
ECO: Efficient Computational Optimization for Exact Machine Unlearning in
Deep Neural Networks

Yu-Ting Huang 1 Pei-Yuan Wu 2 Chuan-Ju Wang 3

Abstract

This paper introduces ECO, an efficient compu-
tational optimization framework that adapts the
CP algorithm—originally proposed by Cauwen-
berghs & Poggio (2000)—for exact unlearning
within deep neural network (DNN) models. ECO
utilizes a single model architecture that integrates
a DNN-based feature transformation function
with the CP algorithm, facilitating precise data
removal without necessitating full model retrain-
ing. We demonstrate that ECO not only boosts
efficiency but also maintains the performance of
the original base DNN model, and surprisingly,
it even surpasses naive retraining in effective-
ness. Crucially, we are the first to adapt the
CP algorithm’s decremental learning for leave-
one-out evaluation to achieve exact unlearning in
DNN models by fully removing a specific data
instance’s influence. We plan to open-source our
implementation to promote further research in the
machine unlearning field.

1. Introduction
The concept of machine unlearning involves a systematic
approach to eliminate the influence of specific data points
from a previously trained machine learning model. This
procedure has recently been legally mandated by several
regulations, including the California Consumer Privacy Act
(CCPA) (de la Torre, 2018), Canada’s Consumer Privacy
Protection Act (CPPA), the European Union’s General Data
Protection Regulation (GDPR) and the former Right to Be
Forgotten (Chris Jay Hoofnagle & Borgesius, 2019; Rosen,
2012). These laws mandate that companies and organiza-

1Graduate Program of Data Science, National Taiwan Univer-
sity and Academia Sinica, Taipei, Taiwan 2National Taiwan Univer-
sity, Taipei, Taiwan 3Academia Sinica, Taipei, Taiwan. Correspon-
dence to: Yu-Ting Huang <r11946008@ntu.edu.tw>, Chuan-Ju
Wang <cjwang@citi.sinica.edu.tw>.

Accepted to the Workshop on Advancing Neural Network Training
at International Conference on Machine Learning (WANT@ICML
2024).

tions enable users to withdraw consent for their data at any
time, which requires the removal of this data’s influence
from any machine learning models used. To comply with
these requirements, one common strategy is naive retraining,
which entails retraining models by utilizing the remaining
training data after excluding the data points that have been
requested for removal. However, this solution frequently
incurs substantial computation and time overhead.

To address the limitations of naive retraining, various strate-
gies for machine unlearning have been developed, showing
promising results in efficiently removing data influence.
Previous research in machine unlearning has explored algo-
rithms not based on deep neural networks (DNNs). Notable
examples include unlearning methods for linear models (Ma-
hadevan & Mathioudakis, 2021), support vector machine
(SVM) (Cauwenberghs & Poggio, 2000), K-means (Ginart
et al., 2019), and random forest (Brophy & Lowd, 2021).

For DNN-based machine learning algorithms, research into
machine unlearning has branched into two main approaches:
exact unlearning and approximate unlearning. Several ap-
proximate unlearning methods utilize the Fisher information
matrix (FIM) and influence functions to facilitate data re-
moval (Guo et al., 2020; Sekhari et al., 2021). Alternative
approaches include variational forgetting for regression and
Gaussian processes (Nguyen et al., 2020), neural tangent
kernel forgetting (NTK) (Golatkar et al., 2020), and mixed-
linear models (MLM) (Golatkar et al., 2021).

Despite the purported computational benefits of these ap-
proximation methods,1 they often lack a robust guarantee of
the unlearning process’s efficacy, leading to a performance
gap compared to exact unlearning (Jia et al., 2023). More-
over, these methods have not consistently demonstrated
reliability in terms of forgetting quality. In contrast, exact
unlearning methods inherently offer reliability by directly
eliminating the requested data. Research in this area aims to
optimize the retraining process to reduce costs (Bourtoule
et al., 2021; Yan et al., 2022). For example, SISA (Bour-
toule et al., 2021) utilizes data partitioning mechanisms

1Some recent studies, including (Jia et al., 2023; Foster et al.,
2024; Zhang et al., 2022), have shown that the computation time
for these approximate unlearning methods may be even longer
than initially anticipated.

1

ECO: Efficient Computational Optimization for Exact Machine Unlearning in Deep Neural Networks

to accelerate retraining, segmenting datasets into distinct,
non-overlapping shards and training a set of weak learners
for each shard. However, such research typically entails
labor-intensive tasks, including data partitioning, ensem-
bling multiple sub-models, and tracking the order of data
training—complexities that challenge service providers in
maintaining an efficient workflow. Moreover, these exact
unlearning methods generally yield lower model accuracy
compared to naive retraining (Bourtoule et al., 2021; Yan
et al., 2022; Shen et al., 2024; He et al., 2021; Zhang et al.,
2022; Li et al., 2023; Yan et al., 2022).

In supervised learning, the addition or removal of small data
amounts typically results in minimal changes to a model’s
core characteristics. This need has led to the development of
incremental and decremental algorithms that update models
efficiently without full retraining. Research in the dual prob-
lem of kernel SVMs, including the CP algorithm (Cauwen-
berghs & Poggio, 2000) and subsequent studies (Laskov
et al., 2006; Karasuyama & Takeuchi, 2009), has explored
methods to maintain optimality when modifying the training
set. However, due to the understanding and implementation
challenges of such algorithms discussed in (Laskov et al.,
2006) and the complexities of DNN models, applying these
methods directly to DNN models is not trivial, marking an
important area for further exploration.

To this end, we develop an efficient computational optimiza-
tion framework (ECO) that adapts the CP algorithm for
exact unlearning in the context of DNN models. Unlike pre-
vious efforts that rely on multiple weak learners (Bourtoule
et al., 2021; Yan et al., 2022), our approach uses a single
model for effective unlearning. Our key innovations include:
1) employing the CP algorithm to identify a significantly
smaller core dataset compared to the original training set;
2) enhancing the traditional CP algorithm, which typically
uses predefined kernels, by integrating DNNs to create a
data-driven feature transformation function. Our method
is a hybrid approach that employs two distinct optimizers:
the CP algorithm for the final fully connected layer and
a standard gradient descent optimizer for the DNN-based
feature transformation function. This dual optimization ap-
proach allows for exact unlearning without retraining the
entire model, promoting both optimality and efficiency. The
contributions of this paper can be summarized as follows:

• We present ECO, an innovative hybrid framework
that integrates the CP algorithm with DNNs for exact
machine unlearning. This approach simplifies labor-
intensive tasks, significantly reducing the workload for
service providers compared to previous exact unlearn-
ing methods for DNNs.

• Our experiments show that the proposed hybrid ap-
proach, ECO, not only reliably removes the requested
data but also maintains, and surprisingly enhances, the

base DNN model’s performance compared to methods
using only a gradient descent-based optimizer.

• We are the first to adapt the CP algorithm’s leave-one-
out decremental learning for exact unlearning in DNNs,
making a significant advancement in the field. We also
open-source a usable base code for the CP algorithm,
addressing the previous lack of such resources and en-
couraging further research and practical applications.

2. Problem Definition and Preliminaries
2.1. Problem Definition

Machine unlearning aims to eliminate the influence of spe-
cific training data from an already-trained machine learning
model (Cao & Yang, 2015; Bourtoule et al., 2021). Let
Dtrain be a traning set, and Df ⊆ Dtrain the forget set,
which includes the instances targeted for removal. The re-
maining data, known as the retained set, and denoted as
Dr = Dtrain \ Df , are those instances whose influence is
to be preserved in the model. We denote the model post-
unlearning as θu, which is adjusted to exclude the impacts
of Df from the original model θo, trained on the full dataset
Dtrain. The primary challenge of machine unlearning is to
develop an efficient and effective method to transition from
θo to θu. In our analysis, we assess the efficiency of the
unlearning process by measuring the time required for its
completion. Additionally, we evaluate the efficacy of the
unlearned model, θu, by examining its performance with
respect to the retained set, Dr, the forget set, Df , and an
independent test set, Dtest, which does not overlap with the
training set Dtrain.

2.2. Revisit the Dual SVM and the CP Algorithm

Given a training dataset {(xi, yi)}ni=1, where xi ∈ X ⊆ Rd

represents the input features and yi ∈ {−1,+1} denotes
the output class label, the dual SVM learns the prediction
function f(·) using learnable parameter αi for each data
point xi and a bias term b. The prediction function is defined
as:

f(x) =

n∑
i=1

αiyi⟨Φ(xi),Φ(x)⟩+ b, (1)

where Φ(.) is a function mapping x into a latent space,
and ⟨·, ·⟩ denotes the inner product in this space. Based
on the Karush-Kuhn-Tucker (KKT) optimality conditions,
the optimization process for the dual SVM must satisfy the
following two criteria. First,

n∑
i=1

yiαi = 0, (2)

and, secondly, all data points are classified into the three
groups according to their classification margins and corre-

2

ECO: Efficient Computational Optimization for Exact Machine Unlearning in Deep Neural Networks

sponding Lagrange multipliers αi (Cauwenberghs & Poggio,
2000; Laskov et al., 2006; Karasuyama & Takeuchi, 2009):

O = {i|yif(xi) > 1, αi = 0} , (3)
M = {i|yif(xi) = 1, αi ∈ [0, C]} , (4)
I = {i|yif(xi) < 1, αi = C} , (5)

where C ∈ R+ is the predefined regularization parameter.
From (1), it is clear that assigning a value of 0 to αi effec-
tively removes the data point (xi, yi) from the prediction
function. In the context of machine unlearning, this action
serves to unlearn (xi, yi) from the model. Notably, this
method of unlearning is exact, eliminating any influence of
(xi, yi) on the model.

Following this concept, we provide a concise overview of
how the algorithm proposed by Cauwenberghs & Poggio
(2000)—hereafter referred to as the CP algorithm—updates
an exact optimal solution to maintain the KKT optimality
conditions. This update is performed without the need for
model retraining when learning or unlearning specific exam-
ples. We denote the difference between the updated value
of a variable h and its original value as ∆h and refer to the
data currently being learned or unlearned as (xc, yc). Given
that αi values for instances inM (as described in (4)) can
vary from 0 to C, they exhibit a high degree of flexibility.
Therefore, the strategy involves adjusting αi of instances in
M = {m1,m2, · · · ,m|M|} to accommodate ∆αc while
still upholding the KKT condition. By incorporating these
adjustments into (2) and (4), we derive the following equa-
tion to maintain KKT compliance:

0 ym1 · · · ym|M|
ym1 dm1m1 · · · dm1m|M|

...
...

. . .
...

ym|M| dm|M|m1 · · · dm|M|m|M|

︸ ︷︷ ︸

Q

∆b

∆αm1

...
∆αm|M|

= −

yc

dm1c

...
dm|M|c

∆αc,

(6)

where dij = yiyj⟨Φ(xi),Φ(xj)⟩. The goal of the CP algo-
rithm is to find the appropriate αi value assignments that
satisfy the KKT condition for datasets that are enlarged
(n← n+ 1) or reduced (n← n− 1). More details of the
CP algorithms can be found in Cauwenberghs & Poggio
(2000) and in 3.2.1.

3. Our Proposed Method: ECO
Unlike previous exact unlearning efforts that relied on nu-
merous weak learners (Bourtoule et al., 2021; Yan et al.,
2022), our approach, ECO, utilizes a single model to effi-

ciently and effectively achieve unlearning. The key inno-
vations of ECO include: 1) utilizing the CP algorithm to
identify a significantly smaller core dataset, denoted as CCP,
compared to the original training set Dtrain; 2) enhancing
the traditional CP algorithm, which typically employs pre-
defined hand-crafted kernels, by incorporating deep neural
networks (DNNs) to develop a data-driven feature trans-
formation function Φ(.), trained exclusively on the core
dataset.

ECO employs two distinct optimizers: the CP algorithm
for the final fully connected layer and a classic gradient-
descent-based optimizer for the feature transformation func-
tion Φ(x). This dual optimization strategy enables exact
unlearning without retraining the entire model, thus ensur-
ing both optimality and efficiency. Furthermore, since Φ(.)
is trained exclusively on the core dataset, updates are only
necessary if the forget set Df intersects with it. As the core
dataset is significantly smaller than the original Dtrain, such
intersections are less likely, further enhancing the efficiency
of our proposed method.

Below, we outline our method in two main parts: 1) model
preparation and 2) model serving. In the subsequent sec-
tions, we detail each component and demonstrate how our
proposed framework overcomes challenges encountered in
earlier methods. Note that while we use binary classification
to illustrate our method, this methodology can be straightfor-
wardly extended to multi-class classification and regression
tasks.

3.1. Model Preparation

Consider a DNN model, trained on the training set Dtrain,
defined by:

fDtrain
(x; W̃Dtrain

, b̃Dtrain
,ΦDtrain

)

= W̃ ⊺
Dtrain

ΦDtrain(x) + b̃Dtrain ,
(7)

using a gradient-based (GD-based) optimizer and a cross-
entropy loss function ℓCNT. Based on the form outlined
in (1), our initial step utilizes the CP algorithm to find a
functionally equivalent alternative to fDtrain , expressed as

f̃Dtrain
(x;α, b,ΦDtrain

)

=

n∑
i=1

αiyiΦDtrain
(xi)

⊺ΦDtrain
(x) + b.

(8)

Above, (8) replaces W̃Dtrain and b̃Dtrain in (7) with∑n
i=1 αiyiΦDtrain

(xi) and b, respectively. Note that in this
step, we freeze ΦDtrain

(·) and employ the CP learning al-
gorithm (refer to Algorithm 1 in Cauwenberghs & Poggio
(2000)) to learn αi for each instance xi ∈ Dtrain, as well as
the bias term b. Recall from (8) that our method utilizes two
distinct optimizers: the CP algorithm for the final fully con-

3

ECO: Efficient Computational Optimization for Exact Machine Unlearning in Deep Neural Networks

nected layer and a classic gradient-descent-based optimizer
for the feature transformation function Φ(x).

Using (8), we divide the training instances in Dtrain into
three groups: O,M, and I based on (3)–(5). We then
proceed to identify the core dataset CCP as:

CCP =M∪ I ∪ Õ, (9)

where Õ denotes the set of instances with the lowest kCP

values of yif(xi) for i ∈ O. The rationale behind this
configuration is to focus on instances that are not well-
learned. Specifically, from (3) to (5), it is clear that M
and I encompass data points where yif(xi) ≤ 1, signaling
suboptimal prediction. Moreover, we refine our selection
by including instances from O in the construction of Õ that
exhibit lower values of yif(xi), denoting relatively poorer
quality predictions.

In the final stage of model preparation, we aim to ensure
that the prediction function depends exclusively on the core
dataset, CCP. To this end, we pose the following minimiza-
tion problem:

Ex∼CCP
[ℓMSE(ΦCCP

(x),ΦDtrain
(x))] (10)

to develop a new transformation function ΦCCP(x).

Above, we employ data points in CCP to train a ΦCCP
(x)

that mimics ΦDtrain
(x) using a mean squared error (MSE)

loss function, ℓMSE, and a classic gradient-descent-based
optimizer, resulting in

fCCP
(x;α, b,ΦCCP

) =
∑

i∈CCP

αiyiΦCCP
(xi)

⊺ΦCCP
(x) + b.

(11)
Note that αi > 0 applies only to instances belonging to
M and I. Therefore, with the newly learned ΦCCP

(x),
(11) becomes irrelevant to instances outside the set CCP.
The complete procedure of model preparation is outlined in
Algorithm 1.

Algorithm 1 ECO: Model Preparation
1: Input: Dtrain

2: Output: fCCP
(x), CCP

3: fDtrain
← Use the classic GD-based optimizer for

model training with Dtrain (see (7))
4: α, b← Employ Algorithm 1 in Cauwenberghs & Pog-

gio (2000) with fixed ΦDtrain
(x) to obtain αi and b in

(8)
5: CCP← Construct the core dataset via (9)
6: ΦCCP

← Learn a new feature transformation function
ΦCCP(x) with the loss in (10)

3.1.1. A STRATEGY FOR CP LEARNING ACCELERATION

Recall that the initial step in the above model preparation
involves using the CP algorithm to identify a functionally

equivalent alternative f̃Dtrain
to fDtrain

, as shown in (8).
However, this step requires calculations involving all in-
stances in Dtrain, leading to inefficiencies. To address this,
we propose an approximation strategy that accelerates the
optimization process of the CP algorithm.

Specifically, this approximation is implemented before us-
ing the CP algorithm to derive (8). The main strategy in-
volves identifying a smaller subset, CGD, from Dtrain. This
subset consists of instances with the highest kGD values
of losses ℓCNT from the given DNN model. The rationale
behind this design is twofold: 1) first, the prediction func-
tion in (1) is solely influenced by data with non-zero αi;
2) the categorization in (3)–(5) indicates that data points
with non-zero αi are those where yif(xi) ≤ 1, suggesting
suboptimal prediction. Given these observations and within
the context of DNN models, higher values of ℓCNT indicate
relatively poorer predictions, thereby likely resulting in non-
zero αi. Consequently, instead of assigning αi for the full
Dtrain using the CP algorithm, we streamline the computa-
tional process by focusing solely on this critical yet smaller
subset, CGD since for instances in Dtrain \ CGD, αi values
are most likely zero, making this approach both efficient
and effective.

Using CGD, we train a DNN model fCGD
(x) by employing

the same approach as outlined in (7), using a gradient-based
optimizer and a cross-entropy loss function ℓCNT:

fCGD(x; W̃CGD , b̃CGD ,ΦCGD) = W̃ ⊺
CGD

ΦCGD(x) + b̃CGD .
(12)

Adopting the methodology from (7) to (8) and substituting
Dtrain with CGD, we derive:

f̃CGD
(x;α, b,ΦCGD

) =
∑

i∈CGD

αiyiΦCGD
(xi)

⊺ΦCGD
(x)+b.

(13)

With (13), the remainder of the model preparation process
follows the steps outlined in Lines 5 and 6 of Alorithm 1.
Note that different from the original version, the derived
core dataset, CCP, is based not on the categorization of
Dtrain but on the subset CGD.

3.2. Model Serving

We now demonstrate the process for handling an unlearning
request, Df ⊂ Dtrain. Since the model fCCP

(x), detailed in
(11), is solely derived from CCP, updates are necessary only
if the intersectionDf∩CCP is non-empty. When a request to
unlearnDf arises, the model update procedure is segmented
into two main steps: 1) the last fully connected layer and 2)
all other layers except the last fully connected layer, i.e., the
feature transformation function ΦCCP

(x). First, for the last
fully connected layer, which is influenced solely byM and
I (as indicated from (3) to (5)) where αi > 0, we update it
only if Df intersects withM∪I . This update is performed

4

ECO: Efficient Computational Optimization for Exact Machine Unlearning in Deep Neural Networks

using a modified version of the original CP unlearning al-
gorithm outlined in Section 3.2.1.2 Subsequently, we revise
CCP via (9) based on the newly identifiedM, I, and Õ.

After the first step, for ΦCCP
(x), updates are necessary only

if Df ∩ CCP ̸= ∅ and performed through the optimization
in (10). Since the size of CCP is considerably smaller than
that of Dtrain, the need for unlearning is reduced, and often
the model remains unaffected by Df .

Note that the above two steps must be performed sequen-
tially because the set CCP is determined by the CP algorithm;
reversing the order would result in logical inconsistencies.
Algorithm 2 illustrates how our model processes an unlearn-
ing request, resulting in an unlearned model θu ≡ fCCP(x).

Algorithm 2 ECO: Model Serving
1: Input: Df , fCCP

(x), CCP

2: Output: fCCP
(x), CCP

3: if Df ∩ CCP ̸= ∅ then
4: if Df ∩ (M∪ I) ̸= ∅ then
5: α, b← Employ Algorithm 3 to unlearn Df

6: CCP← Construct the new core dataset via (9)
7: else
8: CCP← CCP \ Df

9: end if
10: ΦCCP

← Learn a new feature transformation function
ΦCCP

(x) with the loss in (10)
11: else
12: Remain the input model fCCP

(x) and the set CCP

13: end if

3.2.1. THE UNLEARNING PROCEDURE OF THE CP
ALGORITHM

Originally, the decremental learning algorithm from
Cauwenberghs & Poggio (2000) was designed to acceler-
ate leave-one-out cross-validation (Brophy & Lowd, 2021;
Laskov et al., 2006; Chen et al., 2022; Nguyen et al., 2022;
Guo et al., 2020). Moreover, Algorithm 2 in Cauwenberghs
& Poggio (2000) does not fully address the needs of exact
machine unlearning. To this end, we modify this original
algorithm to ensure completeness in machine unlearning,
specifically by adjusting the αi values of unlearned data
instances to zero. Before presenting the modified algorithm,
we first outline the updating rules of the CP algorithm as
follows.

Recall that the strategy of the CP algorithm involves adjust-
ing αi of instances inM to accommodate ∆αc while still
upholding the KKT condition, resulting in (6) in Section 2.2.
Under the assumption that matrix Q is invertible (Cauwen-

2The original decremental learning algorithm of the CP algo-
rithm (see Algorithm 2 in Cauwenberghs & Poggio (2000)) was
initially designed for leave-one-out validation.

berghs & Poggio, 2000), we establish the update rule for b
and all αj ofM as follows:

∆b
∆αm1

...
∆αm|M|

 = β∆αc, (14)

where

β =

β0

βm1

...
βm|M|

 = −Q−1

yc

dm1c

...
dm|M|c

 ,

and each dmic represents the interaction between the current
instance and the instances inM.

Algorithm 3 CP Unlearning (n→ n− 1)

1: if αc = 0 then
2: Do nothing.
3: else
4: while αc > 0 do
5: ∆αc ← Calculate the largest possible decre-

ment αc so that elements of training dataset
{(xi, yi)}ni=1 migrate across I,M, and O

6: αc ← αc +∆αc

7: αj , b← Employ (14) to obtain αj , b
8: gi ← Employ (16) to obtain gi
9: end while

10: end if

Following Cauwenberghs & Poggio (2000), we define gi
as the first-order derivative of the convex quadratic objec-
tive function in the dual SVM with respect to αi; with the
definition of dij (see (6)), we have

gi = yif(xi)− 1 =

n∑
j=1

dijαj + yib− 1.

Furthermore, with data (xc, yc) being unlearned, gi updates
based on ∆αc, ∆αj and ∆b:

∆gi = dic∆αc +
∑
j∈M

dij∆αj + yi∆b. (15)

By substituting (14) into (15), we derive the following up-
date rule for gi:

∆gi = dic∆αc +
∑
j∈M

dijβj∆αc + yiβ0∆αc

= ∆αc (dic +
∑
j∈M

dijβj + yiβ0)︸ ︷︷ ︸
γi

. (16)

5

ECO: Efficient Computational Optimization for Exact Machine Unlearning in Deep Neural Networks

Note that ∆αc is the sole driver influencing the update rules
in both (14) and (16). With (14), we monitor if data in-
stances inM move to I or O. Conversely, with (16), we
monitor data instances if data instances in I or O move
intoM. With the above notations, we provide a high-level
overview of the modified CP unlearning process in Algo-
rithm 3. Note that in this unlearning process, updates are
necessary for O,M, I, Q, Q−1, β and γi.

4. Experiments
4.1. Dataset and Models Used

We conduct experiments using LeNet5 on the MNIST hand-
written image dataset (Lecun et al., 1998)3. It is important to
highlight that, despite the lack of standard benchmarks in the
field of machine unlearning, the MNIST dataset is the most
frequently used dataset according to statistics in (Nguyen
et al., 2022).

4.2. Evaluation Metrics

There is consensus that an effective unlearning algorithm
should ensure data is forgotten while optimizing time effi-
ciency and maintaining model utility. However, assessing
the effectiveness of machine unlearning algorithms involves
diverse metrics, currently without a unified standard (Thudi
et al., 2022; Kurmanji et al., 2023). In this paper, we
adopt the contemporary methodology advocated by Jia et al.
(2023); Fan et al. (2024), which promotes a full-stack evalu-
ation of machine unlearning, incorporating accuracy, time
cost, and forget quality. Specifically, we assess the effective-
ness of an unlearning algorithm by evaluating the accuracy
of the unlearned model θu (see the definition in Section 2.1)
on the retaind setDr, the forget setDf , and the test setDtest,
denoted as Accr, Accf , and Acctest, respectively. We also
calculate Accall =Accr×Accf×Acctest for an overall com-
parison, and we include a time cost (seconds) comparison.
Although our method qualifies as exact unlearning, ensuring
complete removal of the requested data, we still provide
the membership inference attack (MIA) score in (Jia et al.,
2023) for reference. All the metrics mentioned above are
expressed as a ± b, where ‘a’ represents the mean and ‘b’
denotes the standard deviation across 10 independent trials
with different random seeds.4 The symbol ‘↑’ indicates that
higher values are better, and ’↓’ indicates that lower values
are preferable. The best result is highlighted in bold, and
the second-best result is underlined.

3We use the implementation and adopt the hyperparam-
eters from https://github.com/rasbt/deeplearning-models/

blob/master/pytorch_ipynb/cnn/cnn-lenet5-mnist.ipynb.
4We used 10 random seeds, ranging from 2015 to 2024, for all

experiments.

4.3. Implementation Details

For the selection of CGD, as detailed in Section 3.1.1, we
select instances with the highest kGD = 12000 values of
losses ℓCNT from the given DNN model. The effects of
using different kGD values are discussed in Section 4.5.3.
For constructing Õ within CCP, as specified in (9), we select
instances with the lowest kCP values of yif(xi) for i ∈
O. This was done so that the size of CCP equals 10 ×
|M ∪ I|, resulting in kCP ≈ 10000 in our experiments.5

Unlike many studies in computer vision, we do not employ
any augmentations for model training. Additionally, we
halt training if Acctest fails to improve for five consecutive
evaluations.6

4.4. Compared Methods

We compare the proposed method, ECO, with two other ap-
proaches. The first is naive retaining (denoted as NR), which
involves retraining the DNN models upon receiving an un-
learning request. Additionally, we compare ECO with the
intermediate product of our ECO algorithm, designated as
ECOi, which is the DNN model train on CGD, as presented
in (12). The rationale for including ECOi for comparison is
to validate the reasonableness of our acceleration method-
ology introduced in Section 3.1.1 by shrinking the dataset
from Dtrain to CGD through the selection of the highest
kGD loss values of the original DNN model. Note that we
do not include the well-known exact unlearning approach,
SISA (Bourtoule et al., 2021), in our comparisons as it has
reported sacrifices performance compared to NR in many
previous studies (Bourtoule et al., 2021; Yan et al., 2022;
Shen et al., 2024; He et al., 2021; Zhang et al., 2022; Li
et al., 2023; Yan et al., 2022).

4.5. Experimental Results

4.5.1. MAIN RESULTS

In-time Unlearning We start by exploring the scenario
of in-time random sample unlearning as shown in Table 1.
In this scenario, each unlearning request must be executed
immediately upon receipt from the data owner to prevent
potential costs, such as fines or loss of trust in the com-
pany. This operational context requires that each sample
be unlearned individually as requests are received instead
of accumulating them for batch unlearning. Therefore, in

5In our experiments, as we implement acceleration during the
model preparation stage (see Section 3.1.1), it is important to note
that the three sets M, I, and O are categorized from CGD, not
from Dtrain.

6We conduct evaluations every 50 iterations, adhering to
the training details provided in the implementation avail-
able at https://github.com/rasbt/deeplearning-models/blob/
master/pytorch_ipynb/cnn/cnn-lenet5-mnist.ipynb.

6

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-lenet5-mnist.ipynb
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-lenet5-mnist.ipynb
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-lenet5-mnist.ipynb
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-lenet5-mnist.ipynb

ECO: Efficient Computational Optimization for Exact Machine Unlearning in Deep Neural Networks

Table 1. In-time unlearning
NR ECOi ECO

Accr ↑ 0.988 ± 0.005 0.996 ± 0.001 0.997 ± 0.001

Accf ↑ 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

Acctest ↑ 0.986 ± 0.002 0.989 ± 0.001 0.989 ± 0.001

Accall ↑ 0.974 ± 0.007 0.986 ± 0.002 0.987 ± 0.002

Time cost (sec) ↓ 20.968 ± 7.992 1.493 ± 4.476 1.842 ± 5.524

each trial using a random seed, we randomly select one
instance as Df for all compared methods. From the table,
it is evident that the proposed ECO achieves the highest
model accuracy among the three methods evaluated. Also,
the standard deviations for ECO and ECOi are significantly
smaller than those of NR, highlighting the enhanced sta-
bility of our framework. Both ECO and its intermediate
product, ECOi, substantially decrease the time required to
execute unlearning requests compared to NR.

Off-time Batch Unlearning In scenarios where immedi-
ate unlearning is not imperative, the focus can shift from
minimizing time costs to prioritizing the minimization of
performance degradation after data removal. To demon-
strate this, we conduct simulations involving the accumula-
tion of p% requested unlearned data, termed “off-time batch
unlearning,” where p = {1, 5, 10, 20, 30, 40, 50}. Specifi-
cally, in each trial using a random seed, we randomly select
p% × |Dtrain| instances as Df for all compared methods.
This approach allows for a comprehensive evaluation of
performance retention abilities in the context of off-time
batch unlearning. As demonstrated in Table 2, our approach
ECO consistently surpasses the gold standard NR in accu-
racy across the forget set and the test set (Accf and Acctest,
respectively) and shows even superior performance in terms
of overall accuracy Accall. Unexpectedly, Accf of our ap-
proach significantly exceeds the gold standard by a consid-
erable margin, which is remarkable. These results suggest a
reconsideration of the common assumption in several prior
studies that a DNN model’s performance on Df would de-
teriorate after it unlearns the provided data. However, the
absence of certain data in our decision algorithm does not
necessarily result in less accurate predictions.

Remark. Recall that we include ECOi for comparison to
validate the reasonableness of our acceleration methodol-
ogy introduced in Section 3.1.1. As observed from Tables 1
and 2, the intermediate product of our methodology, ECOi,
trained on the compact dataset CGD, consistently outper-
forms NR, trained on the full dataset Dtrain. On the other
hand, Table 2 reveals that ECOi performs even better than
ECO when evaluated on the retained set. This improved
performance could be attributed to the fact that, unlike ECO,
which utilizes a hybrid model combining both CP and GD

optimizers, ECOi is more finely tuned to the training data.
Note that the retained set now serves as the training set for
ECOi.

On the other hand, while Tables 1 and 2 show that ECO gen-
erally achieves better accuracy than ECOi, it is important
to note that ECO typically requires more computational re-
sources than ECOi due to additional calculations for αi and
b in the CP algorithm.7 Nevertheless, ECO’s hybrid nature
combines both CP and GD optimizers, facilitating unlearn-
ing specific data points and supporting continual learning.
This feature ensures that ECO can adapt to evolving data
and knowledge. In essence, ECO allows for the integration
of new data instances without the need for retraining, effec-
tively managing both unlearning and continuous learning
adjustments.

4.5.2. THE FORGETFULNESS QUALITY: MIA

Although our method qualifies as exact unlearning, ensuring
complete removal of the requested data, we still evaluate
forgetfulness quality through a membership inference attack
(MIA) as outlined by Jia et al. (2023). To train an MIA pre-
dictor, we first sample a balanced dataset from the retained
set, Dr, and the test set, Dtest. Instances from Dr (or Dtest)
are used to calculate losses based on the unlearned model θu.
These losses are then used as input to train a binary classifier
whose task is to predict whether an instance belongs to the
training set (Dr) or the non-training set (Dtest).

The trained MIA predictor is subsequently employed to eval-
uate forgetfulness quality during its testing phase. Specifi-
cally, the MIA score is determined by applying the MIA pre-
dictor to the unlearned model (θu) on the forgetting dataset
(Df), defined TN/|Df |, where TN represents the true neg-
atives predicted by the MIA predictor, i.e., the number of
forgetting samples predicted as non-training examples.

Table 3 compares the MIA scores between Df and Dtest for
each unlearning approach. A lower discrepancy between
these two values indicates better forgetfulness quality of the
model. For the NR method, there is hardly any disparity
between Df and Dtest. This pattern is also consistent for
ECOi and ECO. As expected, this alignment occurs because
all three methods adhere to an exact unlearning approach.

4.5.3. SENSITIVITY ANALYSIS ON kGD

Referring back to Section 3.1.1, during the model prepara-
tion phase, we expedite the optimization process of the CP
algorithm by reducing Dtrain to CGD through the selection
of the highest kGD loss values of the original DNN model.
Figure 1 displays the accuracy scores on Dtrain and Dtest,

7The acceleration of model ECO could potentially be enhanced
using techniques from Karasuyama & Takeuchi (2009), a topic we
intend to explore in future research.

7

ECO: Efficient Computational Optimization for Exact Machine Unlearning in Deep Neural Networks

Table 2. Off-time batch unlearning
Accr ↑ Accf ↑

p NR ECOi ECO NR ECOi ECO

1 0.991 ± 0.002 0.996 ± 0.003 0.995 ± 0.001 0.986 ± 0.004 0.988 ± 0.005 0.994 ± 0.002
5 0.990 ± 0.002 0.996 ± 0.002 0.995 ± 0.001 0.986 ± 0.002 0.988 ± 0.003 0.995 ± 0.001
10 0.991 ± 0.003 0.996 ± 0.003 0.995 ± 0.002 0.985 ± 0.002 0.988 ± 0.002 0.994 ± 0.002
20 0.990 ± 0.003 0.997 ± 0.002 0.995 ± 0.002 0.984 ± 0.002 0.987 ± 0.001 0.994 ± 0.002
30 0.991 ± 0.003 0.998 ± 0.001 0.995 ± 0.001 0.984 ± 0.002 0.987 ± 0.001 0.994 ± 0.001
40 0.992 ± 0.002 0.998 ± 0.002 0.995 ± 0.001 0.983 ± 0.002 0.986 ± 0.001 0.994 ± 0.001
50 0.992 ± 0.003 0.997 ± 0.002 0.996 ± 0.002 0.982 ± 0.002 0.983 ± 0.002 0.994 ± 0.002

Acctest ↑ Accall ↑
p NR ECOi ECO NR ECOi ECO

1 0.988 ± 0.001 0.989 ± 0.001 0.989 ± 0.001 0.965 ± 0.006 0.974 ± 0.007 0.979 ± 0.003
5 0.987 ± 0.001 0.989 ± 0.001 0.989 ± 0.001 0.964 ± 0.005 0.973 ± 0.004 0.979 ± 0.002
10 0.987 ± 0.002 0.989 ± 0.001 0.989 ± 0.001 0.963 ± 0.006 0.974 ± 0.005 0.978 ± 0.004
20 0.986 ± 0.001 0.989 ± 0.001 0.989 ± 0.001 0.960 ± 0.005 0.973 ± 0.002 0.978 ± 0.004
30 0.986 ± 0.002 0.988 ± 0.001 0.989 ± 0.001 0.961 ± 0.005 0.973 ± 0.002 0.978 ± 0.003
40 0.986 ± 0.001 0.987 ± 0.001 0.989 ± 0.001 0.961 ± 0.005 0.971 ± 0.003 0.979 ± 0.003
50 0.986 ± 0.002 0.986 ± 0.001 0.989 ± 0.001 0.961 ± 0.006 0.966 ± 0.004 0.979 ± 0.004

Table 3. The forgetfulness quality (MIA)
NR ECOi ECO

p Df Dtest Df Dtest Df Dtest

1 0.06 ± 0.01 0.07 ± 0.0 0.15 ± 0.25 0.16 ± 0.24 0.03 ± 0.01 0.04 ± 0.01
5 0.14 ± 0.26 0.15 ± 0.26 0.07 ± 0.02 0.08 ± 0.02 0.03 ± 0.01 0.04 ± 0.01
10 0.15 ± 0.26 0.15 ± 0.26 0.07 ± 0.02 0.08 ± 0.01 0.04 ± 0.01 0.05 ± 0.01
20 0.32 ± 0.39 0.32 ± 0.39 0.07 ± 0.02 0.07 ± 0.01 0.04 ± 0.01 0.04 ± 0.01
30 0.15 ± 0.26 0.15 ± 0.26 0.06 ± 0.01 0.07 ± 0.01 0.04 ± 0.01 0.05 ± 0.01
40 0.15 ± 0.26 0.15 ± 0.26 0.06 ± 0.02 0.07 ± 0.01 0.04 ± 0.01 0.04 ± 0.01
50 0.24 ± 0.34 0.24 ± 0.35 0.08 ± 0.02 0.08 ± 0.02 0.04 ± 0.01 0.05 ± 0.01

10000 20000 30000 40000 50000 60000
Instances (kGD)

0.95

0.96

0.97

0.98

0.99

1.00

Ac
cu

ra
cy

Train
Test
Overall

Figure 1. Sensitivity analysis on kGD

along with their product, denoted as the overall accuracy, for
kGD = p%× |Dtrain|, where p ranges from 10 to 100. The
mean accuracies from ten trials are represented by different
symbols (△ for training data, □ for testing data, and ⃝ for
overall), with error bars indicating the standard deviation.

We select kGD = 12000 as it yielded the highest overall
accuracy score. Interestingly, using the full training dataset,

where kGD = 60000, leads to poor performance.8

5. Conclusion
Our proposed method, ECO, represents a significant ad-
vancement in exact unlearning within DNNs, preserving
model utility without compromising performance. Integrat-
ing the CP algorithm into machine unlearning for deep neu-
ral networks (DNNs), ECO combines the robust data-driven
capabilities of neural networks alongside the elegant char-
acteristics of the CP algorithm. While not exhaustive, the
positive outcomes from ECO suggest its effectiveness. We
also introduce ECOi, an intermediate version of ECO that
is easier to implement and outperforms the state-of-the-art
method SISA (Bourtoule et al., 2021), which has previously
been reported to sacrifice performance compared to naive
retraining. Therefore, ECOi sets as a new benchmark in
exact unlearning, potentially reducing the need for full re-
training—a vital consideration in the context of climate
change. This study also encourages further exploration into
dual-domain strategies, analogous to the primal and dual
formulations in SVMs, in machine unlearning within DNNs.

8This case mirrors the scenario without the acceleration method
mentioned in Section 3.1.1.

8

ECO: Efficient Computational Optimization for Exact Machine Unlearning in Deep Neural Networks

Acknowledgments
This work was supported in part by the National Sci-
ence and Technology Council of Taiwan under Grant
NSTC-112-2221-E-002-204-(112C6220), the Administra-
tion for Digital Industries, moda, R.O.C. (Taiwan) under
Grant NTU112HT911011, the Asian Office of Aerospace
Research & Development (AOARD) under Grant NTU-
112HT911020, and the financial supports from the Featured
Area Research Center Program within the framework of
the Higher Education Sprout Project by the Ministry of
Education (113L900901/113L900902/113L900903).

References
Bourtoule, L., Chandrasekaran, V., Choquette-Choo, C. A.,

Jia, H., Travers, A., Zhang, B., Lie, D., and Papernot, N.
Machine Unlearning. In Proceedings of the 42nd IEEE
Symposium on Security and Privacy, pp. 141–159, 2021.

Brophy, J. and Lowd, D. Machine Unlearning for Random
Forests. In Proceedings of the 38th International Confer-
ence on Machine Learning, volume 139, pp. 1092–1104,
2021.

Cao, Y. and Yang, J. Towards Making Systems Forget with
Machine Unlearning. In Proceedings of the 36th IEEE
Symposium on Security and Privacy, pp. 463–480, 2015.

Cauwenberghs, G. and Poggio, T. Incremental and Decre-
mental Support Vector Machine Learning. In Proceedings
of the 13th International Conference on Neural Informa-
tion Processing Systems, 2000.

Chen, C., Sun, F., Zhang, M., and Ding, B. Recommenda-
tion Unlearning. In Proceedings of the 31st ACM Web
Conference, pp. 2768–2777, 2022.

Chris Jay Hoofnagle, B. v. d. S. and Borgesius, F. Z. The
European Union general data protection regulation: what
it is and what it means. Information & Communications
Technology Law, 28:65–98, 2019.

de la Torre, L. A Guide to the California Consumer Privacy
Act. SSRN Electronic Journal, 2018.

Fan, C., Liu, J., Zhang, Y., Wong, E., Wei, D., and Liu, S.
SalUn: Empowering Machine Unlearning via Gradient-
based Weight Saliency in Both Image Classification and
Generation. In Proceedings of the 12th International
Conference on Learning Representations, 2024.

Foster, J., Schoepf, S., and Brintrup, A. Fast Machine Un-
learning without Retraining through Selective Synaptic
Dampening. In Proceedings of the 38th AAAI Conference
on Artificial Intelligence, volume 38, pp. 12043–12051,
2024.

Ginart, A. A., Guan, M. Y., Valiant, G., and Zou, J. Mak-
ing AI Forget You: Data Deletion in Machine Learning.
In Proceedings of the 32rd International Conference on
Neural Information Processing Systems, 2019.

Golatkar, A., Achille, A., and Soatto, S. Forgetting Outside
the Box: Scrubbing Deep Networks of Information Ac-
cessible from Input-Output Observations. In Proceedings
of the 16th European Conference on Computer Vision, pp.
383–398, 2020.

Golatkar, A., Achille, A., Ravichandran, A., Polito, M., and
Soatto, S. Mixed-Privacy Forgetting in Deep Networks.
In Proceedings of the 34th IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 792–801,
2021.

Guo, C., Goldstein, T., Hannun, A., and Van Der Maaten, L.
Certified Data Removal from Machine Learning Models.
In Proceedings of the 37th International Conference on
Machine Learning, volume 119, pp. 3832–3842, 2020.

He, Y., Meng, G., Chen, K., He, J., and Hu, X. Deep-
Obliviate: A Powerful Charm for Erasing Data Resid-
ual Memory in Deep Neural Networks. arXiv preprint
arXiv:2105.06209, 2021.

Jia, J., Liu, J., Ram, P., Yao, Y., Liu, G., Liu, Y., SHARMA,
P., and Liu, S. Model Sparsity Can Simplify Machine
Unlearning. In Proceedings of the 36th International
Conference on Neural Information Processing Systems,
pp. 51584–51605, 2023.

Karasuyama, M. and Takeuchi, I. Multiple Incremental
Decremental Learning of Support Vector Machines. In
Proceedings of the 22nd International Conference on
Neural Information Processing Systems, 2009.

Kurmanji, M., Triantafillou, P., Hayes, J., and Triantafillou,
E. Towards Unbounded Machine Unlearning. In Pro-
ceedings of the 36th International Conference on Neural
Information Processing Systems, pp. 1957–1987, 2023.

Laskov, P., Gehl, C., Krüger, S., and Müller, K.-R. Incremen-
tal Support Vector Learning: Analysis, Implementation
and Applications. Journal of Machine Learning Research,
7(69):1909–1936, 2006.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Li, Y., Chen, C., Zhang, Y., Liu, W., Lyu, L., Zheng, X.,
Meng, D., and Wang, J. UltraRE: Enhancing RecEraser
for Recommendation Unlearning via Error Decomposi-
tion. In Proceedings of the 36th International Conference
on Neural Information Processing Systems, pp. 12611–
12625, 2023.

9

ECO: Efficient Computational Optimization for Exact Machine Unlearning in Deep Neural Networks

Mahadevan, A. and Mathioudakis, M. Certifiable Ma-
chine Unlearning for Linear Models. arXiv preprint
arXiv:2106.15093, 2021.

Nguyen, Q. P., Kian, B., Low, H., and Jaillet, P. Variational
Bayesian unlearning. In Proceedings of the 33rd Inter-
national Conference on Neural Information Processing
Systems, pp. 16025–16036, 2020.

Nguyen, T. T., Huynh, T. T., Nguyen, P. L., Liew, A. W.-C.,
Yin, H., and Nguyen, Q. V. H. A Survey of Machine
Unlearning. arXiv preprint arXiv:2209.02299, 2022.

Rosen, J. The Right to Be Forgotten. The Stanford Law
Review, 64, 2012.

Sekhari, A., Acharya, J., Kamath, G., and Suresh, A. T.
Remember What You Want to Forget: Algorithms for
Machine Unlearning. In Proceedings of the 34th Inter-
national Conference on Neural Information Processing
Systems, pp. 18075–18086, 2021.

Shen, S., Zhang, C., Zhao, Y., Bialkowski, A., Chen, W. T.,
and Xu, M. Label-Agnostic Forgetting: A Supervision-
Free Unlearning in Deep Models. In Proceedings of the
12th International Conference on Learning Representa-
tions, 2024.

Thudi, A., Deza, G., Chandrasekaran, V., and Papernot,
N. Unrolling SGD: Understanding Factors Influencing
Machine Unlearning. In Proceedings of the 7th IEEE
European Symposium on Security and Privacy, pp. 303–
319, 2022.

Yan, H., Li, X., Guo, Z., Li, H., Li, F., and Lin, X. ARCANE:
An Efficient Architecture for Exact Machine Unlearning.
In Proceedings of the 31st International Joint Conference
on Artificial Intelligence, pp. 4006–4013, 2022.

Zhang, Z., Zhou, Y., Zhao, X., Che, T., and Lyu, L. Prompt
Certified Machine Unlearning with Randomized Gradient
Smoothing and Quantization. In Proceedings of the 35th
International Conference on Neural Information Process-
ing Systems, pp. 13433–13455, 2022.

10

