
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CONNECT: A SWISS-ARMY-KNIFE REGULARIZER
FOR PRUNING OF NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Pruning encompasses a range of techniques aimed at increasing the sparsity of
neural networks (NNs). These techniques can generally be framed as minimizing
a loss function subject to an L0-norm constraint. In this paper, we introduce CoN-
Nect, a novel differentiable regularizer for sparse NN training that quantifies con-
nectivity in weighted graphs. Our theoretical and numerical analyses show that
CoNNect integrates seamlessly with many established pruning strategies and is
applicable to both unstructured and structured pruning. By including CoNNect as
a regularizer during training, we ensure neural networks maintain connectivity be-
tween input and output layers, addressing limitations of L1-regularization, a com-
mon surrogate for L0-norm regularization. We prove that CoNNect effectively ap-
proximates L0-regularization, guaranteeing maximally connected network struc-
tures as stable stationary points and avoiding issues like layer collapse. Through
numerical experiments, we demonstrate that classical pruning strategies benefit
from CoNNect regularization compared to L1- and L2-norm regularization. Addi-
tionally, we show that integrating CoNNect into LLM-pruner, a one-shot pruning
method for large language models, yields improved results.

1 INTRODUCTION

This paper aims to investigate the creation and enhancement of a sparse neural network (NN). Sparse
NNs, known for their drastic reduction in the number of active connections or parameters, have
attracted significant interest in recent years due to their ability to boost computational efficiency and
minimize memory consumption while preserving or even improving model performance (LeCun
et al., 1989; Hassibi et al., 1993; Frankle & Carbin, 2018).

To achieve sparsity in neural networks, various techniques have been proposed and applied in dif-
ferent domains. For example, weight pruning (Hagiwara, 1993), neuron pruning (Huang & Wang,
2017), and structured pruning (e.g., see (Yuan & Lin, 2006; Anwar et al., 2017)) are common meth-
ods used to reduce model size. Pruning refers to the process of systematically eliminating parameters
that contribute little to network performance, effectively simplifying the model. By carefully identi-
fying and removing these less critical components, the resulting sparse network retains its ability to
make accurate predictions while benefiting from increased efficiency.

We believe that pruning should obey the following two axioms (where we identify a NN with a
directed, weighted graph):

Axiom 1 (Delete as Many Weights as Possible). For the point of memory and energy consumption,
the graph should be “small”: in pruning we want to drastically reduce the number of edges and
maybe even nodes while only mildly affecting accuracy.

Axiom 2 (Preserve Neural Network Connectivity). The pruning process must prevent disruptions in
the connectivity of the neural network and preserve the flow of information from input to output.

The extensive research on pruning neural networks, as more elaborately outlined in the literature
overview in Section 2 and particularly in review works such as Hoefler et al. (2021); He & Xiao
(2023), predominantly aligns with the first axiom. However, few methods address Axiom 2, as the
impact of weight removal on overall network connectivity is rarely considered. This negligence can
result in a pruning that produces highly disconnected networks, or in the most extreme case so-called

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

layer collapse, see Figure 1, where the NN becomes completely dysfunctional. A notable exception
is SynFlow pruning (Tanaka et al., 2020), which we will explore in more detail in Section 3.3.2.

Figure 1: Layer collapse in a
pruned NN.

In this paper, we propose a new regularizer, called CoNNect, that can
be used to satisfying both axioms simultaneously and (i) is differen-
tiable (except in the point zero) and allows for gradient descent op-
timization, (ii) effectively approximates L0-regularization and guar-
antees maximally connected network structures as stable stationary
points, avoiding issues such as layer collapse. CoNNect is based
on the Katz centrality measure (Katz, 1953), which evaluates the
connectivity of weighted graphs by utilizing the connectivity mea-
surement employed by Katz centrality for networks with normalized
weights. Normalization results in weights being restricted to [0, 1],
so that the contribution of path from input to output layer to the over-
all connectivity of the network goes exponentially quick to zero unless the weights along the paths
are (close to) 1. Hence, when maximizing the connectivity for the normalized weights, we find a
weight association that prefers few ”direct paths” over many ”parallel paths”, while focusing on
connectivity of the input with the output layer. As is clear form the above, including the CoNNect
regularizer in training of an NN, leads in a natural way to a sparse network representation, and hence
satisfies Axiom 1 and Axiom 2 simultaneously.

CoNNect is a versatile regularizer that can be integrated in many established pruning strategies.
Moreover, it is suitable for both unstructured and structured pruning. We demonstrate its efficacy
through a series of numerical examples. First, we show in an unstructured pruning example that
pruning strategies like magnitude-pruning (LeCun et al., 1989; Hassibi et al., 1993) and SynFlow
(Tanaka et al., 2020) can benefit from CoNNect regularization during training. Here, it outperforms
L1 and L2 regularization in terms of both accuracy and stability. For structured pruning, we apply
CoNNect at the channel level of VGG-11 and a Graph Neural Network (GNN), achieving improved
performance compared to L1 regularization. Moreover, we integrate CoNNect into LLM-pruner
(Ma et al., 2023), a one-shot pruning method for Large Language Models (LLMs), and show im-
proved results. We believe this versatility positions CoNNect as a promising framework for future
exploration and development in neural network pruning strategies.

2 RELATED WORK

The concept of pruning NNs dates back to the early 1990s. The seminal work by LeCun et al. (1989)
on Optimal Brain Damage introduced the idea of pruning by removing weights that contribute least
to performance, thus simplifying the network. Hassibi et al. (1993) extended this concept with
Optimal Brain Surgeon, which provided a more sophisticated method for determining which weights
to prune based on their impact on the error function. These early methods laid the foundation for
modern pruning techniques, focusing on reducing network complexity while maintaining accuracy.

Unstructured vs. Structured Pruning. Pruning methods can be broadly categorized into unstruc-
tured and structured pruning. Unstructured pruning involves selectively removing individual weights
from the network. Unstructured pruning can lead to highly sparse networks, but often results in ir-
regular memory access patterns, which can be difficult to optimize in hardware implementations.
Pruning neural network weights based on absolute values is a classic example of unstructured prun-
ing (LeCun et al., 1989; Hassibi et al., 1993; Hagiwara, 1993; Han et al., 2015). This method is
effective in reducing the number of active parameters, but may not always lead to practical im-
provements in computational efficiency. In contrast, structured pruning removes entire groups of
parameters, such as neurons, filters, or even layers. This approach results in a network structure
that is more amenable to efficient hardware implementations. Techniques like Group Lasso (Yuan
& Lin, 2006; Hoefler et al., 2021) and other structured sparsity learning (Wen et al., 2016; Zhuang
et al., 2020) fall into this category; see He & Xiao (2023) for a review. Structured pruning tends to
preserve the regular structure of the network, which can lead to greater practical efficiency improve-
ments, though it may require more careful consideration to avoid significant loss of accuracy.

Regularization-Based Pruning (Soft Pruning). Regularization methods play a crucial role in pro-
moting sparsity during the training process by extending the loss function with a penalty function
that discourages overly complex models. While sparsity is encouraged, regularization does not

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

explicitly set the weights to zero but instead reduces their magnitude, allowing them to remain non-
zero and potentially become active again if needed. This leads to what is termed soft pruning, where
sparsity is encouraged but not strictly enforced through hard weight removal during training. It is
only that after training unimportant weights are pruned, typically via pruning the smallest weights
in magnitude Hagiwara (1993); Gale et al. (2019). One of the simplest and most widely used meth-
ods, L1-regularization (Tibshirani, 1996; He et al., 2017; Yang et al., 2019; De & Doostan, 2022;
Ziyin & Wang, 2023), penalizes the sum of the absolute values of the weights, encouraging many
weights to become zero. Moreover, L1-regularization fails to incorporate considerations from Ax-
iom II, which emphasizes the preservation of neural network connectivity and functionality. This
lack of consideration for connectivity can lead to a network that, while sparse, may suffer from dis-
rupted information flow, ultimately impairing its performance. Similarly, L2-regularization, another
common regularization technique, penalizes the sum of the squares of the weights (e.g., see Hin-
ton (2012); Phaisangittisagul (2016); Loshchilov et al. (2017)). While L2-regularization is effective
at discouraging large weights, it does not push small weights towards zero, thus failing to induce
sparsity in the network. As a result, L2-regularization typically produces networks with small but
non-zero weights, which do not benefit from the same computational efficiency gains that a sparse
network would offer. Moreover, like L1-regularization, L2-regularization does not address the need
to maintain critical connections as highlighted by Axiom II, making it less suitable for tasks where
maintaining network connectivity is essential.

Stage-Based Pruning (Hard Pruning). Stage-based pruning strategies are utilized as separate,
discrete actions during various stages of model training. These techniques can be implemented
before training (Lee et al., 2018; Tanaka et al., 2020; Wang et al., 2020), during training (Frankle
& Carbin, 2018), or after training (Hagiwara, 1993; Thimm & Fiesler, 1995; Gale et al., 2019; Ma
et al., 2023). Stage-based pruning generally does not fundamentally alter the objective function or
the descent direction like regularization does, but instead acts on the model’s structure or parameters
at specific moments. These kind of pruning methods can be considered hard pruning approaches, as
parameters are explicitly removed. Many different criteria for pruning have been introduced, such
as magnitude-based pruning (Hagiwara, 1993; Gale et al., 2019), which involves removing weights
with the lowest absolute values and is based on the idea that these weights have the least impact on
the overall performance of the model. More complex criteria have been constructed to determine
the impact of weight removal, such as first-order (e.g., see (Zhou & Si, 1999; Molchanov et al.,
2016; Sanh et al., 2020)) and second-order expansions (LeCun et al., 1989; Hassibi et al., 1993; Ma
et al., 2023) of the training objective. Specifically, SynFlow (Tanaka et al., 2020) is a method that
adheres closely to the principles of Axiom II, focusing on retaining the network’s connectivity and
functionality during pruning. Unlike magnitude-based techniques, SynFlow utilizes a first-order
expansion of signal flow to pinpoint and remove weights with minimal impact on the network’s
overall information flow. This approach ensures that while the network is being pruned, its structural
integrity is preserved and the critical pathways in terms of connectivity remain intact.

We conclude the above discussion by noting that the CoNNect regularizer, to be introduced in the
next section, can be integrated in any of the above stage-based pruning approaches.

3 METHODOLOGY

3.1 PRELIMINARIES

We define a graph G = (V,E), where V denotes the set of vertices (or nodes) and E represents
the set of directed links that connect these vertices. A weighted graph has weights Wi,j ≥ 0 for
links (i, j) ∈ E, where we let Wi,j = 0, for (i, j) ̸∈ E. Neural networks can be described
using graph theory by representing them as directed, weighted graphs. In this setting, the vertices
V = V1 ∪ . . . ∪ VK in the graph correspond to the neurons in the network which are organized into
distinct subsets corresponding to the different layers Vk, for k = 1, . . . ,K. Here, the input nodes
V1 represent the neurons in the input layer, the hidden nodes Vk, for k = 2, . . . ,K − 1, represent
the neurons in the hidden layers, and the output nodes VK represent the neurons in the output layer.

For simplicity of the ensuing analysis, we assume a simple feedforward neural network without skip
connections, so that each pair of subsequent layers Vk and Vk+1 is connected via edges in the set
Ek, for k = 1, . . . ,K − 1. While this formulation excludes possible skip connections, we discuss

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

later that architectures with skip connections, i.e., residual neural networks, can also be regularized
using CoNNect.

Throughout the paper, we describe a neural network G using the tuple (W, b), where W ∈ R|V |×|V |

is the weighted adjacency matrix of the weights, such that Wi,j connects node i ∈ Vk with node
j ∈ Vk+1, and b = (b1, . . . , b|V |) is the bias vector. Moreover, we denote the activation of the
k + 1th layer by the tensor

X(k+1) = σ
(
W (k)X(k) + b(k+1)

)
,

where σ is the activation function, W (k) is the submatrix containing the weights between nodes in
Vk, and Vk+1, and b(k+1) the biases for the nodes in Vk+1. Finally, we denote f(X(1);W, b) as a
forward pass through the network.

3.2 PROBLEM FORMULATION

Let {(xi, yi)}Ni=1 denote the training set, where xi = X
(1)
i represents the input data and yi represents

the corresponding label for each of the N samples. Fitting the parameters of a neural network G in-
volves optimizing the network’s weights to minimize a loss function L(ŷ, y), where ŷ = f(x;W, b)
is the predicted output given an input x.

In this paper, our objective is to train a sparse neural network, which can be achieved by inducing
sparsity in the network’s parameters. A commonly employed approach to sparsification is regular-
ization. Regularization involves augmenting the loss function with an additional term that penalizes
non-zero elements in the network parameters. Specifically, the optimization problem can be formu-
lated as:

min
W,b

L(ŷ, y) + λR(W), (1)

where R(W) = ∥W∥0,1. However, this L0-norm is non-convex and leads to a combinato-
rial optimization problem, which is generally NP-hard and computationally intractable for large-
scale problems. A more practical alternative is L1-regularization, as in Lasso regression, where
R(W) = ∥W∥1,1. L1-regularization induces sparsity by shrinking weights to zero, approximating
the L0-norm while remaining convex and suitable for gradient-based optimization. However, L1-
regularization primarily satisfies Axiom 1 by reducing connections but fails to address Axiom 2,
which focuses on preserving network connectivity and ensuring efficient signal flow. This limitation
can result in a disconnected or underperforming network when key pathways are not maintained.

3.3 CONNECT

To overcome the aforementioned issues, we propose CoNNect, a regularizer that considers both
individual weights and the network’s overall connectivity, ensuring that the structure contributes to
optimal performance. We first introduce CoNNect for unstructured regularization, along with some
suitable hard pruning strategies. Then, we demonstrate how CoNNect can be seamlessly extended
to structured regularization.

3.3.1 WEIGHT-LEVEL REGULARIZATION

Katz centrality is a measure used in network analysis to determine the relative connectivity of a node
in a network by considering both the number and the quality of connections (Katz, 1953). Inspired
by the connectivity measurement in Katz centrality, let us consider the following connectivity matrix
for a network:

φ(W) =

K∑
k=1

(θ(W))k,

where (φ(W))i,j indicates the connectivity from node i to node j, and θ(W) is a simple normaliza-
tion of the network weights between two subsequent layers, e.g., for i ∈ Vk and j ∈ Vk+1,

(θ(W))i,j =
|Wi,j |∑

k∈Vk

∑
l∈Vk+1

|Wk,l|
. (2)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

In the context of a neural network, we can denote the connectivity by taking the sum of connectivity
values between the input and output layer:

φtot(W) =
∑
i∈V1

∑
j∈VK

(φ(W))i,j .

Finally, we argue for the preservation of connectivity (as per Axiom 2), so we aim to maximize the
network’s overall connectivity. Consequently, we choose the regularizer as:

R(W) = −φtot(W), (3)
which we will refer to as the CoNNect regularizer. A possible extension of CoNNect would be to
include the biases and activation functions but, we leave this for future work.

CoNNect is effectively the (negative of the) sum of all (multiplicative) reparameterized weighted
paths between nodes in the input layer V1 and the output layer VK . It follows that −φtot(W) = 0
if and only if there is no path with positive weight between the input and output layer. Moreover,
−φtot(W) can be efficiently computed using a single forward pass f(1̄,W, 0̄), where 1̄ is a vector
of ones as input, 0̄ is a vector of zeroes for the biases, and finally taking the sum of the output values.

In the following, we show that −φtot(W) can be used as a surrogate regularizer for the L0-norm
to induce sparsity. Taking R(W) = ||W ||0,1 in Equation (1), it is easy to show that any neural
network W that minimizes ||W ||0,1 while connecting the input layer to the output layer (without
skip connections), i.e., φtot(W) > 0, has K − 1 non-zero weights. As the following theorem
shows, a similar result holds for the CoNNect regularizer as any W minimizing −φtot(W) has
between layer 2 and K − 1 only K − 3 non-zero weights.
Theorem 1. Consider the problem

min
W

−φtot(W), (4)

for a given network with number of layers K > 2. All solutions W ∗ to Equation (4) have at most
|V1|+ |VK |+K − 3 non-zero weights.

Proof. See Appendix A.1.

Theorem 1 demonstrates that L0-norm regularization can be effectively achieved through the CoN-
Nect regularizer, as the induced sparsity in large neural networks is comparable. Importantly, the
difference in the number of non-zero elements becomes negligible in practice when most input nodes
contribute valuable predictive information, and all output nodes are used for accurate classification.
Crucially, our regularizer does not force the input nodes to disconnect due to its indifference to the
number of input nodes that connect to the second layer, which is a beneficial feature. If certain input
nodes were disconnected, as might happen with other regularizers such as L1-regularization, impor-
tant data features could be disregarded, potentially resulting in suboptimal model performance.

We now show that a gradient descent can easily solve Equation (4). In the following, we assume that
any network W is connected, that is, φtot(W) > 0. We do so because we will prove later that it is
impossible to reach an unconnected network (φtot(W) = 0) when starting in a connected network
simply by using a log-transformation of φtot(W).

First, consider for some (i, j) ∈ Ek let

∂Wi,j
(θ(W))i,j =

∑
(r,c)∈Ek

|Wr,c| − |Wi,j |
(
∑

(r,c)∈Ek
|Wr,c|)2

, and ∂Wq,t
(θ(W))i,j =

−|Wq,t|
(
∑

(r,c)∈Ek
|Wr,c|)2

,

specifically for (q, t) ̸= (i, j) ∈ Ek. Observe that differentiating θ(W) with respect to Wi,j only
affects the weights in the same layer as Wi,j . Thus, a stationary point to Equation (4) solves the
following first-order conditions:

∂Wi,j
φtot(W) =

∑
(r,c)∈E1

∂Wr,c
(θ(W))i,j · ac· = 0, ∀ (i, j) ∈ E1;

∂Wi,j
φtot(W) =

∑
(r,c)∈Ek

a·r · ∂Wr,c
(θ(W))i,j · ac· = 0, k = 2, . . . ,K − 2,∀ (i, j) ∈ Ek;

∂Wi,j
φtot(W) =

∑
(r,c)∈EK−1

a·r · ∂Wr,c
(θ(W))i,j = 0, ∀ (i, j) ∈ EK−1, (5)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where a·r =
∑

i∈V1

∑
γ∈Γi,r

∏|γ|−1
k=1 (θ(W))γk

and ac· =
∑

m∈VK

∑
γ∈Γc,m

∏|γ|−1
k=1 (θ(W))γk

are
the connectivity from input layer to a node r and connectivity from a node c to the output layer,
respectively. To satisfy Equation (5), we need:

• the weights for the edges in E1 must be assigned to all (θ(W))i,j , where j ∈ argmaxp ap·;

• the weights for the edges in Ek, k = 2, . . . ,K − 2 must be assigned to (θ(W))i,j , where
(i, j) ∈ argmax(p,q) a·paq·;

• the weights for the edges in EK−1 must be assigned to (θ(W))i,j , where i ∈ argmaxq a·q .

Weight matrices W that are local optima to Equation (4) can be characterized as having all paths
between layers 2 and K − 1 with equal strength, since stronger paths yield larger ∂Wi,jφ

tot(W)
and so attract more weight; see Equation (5). Moreover, the paths need equivalent weights in the
sequence as imbalances are inherently non-stationary. This insight implies that for all non-optimal
stationary points, i.e., φtot(W) < 1, there exists a direction of improvement by simply transferring
mass from one path to another. It follows that these solutions are inherently unstable and are not
local optima. Concluding, all local optima to Equation (4) are global optima. We present the precise
statement in the following theorem.

Theorem 2. Assume a neural network with K > 3 layers. All stationary points W ∗ to Equation (4)
that are connected, i.e., φtot(W) > 0, have paths with equal subsequent weights between layers 2
and K − 1 on its non-zero paths. That is, for each two paths γ′, γ′′ ∈

⋃
i∈V1,m∈VK

Γi,m, such that

K−1∏
k=1

(θ(W ∗))γk
> 0, γ ∈ {γ′, γ′′},

i.e., both paths have positive weight, we have (θ(W ∗))γ′
k
= (θ(W ∗))γ′′

k
, for all k = 2, . . . ,K − 2.

Moreover, the only stable stationary points W ∗ of −φtot(W) are global minimizers and so have
only K − 3 non-zero weights between layer 2 and K − 1.

Proof. See Appendix A.2.

As Theorem 2 shows, the only stable stationary points of CoNNect are those where the weight
matrix does have between layer 2 and K − 1 only K − 3 non-zero weights. This implies that a
gradient search algorithm will not get stuck in the other (unstable) stationary points as for those
there is always a direction of improvement. Hence, global solutions to Equation (4) are easily found
using a gradient search.

As argued earlier, it is recommended to take the logarithm over the connectivity regularizer, i.e.,

− log
(
φtot(W))

)
, (6)

as it ensures that if the neural network tends to disconnect during training, i.e., φtot(W) −→ 0, Equa-
tion (6) approaches ∞, hence preventing layer collapse. Moreover, it enhances numerical stability,
ensuring that the regularization term remains well-behaved even for varying scales of connectivity.

Implementation Details: We provide our detailed implementation of CoNNect in Appendix B,
spanning various modern neural network architectures. It is worth emphasizing that CoNNect is a
highly flexible regularizer. While it is currently applied as detailed in Appendix B, its design allows
for substantial flexibility in how it is applied. For instance, skip connections could be explicitly
included in W , or CoNNect could be selectively applied to specific parts of a neural network. This
selective application enables the regularization of targeted components of an architecture, ensuring
connectivity improvements without interfering with the functionality of other parts of the network.
Future work can explore this flexibility to further refine and adapt the CoNNect regularizer.

Computational Efficiency: As argued, φtot(W) can be efficiently computed using a single forward
pass (and its gradient with a single backward pass). Thus, for a batch size of M , the additional time
used for computing φtot(W) is proportional to 1

M . Hence, CoNNect can be efficiently applied to
large-scale neural networks without incurring significant computational overhead.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.3.2 WEIGHT-LEVEL PRUNING

Once we have trained a model with CoNNect regularization, many of the redundant weights will
have been pushed to zero. Consequently, we can hard prune the regularized model using pre-
established pruning strategies. A well-known strategy is simple magnitude-based pruning (LeCun
et al., 1989), which prunes the smallest weights in absolute value. Alternatively, we can use Syn-
Flow pruning (Tanaka et al., 2020), which prunes the neural network’s weights according to synaptic
saliency scores:

Ii,j =
(
∂(θ(W))i,jφ

tot(W)
)
· (θ(W))i,j = a·i · (θ(W))i,j · aj·,

and eliminate the weights with the smallest Ii,j values.

3.3.3 CHANNEL-LEVEL REGULARIZATION

The regularizer introduced in Section 3.3.1 was explicitly defined on the weights of the neural net-
work, making it an unstructured pruning approach. In this section, we show how it can be easily
extended to structured pruning. To this end, we can introduce a scaling factor for the output of
structures (e.g., neurons, channels, etc.) that we want to prune (Huang & Wang, 2017). In the fol-
lowing, we explain how to include structured pruning on the channel-level in Convolutional Neural
Networks (CNNs), but this can be naturally extended to any parallel structures in neural networks,
such as nodes and entire block structures.

CNNs are a specialized type of neural network designed to process grid-like data such as images.
These images can be represented using a tensor X ∈ Rd×h×w, where d refers to the number of
channels (e.g., RGB for color images) and h and w refer to the height and width of the image
respectively. A standard CNN consists of (several) convolutional layers followed by an activation
function (e.g., ReLU), and pooling layers that reduce spatial dimensions while preserving important
features. Convolutional layers transform the tensor into a set of feature maps through a series of
learned filters (also known as kernels). Each convolutional layer in the CNN applies these filters to
local regions of the input, capturing spatial hierarchies and patterns like edges, textures, and more
complex shapes as the network deepens.

In
pu

t f
ig

ur
e

C
on

v
ke

rn
el

O
ut

pu
t f

ea
tu

re

𝛿𝛿1

𝛿𝛿2

Sc
al

ed
 fe

at
ur

e

Figure 2: Illustration of CNN with
the scaling factor.

For performing regularizing on the channel-level, we intro-
duce a set of learnable parameters that scale the output of each
channel after a convolutional layer. More formally, for every
X(k) ∈ Rd×h×w, which is the activation after the k-th convo-
lutional layer, we scale the channels with δ(k) ∈ Rd so that

X(k)′ = δ(k) ⊙X(k),

where ⊙ denotes element-wise multiplication so that the scal-
ing factor δ(k) is broadcast across the height h and width w.
The inclusion of scaling factors δ(k) is a simple linear trans-
formation and so can be perceived as the introduction of an
additional layer to the neural network W , see Figure 2, re-
sulting in an extended neural network denoted by W ′. As the
normalization in Equation (2) will also be applied on the scaling factors, the unstructured CoNNect
regularizer in Equation (3) carries over to a structured regularization, where the scaling factors of
less informative channels are pushed to 0 and more informative channels are retained.

3.3.4 CHANNEL-LEVEL PRUNING

Once a regularized neural network is obtained, we can do pruning in a similar fashion as in Sec-
tion 3.3.2. Specifically, we can prune its channels via calculating an importance scores for each
channel. To that end, we aim to determine the contribution of a channel c in layer k in terms of the
connectivity of the neural network, denoted by Ik,c. More formally, let θ(k)c (δ) = |δ(k)c |

/
∥δ(k)∥1

denote the normalization of the scaling factors with index c for convolutional layer k−1 so that Ik,c
can be determined via

Ik,c =
(
∂
θ
(k)
c (δ)

φtot(W)
)
· θ(k)c (δ) =

(∑
r∈V

(c)
k−1

a·r

)
· θ(k)c (δ) ·

(∑
r∈V

(c)
k+1

ar·

)
,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

where V
(c)
k is the subset of nodes in a layer k corresponding to channel index c. Simply put, Ik,c

denotes the total connectivity that flows through channel c in layer k. Consequently, a simple pruning
strategy is to prune the channels with lowest values of Ik,c.

4 NUMERICAL EXPERIMENTS

4.1 WEIGHT-LEVEL PRUNING

In the following, we want to study the effects of integrating CoNNect regularization in an unstruc-
tured pruning task. Let us consider a small multilayer perceptron neural network with ReLU activa-
tions. The network has 6 input nodes, three hidden layers of 5 nodes, and a single output node. We
sample input values xi = (xi,1, . . . , xi,6) ∼ N (0,Σ), where Σ is a matrix with the value 2 on the
diagonal. Furthermore, we let the output values be

yi =

{
1 if xi,1 + xi,2 + ξi > 0;

0 otherwise,

where ξi ∼ N (0, 0.25). To find a sparse network representation, we train the network with L1 and
CoNNect regularization, and remove the unimportant weights after training. To that end, we solve

min
W,b

L(ŷ, y) + λ1∥W∥1,1 − λ2 log
(
φtot(W)

)
+ λ3∥W∥2,1, (7)

where L(ŷ, y) is the Binary Cross Entropy between target and input probabilities ,and ∥W∥2,1 is the
often-applied L2-regularization (weight decay). We fit three different models following Equation
(7), for which we provide coefficients in Table 1. All models have been trained for 200 epochs using
Adam with a learning rate of 0.01, a cosine annealing scheduler, and batch size 256. After training,
we pruned 96% of the weights in each layer using the pruning strategies discussed in Section 3.3.2:
i) magnitude pruning, and ii) SynFlow pruning. Finally, the model is fine-tuned with the same
hyperparameters but with a decreased initial learning rate of 0.001 for 50 epochs.

(a) No regularization. (b) L1-regularization. (c) CoNNect regularization.

Figure 3: Trained (top) and fine-tuned (bottom) models. Thicker and darker colors correspond to
stronger values. Red and blue edges correspond to positive and negative values respectively.

Table 1: Regularizer coefficients.

Regularizer λ1 λ2 λ3

None 0 0 0.0005
L1 0.001 0 0.0005
CoNNect 0 0.1 0.0005

We show the results in Figure 3 for a single neural net-
work initialization with SynFlow pruning. We present
the results for 100 repetitions, where we show the (ag-
gregated) train and test loss in Figures 4(a) and (b) in and
the fine-tuned accuracies in Figure 4(c) and (d). Roughly
speaking, the final accuracy for each model can be cate-
gorized by the ability to find the network connecting the
input nodes 1 and 2 to the output layer. If the fine-tuned accuracy is around 0.50, the algorithm was
unable to connect node 1 and node 2 to the output (e.g., see Figures 3(a) and (b)). If the fine-tuned
accuracy is around 0.75, the algorithm was able to connect node 1 or node 2 to the output. Finally,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

No Reg.
L1 Reg.
CoNNect Reg.

(a) Loss values.

0 50 100 150 200 250
Epoch

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

No Reg.
L1 Reg.
CoNNect Reg.

(b) Accuracies.

0

25

50
No Reg.

0

25

50
L1 Reg.

0.5 0.6 0.7 0.8 0.9 1.0
Accuracy

0

25

50
CoNNect Reg.

Fr
eq

ue
nc

y

(c) Magnitude.

0

25

50
No Reg.

0

25

50
L1 Reg.

0.5 0.6 0.7 0.8 0.9 1.0
Accuracy

0

25

50
CoNNect Reg.

Fr
eq

ue
nc

y

(d) SynFlow.

Figure 4: (a)-(b) Learning curves for solving Equation (4). Synflow pruning happens at iteration 200.
Bandwidths are 95% confidence intervals. (c)-(d) Fine-tuned accuracy after magnitude pruning and
SynFlow pruning of regularized models.

if the algorithm preserved the edges connecting node 1 and node 2, it found the correct network and
achieves an accuracy of more than 0.95 (e.g., see Figure 3(c)).

As shown in Figure 4(c) and (d), CoNNect regularization via φtot(W) is beneficial to both pruning
strategies. It is noteworthy that SynFlow pruning does not offer any further improvement over
connectivity regularization compared to simple magnitude pruning. This can be attributed to the
fact that CoNNect regularization has already trained the network to use the correct paths to model
the current problem, as shown in Figure 3(c). It thus suffices to apply a simple magnitude pruning
to identify these paths.

Remark: Synflow is traditionally introduced as a pre-training pruning method, its data-agnostic na-
ture makes it less effective in this context, given the presence of uninformative input nodes. More-
over, SynFlow is generally regarded as a global pruning strategy. However, we frequently observed
layer collapse under this configuration. In contrast, applying a local pruning approach yielded sig-
nificantly better results, particularly for models without regularization and L1 regularization. We
thus show the results using a local pruning approach.

To show the robustness of our results, we conduct an ablation study to analyze the impact of the
regularization strengths, see Appendix D.1.

4.2 CHANNEL-LEVEL PRUNING

50 60 9070 80
Pruning Ratio

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

No Reg. w/o Tun.
L1 Reg. w/o Tun.
CoNNect Reg. w/o Tun.

No Reg. w/ Tun.
L1 Reg. w/ Tun.
CoNNect Reg. w/ Tun.

50 60 70 80 90
Pruning Ratio

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Figure 5: Accuracy for given prun-
ing ratio. The shadow demonstrate
98% confidence intervals.

In this section, we demonstrate CoNNect for structured prun-
ing on the channel-level; see Section 3.3.4. To that end,
we train VGG-11 (Simonyan & Zisserman, 2014) (includ-
ing Batch Normalization (BN) layers) on the CIFAR-10
(Krizhevsky et al., 2009) dataset. Since the BN-layers have
weights that scale channels in VGG-11 independently, it suf-
fices to use these as scaling factors. Hence, there is no need to
introduce another set of scalars for scaling the channel output.

For the regularization of connectivity in VGG-11, two things
are worth mentioning. First, the standardization applied in BN
layers can be disregarded, as it merely re-scales the connectiv-
ity values at these nodes. Second, we remove dropout layers,
as they do not contribute to neural network connectivity. Third,
we replaced the max pooling layers with average pooling lay-
ers to ensure that all paths contribute consistently throughout
the network and for numerical stability. Note these changes are
only implemented when computing the forward pass for CoNNect, the forward pass for the VGG-11
itself is not modified. Similar to Section 4.1, we train VGG-11 via Equation (7) and compare the
results for: i) no regularization, ii) L1 regularization, and iii) CoNNect regularization. We train vari-
ous models for 20 epochs with parameters shown in Table 3, Appendix D.1, and fine-tune the model
after pruning (see Section 3.3.4) for 5 epochs each. The results, presented in Figure 5, are obtained
by 10 repeats and similar to Section 4.1 show CoNNect can outperform L1 and L2 regularization.
For further evaluation on GNNs, please see Appendix D.2.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

4.3 ONE-SHOT PRUNING LLMS VIA CONNECT

To further demonstrate the versatility and scalability of CoNNect, we integrate it in the framework
of LLM-Pruner (Ma et al., 2023) to perform a one-shot pruning on LLaMA-7B (Touvron et al.,
2023). First, all parameters of the LLM are divided into several groups according to the dependency
relationships in the computation process. Then, the importance score under the objective function
J (·) is calculated by Ii,j = |JWi,j

(W)−JWi,j=0(W)| ≈ |∂Wi,j
J (W) ·Wi,j |, where we redefine

(θ(W))i,j = |Wi,j | to enhance both numerical stability and computational efficiency, as dropping
the normalization does not affect the ranking of importance scores or the outcomes. We integrate our
CoNNect approach to the LLM-Pruner through the objective, i.e., J (W) = L(D)−λ log(φtot(W)),
where D denotes the dataset. The importance of each group is aggregated through summation, and
the least important groups are pruned. Finally, the LLM is fine-tuned using the LoRA (Hu et al.,
2021) technique to restore as much of the maximum structural capability as possible under the
current architecture.

To assess the model performance, we conduct a zero-shot perplexity analysis on WikiText2 (Merity
et al., 2022) and PTB (Marcus et al., 1993), and then follow Gao et al. (2021) to test the model
with zero-shot classification tasks on common sense reasoning datasets: BoolQ (Clark et al., 2019),
PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021),
ARC-easy, ARC-challenge (Clark et al., 2018), OpenbookQA (Mihaylov et al., 2018), where the
model ranks the choices in these multiple-choice tasks.

We compare CoNNect to L2, random, and vanilla LLM-Pruner’s importance metrics with a 40% pa-
rameter reduction. All methods are equipped with the same group division and aggregation strategy.
As presented in Table 2, compared to vanilla LLM-Pruner, we have reduced the performance gap
between the pruned model and the original model by 9.13% without fine-tuning, which is 9.29%
when fine-tuning is applied. Essentially, CoNNect enhances the LLM-Pruner’s framework with an
extra consideration of connectivity, providing good results. The results differ significantly from
those obtained by randomly removing parameter groups, but the grouping approach keeps random
pruning from detrimental outcomes. However, L2 regularization even results in incorrect pruning
choices, which is consistent with the conclusions drawn in the previous two subsections. Please refer
to Appendix C.2 for detailed experimental settings and Appendix D.3 for more evaluation aspects.

Table 2: Zero-shot performance of the compressed LLaMA-7B. High scores are better, except for
WikiText2 and PTB (indicated by the downward arrow). The bold values indicate the best results.
The average is calculated among seven classification accuracies. An asterisk denotes that perfor-
mance normalization is not available.

Pruned Model Method WikiText2↓ PTB↓ BoolQ∗ PIQA HellaSwag WinoGrande∗ ARC-e ARC-c OBQA Average

Ratio = 0% LlaMA-7B 12.62 22.15 73.15 77.48 73.01 67.09 52.57 41.47 42.40 61.02

Ratio = 40%
w/o tune

L2 13783.81 27844.06 42.69 52.01 28.29 51.46 27.36 25.85 29.80 36.78
Random 100.42 133.56 40.00 57.29 36.00 50.12 32.83 25.77 31.00 39.00
LLM-Pruner 48.09 105.24 58.90 64.74 47.58 53.20 37.75 29.44 35.00 46.66
CoNNect 46.43 95.08 60.95 67.30 50.04 52.09 38.30 29.86 36.80 47.91

Ratio = 40%
w/ tune

L2 44.91 67.16 47.34 71.60 50.60 54.38 43.35 32.25 36.80 48.05
Random 37.82 58.12 54.95 67.36 48.61 55.25 43.69 30.29 33.20 47.62
LLM-Pruner 27.62 48.28 59.97 71.38 56.21 59.35 44.53 32.42 36.20 51.44
CoNNect 27.13 47.44 61.59 71.06 57.78 58.48 45.58 32.85 39.00 52.33

5 CONCLUSIONS

In this work, we introduce a novel regularizer called CoNNect, which leverages network connec-
tivity to promote sparsity. Theoretically, we showed that CoNNect aligns with the minimization
of the L0-norm and avoids getting trapped in local minima. Through numerical experiments, we
have shown that CoNNect can be effectively applied in many pruning strategies. Moreover, it
can be used for both unstructured and structured network pruning. Specifically, we showed how
CoNNect as regularizer improves the pruning of MLPs, CNNs and GNNs, compared with standard
L1-regularization. Furthermore, we demonstrated how CoNNect can be applied competitively in a
one-shot pruning framework for large language models (LLMs), as proposed by Ma et al. (2023).
This shows that CoNNect offers flexibility in its implementation within different pruning strategies.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured pruning of deep convolutional neural
networks. ACM Journal on Emerging Technologies in Computing Systems (JETC), 13(3):1–18,
2017.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936,
2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Subhayan De and Alireza Doostan. Neural network training using l1-regularization and bi-fidelity
data. Journal of Computational Physics, 458:111010, 2022.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards
any structural pruning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 16091–16101, 2023.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, et al. A framework for few-shot
language model evaluation. Version v0. 0.1. Sept, 10:8–9, 2021.

Masafumi Hagiwara. Removal of hidden units and weights for back propagation networks. In
Proceedings of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan),
volume 1, pp. 351–354. IEEE, 1993.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network
pruning. In IEEE international conference on neural networks, pp. 293–299. IEEE, 1993.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Yang He and Lingao Xiao. Structured pruning for deep convolutional neural networks: A survey.
IEEE transactions on pattern analysis and machine intelligence, 2023.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural net-
works. In Proceedings of the IEEE international conference on computer vision, pp. 1389–1397,
2017.

Geoffrey E Hinton. A practical guide to training restricted boltzmann machines. In Neural Networks:
Tricks of the Trade: Second Edition, pp. 599–619. Springer, 2012.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks. Journal of
Machine Learning Research, 22(241):1–124, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Zehao Huang and Naiyan Wang. Data-driven sparse structure selection for deep neural networks.
arXiv, 2017. doi: 10.48550/arxiv.1707.01213.

Leo Katz. A new status index derived from sociometric analysis. Psychometrika, 18(1):39–43,
1953.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network pruning
based on connection sensitivity. arXiv preprint arXiv:1810.02340, 2018.

Ilya Loshchilov, Frank Hutter, et al. Fixing weight decay regularization in adam. arXiv preprint
arXiv:1711.05101, 5, 2017.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

Mitch Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated corpus
of english: The penn treebank. Computational linguistics, 19(2):313–330, 1993.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In International Conference on Learning Representations, 2022.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answering. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp. 2381–2391, 2018.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440, 2016.

Behnam Neyshabur, Russ R Salakhutdinov, and Nati Srebro. Path-sgd: Path-normalized optimiza-
tion in deep neural networks. Advances in neural information processing systems, 28, 2015.

Ekachai Phaisangittisagul. An analysis of the regularization between l2 and dropout in single hidden
layer neural network. In 2016 7th International Conference on Intelligent Systems, Modelling and
Simulation (ISMS), pp. 174–179. IEEE, 2016.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Victor Sanh, Thomas Wolf, and Alexander Rush. Movement pruning: Adaptive sparsity by fine-
tuning. Advances in neural information processing systems, 33:20378–20389, 2020.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI Magazine, 29(3):93–93, 2008.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In International Conference on Learning Representations (ICLR), 2015.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. Advances in neural information pro-
cessing systems, 33:6377–6389, 2020.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.

Georg Thimm and Emile Fiesler. Evaluating pruning methods. In Proceedings of the International
Symposium on Artificial neural networks, pp. 20–25, 1995.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society Series B: Statistical Methodology, 58(1):267–288, 1996.

H Touvron, T Lavril, G Izacard, X Martinet, MA Lachaux, T Lacroix, B Rozière, N Goyal, E Ham-
bro, F Azhar, et al. Open and efficient foundation language models. Preprint at arXiv. https://doi.
org/10.48550/arXiv, 2302, 2023.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. arXiv preprint arXiv:2002.07376, 2020.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. Advances in neural information processing systems, 29, 2016.

Chen Yang, Zhenghong Yang, Abdul Mateen Khattak, Liu Yang, Wenxin Zhang, Wanlin Gao, and
Minjuan Wang. Structured pruning of convolutional neural networks via l1 regularization. IEEE
Access, 7:106385–106394, 2019.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables. Journal
of the Royal Statistical Society Series B: Statistical Methodology, 68(1):49–67, 2006.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Guian Zhou and Jennie Si. Subset-based training and pruning of sigmoid neural networks. Neural
networks, 12(1):79–89, 1999.

Yukun Zhu. Aligning books and movies: Towards story-like visual explanations by watching movies
and reading books. arXiv preprint arXiv:1506.06724, 2015.

Tao Zhuang, Zhixuan Zhang, Yuheng Huang, Xiaoyi Zeng, Kai Shuang, and Xiang Li. Neuron-
level structured pruning using polarization regularizer. Advances in neural information processing
systems, 33:9865–9877, 2020.

Liu Ziyin and Zihao Wang. spred: Solving l1 penalty with sgd. In International Conference on
Machine Learning, pp. 43407–43422. PMLR, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A PROOFS

A.1 PROOF THEOREM 1

Let Γi,m denote the set of paths in the neural network that go from some input node i ∈ V1 to the
output node m ∈ VK , where

γ = ((i, j), (j, k), . . . , (l,m)) ∈ Γi,m

is a sequence of edges from the input layer to the output layer. Using that φtot(W) is the sum of
weights of paths from the input to the output layer (Neyshabur et al., 2015), we rewrite

φtot(W) =
∑
i∈V1

∑
m∈VK

∑
γ∈Γi,m

K−1∏
k=1

(θ(W))γk
=

∑
i∈V1

∑
m∈VK

∑
γ∈Γi,m

K−1∏
k=1

|Wγk
|∑

(r,c)∈Ek
|Wr,c|

,

where γk refers to the kth edge in a sequence γ. Then, to minimize R(W), i.e., maximize φtot(W),
we need to allocate all the mass to a single path from the input to the output, which means selecting
a specific sequence of weights that maximizes the product along that path, effectively minimizing
the contributions from all other paths.

To show the upper bound of |V1| + |VK | +K − 3 non-zero weights in W ∗, assume w.l.o.g. some
W ∗ where a single path Γi,m has all mass in the network. It follows that φtot(W ∗) = 1. Now, let
W ′ denote a solution where some mass from the first weight Wi,j , for (i, j) ∈ Γi,m is shifted to any
other weight(s) Wl,j (note that j is fixed), where l ∈ V1 connects to j ∈ V2. It is easily seen that
φtot(W ′) = 1 since

φtot(W ′) =
∑
l∈V1

(θ(W ′))l,j
∑

γ∈Γj,m

K−1∏
k=1

(θ(W ′))γk

=
∑
l∈V1

|W ′
l,j |∑

(r,c)∈E1
|W ′

r,c|
∑

γ∈Γj,m

K−1∏
k=1

(θ(W ′))γk
=

∑
l∈V1

|W ′
l,j |∑

(r,c)∈E1
|W ′

r,c|
· 1 = 1,

In words, φtot(W) is indifferent in how many of the |V1| input nodes connect to a single node in
the second layer. Note that a similar argument can be made for the weights connecting the K − 1th
layer with the Kth layer. It follows that the number of non-zero weights for W ∗ is upper bounded
by |V1| for the first layer, |VK | for layer K − 1, and K − 3 for the weights of the remaining layers.
The resulting upper bound is then |V1|+ |VK |+K − 3.

A.2 PROOF THEOREM 2

We prove this by induction using the necessary and sufficient system of equations for stationarity
in φtot(W), see Equation (5). Assume any connected neural network, i.e., φtot(W) > 0, of ar-
bitrary size with K = 2 layers and weight allocation such that (θ(W))i,j > 0 for i ∈ V1 and
j ∈ argmaxk∈V2

a·k. Note that for this specific case any weight allocation will be stationary in
φtot(W). Moreover, assume a·i = a·j , for all i, j ∈ argmaxk∈V2

a·k, since adding a layer VK+1

implies that this condition must hold to satisfy Equation (5) in the next step.

Now we add a new layer of arbitrary size VK+1. In case VK+1 is the last layer, it is sufficient
to allocate (θ(W))i,j > 0, for all i ∈ argmaxk∈VK

a·k to obtain a stationary point. In case the
neural network is expanded with another layer VK+2 in a next step, we let (θ(W))i,j > 0 for
i ∈ argmaxk∈VK

and j ∈ argmaxk∈VK+1
a·k, such that a·i = a·j , for all i, j ∈ argmaxk∈VK+1

a·k
to satisfy Equation (5). Note that this immediately implies (θ(W))i,j = (θ(W))r,c, for all
(i, j), (r, c) ∈ argmax(i,j)∈EK+1

a·ia·j . Hence, (θ(W))γ′
k
= (θ(W))γ′′

k
, for all k = 2, . . . ,K − 2,

for all paths γ with positive path weight. Moreover, note that stationarity cannot be induced by repa-
rameterization θ(W). Considering that we derived the above points using the necessary and suffi-
cient conditions for stationarity, all other points are non-stationary. Moreover, for all non-optimal
stationary points, i.e., φtot(W) < 1, there exists a direction of improvement by simply transferring
mass from one path to another. It follows that these solutions are inherently unstable and are not
local optima. Hence, all local optima to Equation (4) are global optima.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B IMPLEMENTATION DETAILS

In this section, we outline how φtot(W) can be efficiently computed using a slightly modified for-
ward pass of the neural network and a vector of ones as input. Below, we outline how different
modules are treated in this modified forward pass. The ability to handle these modules enables the
application of CoNNect across a broad spectrum of neural network architectures.

Linear Layers: This includes both dense (fully connected) layers and convolutional layers. The
weights of these layers define the primary connections between nodes and we normalize their
weights via Equation (2). The biases, however, merely shift activations (which we will exclude),
and do not influence connectivity structure and are therefore excluded.

BN Layers: Batch normalization layers apply standardization and scaling to the outputs of preced-
ing layers. For the purposes of connectivity analysis, the standardization can be disregarded as it
does not alter the structure of connections, but rather rescales values. Thus, we consider BN layers
as identity mappings with preserved connectivity.

Activation Functions: Non-linear activation functions such as ReLU, sigmoid, or tanh are ignored.
These functions transform node outputs but do not influence the underlying connectivity. Ignoring
them simplifies the analysis without affecting the structural representation.

Pooling Layers: Max-pooling layers are replaced with average pooling layers. This change en-
sures that all input connections are treated equally in the computation of connectivity, rather than
prioritizing the strongest signal as in max-pooling.

Dropout: Dropout layers are designed to randomly disable connections during training as a regular-
ization method. Since they are stochastic and transient, they are ignored for connectivity analysis,
as they do not represent fixed structural relationships.

Identity Connections: Identity connections, such as skip connections in residual networks, can
be included when computing connectivity. However, since these connections (generally) are not
parameterized, they can be ignored when optimizing the neural network’s connectivity. Thus, we
omit the identity connection in the forward pass.

C EXPERIMENTAL SETTINGS

Platform: All experiments were performed on a single NVIDIA RTX4090 GPU with 24GB of
memory.

C.1 EXPERIMENTAL SETTINGS FOR SECTION 4.2

Dataset: We use CIFAR-10 (Krizhevsky et al., 2009), a dataset with 60,000 32x32 images with 10
different classes. Each class has 6,000 images.

VGG-11 (with Batch Normalization): The VGG-11 model consists of 11 layers with learnable
parameters, including 8 convolutional layers. Each convolutional layer is followed by a batch nor-
malization (BN) layer and a ReLU activation function. Max pooling (2x2, stride 2) is applied where
applicable, based on the spatial dimensions. The network concludes with a classifier composed of 3
fully connected (linear) layers.

Table 3: Regularizer coefficients used in Section 4.2.

Regularizer λ1 λ2 λ3

None 0 0 0.001
L1 0.0001 0 0.001
CoNNect 0 0.1 0.001

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C.2 EXPERIMENTAL SETTINGS FOR SECTION 4.3

In the current experiment, we use 10 randomly selected samples from Bookcorpus (Zhu, 2015) to
be the calibration samples for establishing the dependency between parameters in the model and
calculate the gradient for LLaMA-7B. To that end, we truncate each sample to a sequence length
of 128. We set the coefficient λ of connectivity metric as 1 × 105. During fine-tuning, we utilize
Alpaca (Taori et al., 2023), which comprises approximately 50,000 samples, to recover the capacity
of the pruned model, which requires just 2 hours on our platform (NVIDIA RTX4090 GPU).

To determine which groups to prune, we compute importance scores for each weight in the model.
Since the simplified form (θ(W))i,j = |Wi,j | works well on LLMs, we use absolute values instead
of normalized ones to reduce computational effort. We approximate connectivity by keeping all
modules as they are for efficient and ease of implementation. Moreover, to evaluate connectivity,
we use multiple inputs uniformly sampled between 0 and the vocabulary size instead of a single
all-one. This is to avoid conflicts with reserved input values during the training process, leading to
improper connectivity evaluation. Then, specifically for L2 pruning, we compute the importance
of each group by computing the L2-norm and prune the groups with lowest importance scores.
For random pruning, there is no need to compute importance scores for each group - we simply
randomly select certain groups for pruning. Moreover, we leave the first three layers and the final
layer unchanged (similar to Ma et al. (2023)), as substantial changes to the parameters of these layers
greatly influence the performance of the model. Finally, the discovered groups within each module
are pruned according to a predetermined ratio. The pruning rate for the selected groups is higher
than the pruning ratio for the parameters since some layers (e.g., the excluded layers) retain their
parameters. For a total of 40% parameter removal, we must prune 50% of the groups specifically
from the fourth to the thirtieth layer.

D SUPPLEMENTAL EXPERIMENTS

D.1 ABLATION STUDY OF UNSTRUCTURED PRUNING ON MLPS

We have performed experiments with different values of λ. Specifically, increasing λ1 by one order
of magnitude to 0.01 causes a frequent occurrence of layer collapse, although it does increase the
performances for the cases without layer collapse, see Figure 6 in Appendix D.1. Changing λ2 by
one order of magnitude to 1 did not cause any specific change, arguing for the stability of CoN-
Nect. Moreover, increasing λ3 by one order of magnitude to 0.005 seems to improve the model
performance overall, especially for the CoNNect regularized model, see Figure 7 in Appendix D.1.
Increasing λ3 by another order of magnitude still shows very competitive results for CoNNect. Fi-
nally, we decrease λ1 and λ2 to 0.0005 and 0.05 respectively, and see that the regularizers become
too weak leading the results to converge toward those of standard L2 regularization.

Table 4: Regularizer coefficients used for
producing Figure 6.

Regularizer λ1 λ2 λ3

None 0 0 0.0005
L1 0.01 0 0.0005
CoNNect 0 1.0 0.0005

Table 5: Regularizer coefficients used for
producing Figure 7.

Regularizer λ1 λ2 λ3

None 0 0 0.005
L1 0.001 0 0.005
CoNNect 0 0.1 0.005

Table 6: Regularizer coefficients used for
producing Figure 8.

Regularizer λ1 λ2 λ3

None 0 0 0.05
L1 0.001 0 0.05
CoNNect 0 0.1 0.05

Table 7: Regularizer coefficients used for
producing Figure 9.

Regularizer λ1 λ2 λ3

None 0 0 0.005
L1 0.0005 0 0.005
CoNNect 0 0.05 0.005

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0

25

50
No Reg.

0

25

50
L1 Reg.

0.5 0.6 0.7 0.8 0.9 1.0
Accuracy

0

25

50
CoNNect Reg.

Fr
eq

ue
nc

y

(a) Magnitude.

0

25

50
No Reg.

0

25

50
L1 Reg.

0.5 0.6 0.7 0.8 0.9 1.0
Accuracy

0

25

50
CoNNect Reg.

Fr
eq

ue
nc

y

(b) SynFlow.

Figure 6: Fine-tuned accuracy after magnitude pruning and SynFlow pruning for the parameters in
Table 4.

0

25

50
No Reg.

0

25

50
L1 Reg.

0.5 0.6 0.7 0.8 0.9 1.0
Accuracy

0

25

50
CoNNect Reg.

Fr
eq

ue
nc

y

(a) Magnitude.

0

25

50
No Reg.

0

25

50
L1 Reg.

0.5 0.6 0.7 0.8 0.9 1.0
Accuracy

0

25

50
CoNNect Reg.

Fr
eq

ue
nc

y

(b) SynFlow.

Figure 7: Fine-tuned accuracy after magnitude pruning and SynFlow pruning for the parameters in
Table 5.

0

25

50
No Reg.

0

25

50
L1 Reg.

0.5 0.6 0.7 0.8 0.9 1.0
Accuracy

0

25

50
CoNNect Reg.

Fr
eq

ue
nc

y

(a) Magnitude.

0

25

50
No Reg.

0

25

50
L1 Reg.

0.5 0.6 0.7 0.8 0.9 1.0
Accuracy

0

25

50
CoNNect Reg.

Fr
eq

ue
nc

y

(b) SynFlow.

Figure 8: Fine-tuned accuracy after magnitude pruning and SynFlow pruning for the parameters in
Table 6.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

0

25

50
No Reg.

0

25

50
L1 Reg.

0.5 0.6 0.7 0.8 0.9 1.0
Accuracy

0

25

50
CoNNect Reg.

Fr
eq

ue
nc

y

(a) Magnitude.

0

25

50
No Reg.

0

25

50
L1 Reg.

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Accuracy

0

25

50
CoNNect Reg.

Fr
eq

ue
nc

y

(b) SynFlow.

Figure 9: Fine-tuned accuracy after magnitude pruning and SynFlow pruning for the parameters in
Table 7.

D.2 CHANNEL-LEVEL PRUNING ON GRAPH NEURAL NETWORKS

Analogously to Section 4.2, we conduct extra experiments of pruning Graph Convolutional Network
(GCN, Kipf & Welling, 2016) on Cora (Sen et al., 2008) dataset. Cora is a graph-based dataset
consisting of 2,708 academic papers (nodes) and 5,429 citation links (edges), with each paper cate-
gorized into one of seven topics and represented by a 1,433-dimensional binary feature vector. And
the GCN consists of 7 layers with learnable parameters, where the hidden feature dimensions are
512-256-256-256-256-64. Each GCN layer is followed by a ReLU activation function.

We train GCNs for 100 epochs using the parameters shown in Table 8 and fine-tune each model
after pruning for 20 epochs. We conduct 10 repeated experiments, and as shown in Figure 10, our
method consistently outperforms L1-regularization. The shaded regions represent 98% confidence
intervals.

0 20 40 60 80
Pruning Ratio

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

No Reg.
L1 Reg.
CoNNect Reg.

(a) Without fine-tuning.

0 20 40 60 80
Pruning Ratio

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

No Reg.
L1 Reg.
CoNNect Reg.

(b) With fine-tuning.

Figure 10: Accuracies of GNNs for given pruning ratios.

Table 8: Regularizer coefficients used in GNN pruning.

Regularizer λ1 λ2 λ3

None 0 0 1× 10−5

L1 1× 10−6 0 1× 10−5

CoNNect 0 0.1 1× 10−5

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

D.3 STRUCTURAL PRUNING ON CNNS

Similarly to Section 4.3, we also integrate CoNNect into the preceding work of LLMPruner, Dep-
Graph (Fang et al., 2023), to perform structural pruning on ResNet-56 (He et al., 2016) and VGG-19
(Simonyan & Zisserman, 2015), which are pretrained and fine-tuned on CIFAR-10 and CIFAR-100
datasets (Krizhevsky et al., 2009), respectively. DepGraph framework iteratively prunes the model
until the predefined speed-up targets are achieved, which is calculated as the ratio of multiply-
accumulate operations before and after pruning. We first follow the pruning intensity tested in Fang
et al. (2023) and then verify CoNNect with extreme cases. Thus, the pruning is set to target speed-
ups of 2.5× and 16× for ResNet-56 on CIFAR-10 and 8× and 16× for VGG-19 on CIFAR-100.
As shown in Table 9, CoNNect exhibits advantages across various pruning ratios, with the benefits
being more pronounced in more extreme cases.

Table 9: Results of CNN pruning under different settings.

Model & Dataset Base Acc. Method Pruned Acc. Speed Up Pruning Ratios

ResNet-56 & CIFAR-10 93.53

DepGraph 93.17 2.51× 56.22
CoNNect 93.63 2.50× 53.20
DepGraph 80.24 16.17× 98.27
CoNNect 83.12 17.24× 97.46

VGG-19 & CIFAR-100 73.50

DepGraph 65.89 8.12× 90.48
CoNNect 69.38 8.00× 93.33
DepGraph 57.48 16.10× 96.14
CoNNect 62.56 16.07× 97.51

E LIMITATIONS AND FUTURE WORK

For future work, we suggest extending CoNNect to incorporate biases and activation functions,
thereby broadening its applicability. Moreover, when CoNNect is applied as regularizer, it can be
used to determine meaningful pruning ratios by analyzing the dispersion achieved in the model’s
regularized weights (e.g., see Zhuang et al. (2020)), where in the current paper’s experiments we
have simply used a predetermined pruning ratio. Finally, exploring its effectiveness on different
neural network architectures, such as recurrent neural networks, could provide further insights into
its generalizability.

19

	Introduction
	Related Work
	Methodology
	Preliminaries
	Problem Formulation
	CoNNect
	Weight-Level Regularization
	Weight-Level Pruning
	Channel-Level Regularization
	Channel-Level Pruning

	Numerical Experiments
	Weight-Level Pruning
	Channel-Level Pruning
	One-shot Pruning LLMs via CoNNect

	Conclusions
	Proofs
	Proof Theorem 1
	Proof Theorem 2

	Implementation Details
	Experimental Settings
	Experimental Settings for Section 4.2
	Experimental Settings for Section 4.3

	Supplemental Experiments
	Ablation Study of Unstructured Pruning on MLPs
	Channel-Level Pruning on Graph Neural Networks
	Structural Pruning on CNNs

	Limitations and Future Work

