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ABSTRACT

eXplainable Artificial Intelligence (XAI) techniques are indispensable for increas-
ing the transparency of deep learning models. Such transparency facilitates a
deeper human comprehension of the model’s fairness, security, robustness, among
other attributes, leading to heightened trust in the model’s decisions. An important
line of research in the field of NLP involves self-explanation using a cooperative
game, where a generator selects a semantically consistent subset of the input as the
explanation, and a subsequent predictor makes predictions based on the selected
subset. In this paper, we first uncover a potential caveat: such a cooperative game
could unintentionally introduce a sampling bias between the explanation and the
target prediction label. Specifically, the generator might inadvertently create an
incorrect correlation between the selected explanation and the label, even when
they are semantically unrelated in the original dataset. Subsequently, we elucidate
the origins of this bias using both detailed analysis and empirical evidence. Our
findings suggest a direction for inspecting this bias through attacking, and we in-
troduce an adversarial game as a practical solution. Experiments 1 on two widely
used real-world benchmarks show the effectiveness of the proposed method.

1 INTRODUCTION

With the remarkable success of deep learning across various applications, concerns about model
interpretability are intensifying. Delving into the theory and techniques of interpretable machine
learning frameworks is crucial for addressing a plethora of challenges. For example, XAI techniques
can assist in detecting model discrimination (fairness) (Pradhan et al., 2022), pinpointing backdoor
attacks (security) (Li et al., 2022), and uncovering potential failure cases (robustness) (Chen et al.,
2022), among other issues. Generally, two primary properties are sought in an explanation method:
faithfulness and plausibility (Lipton, 2018; Chan et al., 2022). An explanation is considered faithful
if it genuinely reflects the model’s behavior, and an explanation is deemed plausible if it aligns with
human understanding.

Although there have been various methods to generate post-hoc explanations that may appear plausi-
ble, they may not faithfully represent an agent’s decision, because the process of generating explana-
tions is trained separately from the model’s predictions (Lipton, 2018). In certain cases, prioritizing
faithfulness over plausibility becomes essential in neural network explanations, especially when
these networks are used in vital decision-making processes, as faithfulness directly influences the
reliability of the explanations. Unlike post-hoc methods, ante-hoc (or self-explaining) techniques
generally provide higher levels of transparency (Lipton, 2018) and faithfulness (Yu et al., 2021), as
the prediction is derived directly from the explanation.

In this study, our primary focus is on investigating a general model-agnostic self-explaining frame-
work called Rationalizing Neural Predictions (RNP, also known as rationalization) (Lei et al., 2016),
which with its variants has become one of the mainstream methods to facilitate the interpretability
of NLP models (Yu et al., 2019; Antognini et al., 2021; Yu et al., 2021; Liu et al., 2022; 2023a;b),
and also holds the potential to be applied to image classification (Yuan et al., 2022) and graph neural
networks (Luo et al., 2020). RNP utilizes a cooperative game involving a generator and a predictor,
in which the generator discerns a human-interpretable subset Z from the input X , known as the ra-
tionale. This rationale Z is subsequently sent to the following predictor for prediction, as illustrated

1The code will be confidentially shared with the reviewers during the rebuttal phase.
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Figure 1: The standard rationalization framework RNP. X,Z, Ŷ , Y represent the input, the selected
rationale candidate, the prediction, and the classification label, respectively. θg, θp are the parameters
of the generator and the predictor.

in Figure 1. Through cooperative training, the generator and predictor work collaboratively to op-
timize prediction accuracy. A significant benefit of RNP-based approaches is their ability to certify
exclusion, guaranteeing that any unselected input components do not affect the prediction (Yu et al.,
2021). This property ensures faithfulness and allows the focus to be on plausibility.

However, the two-stage method of RNP, which is based on a cooperative game, can sometimes
lead to a sampling bias that causes plausibility issues including two well-known problems named
degeneration2 (Yu et al., 2019) and irrationality3 (Zheng et al., 2022). Specifically, the generator g
might select rationales that include trivial patterns semantically unrelated to the actual classification
labels, and the predictor p then treats these trivial patterns as indicative features for classification. For
instance, from a positive input X1 with a label 1, the generator selects a rationale Z that includes the
pattern “.”, and subsequently the predictor considers the presence of “.” as an indicative feature for
positive classification. Clearly, in this case, the sampling bias leads to the selection of a semantically
irrelevant trivial pattern as an explanation. This results in an explanation that lacks meaningful
content, thereby rendering it implausible to human interpreters.
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I went to a hotel yesterday, 

whose service is awful. 
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Figure 2: An example of how the at-
tacker works. X1,X0 represent posi-
tive and negative texts, respectively.

Firstly, in order to inspect and identify this issue, we pro-
pose an enhanced method for RNP based on an adversar-
ial game. We introduced an attack generator ga. Figure 2
shows an example of how the attacker works. The op-
timization objective of ga is to select an attack rationale
ZA from input such that, when ZA is fed into the same
predictor p, it yields a prediction label flipped from its
original label. Continuing the previous example, the gen-
erator g selects the “.” from a positive input X1 with label
1 as Z. Consequently, the predictor p learns to treat the
presence of “.” in Z as an indicative feature for positive
classification. On the other hand, the goal of ga is to se-
lect an attack rationale ZA from a negative input X0 with a label 0 in such a way that, when ZA is
fed to the same predictor p, the prediction result flips from its original label 0 to 1. Achieving this
objective is straightforward: ga simply needs to mimic g by selecting “.” as ZA. This suggests that if
g identifies Z from X1 as a trivial pattern also present in X0, then ga can effortlessly select ZA = Z
from X0, leading to an easy flip of the prediction label of ZA to 1 in predictor p. On the other hand,
if Z is a genuine positive rationale unique to X1 and the predictor p classifies it correctly, then ga
would be unable to find a positive rationale from the negative input X0. As a result, it becomes
difficult for the predictor p to flip ZA’s label from 0 to 1. Therefore, we can leverage the attack
generator ga to assist in inspecting and identifying sampling bias. If ga can easily find a ZA that
flips its predicted label in predictor p from its actual label, it indicates the presence of semantically
unrelated trivial patterns in Z.

To further address this issue, we propose a method to instruct the game on better debiasing. As
illustrated by the previous example, when there is a sampling bias issue, the attack generator ga
surely selects a ZA that is a trivial pattern lacking semantic significance. For a reasonable predictor
p that can accurately classify the real rationale, ZA is akin to noise, and its classification result
should be random and not biased towards any label. Therefore, we introduce a constraint on the
predictor p to guide it, ensuring that the classification result for ZA remains as random as possible.

2The definition of degeneration is non-trivial, and we will discuss this problem in Section 2.
3Irrationality means the selected rationale candidates may contain both trivial patterns and the real informa-

tive rationales, but the predictor makes the prediction according to the trivial patterns. And the problem is that
we do not know which part the predictor actually uses. Note that Zheng et al. (2022) do not provide a solution
to this problem.
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This constraint serves as an ongoing guidance to adjust and correct the behavior of predictor p. An
improved predictor p can, in turn, better instruct and guide the updates for the generator g.

In summary, our contributions lies in the following aspects:

• To the best of our knowledge, we are the first to identify the sampling bias in self-explaining
rationalization, which is overlooked by previous research.

• We design an attacker to both inspect whether the predictor has learnt from the bias and
instruct the predictor not to learn from the bias. If the predictor learns from the bias, the
instruction objective will penalize it, such that the influence of sampling bias is alleviated.

• We design various experiments to verify the existence of sampling bias, the effectiveness of
the inspection, and the effectiveness of the instruction. Besides, the attack based inspection
and instruction is model-agnostic, so we conduct is on top of both the vanilla RNP and an
advance method FR (Liu et al., 2022), and all get improved performance.

2 RELATED WORK

Rationalization. The base cooperative framework of rationalization named RNP (Lei et al., 2016)
is flexible and offers a unique advantage: certification of exclusion, which means any unselected
input is guaranteed to have no contribution to prediction (Yu et al., 2021). Based on this cooper-
ative framework, many methods have been proposed to improve RNP from different aspects. Bao
et al. (2018) used Gumbel-softmax to do the reparameterization for binarized selection. Bastings
et al. (2019) replaced the Bernoulli sampling distributions with rectified Kumaraswamy distribu-
tions. Jain et al. (2020) disconnected the training regimes of the generator and predictor networks
using a saliency threshold. Paranjape et al. (2020) imposed a discrete bottleneck objective to bal-
ance the task performance and the rationale length. Zheng et al. (2022) called for more rigorous
evaluations of rationalization models. Fernandes et al. (2022) leveraged meta-learning techniques
to improve the quality of the explanations. Havrylov et al. (2019) cooperatively trained the mod-
els with standard continuous and discrete optimisation schemes. Hase et al. (2020) explored bet-
ter metrics for the explanations. Rajagopal et al. (2021) used phrase-based concepts to conduct a
self-explaining model. Other methods like data augmentation with pretrained models (Plyler et al.,
2021), training with human-annotated rationales (Chan et al., 2022), injecting noise to the selected
rationales (Storek et al., 2023), have also been tried. These methods are orthogonal to our research.

Another series of papers that are most related to our work are those discussing the degeneration
problem. Degeneration means that, the predictor is too powerful to recognize any trivial patterns
that are distinguishable in rationales with opposite labels. As a result, the generator may collude
with the predictor to select the trivial patterns rather than the true semantics as the rationales (Yu
et al., 2019). This problem is very similar to what we discuss. And the sampling bias we discuss can
be seen as a reason why degeneration happens. Previous methods seek to regularize the predictor
using supplementary modules which have access to the information of the full text (Yu et al., 2019;
Huang et al., 2021; Yu et al., 2021; Liu et al., 2022; Yue et al., 2022) such that the generator and
the predictor will not collude to uninformative rationales. 3PLAYER (Yu et al., 2019) takes the
unselected text Zc into consideration by inputting it to a supplementary predictor Predictorc. DMR
(Huang et al., 2021) tries to align the distributions of rationale with the full input text in both the
output space and feature space. A2R (Yu et al., 2021) endows the predictor with the information
of full text by introducing a soft rationale. FR (Liu et al., 2022) folds the two players to regularize
each other by sharing a unified encoder. These methods are most related to our work. However,
these methods only try to fix the degeneration problem, while where the problem derives is not
well discussed. Sometimes they can still fail. For example, (Zheng et al., 2022) argued with both
philosophical perspectives and empirical evidence that the degeneration problem is much complex
than we used to think and some of the above methods cannot promise no-degeneration. To the best
of our knowledge, we are the first one to consider it as a kind of sampling bias.

Generative Explanation with Large Language Models. Generative explanation is a research line
that is close but orthogonal to our research. With the great success of large language models (LLMs),
a new research line for explanation is chain-of-thought. By generating (in contrast to selecting)
intermediate reasoning steps before inferring the answer, the reasoning steps can be seen as a kind
of explanation. The intriguing technique is called chain-of-thought (CoT) reasoning (Wei et al.,

3



Under review as a conference paper at ICLR 2024

2022). However, LLMs sometimes exhibit unpredictable failure modes (Kıcıman et al., 2023) or
hallucination reasoning (Ji et al., 2023), making this kind of generative explanation not trustworthy
enough in some high-stakes scenarios. Also, some recent research finds that LLMs are not good at
extractive tasks (Qin et al., 2023; Li et al., 2023; Ye et al., 2023).

3 PROBLEM DEFINITION

For the sake of exposition, let us take the example of binary sentiment classification. Generaliza-
tion to multi-class classification is in Appendix A.2. We have a dataset D, which consists of a set
of (X,Y ) pairs and can be seen as a collection of samples drawn from the true data distribution
P (X,Y ). X = X1∶l is the input text sequence with a length of l, and Y is the discrete class label.
By enumerating X , we can get P (Y ∣X), which is the distribution that a normal non-interpretable
classifier working onD needs to approximate. Self-explaining rationalization consists of a generator
fg(⋅) (or g for conciseness) and a predictor fp(⋅), with θg, θp being their parameters, respectively.

In self-explaining rationalization, for (X,Y ) ∈ D, the generator first outputs a sequence of binary
mask M = fg(X) = M1∶l ∈ {0,1}l (in practice, the generator first outputs a Bernoulli distribution
for each token and the mask for each token is independently sampled using gumbel-softmax). Then,
it forms the rationale candidate Z by the element-wise product of X and M :

Z =M ⊙X = [M1X1,⋯,MlXl]. (1)

To simplify the notation, we denote fg(X) as Z in the following sections, i.e., fg(X) = Z.

We consider that X consists of a set of variables {T1,⋯, Tn, S}, where S denotes real rationale for
corresponding sentiment label Y , and T1,⋯, Tn are some trivial patterns independent with Y . And
we select one of {T1,⋯, Tn, S} to be Z. It is worth noting that Z is not a separate variable but a
proxy for any variable within X . Till now, we get a set of (Z,Y ) pairs denoted as DZ . Vanilla RNP
simply thinks DZ is collected from P (Z,Y ). By enumerating Z in DZ , it gets P (Y ∣Z). Then,
RNP attempts to identify the rationale by maximizing the mutual information I(Y ;Z):

Z∗ = argmax
Z∈{T1,⋯,Tn,S}

I(Y ;Z) = argmax
Z∈{T1,⋯,Tn,S}

(H(Y ) −H(Y ∣Z)) = argmin
Z∈{T1,⋯,Tn,S}

H(Y ∣Z). (2)

In practice, the entropy H(Y ∣Z) is commonly approximated by the minimum cross-entropy
minθp Hc(Y, Ŷ ∣Z), with Ŷ = fp(Z) representing the output of the predictor. It is essential to note
that the minimum cross-entropy is equal to the entropy (please refer to Appendix B.1). Replacing Z
with fg(X), the explainer and the predictor are trained cooperatively:

min
θg,θp

Hc(Y, fp(fg(X))∣fg(X)), s.t., (X,Y ) ∼ D. (3)

Compactness and coherence. To make the selected rationales human-intelligible, previous meth-
ods usually constrains the rationales by compact and coherent regularization terms. In this paper,
we use the most widely used constraints provided by Chang et al. (2019):

Ω(M) = λ1∣
∣∣M ∣∣1

l
− s∣ + λ2

l

∑
t=2
∣Mt −Mt−1∣. (4)

The first term encourages that the percentage of the tokens being selected as rationales is close to
a pre-defined level s. The second term encourages the rationales to be coherent. We adopt both
compactness and coherence regularizers to the generator to make the rationales human-intelligible.
We apply a compactness regularizer term to the attacker to make the attack rationale more similar
to the original rationale, thus making it easier to deceive the predictor. However, we do not employ
a coherence regularizer on it because we think trivial patterns are often discontinuous.
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4 METHOD AND MOTIVATION

4.1 METHOD

The architecture of our method is shown in Figure 3. The overall objective of our model is
gen& pred ∶ min

θg,θp
Hc(Y, fp(fg(X))∣fg(X)) +min

θp
Hc([0.5,0.5], fp(fa(X))∣fa(X)), (5)

attacker ∶ min
θa

Hc(1 − Y, fp(fa(X))∣fa(X)), (6)

where fp(⋅), fg(⋅), fa(⋅) represent the predictor, the generator, and the attacker. And θp, θg, θa are
their parameters. During training, Equations (5) and (6) are alternated. The practical implementa-
tion details with Pytorch are in Appendix A.1. The overall mechanism of the model is as follows:
Equation (6) inspects trivial patterns (fa(X)) from X . The second term of Equation (5) is the in-
struction that prevents the predictor from learning the trivial patterns by classifying them as random
noise. A well instructed predictor is then able to give good feedback to the generator’s selection.
And the first term of Equation (5) is the normal RNP. The reason why the attacker constructed in
this manner can detect trivial patterns will be explained in detail in Section 4.2.

4.2 MOTIVATION

𝒁

𝒁𝑨
𝒀𝑨

𝒀

Shared

Generator𝑿 Predictor

Attacker Predictor

Figure 3: Our proposed method. X,Z, Ŷ , Y rep-
resent the input, the selected rationale candidate,
the prediction and the class label, respectively.

Notation. We denote X1 and X0 as input texts
with label Y = 1 and Y = 0, respectively. Z and
ZA represent the rationale candidates selected
by the generator and the attacker, respectively.
Note that they are not separate variables but a
proxy for any variables within X . Sometimes
we use Z and the variable represented by Z in-
terchangeably. T is a proxy for any variables
within {T1,⋯, Tn}. Lowercase letters denote the values of variables.

How does the sampling bias come into being? Although considering DZ as an approximation of
P (Z,Y ) seems to be a simple and practical way and is inherited by all the previous methods, it will
sometimes results in some problems. In fact, the sampling process of Z is conditioned on a generator
g with specific parameters θg . So we can only get P (Z,Y ∣g) and P (Y ∣Z, g) rather than P (Z,Y )
and P (Y ∣Z). Note that independent doesn’t lead to conditional independent: Y á Z ⇏ Y á Z ∣g.

S

G

YTnT1
…

Figure 4: A small local of the
causal graph for the genera-
tor’s updating process. The
dash cycle means X consists
of a set of variables.

That is to say, some uninformative Z (like those T1,⋯, Tn) might
initially be semantically unrelated to Y and maintain zero mutual
information with Y , indicating their independence. But sampled by
g, any trivial patterns may get correlated with Y and get increased
mutual information, thus can be used as (incorrect) indicative fea-
tures for classification by the predictor.

What’s more, we find the training process may even enhance the
sampling bias further. For example, we consider T1 is selected as
Z, then the updating of the generator should be θ′g = h(θg, T1, Y )
(h denotes the back propagation function), which corresponds to a
small local of a causal graph shown in Figure 4. We originally have
Y á T1. But in this graph, we have Y ̸ T1∣G. That’s to say, any trivial patterns hold the potential
to be associated with Y through the influence of the generator.

Sampling bias can make trivial patterns indicative to the sentiment label and result in a bad
predictor. Consider a situation where Z = T is a trivial pattern independent with Y (i.e., P (Y =
1∣T ) = P (Y = 1) = 0.5 = P (Y = 0) = P (Y = 0∣T ) and T ∈ {t+, t−}). Influenced by the generator
g, T = t+ might co-occur more frequently with Y = 1 and can be viewed as an indicator for the
positive class (T = t− is similar):

{
P (Y = 1∣Z = t+, g) > P (Y = 1) = 0.5 = P (Y = 0) > P (Y = 0∣Z = t+, g),
P (Y = 1∣Z = t−, g) < P (Y = 1) = 0.5 = P (Y = 0) < P (Y = 0∣Z = t−, g).

(7)

Here is an intuitive toy example. We consider Z = T is a punctuation pattern. t+ represents “.” , and
t− represents “,”. For example, we have a positive text X1 and a negative text X0. Chances are that
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the generator g selects Z=“.” from X1 and Z=“,” from X0. It appears that P (Y = 1∣Z = “.”, g) and
P (Y = 0∣Z = “,”, g) are very high. As a result, the predictor can just use “.” and “,” to get a high
predictive accuracy, even if the punctuation patterns are semantically unrelated to Y and maintain
low mutual information with Y in the original dataset. This part is verified by the experiments in
Section 5.1 to some extent.

Attack as inspection. Following the above settings for Z = T and I(Y ;T ) = 0, we will show how
the trivial patterns learned by the predictor can be inspected. If the attack generator can be con-
structed in any way (i.e., has infinite expressiveness), then we can also find another attack generator
ga which finds ZA from X , such that

{
P (Y = 1∣ZA = t+, ga) < P (Y = 1) = 0.5 = P (Y = 0) < P (Y = 0∣ZA = t+, ga),
P (Y = 1∣ZA = t−, ga) > P (Y = 1) = 0.5 = P (Y = 0) > P (Y = 0∣ZA = t−, ga).

(8)

Appendix B.2 shows the detailed derivation for the reason why we can find such a ga. Equation (8)
means that under condition ga, T = t+ now becomes a negative class indicator, which is exactly the
opposite situation under condition g. Here is the intuitive understanding of the attack. Correspond-
ing to the punctuation pattern example mentioned above. The generator g selects Z = “.” from X1.
And the predictor has learnt to predict “.” as positive. We can employ an attacker ga which selects
ZA = “.” from X0 (note that the label of X0 is negative) such that ZA can also be classified as
positive. Similarly, the attacker can find ZA = “,” from X1 to be classified as negative. So, the
overall objective of the attacker is to select those ZA that can be classified to the opposite class by
the predictor.

Formally, the objective of the attacker is

min
θa

Hc(1 − Y, fp(fa(X))∣fa(X)), s.t., (X,Y ) ∼ D, (9)

where fa(⋅) is the attacker with θa being its parameters, and ZA = fa(X).

In the discussion above, we demonstrated that an attacker can identify uninformative trivial patterns
and classify them into the opposite class. Then we begin to instruct the predictor to not learn from
the trivial patterns (whether the attacker will select real rationales is discussed later).

Attack as instruction. When sampling bias arises, the attack generator ga consistently chooses a
ZA which is a semantically insignificant trivial pattern. For a competent predictor p that discerns
the authentic rationale, ZA resembles noise, ensuring its classification remains random without any
leanings to a specific label. Thus, we introduce an extra instruction to the predictor:

min
θp

Hc([0.5,0.5], fp(ZA)), s.t., ZA = fa(X), (X,Y ) ∼ D, (10)

where fp(⋅), θp denote the predictor and its parameters, respectively. The objective for multi-class
classification is in Appendix A.2.

We have discussed the situations where the predictor and the generator overfit to trivial patterns.
Under these situations, the attacker will select trivial patterns with ZA = fa(X), and thus Equation
(10) will instruct the predictor to classify ZA as noise. The following question is, if the generator
and the predictor work well on selecting real rationales, will Equation (10) do harm to the predictor?

The instruction will not cause harm to a good predictor. Here we consider Z = S, which is the
real sentiment rationale based on which the label Y is assigned to X . We denote S = s+, S = s−
as positive and negative sentiments, respectively. If a good predictor learns to use s+ as the positive
indicator, it will be hard for the attacker to find ZA = s+ from X0, since a negative text usually does
not have a positive sentiment (the discussion about some counterexamples of this assumption is in
Appendix B.3). As a result, the attacker can only select certain neutral patterns as ZA from X0 to
shift fp(ZA) away from 0. Hence Equation (10) still will not cause harm to the predictor.

5 EXPERIMENTS

In this section, we name our method Attack to Inspection and Instruction (A2I). We first verify
that sampling bias can be used for classification (resulting in a poor predictor). Then, we show the
effectiveness of our method in dealing with sampling bias using two widely used rationalization
benchmarks.
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Figure 5: Experiments on the Aroma aspect of the BeerAdvocate dataset: “full text”: a predictor
trained using the full texts. “random patterns”: a predictor trained with randomly selected patterns.
“r2f”: feeding the random patterns to the predictor that was trained using the full texts.

5.1 RANDOMLY SELECTED PATTERNS CAN BE TREATED AS INDICATIVE FEATURES FOR
CLASSIFICATION

We present three types of prediction accuracies for the BeerAdvocate dataset: (1) A predictor trained
with the full input text. (2) A predictor trained with randomly selected patterns. For the generator, we
remove the other objectives and only train it with the sparsity constraints. Specifically, the generator
is trained to randomly select 10% of the input text, and the predictor is then trained to classify using
these randomly selected texts. (3) We use the randomly selected texts from (2) to feed the predictor
trained in (1).

The result for the Aroma aspect is shown in Figure 5. From Figure 5(a), we observe that even with the
randomly selected patterns (i.e., patterns unlikely to contain real rationales), the predictor can still
achieve a very high prediction accuracy (represented by the orange line, approximately 95%). This
accuracy is close to that of the classifier trained with the full texts. A followed question is: Does this
result suggest that the 10% randomly selected patterns already contain enough sentiment inclination
for classification? The answer is no. Consider the green line, which represents the outcome when
we feed the randomly selected texts to the predictor denoted by the blue line. We observe that the
green line indicates a significantly lower accuracy (about 58%), implying that the randomly selected
patterns contain only minimal sentiment information. Thus, the orange predictor incorrectly treats
certain randomly selected trivial patterns as indicative features. Moreover, the orange predictor does
not generalize well to the validation set, as depicted in Figure 5(b). This is likely because simple
trivial patterns can more easily lead to overfitting (Pagliardini et al., 2023).

5.2 EXPERIMENTS ON STANDARD BENCHMARKS

5.2.1 SETTINGS

Baselines. The primary baseline for direct comparison is the original cooperative rationalization
framework, RNP (Lei et al., 2016). This helps us concentrate on our claims rather than on potential
unknown mechanisms. To demonstrate the competitiveness of our method, we also include two
recently published representative models: Inter RAT (Yue et al., 2023) and FR (Liu et al., 2022).
Both of them have been discussed in Section 2.

Datasets. Following Liu et al. (2022), we examine two widely-used datasets for rationalization
tasks. BeerAdvocate (McAuley et al., 2012) is a dataset for multi-aspect sentiment prediction related
to beer reviews. Following FR, we use the subsets decorrelated by Lei et al. (2016). HotelReview
(Wang et al., 2010) is another multi-aspect sentiment prediction dataset focusing on hotel reviews.
This dataset includes reviews from three aspects: location, cleanliness, and service. Both datasets
feature human-annotated rationales in the annotation (test) set. We preprocess both datasets in the
same manner as FR (Liu et al., 2022) to ensure a fair comparison; more details are in Appendix A.3.

Implementation details. Experiments in recent works show that it is still a challenging task to fine-
tune over-parameterized pretrained language models like BERT (Devlin et al., 2019) on the RNP
cooperative framework (Chen et al., 2022; Liu et al., 2022; Zhang et al., 2023). The detailed dis-
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Table 1: Results on BeerAdvocate. Each aspect is trained independently
Methods Appearance Aroma Palate

S Acc P R F1 S Acc P R F1 S Acc P R F1
Comparison with vanilla RNP

RNP 10.1 79.7 69.3 37.6 48.8 10.0 82.9 81.3 52.4 63.7 9.3 84.7 68.6 51.3 58.7
RNP+A2I 10.8 82.8 78.3 45.8 57.8 9.8 86.3 86.0 54.3 66.6 10.9 86.6 66.3 58.2 62.0

RNP 19.8 86.3 69.8 74.6 72.1 20.7 84.5 43.6 58.1 49.8 20.1 82.6 47.6 77.0 58.8
RNP+A2I 20.0 87.7 73.3 79.4 76.2 19.5 85.4 49.0 61.4 54.5 19.4 86.6 49.0 76.4 59.7

RNP 30.4 84.3 52.9 86.7 65.7 30.7 81.8 39.2 77.2 52.0 30.1 87.1 29.3 71.0 41.5
RNP+A2I 29.9 85.2 59.3 95.9 73.3 27.8 87.3 44.5 79.3 57.0 30.5 87.1 30.8 75.5 43.7

Comparison with advanced methods
Inter RAT 13.2 - 50.0 35.7 41.6 13.8 - 64.0 56.9 60.2 13.0 - 47.2 49.3 48.2

FR 11.0 82.2 68.0 40.5 50.8 9.4 86.7 85.3 51.5 64.2 9.4 84.5 70.1 52.8 60.2
FR+A2I 11.3 84.6 76.0 46.5 57.7 10.0 86.9 85.7 54.8 66.9 9.7 84.8 71.4 55.8 62.6

Inter RAT 20.2 - 45.8 50.4 48.0 22.0 - 47.2 67.3 55.5 20.2 - 39.9 64.9 49.4
FR 19.7 87.7 77.7 82.8 80.2 20.5 90.5 61.1 80.3 69.4 19.8 86.0 42.1 67.0 51.7

FR+A2I 19.8 88.7 80.0 85.6 82.7 19.4 89.7 64.2 80.0 71.2 19.2 86.0 44.2 68.2 53.7
Inter RAT 28.3 - 48.6 74.9 59.0 31.5 - 37.4 76.2 50.2 29.2 - 29.7 69.7 41.7

FR 30.0 90.9 58.5 94.6 72.3 31.0 83.2 40.0 79.4 53.2 29.3 84.8 28.5 67.2 40.1
FR+A2I 28.8 89.7 61.3 95.3 74.6 30.9 83.2 41.4 82.2 55.1 29.1 85.1 31.6 73.8 44.2

Table 2: Results on HotelReview. Each aspect is trained independently.
Methods Location Service Cleanliness

S Acc P R F1 S Acc P R F1 S Acc P R F1
Comparison with vanilla RNP

RNP 8.8 97.5 46.2 48.2 47.1 11.0 97.5 34.2 32.9 33.5 10.5 96.0 29.1 34.6 31.6
RNP+A2I 9.0 97.5 50.2 53.4 51.7 11.6 97.0 46.8 47.4 47.1 9.7 96.5 34.7 38.2 36.4

Comparison with advanced methods
Inter RAT 11.0 95.5 34.7 44.8 39.1 12.5 98.5 35.4 39.1 37.2 9.6 97.0 33.4 36.7 34.9

FR 9.0 93.5 55.5 58.9 57.1 11.5 94.5 44.8 44.7 44.8 11.0 96.0 34.9 43.4 38.7
FR+A2I 9.9 94.0 53.2 62.1 57.3 11.5 97.0 47.7 47.7 47.7 10.8 95.5 35.9 43.7 39.4

cussion about BERT is in Appendix A.4. To avoid being influenced by unknown issues and result
in potential unfairness in comparisons, we take the same setting as Inter RAT and FR do: We use
one-layer 200-dimension bi-directional gated recurrent units (GRUs) (Cho et al., 2014) followed by
one linear layer for each of the players, and the word embedding is 100-dimension Glove (Penning-
ton et al., 2014). The optimizer is Adam (Kingma & Ba, 2015). The reparameterization trick for
binarized sampling is Gumbel-softmax (Jang et al., 2017; Bao et al., 2018), which is also the same
as the baseline FR. All of the models are trained on a RTX3090 GPU.

Metrics. The sampling bias makes the prediction performance not a good metric for the models’
effectiveness. Following Inter RAT and FR, we mainly focus on the rationale quality, which is
measured by the overlap between model-selected tokens and human-annotated rationales. The terms
P,R,F1 denote precision, recall, and F1 score respectively. The term S represents the average
sparsity of the selected rationales, that is, the percentage of selected tokens in relation to the full
text. Acc stands for the predictive accuracy on the test set.

5.2.2 RESULTS

Rationale quality. Table 1 shows the results in the three aspects of the BeerAdvocate dataset. Since
each aspect is trained independently, they can each be considered distinct datasets to some extent.
Given that the sparsity of human-annotated rationales varies significantly across different aspects,
we follow Inter RAT to set there different levels: 10%,20%,30%, by adjusting s in Equation (4).
Initially, we conduct our attacking inspection on top of the vanilla RNP to validate our claims and
demonstrate the efficacy of our proposed method. Across all nine settings, we observe a significant
improvement over the vanilla RNP in terms of F1 score. Notably, the highest increase reaches up to
9.0% (the Appearance aspect with S ≈ 10), underscoring the robust effectiveness of our method.

Our A2I is model-agnostic; therefore, we further apply it on top of the advanced method, FR, to
demonstrate our competitiveness. Two observations emerge from the results. Firstly, neither In-
ter RAT nor FR consistently excels across all aspects. While FR performs impressively on the
Appearance and Aroma aspects, it does not surpass RNP on the Palate aspect. However, when our
attacking inspection is incorporated, the performance of both RNP and FR consistently improves.
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Figure 6: Attack success rate (ASR) on the three aspects of BeerAdvocate dataset. The rationale
sparsity is about 20%. More results for sparsity being 10% and 30% is in Appendix A.5.

We observe a significant improvement in FR’s performance (up to 6.9% on the Appearance aspect
with S ≈ 10) when our A2I is layered atop it, highlighting the competitiveness of our method.
Besides the widely-used BeerAdvocate dataset, we also follow FR’s lead and incorporate the Hotel-
Review dataset as supplementary material. The results are detailed in Table 2. We consistently
achieve strong performance across the three aspects of this dataset.

Attack Success Rate (ASR). To more effectively demonstrate the capabilities of our attacking in-
spection, we present the attack success rates for both RNP and our RNP+A2I. This experiment aims
to address two key questions: 1) Can the attacker truly identify the trivial patterns recognized by the
predictor? 2) Can the inspection really prevent the predictor from adopting the trivial patterns? ASR
is a metric commonly employed in the realm of security. Given a pair (X,Y ), if fp(fa(X)) = 1−Y ,
indicating a label inversion, we deem the attack successful. ASR serves as an indicator of both an
attack method’s efficacy and a model’s resilience against such attacks. A high ASR signifies the
effectiveness of an attack method, while a low ASR denotes model robustness.

The results for the three aspects of BeerAdvocate are displayed in Figure 6. The rationale sparsity
is set at approximately 20%. More results with different sparsity can be found in Appendix A.5.
Regarding the first question, “Can the attacker truly identify the trivial patterns learned by the pre-
dictor?”, the blue lines offer insight. As opposed to RNP+A2I, the blue lines depict models where
we omit the objective Equation (10) (specifically, the instruction loss) from Equation (5). This means
that while RNP is trained as usual, an attacker is also being trained concurrently. The prominence
of the blue lines demonstrates that the attacker achieves a remarkably high ASR. This indicates that
the predictor in RNP does internalize some trivial patterns, and the attacker successfully identifies
them, underscoring the potency of the attack. For the second question, “Can the inspection effec-
tively deter the predictor from adopting trivial patterns?”, we can look to the orange lines. The ASR
values hover around 50%, which is close to random classification. This suggests that the predictor
actively avoids learning from the trivial patterns, highlighting the efficacy of the instruction.

6 CONCLUSION, LIMITATIONS AND FUTURE WORK

In this paper, we first identify that previous rationalization methods that select rationales through
maximum mutual information criterion face a sampling bias problem that arises from neglecting the
influence of the generator on P (Y ∣Z). We design an attacker to first inspect the bias and then give
the instruction to prevent the predictor from adopting this bias. The potential impact is twofold.
First, to the best of our knowledge, this is the first time to discuss that the sampled (Z,Y ) pairs may
not represent the distribution P (Z,Y ), which could serve as a reminder for future researchers to be
more cautious when making assumptions. Second, the attack-based inspection and instruction are
model-agnostic and hold the potential to be combined with future research.

One limitation is that our analysis focuses on the classification task, and further research is needed
to extend it to broader domains. Another limitation is that the obstacles in utilizing powerful pre-
trained language models under the rationalization framework remain mysterious. Although we have
discussed some possible reasons that may prevent pretrained models from achieving good perfor-
mance, we agree that formally investigating this problem is important. However, it is somewhat
beyond the scope of this paper, and we leave it as the future work.
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ing to scaffold: Optimizing model explanations for teaching. Advances in Neural Information
Processing Systems, 35:36108–36122, 2022.

Peter Hase, Shiyue Zhang, Harry Xie, and Mohit Bansal. Leakage-adjusted simulatability: Can
models generate non-trivial explanations of their behavior in natural language? In Findings of the
Association for Computational Linguistics: EMNLP 2020, pp. 4351–4367, 2020.

10

https://doi.org/10.1609/aaai.v35i14.17483
https://doi.org/10.18653/v1/d18-1216
https://doi.org/10.18653/v1/d18-1216
https://doi.org/10.18653/v1/p19-1284
https://proceedings.mlr.press/v162/chan22a.html
https://proceedings.neurips.cc/paper/2019/hash/5ad742cd15633b26fdce1b80f7b39f7c-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/5ad742cd15633b26fdce1b80f7b39f7c-Abstract.html
https://doi.org/10.18653/v1/2022.naacl-main.278
https://doi.org/10.18653/v1/2022.naacl-main.278
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.18653/v1/n19-1423


Under review as a conference paper at ICLR 2024

Serhii Havrylov, Germán Kruszewski, and Armand Joulin. Cooperative learning of disjoint syntax
and semantics. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 1118–1128.
Association for Computational Linguistics, 2019. doi: 10.18653/v1/n19-1115. URL https:
//doi.org/10.18653/v1/n19-1115.

Yongfeng Huang, Yujun Chen, Yulun Du, and Zhilin Yang. Distribution matching for rationalization.
In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference
on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Ed-
ucational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, pp.
13090–13097. AAAI Press, 2021. URL https://ojs.aaai.org/index.php/AAAI/
article/view/17547.

Sarthak Jain, Sarah Wiegreffe, Yuval Pinter, and Byron C. Wallace. Learning to faithfully ra-
tionalize by construction. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pp. 4459–4473. Association
for Computational Linguistics, 2020. doi: 10.18653/v1/2020.acl-main.409. URL https:
//doi.org/10.18653/v1/2020.acl-main.409.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.
net/forum?id=rkE3y85ee.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. ACM
Computing Surveys, 55(12):1–38, 2023.

Emre Kıcıman, Robert Ness, Amit Sharma, and Chenhao Tan. Causal reasoning and large language
models: Opening a new frontier for causality. arXiv preprint arXiv:2305.00050, 2023.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.

Tao Lei, Regina Barzilay, and Tommi S. Jaakkola. Rationalizing neural predictions. In Proceed-
ings of the 2016 Conference on Empirical Methods in Natural Language Processing, EMNLP
2016, Austin, Texas, USA, November 1-4, 2016, pp. 107–117. The Association for Computational
Linguistics, 2016. doi: 10.18653/v1/d16-1011. URL https://doi.org/10.18653/v1/
d16-1011.

Bo Li, Gexiang Fang, Yang Yang, Quansen Wang, Wei Ye, Wen Zhao, and Shikun Zhang. Evaluat-
ing chatgpt’s information extraction capabilities: An assessment of performance, explainability,
calibration, and faithfulness. arXiv preprint arXiv:2304.11633, 2023.

Yiming Li, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Backdoor learning: A survey. IEEE Transac-
tions on Neural Networks and Learning Systems, 2022.

Zachary C Lipton. The mythos of model interpretability: In machine learning, the concept of inter-
pretability is both important and slippery. Queue, 16(3):31–57, 2018.

Wei Liu, Haozhao Wang, Jun Wang, Ruixuan Li, Chao Yue, and YuanKai Zhang. FR: Folded
rationalization with a unified encoder. In Advances in Neural Information Processing Systems,
2022. URL https://openreview.net/forum?id=ZPyKSBaKkiO.

Wei Liu, Haozhao Wang, Jun Wang, Ruixuan Li, Xinyang Li, Yuankai Zhang, and Yang Qiu. MGR:
multi-generator based rationalization. In Anna Rogers, Jordan L. Boyd-Graber, and Naoaki
Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada, July 9-14, 2023, pp. 12771–
12787. Association for Computational Linguistics, 2023a. doi: 10.18653/v1/2023.acl-long.715.
URL https://doi.org/10.18653/v1/2023.acl-long.715.

11

https://doi.org/10.18653/v1/n19-1115
https://doi.org/10.18653/v1/n19-1115
https://ojs.aaai.org/index.php/AAAI/article/view/17547
https://ojs.aaai.org/index.php/AAAI/article/view/17547
https://doi.org/10.18653/v1/2020.acl-main.409
https://doi.org/10.18653/v1/2020.acl-main.409
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/d16-1011
https://doi.org/10.18653/v1/d16-1011
https://openreview.net/forum?id=ZPyKSBaKkiO
https://doi.org/10.18653/v1/2023.acl-long.715


Under review as a conference paper at ICLR 2024

Wei Liu, Jun Wang, Haozhao Wang, Ruixuan Li, Yang Qiu, Yuankai Zhang, Jie Han, and Yixiong
Zou. Decoupled rationalization with asymmetric learning rates: A flexible lipschitz restraint. In
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
KDD 2023, Long Beach, CA, USA, August 6-10, 2023, pp. 1535–1547. ACM, 2023b. doi: 10.
1145/3580305.3599299. URL https://doi.org/10.1145/3580305.3599299.

Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen,
and Xiang Zhang. Parameterized explainer for graph neural network. In Ad-
vances in Neural Information Processing Systems 33: Annual Conference on Neu-
ral Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, vir-
tual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
e37b08dd3015330dcbb5d6663667b8b8-Abstract.html.

Julian J. McAuley, Jure Leskovec, and Dan Jurafsky. Learning attitudes and attributes from multi-
aspect reviews. In 12th IEEE International Conference on Data Mining, ICDM 2012, Brussels,
Belgium, December 10-13, 2012, pp. 1020–1025. IEEE Computer Society, 2012. doi: 10.1109/
ICDM.2012.110. URL https://doi.org/10.1109/ICDM.2012.110.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
generative adversarial networks. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018. URL https://openreview.net/forum?id=B1QRgziT-.

Matteo Pagliardini, Martin Jaggi, François Fleuret, and Sai Praneeth Karimireddy. Agree to dis-
agree: Diversity through disagreement for better transferability. In The Eleventh International
Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenRe-
view.net, 2023. URL https://openreview.net/pdf?id=K7CbYQbyYhY.

Bhargavi Paranjape, Mandar Joshi, John Thickstun, Hannaneh Hajishirzi, and Luke Zettlemoyer. An
information bottleneck approach for controlling conciseness in rationale extraction. In Proceed-
ings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP
2020, Online, November 16-20, 2020, pp. 1938–1952. Association for Computational Linguis-
tics, 2020. doi: 10.18653/v1/2020.emnlp-main.153. URL https://doi.org/10.18653/
v1/2020.emnlp-main.153.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a
Special Interest Group of the ACL, pp. 1532–1543. ACL, 2014. doi: 10.3115/v1/d14-1162. URL
https://doi.org/10.3115/v1/d14-1162.

Mitchell Plyler, Michael Green, and Min Chi. Making a (counterfactual) difference one rationale
at a time. In Advances in Neural Information Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pp. 28701–28713, 2021. URL https://proceedings.neurips.cc/paper/2021/
hash/f0f800c92d191d736c4411f3b3f8ef4a-Abstract.html.

Romila Pradhan, Jiongli Zhu, Boris Glavic, and Babak Salimi. Interpretable data-based explanations
for fairness debugging. In SIGMOD ’22: International Conference on Management of Data,
Philadelphia, PA, USA, June 12 - 17, 2022, pp. 247–261. ACM, 2022. doi: 10.1145/3514221.
3517886. URL https://doi.org/10.1145/3514221.3517886.

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao Chen, Michihiro Yasunaga, and Diyi
Yang. Is chatgpt a general-purpose natural language processing task solver? arXiv preprint
arXiv:2302.06476, 2023.

Dheeraj Rajagopal, Vidhisha Balachandran, Eduard H Hovy, and Yulia Tsvetkov. SELFEXPLAIN:
A self-explaining architecture for neural text classifiers. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, pp. 836–850, Online and Punta Cana,
Dominican Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/
v1/2021.emnlp-main.64. URL https://aclanthology.org/2021.emnlp-main.64.

12

https://doi.org/10.1145/3580305.3599299
https://proceedings.neurips.cc/paper/2020/hash/e37b08dd3015330dcbb5d6663667b8b8-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e37b08dd3015330dcbb5d6663667b8b8-Abstract.html
https://doi.org/10.1109/ICDM.2012.110
https://openreview.net/forum?id=B1QRgziT-
https://openreview.net/pdf?id=K7CbYQbyYhY
https://doi.org/10.18653/v1/2020.emnlp-main.153
https://doi.org/10.18653/v1/2020.emnlp-main.153
https://doi.org/10.3115/v1/d14-1162
https://proceedings.neurips.cc/paper/2021/hash/f0f800c92d191d736c4411f3b3f8ef4a-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f0f800c92d191d736c4411f3b3f8ef4a-Abstract.html
https://doi.org/10.1145/3514221.3517886
https://aclanthology.org/2021.emnlp-main.64


Under review as a conference paper at ICLR 2024

Adam Storek, Melanie Subbiah, and Kathleen R. McKeown. Unsupervised selective rationalization
with noise injection. In Proceedings of the 61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada, July 9-14, 2023, pp.
12647–12659. Association for Computational Linguistics, 2023. doi: 10.18653/v1/2023.acl-long.
707. URL https://doi.org/10.18653/v1/2023.acl-long.707.

Hongning Wang, Yue Lu, and Chengxiang Zhai. Latent aspect rating analysis on review text data: a
rating regression approach. In Proceedings of the 16th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Washington, DC, USA, July 25-28, 2010, pp. 783–
792. ACM, 2010. doi: 10.1145/1835804.1835903. URL https://doi.org/10.1145/
1835804.1835903.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In NeurIPS, 2022. URL http://papers.nips.cc/paper_files/paper/
2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.
html.

Junjie Ye, Xuanting Chen, Nuo Xu, Can Zu, Zekai Shao, Shichun Liu, Yuhan Cui, Zeyang Zhou,
Chao Gong, Yang Shen, et al. A comprehensive capability analysis of gpt-3 and gpt-3.5 series
models. arXiv preprint arXiv:2303.10420, 2023.

Mo Yu, Shiyu Chang, Yang Zhang, and Tommi S. Jaakkola. Rethinking cooperative rationalization:
Introspective extraction and complement control. In Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019,
pp. 4092–4101. Association for Computational Linguistics, 2019. doi: 10.18653/v1/D19-1420.
URL https://doi.org/10.18653/v1/D19-1420.

Mo Yu, Yang Zhang, Shiyu Chang, and Tommi S. Jaakkola. Understanding interlocking dynam-
ics of cooperative rationalization. In Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December
6-14, 2021, virtual, pp. 12822–12835, 2021. URL https://proceedings.neurips.cc/
paper/2021/hash/6a711a119a8a7a9f877b5f379bfe9ea2-Abstract.html.

Hao Yuan, Lei Cai, Xia Hu, Jie Wang, and Shuiwang Ji. Interpreting image classifiers by generating
discrete masks. IEEE Trans. Pattern Anal. Mach. Intell., 44(4):2019–2030, 2022. doi: 10.1109/
TPAMI.2020.3028783. URL https://doi.org/10.1109/TPAMI.2020.3028783.

Linan Yue, Qi Liu, Yichao Du, Yanqing An, Li Wang, and Enhong Chen.
DARE: disentanglement-augmented rationale extraction. In NeurIPS, 2022.
URL http://papers.nips.cc/paper_files/paper/2022/hash/
a9a67d9309a28372dde3de2a1c837390-Abstract-Conference.html.

Linan Yue, Qi Liu, Li Wang, Yanqing An, Yichao Du, and Zhenya Huang. Interventional rational-
ization, 2023. URL https://openreview.net/forum?id=KoEa6h1o6D1.

Wenbo Zhang, Tong Wu, Yunlong Wang, Yong Cai, and Hengrui Cai. Towards trustworthy ex-
planation: On causal rationalization. In Proceedings of the 40th International Conference
on Machine Learning (ICML’23), volume 202 of Proceedings of Machine Learning Research,
pp. 41715–41736. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/
v202/zhang23ap.html.

Yiming Zheng, Serena Booth, Julie Shah, and Yilun Zhou. The irrationality of neural rationale
models. In Proceedings of the 2nd Workshop on Trustworthy Natural Language Processing
(TrustNLP 2022), pp. 64–73, Seattle, U.S.A., July 2022. Association for Computational Lin-
guistics. doi: 10.18653/v1/2022.trustnlp-1.6. URL https://aclanthology.org/2022.
trustnlp-1.6.

13

https://doi.org/10.18653/v1/2023.acl-long.707
https://doi.org/10.1145/1835804.1835903
https://doi.org/10.1145/1835804.1835903
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.18653/v1/D19-1420
https://proceedings.neurips.cc/paper/2021/hash/6a711a119a8a7a9f877b5f379bfe9ea2-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/6a711a119a8a7a9f877b5f379bfe9ea2-Abstract.html
https://doi.org/10.1109/TPAMI.2020.3028783
http://papers.nips.cc/paper_files/paper/2022/hash/a9a67d9309a28372dde3de2a1c837390-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/a9a67d9309a28372dde3de2a1c837390-Abstract-Conference.html
https://openreview.net/forum?id=KoEa6h1o6D1
https://proceedings.mlr.press/v202/zhang23ap.html
https://proceedings.mlr.press/v202/zhang23ap.html
https://aclanthology.org/2022.trustnlp-1.6
https://aclanthology.org/2022.trustnlp-1.6


Under review as a conference paper at ICLR 2024

A MORE RESULTS

A.1 IMPLEMENTATION DETAILS OF EQUATION (6) AND (5)

For a batch of (X,Y ), we first send X to both the generator and the predictor and get Z,ZA:

Z = fg(X)

ZA = fa(X).
(11)

Then, we get a copy of ZA with the pytorch function “torch.detach()”:

Z ′A = torch.detach(ZA). (12)

Then we get Ŷ and Ŷ ′A:

Ŷ = fp(Z)

Ŷ ′A = fp(Z
′
A)

(13)

Then we can update the generator and the predictor with

min
θg,θp

Hc(Y, Ŷ ) +min
θp

Hc([0.5,0.5], Ŷ
′
A) (14)

Note that this updating process will not influence the attacker, since we have used “torch.detach()”
for ZA.

Then, we fix the parameters of the generator and the predictor, and only update the attacker. We get
ŶA with

ŶA = fp(ZA). (15)

Then, we update the attacker with

min
θa

Hc(1 − Y, ŶA). (16)

Then, we get into the next round to update the generator and the predictor again.

A.2 GENERALIZATION TO MULTI-CLASS CLASSIFICATION

While we primarily focus on binary classification for the sake of exposition brevity, the method can
easily generalize to multi-class classification.

All we need to do is modifying Equation (9) and (10). Equation (9) should be modified to

min
θa
[min

Y ′
Hc(Y

′, fp(fa(X))∣fa(X))], s.t., (X,Y ) ∼ D, Y ′ ≠ Y. (17)

which means that ZA can be classified to any classes except Y .

And Equation (10) should be modified to

min
θp

Hc([
1

n
,⋯,

1

n
], fp(fa(X))∣fa(X)), s.t., (X,Y ) ∼ D. (18)

Note that we need human-annotated rationales to test the model performance, so there is no proper
multi-class classification datasets in the field of rationalization. The datasets we select are just the
same as our baseline FR.

A.3 EXPERIMENTAL DETAILS

BeerAdvocate. Following Inter RAT and FR, we consider a classification setting by treating reviews
with ratings ≤ 0.4 as negative and ≥ 0.6 as positive. Then we randomly select examples from the
original training set to construct a balanced set.
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Table 3: Statistics of datasets used in this paper

Datasets Train Dev Annotation
Pos Neg Pos Neg Pos Neg Sparsity

Beer
Appearance 16891 16891 6628 2103 923 13 18.5
Aroma 15169 15169 6579 2218 848 29 15.6
Palate 13652 13652 6740 2000 785 20 12.4

Hotel
Location 7236 7236 906 906 104 96 8.5
Service 50742 50742 6344 6344 101 99 11.5
Cleanliness 75049 75049 9382 9382 99 101 8.9

Table 4: The F1 scores of models
trained with BERT encoder. The re-
sults are obtained from (Chen et al.,
2022). The dataset is decorrelated Beer-
Appearance.

Method BERT
VIB (Paranjape et al., 2020) 20.5

SPECTRA (Miyato et al., 2018) 28.6

HotelReviews. Similar to BeerAdvocate, we treat re-
views with ratings < 3 as negative and > 3 as positive.

More details are in Table 3. Pos and Neg denote the num-
ber of positive and negative examples in each set. Spar-
sity denotes the average percentage of tokens in human-
annotated rationales to the whole texts.

We get the license of BeerAdvocate by sending
an email to Julian McAuley. The Hotel Re-
views is a public dataset and we get it from
https://github.com/kochsnow/distribution-matching-
rationality.

A.4 THE DISCUSSION ABOUT THE BERT

Table 5: The F1 scores of mod-
els trained with BERT encoder.
The results are obtained from (Liu
et al., 2022). The dataset is decor-
related Beer-Appearance. The ra-
tionale sparsity is about 18%.

Method BERT
RNP (Lei et al., 2016) 14.7
FR (Liu et al., 2022) 29.8

The results of several recent papers Chen et al. (2022); Liu
et al. (2022); Zhang et al. (2023) have shown that the ratio-
nalization framework doesn’t perform well when combined
with pretrained encoders like BERT. Table 4 shows that two
advanced methods, VIB and SPECTRA, both perform much
worse than the vanilla RNP with GRUs. Table 5 shows the
recent method FR also performs very poorly.

We can also refer to Table 1 of a recent paper CR (Zhang et al.,
2023), which shows that none of the rationalization methods
gets a F1 score higher than 40.0 (the sparsity is about 10%
in CR) on the Beer dataset when they are conducted with BERT. Compared to our RNP-GRU in
Table 1, the lowest F1 for the simplest RNP with S ≈ 10.0 is 48.8.

Here are some possible reasons for the poor results with BERT. First, the rationalization framework
usually involves many hyperparameters (e.g., the short and coherent regularizers in Equation (4)),
and the over-parameterized BERT may be very sensitive to hyperparameter tuning. For example,
the Remark 6.1 in (Zhang et al., 2023) shows that a very small change in the learning rate will cause
a very different result. Second, the the over-parameterized BERT is too powerful. With BERT, the
predictor may be able to make the right prediction with any trivial patterns, thus the generator does
not need to select the real rationales.

These reasons may not be true. However, exploring what happens to BERT is somewhat beyond the
scope of this paper, and we leave it as the future work. To avoid being influenced by unknown issues
and result in unfair comparisons, we take the same settings as Inter RAT and FR.

A.5 MORE RESULTS ABOUT THE ATTACK SUCCESS RATE

More results of the attack success rate are shown in Figure 7.
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Figure 7: Attack success rate (ASR) on the three aspects of BeerAdvocate dataset. The rationale
sparsity is about 10% (a,b,c) and 30% (d,e,f).
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(b) Validation

Figure 8: Experiments on the Appearance of the BeerAdvocate dataset. The settings are the same
as those in Figure 5.

A.6 MORE RESULTS CORRESPONDING TO FIGURE 5

Figure 5 has shown the results of one aspect of the BeerAdvocate dataset. We show the results of
the other two aspects in Figure 8 and 9. The green lines can somewhat reflect how much the true
sentiment is contained in the randomly selected rationales. And we see that only the true sentiment
can generalize to the validation set.

A.7 EXAMPLES OF SELECTED RATIONALES

We provide two cherry-picked examples of the sampling bias in Figure 10. The sparsity is about
10% (note that 10% is the **average** sparsity across the dataset, and it is manually determined by
s in Equation 4 rather than the model’s power. So chances are that some texts may have low sparsity
and others have high sparsity.).
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Figure 9: Experiments on the Palate of the BeerAdvocate dataset. The settings are the same as those
in Figure 5.

Label (about the beer’s appearance): Positive. Prediction: Positive.

Input: bomber poured into my duvel tulip , not sure of the vintage as 

the bottle was undated , the name of the beer was stenciled on the 

label rather than hand written ( maybe that helps ) . appearance : 

amber in color , little to no head even after a hard-pour, what little 

head there was quickly recedes to a thin ring . smell : sweetness on 

the nose , maybe some spice ; however , it is the honey like 

sweetness that is dominant . taste : again , this is a sweet beer and 

unlike most tripels it remains sweet with very little bitterness on the 

finish . this has a honey-like flavor mostly . the hops manage to 

introduce enough balance to keep the beer from becoming cloying . 

this is an enjoyable beer ( especially if you like a sweeter beer ) but it 

really would be an odd fit for the tripel style . you do get hints of 

spice ( and maybe some citrus notes ) as you continue drinking 

mouthfeel : there is enough carbonation to keep the beer from 

becoming syrupy and that adds to the overall enjoyment . overall : 

different for a triple , not bad , but not great . an above average beer 

for sure . id definitely try it again if they had it on tap when i was in 

for a visit . abv is well masked .

Label (about the beer’s appearance): Positive. Prediction: Positive.

Input: bomber poured into my duvel tulip , not sure of the vintage as 

the bottle was undated , the name of the beer was stenciled on the 

label rather than hand written ( maybe that helps ) . appearance : 

amber in color , little to no head even after a hard-pour, what little 

head there was quickly recedes to a thin ring . smell : sweetness on 

the nose , maybe some spice ; however , it is the honey like 

sweetness that is dominant . taste : again , this is a sweet beer and 

unlike most tripels it remains sweet with very little bitterness on the 

finish . this has a honey-like flavor mostly . the hops manage to 

introduce enough balance to keep the beer from becoming cloying . 

this is an enjoyable beer ( especially if you like a sweeter beer ) but it 

really would be an odd fit for the tripel style . you do get hints of 

spice ( and maybe some citrus notes ) as you continue drinking 

mouthfeel : there is enough carbonation to keep the beer from 

becoming syrupy and that adds to the overall enjoyment . overall : 

different for a triple , not bad , but not great . an above average beer 

for sure . id definitely try it again if they had it on tap when i was in 

for a visit . abv is well masked .

(a) RNP (b) RNP+A2I

(c) RNP (d) RNP+A2I

Label (about the beer’s appearance): Positive. Prediction: Positive.

Input: a - murky , semi-opaque honey . low head . s -earthy. plantains , 

pineapple rind , apricot t - earthy hay and pepper . touch or orange . 

cilantro . honey . very saison-like . m - medium body . nice carbonation . 

balanced semi-dry finish . o - nice flavor profile .

Label (about the beer’s appearance): Positive. Prediction: Positive.

Input: a - murky , semi-opaque honey . low head . s -earthy . plantains , 

pineapple rind , apricot t - earthy hay and pepper . touch or orange . 

cilantro . honey . very saison-like . m - medium body . nice carbonation . 

balanced semi-dry finish . o - nice flavor profile .

Figure 10: Two cherry-picked examples of the sampling bias. The dataset is Beer-Appearance.
The human-annotated rationales are underlined. The rationales selected by RNP and RNP+A2I are
highlighted in red and blue, respectively. The sparsity (average across the dataset) is about 10% (i.e.,
corresponding to the first row in Table 1).

B PROOFS

B.1 THE RELATION BETWEEN ENTROPY AND CROSS-ENTROPY

It is a basic idea in information theory that the entropy of a distribution P is upper bounded by the
cross entropy of using Q to approximate it. For any two distribution P and Q, we have

Hc(P,Q) =H(P ) +DKL(P ∣∣Q) ≥H(P ), (19)

where the subscript c in Hc(P,Q) stands for cross-entropy.

We know that we get the minimum cross entropy when Q is the same as P , i.e., DKL(P ∣∣Q) = 0.
Which means

minHc(P,Q) =H(P ). (20)

B.2 DERIVATION OF EQUATION (8)

To begin with, we need to introduce two fundamental properties from probability theory.
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The first property is a general property for conditional probability. If 0 < P (Y = 1) < 1, then for ∀p,
if 0 < p < 1, we can always find a variable c, such that P (Y = 1∣c) = p.

Considering our rationalization situation, we can get the following corollary:

Corollary 1 If we can construct G in an arbitrary way, and 0 < P (Y = 1∣Z = t) < 1, then we have

∀0 < p < 1, ∃ga ∈ G, P (Y = 1∣Z = t, ga) = p. (21)

The second property is also a general property for conditional probability. If P (Y = 1) = 0, then for
any variable c, we always have P (Y = 1∣c) = 0. This is also a fundamental property in probability
theory.

Considering the rationalization situation, let Z = s+, we have

Corollary 2 If we can construct G in an arbitrary way, and P (Y = 0∣Z = s+) = 0, then we have
that there is no ga that can make P (Y = 1∣Z = t, ga) > 0.

B.3 MORE DISCUSSION ABOUT THE SINGULAR SENTIMENT ASSUMPTION

To begin with, we have to acknowledge that this assumption is an idealized scenario. Here are some
cases that may break this assumption. Nevertheless, our analysis based on it remains meaningful.

First, the sentiment may be multi-aspect. For example, a person may have positive sentiment about
the beer’s appearance, while negative sentiment about the taste. If we are discussing the beer’s
appearance, the review will still be annotated as positive. In such a scenario, the attacker will try to
find the negative comment about the taste, and force the predictor to classify it as neutral. However,
this is just what we want. It helps the predictor focus not only on the vanilla sentiment, but also on
the aspect (which is included in the context of the sentiment) in which we are interested. Since the
predictor classifies the comment about the taste as neutral, it will give the only the feedback about
the beer’s appearance, which can help the generator focus more on the appearance.

Second, the X labelled with Y = 1 may be a combination of strong positive sentiment and weak
negative sentiment. A dataset may consists of two kind of sentiment: strong and weak, each of
which can be divided to positive and negative. The label of X is decided by the strong sentiment.
In this scenario, the attacker may find the weak negative sentiment from X labelled with Y = 1,
and ask the predictor to classify the weak negative sentiment as neutral. There is no denying that
weak sentiment and strong sentiment have different styles. Similar to the illustration on multi-aspect
sentiment, the attacker here also helps the predictor to focus on strong sentiment and ignore the weak
sentiment. As a result, the generator will only select the strong sentiment.
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