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Abstract
Preference learning is an integral part of the train-
ing process for a large language model (LLM) to
serve user applications. While this alignment is
usually done via offline learning from annotated
feedback, there is inherent noise in obtaining such
data, and most current methods are sensitive to
such noise. In this work, we propose a novel
approach to use such noisy labels based on con-
cordant losses. Our proposed method is based on
learning the optimal model under an adversarial
labeller. Experiments show that our proposal is
more effective than common algorithms for vari-
ous levels of noise.

1. Introduction
The development of large language models has significantly
revolutionized the modern AI field (Hadi et al., 2023; Fan
et al., 2024). A major contributor towards the success of
these models is Reinforcement Learning from Human Feed-
back (RLHF) based preference learning (Achiam et al.,
2023; Ouyang et al., 2022). A standard RLHF based align-
ment pipeline involves: 1) Supervised Fine Tuning (SFT) of
a pretrained LLM, 2) Learning Reward Model from human
annotated data for guiding the LLM and 3) Reinforcement
Learning (RL) based optimization using the reward model.

This standard alignment approach treats human-supplied
annotation as if they were clean and helpful signals. But
this data annotation process is, by its very nature, error-
prone. In practice, annotators disagree, change their minds,
and occasionally behave adversarially. Furthermore, for
many areas which might require expert annotators, it can
be hard to get enough high-quality ’gold’ preference data.
The resulting “silver” preference data are inevitably biased
and noisy. Despite these realities, most alignment pipelines
simply plug such feedback into a reward model and hope
for the best, silently inheriting the fragile assumptions of
standard supervised learning.
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Contribution This paper tackles the problem: How can
we reliably learn models when the human feedback can
be wrong or corrupted? We propose a self-concordance
(Bach, 2010; Pleiss et al., 2020) based method for training
from such partially noisy data. First, we look at a predic-
tion function that is robust to adversarial labelling. We
propose to learn the robust model by distilling (Buciluǎ
et al., 2006; Hinton, 2015; Gou et al., 2021) from the reward
function learned in the aforementioned adversarially robust
procedure. For efficient learning, we turn to a tractable ap-
proximation of the robust prediction for logistic learning
(Bach, 2010) using influence functions. Experiments show
the efficacy of our proposal.

2. Background and Related Work
The language model is considered as a policy function π
that observes a prompt x and produces a textual response a
by sampling from a distribution y ∼ π(· | x). We are given
a dataset Dpref = (x, y) consisting of prompts x and a pair
of labelled response y = (y+, y-) where y+ represents the
preferred response, and y- represents the negative response.

RLHF (Christiano et al., 2017; Ye et al., 2024; Ouyang
et al., 2022) deals with the problem of aligning a language
model, using Dpref = {(x, y)}. Given the context/prompt
x, a pair of outputs are sampled from πref(· | x) and then
arranged as per preference function (typically implicitly
given by human annotation). RLHF methods (Christiano
et al., 2017; Ouyang et al., 2022) seek to obtain a policy
π̂ that is aligned with the preference data. This is usually
done by first estimating a reward function r̂ from Dpref, by
fitting a Bradley-Terry model (Bradley and Terry, 1952) via
maximum likelihood.

The estimated reward function r̂ is then used to train the
LLM by RL-based methods. The model π̂ is regularized
to stay close to a reference policy πref (typically the SFT
model), giving the following objective:

π̂ = argmax
π

Eπ

[
r̂(x, y)− β log

π(a | x)
πref(a | x)

]
.

The optima for the above model is given by the energy model
π̂ ∝ πref exp(r̂/β) (Ziebart et al., 2008). Using this insight,
the DPO method (Rafailov et al., 2024) relies on optimizing
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π directly via plugging the corresponding implied reward
function in the MLE objective:

max
∑

(x,y+,y-)∈Dpref

log σ

(
β
πθ(y

+ | x)
πref(y+ | x)

− πθ(y
- | x)

πref(y- | x)

)
, (1)

where we have used a parametric model πθ parameterized
by θ. We overload the notation and use the same parameter
θ for the reward r. Many methods (Ethayarajh et al., 2024;
Azar et al., 2023) build upon this insight and instead of
training the reward model r̂, directly try to optimize some
version of Equation 1 by changing the objective from the
logistic loss to a broader family of loss functions.

Generalization and Robust Learning A common problem
in tuning LMs using this methodology is reward hacking
(Huang et al., 2024; Eisenstein et al., 2023). Specifically,
the RL method can tune the LM to fit any idiosyncrasies or
biases in the reward model (Rita et al., 2024) and fails to
generalize outside the preference data. Some recent propos-
als (Coste et al., 2024; Cheng et al., 2023) to overcome this
problem involve adversarial optimization. Other proposals
include regularization with stronger divergence penalties
(Huang et al., 2024), ensemble models (Eisenstein et al.,
2023) and uncertainty-based learning (Zhai et al., 2023).
Robust preference learning solves an extreme form of gen-
eralization problem in that the reward function needs to be
robust not only to the finite preference data but also to misla-
beled data. Most methods of robust learning rely on filtering
out mislabeled examples (Wang et al., 2020), some form of
Bayesian learning(Yang et al., 2024), or down-weighting
examples (Liang et al., 2024).

Our approach is most connected to the adversarial learning
methodology of Cheng et al. (2023). This family of meth-
ods, while principled, can be computationally unstable due
to using an explicit adversarial learning procedure. Further-
more, most of these methods directly rely on an explicit
reward function, which can still lead to overoptimization
(Zhang et al., 2024). On the other hand, down-weighting
examples, while intuitive, lack a principled justification.

3. Proposed Method
One can consider Equation 1 as a specifically parame-
terized binary classifier on the input z = (x, y) where
fθ(z) = rθ(x, y

+) − rθ(x, y
-). Furthermore, since we

are combining both y+, y- under y, we define an auxiliary
variable yz , which is 1 iff y+ is preferred over y- and 0
otherwise. For most of this section, we will use this nota-
tion instead. Under this change, the DPO/MLE objective is
effectively a regression problem :

L(f) = E [yz log(σ(f(z))) + (1− yz) log(σ(1− f(z)))]

=
∑

z∼Dpref

l(f(z), yz) (2)

with l being the logistic loss between label yz and model pre-
diction f(z) and we supress dependence on θ for notational
convenience.

Robust Learning via MinMax Model Our idea of learn-
ing under mislabeled labels stems from the ideas on con-
cordant losses (Ostrovskii and Bach, 2021; Bach, 2010;
Mourtada and Gaı̈ffas, 2022) Let us consider a single ob-
servation z distinct from observations in Dpref. For this
additional sample, we consider the following sample mini-
max prediction:

f̂z,y = argmin {L(f) + l(f(z), y)} (3)

ŷ(z) = argmin
y′

max
y

{
l(y′, y)− l(f̂z,y(z), y)

}
(4)

where f̂z,y is a model trained with data and additional sam-
ple (z, y), and f̂z,y(z) is the same model applied on input
z. Note that y, y′ here are arbitrary variables in the output
space of the model and different from yz , which is the label
of z in Dpref.

The intuition behind the above is as follows: Suppose we
add an additional sample z to the training data, labeled with
y. Then, Equation 3 fits the model f̂z,y on this updated
dataset. The loss incurred by this model on the specific
sample (z, y) is given by l(f̂z,y(z), y). Alternatively, if
instead of using f̂z,y we simply predict y′, the resulting loss
is l(y′, y). Since l(f̂z,y(z), y) represents the irreducible loss
from fitting the model, the best we can aim to optimize is
the excess loss, defined as l(y′, y)− l(f̂z,y(z), y).

Remark. Note that we consider the adversarial label at an
individual instance level. This is different from poisoning
which often aims to change prediction of a certain target
input. It also does not consider interaction between misla-
belled samples, where the adversary mislabels an entire set
of points together to maximize regret.

Now consider a scenario where an adversary selects the label
y for the observation z with the goal of maximizing our risk.
This justifies the maximization over y. In contrast, we aim
to minimize the loss by selecting an optimal prediction y′,
motivating the subsequent minimization over y′.

Equation 4 is, in general, hard to solve, however for lo-
gistic regression, one has the following closed-form result
(Mourtada and Gaı̈ffas, 2022):
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ŷ(z) =
σ(f̂z,1)

σ(f̂z,1) + 1− σ(f̂z,0)
(5)

The above expression has the following semantics: train
the model with z being given each label 0, 1 once. On
Dpref + (z, 1), we get f̂z,1 and with Dpref + (z, 0) we have
f̂z,0. We then normalize the predicted scores to compute
the output probability.

The semantics of this expression are as follows: we train
the model twice, once with the sample z labeled as 1, and
once as 0. Specifically, training on Dpref ∪ (z, 1) yields f̂z,1,
while training on Dpref ∪ (z, 0) yields f̂z,0. The predicted
scores from both models are then normalized to produce the
estimated probability ŷ(z).

Consider the case where z is close (in feature space) to
many positive examples (samples with label 1). In this
case, f̂z,1(z) is close to the prediction from a model trained
without z, and is typically close to 1. Conversely, when
training on Dpref ∪ (z, 0), the model incurs a high loss on z

and must shift decision boundaries to reduce f̂z,0(z) toward
0. However, doing so requires contradicting many nearby
positive samples, so the model may only reduce the score
moderately (e.g., to 0.6). This results in ŷ(z) ≈ 0.71: high,
but not close to 1.

This aligns with our intuition - if most of the dataset is
correctly labeled, and z is strongly supported by positive
examples, we can reasonably (though not with full certainty)
assign label y = 1 to z. On the other hand, if z has no
support in the data, f can fit both data equally well. Then
both f̂z,1(z) and f̂z,0(z) may be close (e.g., both near 1),
yielding ŷ(z) ≈ 0.5—an ambiguous prediction. Thus the
model naturally incorporates the idea of support from other
samples support.

We propose to learn a new model by using the above tech-
nique on a standard MLE-trained reward model and then
distilling from the new predictions. Specifically, we propose
to first train a model, get the new prediction of labels y0z for
every z ∈ Dpref, create a new dataset D1

pref = (z, y0z)∀z ∈
Dpref and then use it as a distillation target for training the
new model. However, doing so requires us to be able to train
a model for each observation in the dataset Dpref, which is
computationally intractable. To alleviate this problem, we
turn to influence functions.

Influence Functions Influence functions (Cook and Weis-
berg, 1980; Johnson, 1985) characterise how a model’s loss
or predictions depend on training data. Closest to the pro-
posal in this work, influence functions have also been used
for detecting outliers and corrupted samples (Dau et al.,
2022; Wang et al., 2020).

One way to characterize influence functions is to consider
placing ϵ additional weight on sample zi and taking limϵ→0.
For the parametric model, fθ trained by minimizing L(f)
one can show the ’influence’ of an observation zi on the
prediction of another sample zj as (Koh and Liang, 2017):

Î(zi, zj) = −∇θfθ(zj)
TH−1

θ ∇θl(zi, θ) (6)

where we have overloaded the notation by defining
l(zi, θ) = l(fθ(zi), yzi) as the loss of the model fθ on
the sample zi, yzi . Hθ is the Hessian matrix of the loss,
and ∇θl(zi, θ) is the gradient of the loss, and ∇θf is the
gradient of the prediction. The negative sign is due to f
being learnt by minimization of l.

Using the influence function one can compute f̂zi,y for the
observation zi and label y as :

f̂zi,y = fθ(zi)− αÎ(zi, zi) + αÎ(zi, (zi, y)) (7)

= fθ(zi) + α∇θfθ(z)
TH−1

θ [−∇θl(fθ(zi), y)

+∇θl(fθ(zi), yzi)].

The above equation can be interpreted as removing the influ-
ence of the observation zi, yzi and then adding the influence
of observation zi, y, α is the step size used for update and
is a hyperparameter. With fzi,y computed, we can get ŷ(z)
from Equation 5. We then distill it into a DPO model by
optimizing Equation 2 treating it ŷ(z) as the smoothened
label yz .

Efficient Computation One issue in utilizing the above
expression directly is that it requires computing and invert-
ing the Hessian, which is intractable for LLMs. Fortunately,
there has been a lot of research towards fast and scalable
estimation of influences. A common approximation used
is a diagonal Hessian (Klochkov and Liu, 2024; Thimonier
et al., 2022). Under such a diagonal approximation the in-
fluence term is an inner product between gradients. Such an
inner product can be computed in one backward pass using
the ’ghost clipping’ technique (Bu et al., 2023). The key
idea behind this is mentioned here and we refer the readers
to Bu et al. (2023); Wang et al. (2024) for greater details.

Consider a single linear layer which maps features x1 to x2

x2 = Wx1, W ∈ Rd1×d2 , x1 ∈ Rd1 , x2 ∈ Rd2 .

For a training example i with loss ℓi, the gradient with
respect to W is

∇W ℓi =
∂ℓi
∂xi2

∂xi2
∂W

= gi xi⊤
1 , (8)

where gi = ∂ℓ/∂xi2 ∈ Rd2 is the back-propagated signal.
Equation (8) shows that every per-sample gradient is a rank-
1 outer product.
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Let xj denote another example. The inner product of per-
parameter gradients becomes

⟨∇W ℓj ,∇W ℓi⟩ = ⟨gjxj⊤1 , gixi⊤1 ⟩ = gj⊤gi︸ ︷︷ ︸
length d2

xj⊤1 xi1︸ ︷︷ ︸
length d1

. (9)

Thus the potentially expensive d1d2-dimensional inner prod-
uct factorises into two cheap dot products of lengths d2 and
d1, respectively. Further the gradients with respect to each
layer embedding itself gets computed for each element in
the backward pass. Thus we can compute the inner product
for elements in a batch with only one backward pass.

4. Experiments
Tasks Following earlier works, we experiment with the
Alpaca Comparison Benchmark (Peng et al., 2023), a dia-
logue task and a forum summarization dataset Reddit TLDR
(Völske et al., 2017). The Alpaca Comparison dataset con-
tains queries from the benchmark Alpaca dataset (Taori
et al., 2023). We follow the work of Peng et al. (2023),
which generates responses using smaller LLMs and then
scores each response for the prompt using GPT-4. TLDR
is a dataset where the prompt consists of the forum content,
and the task is to summarize the forum. We follow the pro-
cedure of Rafailov et al. (2024) for this dataset using human
preference annotation as done by Stiennon et al. (2020).

We experiment with different noise settings, where we, at
random, select and flip the preference labels of p fraction of
the data.

Models and Baselines We experiment with Mistral-7B
(Jiang et al., 2023) and LLama-2-7B (Touvron et al., 2023)
for learning preferences. For preference learning algorithms
we use DPO (Rafailov et al., 2024), IPO (Azar et al., 2023),
and two other approaches ( rDPO (Chowdhury et al., 2024)
and cDPO (Mitchell, 2023)) which induce robustness in
DPO by using label smoothening on the MLE loss.

Evaluation For Alpaca data, we can evaluate the models
using the AlpacaEval benchmark(Li et al., 2023), by compar-
ing their outputs with those of GPT3 (text-davinci) (Achiam
et al., 2023). For TLDR, we compare their outputs against
the SFT response and, following standard procedure in liter-
ature (Liang et al., 2024; Zhang et al., 2024), use GPT-4 for
scoring the answers. The prompt used for scoring TLDR
is a slight variation of the prompt for Alpaca, and can be
found in Liang et al. (2024).

Results We present the results from the described experi-
ment in Tables 1 and 2 for the Mistral and Llama models,
respectively. Firstly, one can observe that, as one might ex-
pect, all models deteriorate in their performance as the label
noise increases. This is natural as more label noise means
learning preference is harder. More importantly, we can see
that our model shows the lowest deterioration compared to

Table 1: Win Rates of different methods using Mistral7-B
compared to the SFT baseline with different proportions of
corrupted preference labels.

Method Alpaca Reddit TLDR
0% 5% 10% 20% 0% 5% 10% 20%

DPO 69.5 69.0 68.6 68.5 62.9 59.5 57.2 56.4
IPO 68.8 66.6 64.9 64.1 62.1 59.5 57.6 56.2
rDPO 68.6 68.5 68.3 68.1 62.2 61.2 58.4 55.7
cDPO 65.1 64.6 63.2 61.8 59.8 59.3 57.9 56.6
Ours 70.3 70.2 70.1 68.9 63.1 63.0 62.7 59.1

Table 2: Win Rates of different methods using Llama-2-7B
compared to the SFT baseline with different proportions of
corrupted preferences.

Method Alpaca Reddit TLDR
0% 5% 10% 20% 0% 5% 10% 20%

DPO 51.5 48.8 46.7 46.0 57.2 50.2 44.8 43.0
IPO 51.8 50.8 50.0 49.7 54.7 52.5 50.8 50.2
rDPO 49.8 49.6 49.0 48.4 54.2 53.5 51.7 49.9
cDPO 52.1 51.7 50.6 49.5 52.1 51.4 49.4 47.6
Ours 52.2 52.1 52.0 50.9 56.9 56.8 56.5 53.3

other methods, highlighting the robustness of the overall
approach. We also see mild improvements even at 0% noise.
This is because of the smoothening effect of the minimax
procedure, which prevents the implicit reward scores from
growing very high and acts as implicit regularization. This
effect is stronger when we add noise to the data; these are
the cases when our model significantly outperforms other
methods. The results are consistent across both Mistral and
Llama models.

5. Conclusion
Preference optimization of LLMs under noisy annotation is
an important research problem. Most existing methods rely
on some version of label smoothing or gradient reweighing.
We propose an alternative based on adversarially robust pre-
diction and influence functions. Specifically, we show how
one can use per-sample minimax labelling to predict robust
labels even under adversarial noise. The resulting method
relies on training the model with and without the corre-
sponding sample, which is computationally intensive. This
is approximated using the recently proposed KFAC-based
influence estimation. Experiments show the effectiveness
of our proposed methodology.
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