement
	Experiment Details
	Benchmarks and Settings
	Implementation Details

	Example Description
	Related Work
	Experimental Supplements
	Stability Analysis of Hyperparameters
	Analysis of Additional Latency
	Performance in Low-resource Hardware

