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Abstract

Contextual Commonsense Inference (CCI) is
the problem of inferring causal relations be-
tween the events of a text, such as a story.
Like other commonsense reasoning tasks, CCI
is a problem of language understanding, rather
than language generation. We show that prior
work, in using language generation to perform
CCI, trains models that struggle on the CCI
task in isolation. This conflation of tasks is
further exacerbated by evaluating with word-
matching based metrics such as BLEU. In or-
der to isolate CCI from language generation,
we reframe CCI as a classification problem.
Our system, which we call CIS2, forces the
model to focus on CCI directly by provid-
ing it the original text of the story to use for
understanding while having it generate only
the bare minimum: indices to sentences. We
look at the GLUCOSE (Mostafazadeh et al.,
2020) dataset and compare against their task
for predicting CCI between story sentences.
We find that models trained on CIS2 index la-
bels achieve a 4.3% higher CCI accuracy than
those trained for generating full phrases, such
as in the original GLUCOSE task.

1 Introduction

Transformer-based language models (Vaswani
et al., 2017)—particularly off-the-shelf models—
have shown mixed success with story genera-
tion (See et al., 2019; Wang and Wan, 2019; Ip-
polito et al., 2020). Language models (LMs) lose
coherence as their output length increases, and are
prone to meandering, losing the plot of a story over
time. This can be largely attributed to the LM gen-
erating each token by sampling from a probability
distribution, failing to distinguish between statisti-
cal correlation (how frequently event A and event
B are seen together) and causal reasoning (event A
causes event B to occur).

Since causal events across sentences in stories
help people understand and retain story information

Figure 1: Motivation for CIS2, illustrating how the orig-
inal GLUCOSE task conflates commonsense inference
and text generation. Input and output are exactly as
seen by finetuned T5. Blue: selected sentence X is
always paraphrased. Orange: dimension specifies the
position of X, and the relation. Green: commonsense
inference is needed here to select the other sentence Y.

(Trabasso et al., 1984), we posit that the inability
of language models to perform commonsense infer-
ence leads them to output less coherent long-form
text. Commonsense inference is still an open prob-
lem in NLP, especially when the commonsense
information is unstructured and provided in the
form of natural language. We refer to this task of
grounding commonsense inference relations within
prose as contextual commonsense inference (CCI),
a sub-task within commonsense reasoning. Due to
storytelling being deeply intertwined with causal
understanding, improving CCI will yield both more
accurate story generation evaluation metrics and
better story generation.

Current methods in CCI for story understanding
often include the use of generative LMs. While
LMs might be helpful for encoding the textual in-
formation, they are less suited to operating on and
making decisions based on this information due
to their probabilistic way of generating text. This
leads to a tendency to focus on grammar rather
than meaning (Martin et al., 2018). Furthermore,
commonly-used language generation evaluation
metrics like BLEU put emphasis on exact word
usage and grammar. In this paper, we look at what
it would mean to de-emphasize generation and para-



phrasing for understanding tasks like CCI.
Our contributions in this paper are twofold. First,

we critique an existing method addressing the con-
textual commonsense inference (CCI) task by using
the GLUCOSE (Mostafazadeh et al., 2020) dataset
and teasing apart their associated CCI task for-
mulation. We designed several diagnostic tasks
which selectively omit sentences of the input and
investigate which sentences contribute the most to
paraphrasing/generation. We replicate their results,
then finetune T5 models (Raffel et al., 2020) on
each of our diagnostic tasks, to show the significant
conflation of language understanding and genera-
tion in the original GLUCOSE T5 model.

Second, we propose CIS2 (Contextual Common-
sense Inference in Sentence Selection), a simplified
task for more fairly evaluating commonsense infer-
ence in storytelling, which abstracts away the natu-
ral language generation component almost entirely.
We develop a heuristic to convert story sentences
into CIS2 tags and show that a language model,
when trained on this data, outperforms the original
GLUCOSE task formulation on forming the cor-
rect causal relations between sentences in stories.
Our findings reinforce that while the GLUCOSE
dataset encodes useful commonsense information,
we urge that future work should carefully disentan-
gle language generation when performing language
understanding tasks.

2 Related Work

Commonsense inference is the ability to use prior
knowledge based on real world experiences to infer
what has happened or will happen. While lived
experiences vary from person to person, there are
still significant commonalities as we live and in-
teract within the same physically- and temporally-
constrained world.

2.1 Commonsense Knowledge Graphs

Hwang et al. (2021) formalized the commonsense
inference task (CI) for AI systems as a knowledge
three-tuple, to predict the object of a relation given
the subject and relation. This formulation of com-
monsense inference can be structured as a graph,
where the subjects and objects are nodes and the re-
lations are the edges connecting the entities. These
commonsense knowledge graphs (CKGs) explic-
itly encode the structure of inference relationships
between entities. ATOMIC (Sap et al., 2019) is one
such CKG dataset that organizes everyday events

into if-then relationships. COMET (Bosselut et al.,
2019) is a transformer language model designed
on top of ATOMIC relations, showing language
models can encode and generalize commonsense
information.

However, Wang et al. (2021) show that lan-
guage models struggle to perform generaliz-
able commonsense inference across three pop-
ular CKG datasets: ConceptNet (Speer et al.,
2017), TupleKB (Dalvi Mishra et al., 2017), and
ATOMIC (Sap et al., 2019). They found that LMs
trained on several CKGs have limited ability to
transfer knowledge to unseen CKGs, and that adap-
tation generalizes well to unseen subjects, but less
so on unseen objects.

Although these graphs do well at representing
facts and their relations, their statements lack con-
text and would need to be adapted to a textual do-
main, such as story prose. Using them to generate
a story as-is would fail to engage readers since
the “story” would simply be a series of facts. Our
work goes beyond the explicit structure of CKGs,
focusing on finding and leveraging commonsense
relations in natural language short stories.

2.2 Commonsense Inference for Storytelling

Early research on automated story generation re-
search focused on designing systems that create
coherent stories (Lebowitz, 1985; Turner and Dyer,
1985; Liu and Singh, 2002; Young et al., 2013).
Despite the success of neural networks for AI tasks,
commonsense and coherence remain big issues for
story generation systems.

Applying commonsense reasoning to the events
of a story has been proposed as one way to
tackle the difficult problem of assessing the qual-
ity of machine-generated stories. The Story Cloze
Test (Mostafazadeh et al., 2016) formulates story
ending generation as a multiple-choice task, hav-
ing systems look at several possible endings and
predict the one that is most reasonable. Guan et al.
(2019) integrated commonsense reasoning directly
into their Story Cloze model by building context
clues and using implicit knowledge.

Commonsense reasoning can also help story
generation with issues in plot coherence. Martin
(2021) created a neurosymbolic system that lever-
aged VerbNet (Brown et al., 2019) facts to ground
neural story generation in commonsense reasoning.
They did this by tracking the story state and prun-
ing out impossible options that a neural network



# Description Relation Text
1 Event that causes or enables X >Causes/Enables>
2 Emotion/basic human drive that mo-

tivates X
>Motivates>

3 Location state that enables X >Enables>
4 Possession state that enables X >Enables>
5 Other attributes enabling X >Enables>

6 Event that X causes or enables >Causes/Enables>
7 An emotion that is caused by X >Causes>
8 A change in location that X results in >Results in>
9 A change of possession that X results

in
>Results in>

10 Other changes in property that X re-
sults in

>Results in>

Table 1: The ten GLUCOSE dimensions and
the corresponding relation text connecting state-
ments (Mostafazadeh et al., 2020).

provided as candidate next sentences for the story.
Similarly, the Commonsense inference Augmented
neural StoryTelling (CAST) framework (Peng et al.,
2021) modeled interactions between multiple char-
acters using ATOMIC. The stricter, more explicit
generation constraints of CAST produced more
coherent and on-topic two-character stories than
generating via sampling from a distribution alone.

TellMeWhy (Lal et al., 2021) is a dataset built
on top of ROCStories (Mostafazadeh et al., 2016),
consisting of 30k questions on why characters per-
form their actions and the corresponding answers.
They found that current state-of-the-art models
performed far worse than humans, especially on
questions whose answers are external to the narra-
tives. This contrasts with the findings discussed in
Mostafazadeh et al. (2020) that language models
can approach human performance.

3 The GLUCOSE Dataset and Task

Our work follows from GLUCOSE (Gen-
eraLized and COntextualized Story Explana-
tions) (Mostafazadeh et al., 2020). In this section
we briefly describe their dataset and experiments;
for more details, refer to the original paper. The
GLUCOSE dataset contains 670K crowdsourced
annotations identifying causal reasoning relations
between the sentences within stories from ROC-
Stories (Mostafazadeh et al., 2016)—a collection
of crowdsourced five-sentence everyday stories in
English. The authors structured the collected data
around ten different dimensions, shown in Table 1,
of causal relations between a pre-selected sentence
X from the story and another statement Y, which
can either be another story sentence or some ex-

Parameter Text
Story Fred woke up late. He just missed his

bus. He then went to his mom’s room.
His mom then drives him to school. He
makes it to first class on time.

Selected Sentence (X) Fred woke up late.

Dimension 6

Specific Rule Fred wakes up late >Causes/Enables>
Fred misses his bus

General Rule SomeoneA wakes up late
>Causes/Enables> SomeoneA misses
SomethingA

Table 2: Example GLUCOSE entry (Mostafazadeh
et al., 2020). The top three rows (story, X, dimension)
are input, and the bottom two rows (specific rule, gen-
eral rule) are output.

ternal commonsense knowledge. The relationship
between these statements can be formalized as:

statement1 REL statement2 (1)

X can be in either statement position, depend-
ing on the particular dimension chosen: Dimen-
sions 1-5, specify events that caused X (i.e., X is
statement2), and dimensions 6-10 specify events
caused by X (i.e., X is statement1).

3.1 Contextual Commonsense Inference Task
GLUCOSE addresses the task of predicting rela-
tionships between statements explicitly or implic-
itly expressed within a text, a task we term con-
textual commonsense inference (CCI). An example
GLUCOSE entry can be found in Table 2. The
entries are organized to reflect the CCI task and are
formalized as input-output tuple pairs, with input
tuple

〈story S, selected sentence X, dimension D〉, (2)

where a story S consists of five sentences [s0, s1,
s2, s3, s4], the selected sentence X is the sentence
on which the rule is centered, and the number di-
mension D is one of the ten dimensions from Table
1—and output tuple

〈specific rule RS, general rule RG〉, (3)

where the specific rule RS is the relation between
X and Y. Y can be either (1) another sentence in
the story or (2) an implicit statement from outside
the text. The general rule RG is the same rule as
RS but using generalized tags for named entities



Task Input Output

ORIGINAL 1: My mother told me to fix the car. I was unable to
do this right away. * I could not find my tools. * I
looked everywhere for them. It turns out they were
stolen the night before.

They were stolen the night before >Causes/Enables>
I could not find my tools ** SomethingA is
stolen >Causes/Enables> SomeoneA cannot find
SomethingA

HISTORY 1: My mother told me to fix the car. I was unable to
do this right away.

They were stolen the night before >Causes/Enables>
I could not find my tools ** SomethingA is
stolen >Causes/Enables> SomeoneA cannot find
SomethingA

MASK X My mother told me to fix the car. I was unable to do
this right away. <masked> I looked everywhere for
them. It turns out they were stolen the night before.

They were stolen the night before >Causes/Enables>
I could not find my tools ** SomethingA is
stolen >Causes/Enables> SomeoneA cannot find
SomethingA

HISTORY+X 1: My mother told me to fix the car. I was unable to
do this right away. * I could not find my tools. *

They were stolen the night before >Causes/Enables>
I could not find my tools ** SomethingA is
stolen >Causes/Enables> SomeoneA cannot find
SomethingA

CIS2 1: My mother told me to fix the car. I was unable to
do this right away. * I could not find my tools. * I
looked everywhere for them. It turns out they were
stolen the night before.

<s4> >Causes/Enables> <s2>

Table 3: Task formulations of the same GLUCOSE entry. The output is split into a specific rule and a general
rule by “**”, and the selected sentence X (“I could not find my tools”) is surrounded by single asterisks. In this
table, we also bolded the selected sentence, and special tokens are monospace. The “1:” at the beginning of the
input specifies the GLUCOSE dimension; “1” corresponds to the Causes/Enables relation. The diagnostic tasks
HISTORY, MASK X, and HISTORY+X are variations on the original task, ORIGINAL. CIS2 is our proposed task.

(e.g., SomeoneA instead of Fred). To summarize,
the GLUCOSE task is: given S, X, and D, pre-
dict/generate RS and RG.

In this paper, we compare to their best model,
a finetuned T5 model (Raffel et al., 2020), which
achieved a 71.26 average SacreBLEU (Post, 2018)
across the 10 dimensions on predicting general
rules and a 75.65 average for the specific rules.1

The models were also rated for “correctness” using
crowdsourcing, where their T5 model scored 2.5/3
averaged across all 10 dimensions on a 4-point Lik-
ert scale mapped to a numerical scale of 0-3. For
context, their closest baseline got a 2.21/3 average
and the gold standard was 2.8/3.

3.2 Issues with the GLUCOSE Task for CCI

We find that the GLUCOSE dataset is well-
designed and of good annotation quality. However,
we take issue with the GLUCOSE task, which asks
a model to perform two tasks simultaneously: com-
monsense inference and language generation. Due
to this conflation of tasks, the model, in generating
its output, would rely heavily on the already-good
language generation ability of T5 and neglect learn-
ing enough CCI. T5 (Raffel et al., 2020) and other

1Our best-effort replication of their experiments achieves
slightly lower BLEU scores (66.2 & 70.7, respectively) due to
resource limitations (detailed in Appendix A.4).

transformer LMs were designed to perform lan-
guage generation tasks. Therefore, by including
text generation as part of CCI, T5 will focus on
paraphrasing or even copying story sentences.

There are several one-to-one correspondences
between parts of the input and output in the origi-
nal GLUCOSE task (illustrated in Figure 1). For
example, for all GLUCOSE entries, the output con-
tains at least one paraphrased sentence from the
input. Conflation with paraphrasing worsens with
BLEU as the evaluation metric, where incorrect
commonsense inferences can score partial credit if
they have words in common.

4 Diagnostic Tests

In this section, we describe our three diagnostic
tests—variations on the original GLUCOSE task
with altered input—to isolate different factors that
influence T5’s generation. Through these tests, we
investigate the extent to which language models
rely on paraphrasing to generate the commonsense
rule output for GLUCOSE.

For each of the following diagnostic tests, we
finetune the same T5 (Raffel et al., 2020) model, a
pretrained model using the same hyperparameters
as in the GLUCOSE paper, to generate the same
output as in Equation 3. The diagnostic tests differ
only in the format of the input. The purpose of



these tests was to assess how reliant the model
is on language generation when performing CCI.
More detailed training setup and hyperparameters
for these models can be found in Appendix A.5.

Because these tasks are measured with BLEU,
conflation between CCI and language generation
will always occur. But by deleting different parts
of the input, these diagnostic tasks analyze which
sentences contribute the most to performance, thus
resulting in more conflation.

An overview of the tests’ different data formats
can be found in rows 2, 3, and 4 of Table 3. We
describe them in this section using the following
terminology for brevity:
Dimension (dim): the causal dimension
Pre-context: sentences before selected sentence X
Selected sentence (X): the story sentence of interest
Post-context: sentences after selected sentence X

ORIGINAL. This experiment is the same as in
(Mostafazadeh et al., 2020), which we described in
Section 3.1. We report results on our own replica-
tion of the finetuned T5 model, implemented with
the transformers package (Wolf et al., 2019).

HISTORY. This experiment gives as input only
the pre-context (the sentences before sentence X)
and the dimension. This model must generate the
output without knowing the target sentence X, nor
the events happening afterwards. Here, we test
the model’s ability to generate two (specific) state-
ments given only what happened before. This dif-
ficult task serves as a lower bound to contextual
commonsense inference performance. Conflation
with language generation is absent.

For all dimensions, the model must first specu-
late what X might be given the pre-context. Based
on this predicted X, it generates a statement Y that
follows from the causal relationship: either a para-
phrase from the input or an implied statement.

Masked Selected Sentence (MASK X). This
experiment gives as input the pre-context, post-
context, and the dimension. The selected sentence
is replaced with a token <masked>. Here, we
test the commonsense ability to generate two (spe-
cific) statements given most of the story—4 out of
5 sentences—but not the selected sentence X. This
will let us see how much of a performance boost
the model is given by copying X from the input.

As with HISTORY, for all dimensions, the model
must first predict X, then generate a paraphrased or
implied statement Y that is causally consistent.

model spec spec1-5 spec6-10 gen gen1-5 gen6-10
ORIGINAL 70.7 67.1 74.4 66.2 62.3 70.0
HISTORY 35.9 36.9 34.9 50.4 50.1 50.7
MASK X 41.6 38.8 44.4 49.6 50.4 48.8
HISTORY+X 68.3 66.2 70.4 65.5 61.8 69.3

Table 4: Test SacreBLEU scores for the diagnostic
tasks. ORIGINAL performs the best since it can access
the entire input. As we keep the output and underlying
T5 LM consistent but vary the input, the results’ trends
demonstrate how omitting different parts of the input
affect BLEU scores.

History and Selected Sentence (HISTORY+X).
This experiment gives as input the pre-context, se-
lected sentence, and dimension. This is used as a
direct comparison to HISTORY except with selected
sentence X given as part of the input. Statement Y
is generated as it is in HISTORY.

For this diagnostic test, we drop entries in which
the modifications result in input identical to the
original task. For example, for HISTORY+X, we
omit those entries where X is the last sentence.

4.1 Diagnostic Task Results

Table 4 compares the results of T5 models trained
on the diagnostic tasks. We report test set results on
the averaged dimensions 1-10, as well as averaged
dimensions 1-5 (X is the second statement), and
6-10 (X is the first). Following Mostafazadeh et al.
(2020), we use SacreBLEU (Post, 2018) with equal
weights up to 4-grams. We report results for both
specific and general rules, but focus on specific.

ORIGINAL, of course, performs the best as its
input has the most available information. HISTORY

and MASK X perform similarly to each other and
far worse than the other diagnostic tasks. HISTORY,
with only the pre-context, has a a 35-point BLEU
gap for specific rules (16 for general) compared to
ORIGINAL averaged across all dimensions.

Adding to HISTORY multiple sentences of the
post-context gives MASK X, and modest score
gains (35.9 vs 41.6 specific). However, adding
to HISTORY just the one selected sentence X
gives HISTORY+X, which performs very closely
to ORIGINAL for both specific and general rules
(70.7 vs 68.3 specific). Furthermore, comparing
trends between dimensions 1-5 and 6-10, we find
that 6-10 scores are mostly higher, for both general
and specific, than 1-5.

These results and their trends show that BLEU
scores are highly contingent on having X as input
over all other sentences. Conflation always occurs



Figure 2: Generation of CIS2 labels from a GLUCOSE entry. The input story is highlighted in orange. Each
story sentence is indexed by its position in the story. For example, the selected sentence X (*Fred woke up late.*),
surrounded with asterisks, is assigned the tag <s0>. The relation >Causes/Enables> is given automatically
from the dimension. The “other” sentence Y is compared to each story sentence; the dashed lines represent sentence
similarity scores, with the darkest line being the highest similarity. <s1> is selected as the Sentence Y tag.

for X, since this is copied from the input, and con-
flation is also worse in cases where an incorrect
statement Y was generated but contains tokens that
match the correct statement. We believe it is un-
likely that achieving ~35.9 BLEU on specific rules
for HISTORY would mean that it is half as good
at CCI than ORIGINAL, with 70.7 BLEU specific.
We found that the fine-tuned T5 models perform
some CCI, but BLEU scores are hard to interpret
and can be unreliable.

Specific vs. General Rule Performance Ta-
ble 4 shows that both ORIGINAL and HISTORY+X
perform better for specific rules than general. This
matches the results seen in (Mostafazadeh et al.,
2020). However, for HISTORY and MASK X,
which both omit X, the opposite trend occurs; gen-
eral is higher than specific. This shows that copying
and paraphrasing from the original text is in fact a
conflating factor in the LM’s BLEU performance.

5 Contextual Commonsense Inference in
Sentence Selection (CIS2)

Given the extensive paraphrasing present in both
the GLUCOSE task and the evaluation method, we
design the Contextual Commonsense Inference in
Sentence Selection (CIS2) task to abstract away
language generation. We recast the task as a clas-
sification problem, with the same 3 inputs as in
ORIGINAL (Equation 2), while the output becomes

〈<sa> REL <sb>〉 (4)

where <sa> and <sb> are tags corresponding
to sentences from the original story, a and b are
indices from [0, 4] and a 6= b. The output sequence
comes from a limited vocabulary of 5 sentence in-

dex tokens, 5 causal dimension tokens,2 and the
sentence index token corresponding to the selected
sentence X can be before or after the REL token,
depending on what causal dimension is being used.
The classification task is to choose the correct se-
quence of 100 possible output sequences.3

The abstracted output avoids the prior confla-
tion issue since there are no partial matches within
tokens of statements. Furthermore, there is no ex-
plicit correspondence between input and output.
Note that CIS2 does not distinguish between spe-
cific and general rules.

Finetuned CIS2 models are forced to only learn
the commonsense inference task. The input is kept
the same, so the models see the same information
as with the original task formulation. Therefore, we
argue that CIS2 is a simpler and fairer measurement
of commonsense inference performance.

5.1 GLUCOSE Entries to CIS2 Tag Heuristic
Conversion

To evaluate the CIS2 formulation, we need to con-
vert story sentences into CIS2 output labels, as in
Equation 4. See Figure 2 for the conversion pro-
cess. Each sentence of an input story corresponds
to a tag <s0> to <s4> with indexes correspond-
ing its position in the story. To get the three CIS2

output labels, we do the following: (1) Identify se-
lected sentence X from the input since it always be
denoted as the sentence with the asterisks surround-
ing it. The input dimension informs the position
of sentence X in the output—whether is <sa> or
<sb>; (2) Get the relation REL from the output
directly; and (3) Calculate the similarity of “other”

2>Causes/Enables>, >Causes>, >Enables>,
>Results in>, >Motivates>

320 (5P2) sentence tag combinations * 5 relations = 100



sentence Y from the output to every other sentence
in the input story and select the closest match.

To find the remaining token, we look at the spe-
cific rule from the original GLUCOSE task output,
which consists of two statements separated by re-
lation REL. We will call them P0 and P1. Suppose
X corresponds to P0, and we need to find which
sentence Y corresponds to P1. We do this by iter-
ating over the sentences (excluding X), for each
calculating its similarity with P1. We take the index
of the sentence with the highest similarity to P1 as
<sb>. We describe our experiments with several
sentence similarity metrics in Section 5.2.

Being a heuristic approach, generated CIS2 la-
bels are not perfect. However, our manual inspec-
tion finds most labels are reasonable for GLUCOSE
entries that have an explicit Y (from the story).
CIS2 labels do not exist for those GLUCOSE en-
tries with implicit relationships4, i.e. Y is not in the
original story. We attempted to filter these out by
removing any training examples that did not pass
a threshold5 of SBERT ≤ 0.16 for any sentence in
the story. However, this resulted in a slight drop in
the final evaluation, so these examples were kept.

We run the conversion method on the GLUCOSE
train set and train a T5 model using the same hy-
perparameters used for our other models with the
task of generating the three-token CIS2 label, given
the GLUCOSE input. We refer to this model as
CIS2-T5. Note that although using CIS2 tags turns
this into a classification problem, the model is still
doing generation to predict the output.

5.2 CIS2 Classification Task & Results

In Section 4, we showed that BLEU is not an appro-
priate metric for the CCI task, given the GLUCOSE
models’ extensive copying and paraphrasing. Fur-
thermore, CIS2-T5 generates CIS2 tags instead of
full sentences, making it non-trivial to compare to
the ORIGINAL GLUCOSE T5 model.

We run the conversion method from Section 5.1
on each model’s specific rule output to obtain its
predicted CIS2 labels, and on the GLUCOSE test
set to obtain the CIS2 test set.6 Both are now for-
matted as in Equation4. This enables us to do an
exact-match comparison between the model labels
and the test set labels, and removes the associated
issues with evaluating generated text. In effect, the

4Mostafazadeh et al. (2020) estimate these are a minority.
50.16 is the mean SBERT value across the train set.
6For future work we plan to obtain ground-truth test labels

via crowdsourcing.

Figure 3: CIS2 accuracy results for Original and di-
agnostic GLUCOSE task models, and CIS2-T5. The
dashed line shows Random Y Selection, a baseline that
derives X and the relation text from the input, and ran-
domly selects Y.

CIS2evaluation considers requires the correct sen-
tence Y to be chosen; there is no partial credit for
those outputs that can easily be inferred from input:
the selected sentence X, and REL.

The sentence similarity metric used is crucial
in the process of heuristically generating CIS2 la-
bels. We experimented with both BLEU scores
of lemmatized tokens, as well as Sentence-BERT
(SBERT) (Reimers and Gurevych, 2019). By using
BLEU for sentence similarity, GLUCOSE ORIG-
INAL achieves 66.0%, whereas CIS2-T5—despite
being trained on these CIS2 labels converted with
BLEU—only achieves 57.2% accuracy. This stems
from same issues of BLEU measuring language
generation, rather than CCI, as discussed in Sec-
tion 4. Also, this shows that the CIS2 classification
task does not favor our CIS2 system by default.

Therefore, for the final evaluation we opt for
SBERT, a more context-dependent similarity met-
ric. Results for this evaluation are shown in Fig-
ure 3. We compare all of our results to a random
baseline which is the probability one of the 4 other
story sentences is randomly selected for the index
of Y; this would have an accuracy of 25% (the
dashed horizontal line in Figure 3). Out of all
the models, CIS2-T5 achieves the highest score at
66.2%, while ORIGINAL is not far behind at 61.9%.
As for the diagnostic tasks, we see the same score
ordering of models with BLEU evaluation. HIS-
TORY+X scores 8% lower than ORIGINAL. HIS-
TORY and MASK X perform even worse than ran-
dom, indicating that their BLEU performance was



largely due to partial token matches.7

The best GLUCOSE model ORIGINAL achieves
70.7 specific BLEU, but only 61.9% CIS2 accuracy.
Although we cannot directly compare BLEU of
generated output, and CIS2 exact match accuracy,
we have shown that CIS2 provides a fairer estimate
of CCI performance of these fine-tuned T5 models
by removing language generation from evaluation.
These CIS2 results are promising, but there is still
much room for improvement.

6 Discussion

The diagnostic tasks we discussed in the paper in-
vestigated the extent to which the original GLU-
COSE task conflates language generation and con-
textual commonsense inference (CCI). We found
that the most significant sentence of the input is the
selected sentence X, and if omitted, BLEU scores
drop significantly compared to omitting other story
sentences. This shows that the language model
is relying on X for CCI, as it should. It is worth
discussing how “fair” it is to remove X—after all,
without X, the LMs have little to condition their
predictions on. While this is true, we emphasize
that our diagnostic tasks are intended to be taken to-
gether to analyze the extent of conflation. The main
takeaway is that by including X, trained models will
rely on copying instead of good commonsense in-
ference.

We have also shown evidence for extensive copy-
ing and paraphrasing as seen from the higher perfor-
mance on specific rules relative to general rules for
ORIGINAL and HISTORY+X. These trends hold for
CIS2 evaluation as well, but are even more marked
since there is no inflation from matching tokens.

Lastly, we have shown that the T5 model trained
on the GLUCOSE task (to maximize BLEU on
the specific and general rules) performs only 4.3%
worse on the CIS2 than one trained directly on CIS2

labels. This shows that T5 can still learn significant
CCI from the GLUCOSE data, and can further
improve performance with CIS2 converted labels,
abstracting away with language generation.

6.1 Future Work

We plan to collect ground-truth CIS2 labels via
crowdsourcing for the entire test set, and for some
training examples. To simplify the task, we will

7Experiments comparing CIS2 to models that are trained
to generate only specific rules can be found in Appendix A.6.

have workers verify, and correct if necessary, the
heuristic CIS2 labels.

Future work can further explore utilizing GLU-
COSE and related datasets for story generation
tasks. One promising avenue to extending our CCI
evaluation to story generation settings is incorpo-
rating our approach with the COINS framework
(Paul and Frank, 2021), which generates contextu-
alized inference rules to guide future output sen-
tences. Abstracting these inference rules through
CIS2 would likely allow the language model to
better capture and learn CCI.

We also resonate with question-answering based
approaches to commonsense inference for stories
(Lal et al., 2021; Castricato et al., 2022). Lal
et al. (2021) trained large language models on their
dataset, finding that they only perform well when
the answers are present in the narrative. This find-
ing goes hand in hand with our finding that the
original GLUCOSE task formulation allows for
easy paraphrasing and thus inflated performance.

7 Conclusion

This work investigated the extent to which language
models learn contextual commonsense inference
(CCI), utilizing the GLUCOSE (Mostafazadeh
et al., 2020) dataset and the T5 (Raffel et al., 2020)
language model as case studies. We showed how
the original GLUCOSE task conflates language
generation and CCI tasks, causing over-estimation
of true CCI performance. We then formulated di-
agnostic tasks by permuting the original task and
found that LMs rely on paraphrasing the selected
sentence and context in making their predictions.

We proposed CIS2 as an alternative task to struc-
ture and evaluate language models for CCI. CIS2

evaluation is a simplified, fairer measurement of
CCI performance than BLEU. By finetuning a T5
model on our CIS2 task, it correctly selects the
causal statement 4.3% more than a model trained
on the original GLUCOSE task. We note this is
using heuristically converted CIS2 labels, and col-
lecting ground-truth CIS2 labels for training would
lead to even better performance.

Overall, we found that GLUCOSE indeed en-
codes contextual commonsense information, and
T5 has capacity to learn this. Therefore, the chal-
lenge for future researchers is to leverage GLU-
COSE and other contextual commonsense infer-
ence datasets’ knowledge representations appropri-
ately and avoid conflation of language generation.
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A Appendix
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We thank the authors of GLUCOSE, in particular
Or Biran and Lori Moon, for their helpful assis-
tance in working with the GLUCOSE dataset and
codebase. We also thank Daphne Ippolito and the
anonymous reviewers for their comments and sug-
gestions.

This material is based upon work supported
by the National Science Foundation under Grant
#2030859 to the Computing Research Association
for the CIFellows Project.

A.2 Ethical Considerations and Broader
Impacts

The methods used in our paper build in large part
upon work by prior researchers. The T5 (Raffel
et al., 2020) language model we used was pre-
trained on a massive dataset for many days. Despite
the energy usage, T5 has proved be a valuable tool
that can be used for countless downstream NLP
applications, ours included. As for our own trained
models, we note that we further fine-tuned T5 on
an array of diagnostic and custom tasks. During de-
velopment, we made sure to pilot any experiments
on smaller datasets, and we carefully managed our
GPU and CPU usage throughout.

As for the data used, the ROCStories
(Mostafazadeh et al., 2016) and GLUCOSE
(Mostafazadeh et al., 2020) datasets, in which our
work builds on, involved a great deal of careful task
design and interaction with crowd-source workers.
We thank these researchers for their ethical treat-
ment of their crowdsource workers, with fair pay
and two-way communication (Moon et al., 2020).

We will publicly release all our code, from data
preprocessing, to model training, to final evalua-
tion, to ensure that our work is fully reproducible.

The broader impacts of our work outside its im-
mediate subject are several. First, our work takes a
step towards analyzing stories, which are some-
thing fundamentally human, and that machines
have yet to master. Second, we have encouraged
NLP researchers in general to think more carefully
about the structure of a task, before defaulting to
the latest state-of-the-art language model. For ex-
ample, we found that our CIS2 task, which is sim-
pler and thus requires less training resources than
the language generation task, performs better on
capturing contextual commonsense inference.

A.3 Reproducing Our Work

We make our code publicly available at a Github
link. The codebase includes complete preprocess-
ing, training, and evaluation scripts, to take the raw
GLUCOSE CSVs and T5 checkpoints, and train
both diagnostic and CIS2 models. We will also
release the final trained checkpoints.

We also include our code to reproduce the origi-
nal GLUCOSE experiments. We model this closely
to the original GLUCOSE paper, starting from their
provided code repository.

A.4 Reproduction Results

We report the results we obtained on the origi-
nal GLUCOSE task in Table 5. We report per-
dimension BLEU, as was done prior, as well as the
weighted average BLEU across all dimensions. We
find that the reported numbers from (Mostafazadeh
et al., 2020) and their provided Tensorflow check-
point are essentially consistent.

Our replication results (done with the
transformers package (Wolf et al., 2019))
achieve 4-5 BLEU points lower, due to resource
limitations and slight differences in experimental
setup (i.e. we had far less GPU resources and
and training time). For consistency’s sake all of
our experiments use the same setup as replicated
t5-large (termed Original in the main text), and
thus use this as the baseline.

We report results on the test set, but choose to
evaluate BLEU on only the first of the three pro-
vided references for each test set entry. This is
because the GLUCOSE train set only has one ref-
erence per entry, not 3, and we carved a small
development set out of the train set, since no
train/development split was provided. We eval-
uate our custom development and the original test
set the same way, with 1 reference per entry.

A.5 Training Setup and Hyperparameters

We trained our models on 2 NVIDIA Quadro RTX
6000 GPUs, with 24 GB vRAM each. We train
up to 10 epochs, early stopping after 10 check-
points without improvement on the validation set.
Depending on the task, the models finish training
between 6 to 34 hours. The GLUCOSE authors
trained their model far more – for 72 hours on 8
TPUs – which can explain our lower BLEU scores.

We use the exact same hyperparameters as
in Raffel et al. (2020), following Mostafazadeh
et al. (2020), with one major exception: we use



Model Level avg 1 2 3 4 5 6 7 8 9 10

(Mostafazadeh et al., 2020) Specific N/A 72.5 73.8 70.5 81.1 71.7 73.9 79.3 80.2 86.6 66.9
(Mostafazadeh et al., 2020) General N/A 66.4 68.5 69.8 76.8 68.6 67.6 73.0 77.0 86.8 57.5

GLUCOSE TF-checkpoint Specific 75.7 71.9 69.8 75.8 75.9 73.3 75.2 79.8 80.2 85.5 69.9
GLUCOSE TF checkpoint General 70.1 66.4 66.4 70.1 72.1 70.0 69.2 71.6 72.4 82.0 61.0

replicated t5-large Specific 70.7 65.9 60.4 63.8 76.5 69.0 66.7 72.6 74.0 82.4 76.0
replicated t5-large General 66.2 61.3 59.9 60.4 68.8 61.3 60.5 65.0 68.1 75.8 80.4

Table 5: Test Set Results for the original GLUCOSE task. The first rows are the original results, the second are
decoded by us using the provided GLUCOSE TF checkpoint, and the third are our best-effort replications.

model spec sp1-5 sp6-10 gen ge1-5 ge6-10
ORIGINAL 70.7 67.1 74.4 66.2 62.3 70.0
HISTORY 35.9 36.9 34.9 50.4 50.1 50.7
MASK X 41.6 38.8 44.4 49.6 50.4 48.8
HISTORY+X 68.3 66.2 70.4 65.5 61.8 69.3
ORIGINAL-SPEC 67.6 60.5 74.8 NA NA NA
HISTORY-SPEC 37.6 36.1 39.0 NA NA NA
MASK X-SPEC 42.5 41.3 43.8 NA NA NA
HISTORY+X-SPEC 65.6 62.0 69.3 NA NA NA

Table 6: Test SacreBLEU scores for all tasks. The first
4 rows are the same as in Table 4—the models that out-
putted both specific and general rules. The last 4 rows
are for models outputting specific rules only.

a learning rate of 1e-4 instead of 1e-3, which we
found to converge too quickly.

A.6 Specific-Only Results
Given that CIS2 only considers the specific rule,
one may ask how the GLUCOSE models trained
to generate only specific rules would perform. We
therefore train 4 “specific-only” models, one for
each of the 4 diagnostic tasks of Section 4. We
denote specific-only models with the suffix -SPEC

and we compare the results to the specific+general
models (as in the main text) without a suffix.

Table 6 compares the BLEU results, whereas Fig-
ure 4 compares the CIS2 results. We see that the
specific+general models and the specific-only mod-
els perform similarly. This confirms the findings
of Mostafazadeh et al. (2020), where T5 can effec-
tively learn both specific and general rules jointly.
As both BLEU scores and CIS2 classification ac-
curacy are similar, we report the specific+general
model results in the main paper to be consistent
with prior work.



Figure 4: CIS2 accuracy results, comparing specific+general models vs. specific-only models. The spe-
cific+general results are the same as in Figure 3.


