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ABSTRACT

Explainable AI (XAI) provides human users with transparency and interpretabil-
ity of powerful “black-box” models. Recent work on XAI has focused on explain-
ing specific model responses by identifying key input features using attribution
analysis. Another avenue for explaining AI decisions is to leverage exemplars
of training data. However, there are limited investigations on using exemplars
to establish metrics for confidence and knowledge limits. Recently, contrastive
learning has received increased focus in computer vision, natural language, au-
dio, and many other fields. However, there are very few explainability studies
that could leverage the learning process to explain the contrastive models. In this
paper, we advance post-hoc explainable AI for contrastive models. The main con-
tributions include i) explaining the relation among test and training data samples
using pairwise attribution analysis, ii) developing exemplar-based confidence met-
rics, and iii) establishing measures for the model knowledge limits. In the exper-
imental evaluation, we evaluate the proposed techniques using the OpenAI CLIP
model. The evaluation on ImageNet demonstrates that exemplars of training data
can provide meaningful explanations for the decision-making of contrastive mod-
els. We observe that the proposed exemplar-based confidence score gives a more
reliable, dataset-agnostic probability measure compared to the softmax score and
temperature scaling. Furthermore, the OOD detection module of our framework
shows significant improvement compared to other state-of-the-art methods (6.1%
and 9.6% improvement in AUROC and FPR@95TPR, respectively). The three
modules together can give a meaningful explanation of the model decisions made
by a contrastive model. The proposed techniques extend the body of science of
XAI for contrastive models and are expected to impact the explainability of future
foundational models.

1 INTRODUCTION

The tremendous success of deep learning for cognitive tasks is driving deployment within safety-
critical systems and high assurance applications Esteva et al. (2021); Leo et al. (2019). However,
the deployment of neural networks within autonomous vehicles or medical diagnosis systems re-
quires the trust of human users Siau & Wang (2018); Yin et al. (2019). Explainable AI (XAI) is
positioned to provide this trust by i) explaining model decisions, ii) measuring the confidence in
model responses, and iii) analyzing if the model is operating within its knowledge limits Das &
Rad (2020). The most popular technique for explaining the response of an AI model involves using
feature highlighting Simonyan et al. (2013); Springenberg et al. (2014a); Kapishnikov et al. (2021).
Feature highlighting involves identifying features that greatly contribute to a specific model response
through attribution analysis such as integrated gradients Sundararajan et al. (2017), GradCAM Sel-
varaju et al. (2017), and DeepLift Shrikumar et al. (2017). Explanation by exemplars is another way
of explaining the model decision Jeyakumar et al. (2020); Bilgin. & Gunestas. (2021); Garima et al.
(2020); Lee et al. (2020). These studies focus on evaluating exemplars to see if the model decision
is consistent based on the given test data.

Model confidence has mainly been investigated using Platt and Temperature scaling Platt (2000);
Guo et al. (2017). These techniques and their extensions scale the softmax output with a temperature

1



Under review as a conference paper at ICLR 2024

(a) (b) (c)

Figure 1: Overview of the exemplar-based Explainable AI (XAI) in the scope of contrastive learning,
(a) Linking of test and training data with attributions explaining the linkage. (b) Confidence measure
of the model response using exemplar-based distance metrics. (c) Angle-based OOD detection and
knowledge limit analysis.

factor that is learned post-hoc or during training Minderer et al. (2021). The knowledge limits of a
model can be determined using out-of-distribution (OOD) analysis Yang et al. (2022b); Hsu et al.
(2020) which aims to identify if an input is on the manifold of the training data Liang et al. (2020).

The common denominator of these XAI techniques is their computation with respect to an AI model
and a specific input. This paper aims to advance post-hoc explainablity for image classifiers through
the use of training data exemplars, i.e., explaining responses using both the model and examples
of training data. This is inspired by the success of contrastive learning which associates, or dis-
sociates, exemplars of training data Chen et al. (2020); Radford et al. (2021). Contrastive learning
powered the success of modern visual language models (VLMs) Alayrac et al. (2022); Lu et al.
(2019); Radford et al. (2021). Existing studies on XAI using exemplars are focused on case-based
reasoning. Case-based reasoning identifies examples in the training data that are similar to an input,
with the objective of providing an explanation for the model decision Aamodt & Plaza (1994); Rudin
et al. (2022). However, state-of-the-art case-based reasoning techniques do not provide effective ex-
plainations for why the input and the selected exemplars of training data are similar Salakhutdinov &
Hinton (2007); Card et al. (2019). Moreover, exemplar based solutions for measuring the confidence
and knowledge limits of AI models have not been investigated.

Our proposed framework answers the three fundamental questions of model explainability: a) “Why
does the model think exemplars are relevant to the input?” b) “How confident is the model in its
prediction?” and c) “Does the given test data reside in-distribution or is it out-of-distribution for the
model scope?”. Our main contributions are shown in Figure 1 and can be summarized, as follows:

1. Exemplar Explanations using Pairwise Attributions: We explain why pairs of input
images are similar using pairwise attribution analysis. The attributions highlight common
image features that explain their proximity in the latent space. This can illustrate if the
decision made by the model is consistent with the salient regions of the exemplars.

2. Exemplar-based Confidence: We propose an exemplar-based confidence measure using
k nearest-neighbors distance. The confidence is computed as a weighted sum with respect
to the angular distance from exemplars.

3. Exemplar-based Knowledge Limits: We pre-characterize the angular distribution of each
class. The knowledge limits are next determined using a proposed in-distribution scoring
method with respect to the distance from the class centroid.

Together, these modules can show insightful explanations for a given data and the decision provided
by a contrastive model. The dashboard-style report focusing on the explainable exemplars, decision
confidence, and knowledge limits generated by the proposed framework can be a one-stop solution
for the explainability of contrastive models. The remainder of the paper is organized as follows: pre-
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liminaries are provided in section 2, the methodology is given in section 3, experimental evaluation
with a complete sample report generated by our framework is presented in section 4, and the paper
is concluded in section 5.

2 RELATED WORK

In this section, we review previous work on contrastive learning, attribution analysis, case-based
explanations, confidence metrics, and knowledge limits.

Contrastive Learning Contrastive learning is performed by bringing similar pairs of data samples
closer together in the latent space and pushing apart dissimilar pairs. Modern contrastive paradigms
operate on low-dimensional latent representations Chen et al. (2020); Radford et al. (2021). In
SimCLR, data augmentation is performed by constructing multiple data points from a single input
sample which are then trained to be similar using contrastive loss Chen et al. (2020). In CLIP,
text and image data are aligned using unsupervised contrastive learning Radford et al. (2021). The
CLIP model specifically has one image encoder and one text encoder, where the model is trained
based on an image-caption dataset. The CLIP framework is the foundation for many subsequent
VLMs Alayrac et al. (2022); Lu et al. (2019).

Attribution Analysis Attribution methods explain model knowledge by measuring the contribu-
tion of input features to model output Simonyan et al. (2013); Ribeiro et al. (2016); Rudin et al.
(2022). Due to their speed and quality, backpropagation methods Simonyan et al. (2013); Sun-
dararajan et al. (2017); Springenberg et al. (2014b); Selvaraju et al. (2017) are most commonly used
Ancona et al. (2017). Generally, these methods make one forward and backward pass through a
network to capture the model gradients for a given input and they can be developed to be agnostic
or model-dependent. GradCAM is a popular, model-dependent, backpropagation attribution method
typically applied to CNNs Selvaraju et al. (2017). GradCAM computes the gradients of a target class
with respect to the last convolutional layer, averages the gradients over the channels, multiplies the
averages by the layer activations, and applies a ReLU to retain only those gradients which point to
the target class Selvaraju et al. (2017). GradCAM visualizations are shown as a radiating heat map
centered on the important features of an input with regard to the classification Selvaraju et al. (2017).

Case-based Explanations Case-based explanation is a different avenue of XAI that aims to ex-
plain a decision using existing data Aamodt & Plaza (1994). Case-based explanation is a post-hoc
method which traditionally finds images that explain black-box model decisions from the training
set Rudin et al. (2022). The idea is to find images which share features with a given input to illustrate
which features are important Dudani (1976). Modern approaches to case-based explanation find ex-
planations through distance measurement in the latent space. In Deep k-Nearest Neighbors (DkNN),
performing kNN with an input and the deep neural network layer representations of training data
provides visual explanations for the input Papernot & McDaniel (2018). Other average voting based
approaches have also been proposed Card et al. (2019). These latent graphs have for example been
used to detect adversarial attacks Papernot & McDaniel (2018); Abusnaina et al. (2021). Case-based
explanations are becoming more prevalent with the rise of contrastive learning Chen et al. (2020);
Radford et al. (2021).

Confidence Metrics Many classification algorithms predict class membership using the
probability-like softmax score Goodfellow et al. (2016). The softmax scores have the property
of predicting values between 0 to 1 but do not reflect a real probabilistic measure. It is also well
known that the scores exhibit poor correlation with prediction confidence Platt (2000); Guo et al.
(2017). The scores can however be calibrated into meaningful confidence measures using learnable
parameters, which was performed for binary and general classifiers using Platt Platt (2000) and Tem-
perature Guo et al. (2017) scaling respectively. These parameters scale the output logits of all the
classes before they are fed to the softmax function. Various approaches have been proposed to learn
tunable parameters post-hoc and during training such as averaging predictions Lakshminarayanan
et al. (2017); Wen et al. (2020b), augmenting data Thulasidasan et al. (2019); Wen et al. (2020a),
and changing from cross-entropy to focal loss Mukhoti et al. (2020).
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Knowledge Limits Determining the knowledge limits is crucial to ensuring the reliability and
safety of machine learning systems. Inputs that are classified to be outside the operating domain
can be rejected or handed over to human users for safe processing. Popular approaches to out-of-
distribution detection include classification-based, density-based, and distance-based methods Yang
et al. (2022b). Classification-based approaches aim to separate in-distribution (ID) and OOD data via
modeling softmax score distributions Hendrycks & Gimpel (2016) and further improvements were
made by increasing ID and OOD separation through input perturbation Liang et al. (2020). Density-
based methods model the probability distribution of ID data such that OOD data can be identified
by likelihood Lee et al. (2018). Distance-based metrics detect OOD data by measuring distance
from ID data Yang et al. (2022b). This can be done by measuring distance from class centroids via
Mahalanobis distance Lee et al. (2018), using non-parametric nearest neighbor distance Sun et al.
(2022b), or measuring cosine similarity between ID data and test sample features Techapanurak
et al. (2019).

3 PROPOSED METHODS

In this section, we provide the details of our proposed techniques. We first show how the exemplars
are explained, then how they establish confidence in the response, and finally how they determine
knowledge limits.

3.1 EXEMPLAR EXPLANATION USING PAIRWISE ATTRIBUTIONS

Exemplars have been used to explain model decisions using case-based reasoning Papernot & Mc-
Daniel (2018); Card et al. (2019)Kenny & Keane (2021). However, those studies do not explain why
those exemplars are similar, except that the exemplars are closer to the test data in the latent space.
One possible solution for explaining similar exemplars is to leverage the concept of prototyping and
part prototyping Kim et al. (2014); Li et al. (2018). Prototyping is the concept of finding a small
set of representative examples for a class Kim et al. (2014). Part prototyping involves identifying
common features between a prototype and a data sample Li et al. (2018).

We extract k exemplar image samples Xe from the training set for a given input image Xi. To find
the exemplars, the input image and training set are transformed into latent vectors Z via the image
encoder F of a contrastive learning model (e.g., CLIP). Then the k nearest neighbors to the input
image Xi from the training set in the latent space are selected as the exemplars.

Inspired by part prototyping in Li et al. (2018); Nauta et al. (2020), we are interested in identifying
the parts of selected exemplars and the input image that are similar. However, we want to avoid
enumerating, or learning, a fixed set of part prototype features ahead of time. Therefore, we propose
to leverage attribution analysis to directly identify key features that link an input image and exemplar
pair. However, attribution methods are traditionally computed for a single input with respect to the
top output logit of a network F . In order to leverage standard attribution methods, we define a new
output logit from the latent space where exemplars are discovered.

Let zi be the input sample’s latent representation, and ze be a selected exemplar’s latent representa-
tion. We define a new output logit l as follows:

l = dot(ze, zi). (1)

Figure 2: Process of pairwise attribution with a neighbor exemplar image from train-set.
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The attribution map A, which explains why the pair of samples (Xe, Xi) are similar, can then be
defined as follows:

A = AttrMethod(F, l), (2)

where AttrMethod is any attribution method. We now measure the image-image pairwise attribution
with respect to the new logit l which represents the images Xe and Xi. Note that this formula can be
directly applied to any multi-modal model as long as the image encoder is based on convolutions. In
our experimental evaluation, we used GradCAM as the attribution method. This pairwise attribution
process is illustrated in Figure 2.

3.2 EXEMPLAR BASED CONFIDENCE

Confidence scores using Platt and Temperature scaling are based on the relative difference in the
output logit for the different classes Platt (2000); Guo et al. (2017). Instead of computing confidence
with respect to the raw output logit, we conjecture that it is advantageous to compute confidence as
a weighted sum of the inverse distance to the nearest k exemplars. This is partly inspired by non-
conformal methods used to detect adversarial examples Papernot & McDaniel (2018). We define
the exemplar-based confidence of an input image Xi with respect to class Y , as follows:

p(Y |Xi) =

∑
j∈|KY | 1/L(zi, zje)∑
j∈|K| 1/L(zi, z

j
e)

(3)

where K is the set of k nearest neighbors of Xi in the latent space of a contrastive learning model.
KY ⊆ K is the set of samples in K classified as the class Y . zi is the latent representation of Xi.
zje is the latent representation of the j-th neighbour in K or KY . L is the nearest neighbor distance
measure.

This equation is defined as a probabilistic measure, such that the weighted average value intrinsically
produces a value ranging [0, 1]. The weights come from the inverse of the distance between the input
test image and the nearest exemplar samples in the latent space. Next, we further extend the proposed
confidence technique with a variant of Platt scaling method Platt (2000), as follows:

p(Y |Xi) =
α
∑

j∈|KY | 1/L(zi, zje) + β∑
j∈|K| 1/L(zi, z

j
e)

(4)

where, α, β ∈ R are two parameters that can be optimized. These parameters scale and offset the
confidence score to better match the accuracy and confidence scores in the reliability analysis. This
can contribute to calibrating the probabilistic values to represent the true correctness likelihood. For
the uncalibrated exemplar-based evaluations, the values for α and β were set to 1 and 0, respectively.

3.3 KNOWLEDGE LIMITS

The knowledge limits of a model can be determined using out-of-distribution detection algo-
rithms Hendrycks & Gimpel (2016); Liang et al. (2020); Lee et al. (2018); Sun et al. (2022b);
Techapanurak et al. (2019). These algorithms typically utilize the confidence scores (i.e., softmax)
or calibrated confidence scores (e.g., Temperature scaling) to detect OOD data samples. Another
class of the OOD detection process trains a model using both ID and OOD samples to actively learn
the OOD data. Moreover, there are other specialized methods focusing on OOD detection for con-
trastive models, these are KNN+ Sun et al. (2022a), SSD Sehwag et al. (2021), and CSI Tack et al.
(2020).

In this study, we propose an exemplar-based method to detect OOD data. In this process, we predict
the class of a given sample within the in-distribution library of classes by estimating the logit vector
of the sample with the image encoder. Then, we calculate the angular distance θ of a logit vector
from the mean logits of the predicted class. The angular distance is the inverse cosine of the cosine
similarity of the mean logits and the sample logit. Given an input image Xi which is predicted by a
contrastive model to be in class Y and produces the logit vector zi, then the angular distance is:

θ = cos−1(
zi · zCY

||zi||||zCY ||
) (5)
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where zCY is the mean logit of all the exemplars in the training set that belongs to class Y . Here, zCY
is alternatively called the cluster centroid of class Y .

Using the angular distance, we pre-characterize the angular distribution for each of the classes in
the training data set. We calculate the percentile of the angular distance of the given image θi with
respect to the angular distance of the training exemplars θY belonging to the predicted class of the
input image Y , as follows:

pi = percentile(θi, θY ). (6)

This expression indicates the percent possibility of the sample Xi to be out-of-distribution of the
known dataset. The higher the percentile number, the higher the chance of the sample being out-of-
distribution.

To calculate the ID score SID we define the following expression,

SID = 1− (pi/100). (7)

We then define a threshold Sth to decide if the sample resides in or out of distribution. The thresh-
old is calculated by observing the distribution of the known dataset (in-distribution dataset), which
can maximize the number of ID samples and the separation of ID and OOD sets. The optimal
value of Sth for our experiment is reported in section 4.3. Therefore, the binary decision indicating
membership in the OOD class for a given image Xi is:

OOD(Xi) = SID < Sth. (8)

4 RESULTS AND EVALUATION

In this section, we present the evaluation of the proposed explainability methodology described
in section 3. All experiments for the proposed methods are performed with the ImageNet dataset
Russakovsky et al. (2015), implemented with the PyTorch library Paszke et al. (2019), and the exper-
iments are run on NVIDIA A40 GPUs. We use the Captum attribution method library Kokhlikyan
et al. (2020) as a reference for the implementation of our own version of image-image pairwise
GradCAM attribution Selvaraju et al. (2017). The proposed method is evaluated both quantitatively
and qualitatively. We also evaluate the effectiveness of using pairwise GradCAM to explain why the
model thought the exemplars were similar to the given input sample.

The contrastively trained OpenAI CLIP Radford et al. (2021) model is used to perform all the ex-
periments in this section. The CLIP model has two encoders - image and text. For reproducibility
reasons, we used the pre-trained RN101-based CLIP model from the OpenAI repository. The RN101
model produces a latent vector of length 512. The input size of the image encoder in the CLIP model
is 224x224 with three color channels. The input images are preprocessed using the supplied pre-
processing function with the RN101 CLIP model, which includes resizing, center-cropping, and
normalization. The input of the text encoder model is generated by using the CLIP tokenizer.

4.1 EXPLAINING EXEMPLARS USING PAIRWISE ATTRIBUTIONS

We applied our proposed pairwise attribution method to perform the input attribution analysis. Since
this method is data type agnostic, we can perform input attribution analysis for any two data points
as long as the latent vectors are of the same length. We can estimate neighbor exemplars for a given
test image, based on the dot product of the latent vectors representing similarity. To qualitatively
examine our input attribution method, we have calculated the input attribution of the neighbor ex-
emplars based on the input test image in Figure 3. This experiment shows the related exemplars in
the train set and the relation with the test image (highlighted ”Ostriches” in the attribution map).
The salient regions in the attribution maps show the most important region for the model to identify
the class (Ostrich neck).

4.2 EVALUATION OF EXEMPLAR-BASED CONFIDENCE

To evaluate the proposed exemplar based confidence scores described in Section 3.2, we performed
reliability analysis adopted from Guo et al. (2017) on the ImageNet, SUN, and aYahoo datasets. The
reliability diagrams based on the exemplar and softmax confidence scores are shown in Figure 4. The
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Figure 3: Sample exemplar image-image pairwise attribution with neighbors.

reliability diagram shows the correlation between accuracy and confidence scores in confidence bins.
Both the accuracy and confidence values of an ideal classifier should follow the diagonal line of the
accuracy-confidence curve. In each confidence bin, the average accuracy and average confidence
values of the data points are plotted.

(a) (b) (c) (d)

Figure 4: Reliability diagrams for CLIP image encoder model with ImageNet dataset: (a) exemplar-
based uncalibrated, (b) exemplar-based calibrated, (c) softmax-based uncalibrated, and (d) softmax-
based calibrated scores.

In Figure 4(a), we can see that the uncalibrated exemplar-based confidence score is performing very
close to an ideal classifier, rendering mean accuracy values that are aligned with confidence scores in
each bin. On the other hand, in fig 4(c), the uncalibrated softmax-based score shows a high number
of low-confidence data predictions. This clearly shows that the softmax-based confidence scores by
default are not suited for interpreting the latent space of contrastive models. Reliability diagrams for
SUN and aYahoo are shown in the appendix section A.1. Those also show similar results as seen on
the ImageNet dataset.

To better represent the true probabilistic nature of the confidence scores, we calibrate both the ex-
emplar and softmax-based confidence scores. The softmax score is calibrated using the temperature
scaling method Guo et al. (2017). The temperature scaling on the softmax confidence score is cal-
culated by p(Y |Xi) = softmax(zi/T ). Where the T is the temperature parameter. In our experi-
ments for the ImageNet dataset, we have found the optimal values of α and β for the exemplar-based
confidence score to be 1 and 28.4340, respectively. The optimal T value is found to be 0.0097.

We have also calculated the expected calibration error (ECE) from the reliability diagrams. The
expected calibration error measures the disagreement between the accuracy and confidence scores,
which is defined by the following equation: ECE =

∑
i
Bini

N |ai − ci|. Where, Bini, N , ai, and
ci indicate the number of data points in the ith bin, the total number of data points, the accuracy
of the data points in Bini, and the average confidence score in Bini, respectively. Table 1 shows
the ECE of the exemplar-based confidence score and the softmax confidence score. Both of these
confidence scores are uncalibrated. However, we can see that the exemplar-based confidence score
is better than the softmax confidence score as the exemplar-based confidence score resulted in very
small ECE values without the need for calibration for all three different datasets. This makes the
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proposed exemplar-based confidence metric dataset agnostic, predicting correct probability scores
without the need for data calibration. On the other hand, the calibrated exemplar and softmax-based
scores resulted in very close ECE values.

Table 1: ECE for exemplar-based confidence score and softmax confidence score with scaling.
(Lower is better)

ImageNet SUN aYahoo
Uncalibrated Calibrated Uncalibrated Calibrated Uncalibrated Calibrated

Exemplar 0.085 0.029 0.070 0.035 0.022 0.020
Softmax 0.530 0.027 0.518 0.028 0.827 0.027

4.3 KNOWLEDGE LIMITS ANALYSIS

To perform the knowledge limits analysis, we first analyzed the ImageNet class distributions using
our proposed angular distance metric. Then we introduced the out-of-distribution (OOD) datasets -
ImageNet-O Hendrycks et al. (2021), SUN Xiao et al. (2010), and aYahoo Farhadi et al. (2009) to
perform the OOD detection using the method described in section 3.3. Near-OOD datasets mimic
the data patterns of their original datasets but have a different set of classes, making them out-of-
distribution, and making them harder to detect than far-OOD datasets Yang et al. (2022a).

ImageNet class centroid analysis: To analyze the class centroid and data points, we illustrate
the probability distribution of all data points of a class Y and their angular distances θ from the
mean centroid zCY of that class in Figure 5. We see that the angular distance distributions follow
log-normal distribution due to the nature of the cosine similarity-based angular distance calculation.

Figure 5: Probability density and fitted log-normal distribution function of classes (“Accordion”,
“Koala”, and “Scotch Terrier”) from ImageNet based on angular distance from the class centroid.

OOD detection using angular distance metric To test the OOD detection capability of the
method proposed in section 3.3, ImageNet-O Hendrycks et al. (2021), SUN Xiao et al. (2010),
and aYahoo Farhadi et al. (2009) datasets are used as the OOD datasets. To perform the detection
experiment, 2000 data points randomly selected from the ImageNet dataset were mixed with the
6000 data points from ImageNet-O, SUN, and aYahoo datasets (2000 data points from each dataset)
and the ID score SID was computed. We have also compared our method with state-of-the-art
contrastive model OOD detection algorithms – KNN+ Sun et al. (2022a) and SSD+ Sehwag et al.
(2021). The SSD is a fundamentally different algorithm that predicts few-shot OOD detection. And
CSI Tack et al. (2020) is computationally inefficient to implement on a large dataset like ImageNet.
In section A.2, figure 9 and table 3 show the distribution and the mean scores for in-distribution and
out-of-distribution data points for the proposed exemplar-based method, KNN+, and SSD+.

We have also performed AUROC and FPR@95TPR tests by setting a threshold in the ID score
values. The threshold for the proposed method optimal Sth is found to be 0.4. For KNN+, the
k hyperparameter and the threshold are set to be 1000 (for ImageNet) and −0.72, respectively, as
per the recommendation of including 95% of in-distribution data samples. We used the default
parameters for the experiments with SSD+ and a threshold of 700 is set by empirical analysis. Table
2 shows the FPR@95TPR, AUROC, and ID accuracy scores for the ImageNet-O, SUN, and aYahoo
datasets based on the three different methods. Except for the AUROC of the SUN dataset, we can
see that our method outperforms in every category.
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Table 2: AUROC and FPR@95TPR scores for ImageNet-O, SUN, and aYahoo datasets with KNN+,
SSD+, and proposed exemplar-based OOD detection algorithms. In this experiment, ImageNet is
considered as the ID dataset.

ImageNet-O SUN aYahoo ID Mean

AUROC (↑) FPR@95 (↓) AUROC (↑) FPR@95 (↓) AUROC (↑) FPR@95 (↓) Accuracy

Proposed 70.07 85.50 72.82 80.05 68.38 86.39 64.62
KNN+ 68.09 93.85 73.03 90.80 67.24 88.20 52.08
SSD+ 61.63 93.89 67.41 97.10 60.91 94.09 57.88

4.4 A SAMPLE REPORT

Figure 6: A sample report showing the given test image, image exemplars in the training set and
image-image pairwise attribution maps, and confidence and OOD reports showing the result with
the proposed framework.

The report from our proposed framework depicted in figure 6 shows that the attribution maps of
the exemplars that could identify the correct object in the test image (the most salient features are
the shark fin and jaw), the confidence of the label prediction is 80.346%, and the image is in the
distribution of the ImageNet dataset (reported ID score SID is 0.601 and percentile pi is 39.92 ).
The combination of these metrics provide a stronger explanation and trust in the contrastive AI
model. A model may sometimes give a very confident prediction outside the model’s knowledge
limits. The framework ensures that a potential user would be aware of such a situation.

5 DISCUSSION

Inspired by the recent success of training visual language models using unsupervised contrastive
learning, we proposed new explainable AI techniques based on exemplars. We made the following
contributions: (i) explained exemplars using pairwise image-image attributions, (ii) used exemplars
to compute confidence scores, and (iii) analyzed knowledge limits using exemplars. The experimen-
tal evaluation presented demonstrates the ability of the proposed techniques to provide meaningful
explanations for contrastive models. In particular, the attributions generated point out key features
between input and exemplars that allow for easier human interpretation of model decision-making.
Additionally, the confidence and knowledge limit measures are insightful and provide very strong
results with minimal use of empirical parameters. The proposed techniques in this paper are well-
positioned to explain existing and future foundational visual language models.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Agnar Aamodt and Enric Plaza. Case-based reasoning: Foundational issues, methodological varia-
tions, and system approaches. AI Commun., 7(1):39–59, mar 1994. ISSN 0921-7126.

Ahmed Abusnaina, Yuhang Wu, Sunpreet Arora, Yizhen Wang, Fei Wang, Hao Yang, and
David Mohaisen. Adversarial example detection using latent neighborhood graph. In 2021
IEEE/CVF International Conference on Computer Vision (ICCV), pp. 7667–7676, 2021. doi:
10.1109/ICCV48922.2021.00759.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katie Millican, Malcolm Reynolds, Roman Ring, Eliza Rutherford, Serkan
Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob Menick, Sebastian
Borgeaud, Andrew Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikolaj Binkowski, Ricardo
Barreira, Oriol Vinyals, Andrew Zisserman, and Karen Simonyan. Flamingo: a visual language
model for few-shot learning, 2022.
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A APPENDIX

In this appendix, we provide supplementary information and ablation studies that did not fit within
the regular paper. The reliability diagrams for SUN and aYahoo datasets are given in section A.1.
The distribution of ID scores for OOD detection from different methods is shown in section A.2.
We evaluate image attributions with respect to test images in section A.3 and text prompts in sec-
tion A.4. Additional details of the ODD datasets are provided in Section A.5. Some complete
reports are shown for image samples from OOD datasets in section A.6. The environmental impact
is analyzed in Section A.7. Lastly, limitations of the proposed exemplar-based explanation method
are summarized in Section A.8.

A.1 RELIABILITY DIAGRAMS FOR SUN AND AYAHOO DATASETS

(a) (b) (c) (d)

Figure 7: Reliability diagrams for CLIP image encoder model with SUN dataset: (a) exemplar-based
uncalibrated, (b) exemplar-based calibrated, (c) softmax-based uncalibrated, and (d) softmax-based
calibrated scores.

(a) (b) (c) (d)

Figure 8: Reliability diagrams for CLIP image encoder model with aYahoo dataset: (a) exemplar-
based uncalibrated, (b) exemplar-based calibrated, (c) softmax-based uncalibrated, and (d) softmax-
based calibrated scores.

A.2 DATA DISTRIBUTIONS FOR OOD DETECTION FOR DIFFERENT DATASETS AND METHODS

Table 3: OOD detection score for in-distribution and out-of-distribution data for KNN+, SSD+, and
proposed methods.

In-distribution Out-of-distribution
ImageNet ImageNet-O SUN aYahoo

Proposed 0.46 0.25 0.22 0.27
KNN+ −0.57 −0.62 −0.64 −0.63
SSD+ 803.64 913.72 905.61 929.67

A.3 IMAGE ATTRIBUTION WITH IMAGE PROMPTS

In this section, we show additional examples of exemplar attributions computed with respect to test
images. The process of calculating attribution maps is shown in section 3.1. Figures 10 to 13 show
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(a) (b) (c)

Figure 9: Histogram for the data prediction percentile of ID and OOD data points for (a) Exemplar-
based, (b) Deep neighbor KNN+, and (c) Self-supervised SSD+ methods.

the nearest exemplar neighbors based on a given test image prompt and the calculated attribution
maps for explaining those exemplars.

Figures 10 and 11 illustrate test images that are properly learned by the model in the experiment
(CLIP). The Scorpion in figure 10 the exemplar images has higher saliency around Scorpion regions.
One exemplar image of the Garden Spider has higher saliency around the legs of the Spider, which
looks visually similar to the scorpion’s legs. The Partridge exemplar image in figure 11 also looks
visually similar to the Quail in the test image.

Figure 10: Image-image pairwise attribution with exemplar neighbors.

Figure 11: Image-image pairwise attribution with exemplar neighbors.
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We also found some examples which are not properly learned by the CLIP model. From the attri-
bution maps in figure 12 we can see that the House Finch label is correctly predicted but the most
salient regions are identified to be the sky and the wires. Similarly, in figure 13, the Jellyfish has
higher saliency in background seawater.

Figure 12: Image-image pairwise attribution with exemplar neighbors.

Figure 13: Image-image pairwise attribution with exemplar neighbors.

A.4 IMAGE ATTRIBUTION WITH TEXT PROMPTS

In this section, we show additional examples of exemplar attributions computed with respect to text
prompts. To generate the exemplars of the given text prompt and the attribution of the text data to
the exemplar images, a similar approach is used as shown in section 3.1. The process is illustrated
in figure 14.

Figure 14: Text-image pairwise attribution method.
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Figures 15 to 18 show the nearest exemplar neighbors based on a given text prompt and the calcu-
lated attribution maps for explaining those exemplars. Giving text prompts of objects (figures 15
and 16) can properly search the nearest exemplars having the object and/or texts in the image.

Figure 15: Text-image pairwise attribution with exemplar neighbors.

Figure 16: Text-image pairwise attribution with exemplar neighbors.

We have also tested our attribution method with words of abstract ideas (figures 17 and 18). We
have seen that the attribution method could identify objects related to the abstract word and could
also identify texts in the image corresponding to the given prompt.

Figure 17: Text-image pairwise attribution with exemplar neighbors.
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Figure 18: Text-image pairwise attribution with exemplar neighbors.

A.5 DATASETS USED FOR OOD DETECTION

We used three datasets for OOD analysis – ImageNet-O, SUN, and aYahoo. The SUN and aYahoo
datasets are independent datasets for different classification objectives. However, SUN and aYahoo
datasets can be considered as out-of-distribution of the ImageNet dataset. On ther other hand, the
ImageNet-O dataset is specifically designed for OOD analysis with the ImageNet dataset.

The ImageNet-O dataset is designed with a 200 class subset of 1000 classes from the ImageNet 1K
dataset. The selected 200 classes in this adversarially created dataset cover the most broad categories
of ImageNet 1K. To create this dataset, images from ImageNet 22k were analyzed. After removing
the images of ImageNet 1K from the broad dataset, the images that have a high confidence score
from a ResNet50 model-based prediction were kept. Then a subset of high-quality images was
selected from the set of images with higher confidence. In total, this dataset contains 2,000 data
samples.

A.6 SAMPLE REPORTS FOR OOD DATA

In this section, we have included sample reports from the three OOD datasets – ImageNet-O, SUN,
and aYahoo (figures 19 to 21).

Figure 19: A sample report showing the given test image from ImageNet-O dataset, image exemplars
in the ImageNet training set and image-image pairwise attribution maps, and confidence and OOD
reports showing the result with the proposed framework.

Here in these experiments, the test image data is obtained from one of the OOD datasets and the
exemplars are searched from the ImageNet ID dataset. The confidence and OOD detection are also
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Figure 20: A sample report showing the given test image from SUN dataset, image exemplars in the
ImageNet training set and image-image pairwise attribution maps, and confidence and OOD reports
showing the result with the proposed framework.

Figure 21: A sample report showing the given test image from aYahoo dataset, image exemplars
in the ImageNet training set and image-image pairwise attribution maps, and confidence and OOD
reports showing the result with the proposed framework.

computed using the ID exemplars. In figures 19 to 21, we can see that even if the OOD images look
visually similar to the ID exemplars, the confidence scores are lower and the images are classified
as out-of-distribution of the ID ImageNet dataset.

A.7 ENVIRONMENTAL IMPACT

Given the computer hardware defined in the manuscript, we provide an approximate calculation
of the environmental impact of our experimental evaluation. Given the full evaluation required
approximately 6hrs of GPU compute, the evaluation released 0.78kg of CO2 according to ML CO2

impact Lacoste et al. (2019). These numbers are calculated given the default energy efficiency set
by ML CO2 impact, and with zero purchased carbon offset.

A.8 LIMITATIONS

There are several limitations to this method that we think are important to discuss. This proposed
method depends on the widely studied exemplar data points. These exemplars are calculated using a
k-nearest neighbor algorithm, which is computationally expensive. Though this study does not focus
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on the detection of exemplars but rather develops methods based on the exemplars, the calculation
of exemplars can impact the overall computational efficiency.

Furthermore, in some cases where the latent space is crowded or has higher density in the latent
space with many classes localized into a tiny space, the exemplars extracted for some input may
belong to an incorrect class. This results in an inaccurate visualization of the model decisions. We
believe this behavior can be explained by two factors. First, imperfections in the data distribution
lead to cases of overlap in the dimension of interest. Second, the use of a one-dimensional distance
metric means the data that is aligned in the dimension of interest is treated as belonging to the same
class.
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