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Abstract

Continual learning in computer vision faces the critical challenge of catastrophic
forgetting, where models struggle to retain prior knowledge while adapting to
new tasks. Although recent studies have attempted to leverage the generalization
capabilities of pre-trained models to mitigate overfitting on current tasks, models
still tend to forget details of previously learned categories as tasks progress, leading
to misclassification. To address these limitations, we introduce a novel Knowl-
edge Graph Enhanced Generative Multi-modal model (KG-GMM) that builds an
evolving knowledge graph throughout the learning process. Our approach utilizes
relationships within the knowledge graph to augment the class labels and assigns
different relations to similar categories to enhance model differentiation. During
testing, we propose a Knowledge Graph Augmented Inference method that locates
specific categories by analyzing relationships within the generated text, thereby
reducing the loss of detailed information about old classes when learning new
knowledge and alleviating forgetting. Experiments demonstrate that our method
effectively leverages relational information to help the model correct mispredic-
tions, achieving state-of-the-art results in both conventional CIL and few-shot CIL
settings, confirming the efficacy of knowledge graphs at preserving knowledge in
the continual learning scenarios.

1 Introduction

Continual learning without forgetting old knowledge[34] has been thriving in the ever-changing world.
Traditional approaches in this area typically employ three categories [33] of methods to prevent
forgetting: replay-based methods [25, 40, 15, 57] that retain a portion of past data, architecture-based
methods [32, 42, 58] that progressively expand the model, and regularization-based methods [7, 24, 1]
that prevent excessive changes in model parameters. Recently, methods based on large-scale pre-
trained models [21, 39] have attracted more attention due to their superior performance than the
traditional train-from-scratch methods. For example, prompt-based methods [44, 56, 55, 54] have
been proposed that use a small number of parameters to learn “general” and “specific” knowledge
without altering the pre-trained backbone. SLCA [62] proposes to use a small learning rate for the
backbone to preserve the generalizability and a larger learning rate for the classifier to accommodate
new classes. Yet, these methods do not leverage textual information of the class labels or the
relationships between the learned classes.

To leverage the rich information lies in text modality, Continual CLIP [49] proposes to use Frozen
CLIP to conduct predictions based on image-text similarities. RAPF [18] uses CLIP [39] text encoder
to detect and pull apart similar classes. PROOF [67] proposes to use task-specific projections on both
image and text encoder. MoE-Adapters [59] utilize the Mixture-of-Experts adapters on top of the
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pre-trained CLIP model and an Auto-Selector to route for different input. CLIP-CIL [29] proposes
to fine-tune an additional adapter after the backbone to learn new classes. However, in the more
challenging exemplar-free scenario, these methods still face problems with classification bias towards
the newly learned knowledge and forgetting of previously learned knowledge.
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Figure 1: The difference of inference pipeline
between the generative-based baseline GMM [5]
and our Knowledge Graph enhanced generative
multi-modal model (KG-GMM).

In contrast, GMM [5] addresses the bias prob-
lem by discarding the classifier and directly us-
ing a Large Language Model (LLM) to generate
predicted text. GMM employs image-text pairs
as input and only fine-tunes a linear layer, effec-
tively mitigating bias and leveraging the LLM’s
capability to understand and generate human-
interpretable text. However, two challenges per-
sist during the learning process.

Firstly, fine-tuning a small linear layer with a
single, fixed format could cause the Multi-modal
LLM to lose its generalization capabilities, caus-
ing it to output text only in one format “This
is a photo of a [CLS]” while losing the ability
to describe details about the image content in
terms of colors, background, texture, etc. Sec-
ondly, since the model lacks exposure to images from previous tasks, it tends to classify all images
encountered into higher-level categories (knowledge obtained in the pre-training phase). For example,
if the model learns “Granny Smith” in the initial task, it can accurately output “Granny Smith” for
images of that class during immediate testing. However, after learning other similar categories
like “Pineapple” or “Lemon” in subsequent tasks without replaying exemplars, the model tends to
respond, “This is a photo of an apple” when presented with green apple images during testing and
misclassifying it to a newly learned text related label “Pineapple” as shown in Fig. 1.

To address these challenges, we turn to common sense knowledge graphs [19], which are structured
collections of factual triples, organized as (head, relation, object), e.g., (Granny Smith, IsA, Fruit) that
capture relationships between entities. Compared to the black-box generation process of LLMs [36],
knowledge graphs encode rich interrelationships information in the form of human-readable language.
For example, ConceptNet [45] is a general common sense knowledge graph integrating triplets that
cover nearly all visual recognition datasets (including both coarse-grained and fine-grained ones)
with efficient query operations. We believe that a knowledge graph that incrementally expands as
tasks increase would be lightweight and straightforward while retaining the knowledge structures
learned by the model to prevent forgetting.

Building on this idea, we propose a Knowledge Graph Enhanced Generative Multi-modal Model
for class-incremental learning. It enables the model to focus more on the factual content within the
images, providing descriptive output rather than direct guesses. Additionally, during inference, we
construct a subgraph from the model’s original textual output and compare it with the existing graph
to identify the specific category to which the image belongs. Specifically, we use a common-sense
knowledge graph to incrementally build a sub-graph during continual learning by storing class-
relevant triplets. Training employs relations (not plain text) as ground truth labels. During testing,
associative keywords (e.g., IsA, AtLocation) guide the model to output detailed image facts instead
of direct guesses, enhancing precision by recalling prior relational knowledge from the graph. This
enables structured retention and retrieval of learned relationships, improving answer specificity.

The main contributions of this paper are:

• We propose using an ever-expanding knowledge graph to help the model distinguish similar
classes across different tasks based on relationships, providing more references when
discriminating similar classes.

• During inference, we propose to guide the model with relation words to output factual de-
scriptions rather than direct guesses, preventing forgetting through associative relationships.

• Experiments on multiple datasets and settings demonstrate that our method can help the
model alleviate forgetting with minimal training cost.
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2 Related Work

2.1 Class Incremental Learning

Class incremental learning is a method where a model learns new classes sequentially over time
without forgetting the previously learned classes. Early methods of class-incremental learning often
involved training from scratch [24, 11, 53, 69, 14, 60].

With the advent of pre-trained models, using them as a starting point for continual learning has shown
great effectiveness. Initially, models pre-trained on ImageNet are typically fine-tuned using parameter-
efficient methods to incorporate new knowledge, such as prompt-based techniques [41, 55, 56, 44] and
low-rank adapters [13, 26]. Some approaches involve fine-tuning specific modules of the model [66]
or setting differential learning rates [62]. Building on this, guidance from textual modality information
further alleviates forgetting. The CLIP model, with its strong zero-shot capabilities, has significantly
benefited class-incremental learning [49] and garnered considerable attention. This is often achieved
by adding parameter modules, such as linear layers [29, 18] or attention modules [20, 67], to the
original model to directly adjust the well-learned features.

Currently, generative multi-modal models demonstrate powerful capabilities at mitigating the for-
getting problem in continual learning. Simple fine-tuning on these models can effectively retain old
knowledge while learning new classes [5]. However, without replay, the GMM still tends to forget
details of the classes learned in former tasks. Our method tackles this issue by incorporating rich
relationship information in knowledge graphs to enhance the GMM learning and inference process.

2.2 Knowledge Graph

Knowledge graphs are structured representations of information where entities (nodes) are inter-
connected through relationships (edges), allowing for complex querying and inference over linked
data. There are four main types of knowledge graphs [36]: Encyclopedic KGs that cover general
knowledge (Wikidata [51]), Common Sense KGs (ConceptNet [45]) that capture everyday concepts
and objects, Domain-specific KGs tailored to specialized fields (UMLS [3] for medical domain), and
Multi-modal KGs [30] that integrate various data types such as text and images. We mainly focus on
the Common Sense KG due to its broad scope that covers most classes in image datasets.

With the development of LLM, there has been research work that combines the generation capability
of LLM models with the structured, rich factual knowledge stored in knowledge graphs. The
combinations mainly fall into three categories: KG-enhanced LLMs [27, 38, 63] involve embedding
KGs to improve LLMs by enhancing understanding and reasoning of the knowledge learned by LLMs.
LLM-augmented KGs [4, 16, 23, 64] leverage LLMs for different KG-based tasks such as knowledge
graph completion, graph-to-text generation, and question answering. The integration of LLMs and
KGs [12, 22, 47] enables bidirectional reasoning grounded in both data and structured knowledge,
as the two systems collaborate symbiotically to mutually enhance each other’s capabilities.

While there have been studies on integrating knowledge graphs with LLMs, most of these focus on
single-task scenarios. The potential of combining LLMs and knowledge graphs to enhance knowledge
preservation in continual learning scenarios remains unexplored.

3 Method

In this section, we begin by introducing the setup of class-incremental learning and revisiting the
training and testing procedures of GMM [5]. Then, we present our method from two perspectives:
knowledge graph enhanced learning and knowledge graph augmented inference.

3.1 Preliminaries

Class Incremental Learning (CIL). CIL is a paradigm that focuses on the progressive acquisition
of knowledge across disjoint sets of classes. Let X denote the input space and Y represent the label
space. At each incremental time step t, the learning algorithm receives a new dataset Dt = {(xi, yi) |
xi ∈ Xt, yi ∈ Yt}, where Yt is a set of novel classes such that Yt ∩ (∪t−1

k=1Yk) = ∅. The objective is
to construct a classifier ft : X →

⋃t
k=1 Yk that predicts labels overall observed classes up to time t.
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Figure 2: Left: In knowledge graph-enhanced learning, image embedding, knowledge-enhanced
ground-truth embedding, and question embedding are input to Frozen LLM to generate predicted
embedding; cross-entropy loss updates the linear layer. Right: In knowledge graph-augmented
inference, relations from predicted text are extracted to create graph-augmented text, producing the
final prediction.

Generative Multi-modal Models for CIL. In order to effectively harness the textual information
embedded within the graph, we need to leverage language models capable of extracting text embed-
dings that can be aligned with image features. Currently, two continual learning frameworks can
incorporate textual features: those based on CLIP [20, 29, 18] and those utilizing large language
models (LLMs) [5]. Given our need for more nuanced text understanding and encoding-decoding
abilities, we adhere to the continual learning framework outlined in GMM [5].

The GMM method’s training pipeline involves using a frozen image encoder fenc and a text encoder
ftext to process the image-text pairs {(Xt,i, St,i)}Nt

i=1 for each task t, where Nt means the total
number of image-text pairs in task t and St is the text labels of classes in task t. For each image
xi, fenc generates an image embedding ei = fenc(xi; θenc), and for each class, GMM utilize the
BERT tokenizer to get the corresponding embedding si. Then, a question embedding q is also
computed by the BERT model from the question text q. The image embedding ei concatenated
with the ground-truth embedding si and question embedding q, is input to a frozen LLM to get the
predicted tokens sequentially based on prior tokens:

P (ŝ1, ..., ŝm|xi,q, s) =

m−1∏
j=1

P (sj|ei,q, s1, . . . , sj−1). (1)

Then GMM computes Cross Entropy Loss to make the predicted token close to the GT token:

LCE = − 1

m

m∑
j=1

sj · log ŝj , (2)

where sj is the ground truth and ŝj is the prediction.

At inference time, GMM uses the fine-tuned model to get the text prediction based on the test image
and instruction question. Then a text encoder ftext is used to measure the cosine similarity between
predicted labels and ground truth to determine the final classification as:

pred = argmax⟨ftext(s), ftext(̂s)⟩. (3)

As discussed in the introduction, GMM may misclassify a predicted text to its word-related class label
instead of its meaning-related ground truth (e.g., apple to pineapple instead of apple to Granny Smith).
So we propose to use relations in a common sense graph to instruct the model output relation-aware
text, thus helping locate the predicted text to its ground truth. We begin by introducing the Knowledge
graph construction process, followed by how to utilize this graph for training and inference.

3.2 Knowledge Graph Enhanced Learning

Knowledge Graph Construction. In order to extract relations for each encountered new category,
we follow ZSL-KG [35] to query three tables: nodes, relations, and edges from the ConceptNet
database based on the ILSVRC-21K [10] classes within two-hop relations.
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Then, we have a common sense knowledge graph at hand presented as G = {E,R, F}, where
E represents entities, R represents relations and F = {(h, r, o)} ⊆ E × R × E represents facts
contained in this graph, in which h means head entity and o means tail object. In the continual
learning process, we gradually build a dataset-specific graph in the order in which classes appear at
each given task.

To better illustrate our method, we divide our graph construction process into two steps:

Step 1: Build a temporary knowledge graph. Suppose we are currently in task t of continual
learning. We initialize

Et = Et−1 ∪ St ∪ {e | e ∈ T (St)} , (4)

where St denotes new class nodes, and T (St) extracts non-class nodes from relation triplets involving
St. Then we build a temporary graph for task t:

Gt = (Et, Rt, Ft), (5)

containing all entities, relations, and fact triplets observed up to task t.
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Figure 3: The knowledge graph construction process.
Rectangle nodes represent class nodes, while round ones
represent non-class nodes. Blue rectangles represent
classes encountered in task t− 1, while the orange ones
represent classes from task t. Blue Arrows represent
relations used for learning task t− 1, while the orange
ones represent relations used for task t.

Step 2: Trim to Key Relationships. To
enable efficient training and improved dis-
crimination between similar classes, we
proposed to trim the temporary knowledge
graph Gt to a smaller one G′

t:

G′
t = (E′

t, R
′
t, F

′
t ), (6)

that only contains a few unique relations
that best distinguish it from similar old
classes. Here, E′

t is the trimmed entity set:

E
′

t =

{
e | e ∈ Et, e /∈

t−1⋃
k=1

E
′

k

}
. (7)

R′
t and F ′

t are relations and facts that are
associated with the current entity set G′

t.
For example, as illustrated in Fig. 3, we
choose “AtLocation Store” and “AtLoca-
tion Pizza” instead of previously used “IsA
Fruit” and “ReceiveAction Eaten” by class
“Granny Smith” from task t−1. The whole
construction process of G′

t is detailed in
Algo. 1 Lines 4-6.

There exist circumstances where classes
from later tasks (maybe the last task) have
no direct relation to use; that is, all directly
related tail nodes have been taken by for-
mer encountered classes. We tackle this
problem by using relations of the second hop in the common sense knowledge graph G (e.g., we use
“Clownfish ReatedTo Water RelatedTo River” instead of the previously occupied node “Water”).

After obtaining the distinct graph that has different relations for each class, we then concatenate
m triplets of each class together and input them into the model as the ground truth text si in the
image-text pairs as shown in the left side of Fig. 2, fine-tuning the linear layer after the image encoder
with Cross Entropy loss in Eq. 2.

3.3 Knowledge Graph Augmented Inference

The inference process is illustrated on the right side of Fig. 2. We first get the relation-aware output
by the fine-tuned LLM with instructing questions “Describe details of this photo from color, species,
location, background, etc.”. Then we decompose the raw output s into m triplets: {(hp, rp, op)}mp=1.
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Algorithm 1 Graph Construction For Task t

Input: St ▷ Class names of task t
require: G = {E,R, F} ▷ Entire Knowledge Graph
require: Et−1 ▷ Entity node for task t− 1
require: Gt−1 ▷ Subgraph for task t− 1

1: Et = Et−1 ∪ St ∪ {e | e ∈ T (St)} ▷ Init Et

2: G′
t = {Et, Rt−1, Ft−1} ▷ Init subgraph for task t

3: for entity e in St do ▷ Iterate each new classes
4: for (h, r, o) in F do ▷ Find unused facts
5: if h == e and (h, r, o) /∈ Ft−1 then
6: G′

t = {Et, Rt ∪ r, Ft ∪ (h, r, o)}
7: return G′

t ▷ Return the subgraph for task t

After obtaining the predicted relations, we remove the head entities hp and use the relation pairs
{(rp, op)}mp=1 to search within the subgraph Gt constructed for the current task. The head entity that
appears most frequently in the search results is considered the predicted head entity:

ĥ = argmax
h

m∑
p=1

I [(h, rp, op) ∈ Gt] , (8)

where I[·] is the indicator function that equals 1 if the triplet is correct ( (h, rp, op) ∈ Et) and 0
otherwise.

Although this graph-based prediction ĥ can be treated as the final prediction, it neglects the rich
information contained in the original raw text output s. To leverage both the knowledge reservation
ability provided by the graph and the text understanding and reasoning ability provided by LLM, we
prepend this graph-based prediction ĥ to s to obtain the graph-augmented output:

sa = ĥ ⊕ s, (9)

where ⊕ denotes the concatenation operation, meaning that sa is formed by placing ĥ directly before
s. This augmented sentence sa is then input into the text encoder to perform similarity prediction
between the encoded sa and all class features encountered so far to obtain the final prediction:

pred = argmax
c∈St

sim (ftext(sa), ftext(c)) . (10)

4 Experiments

4.1 Experiments Setup

Datasets. We test our model on two commonly used continual learning benchmarks: Tiny-ImageNet
and ImageNet-R, and two few-shot continual learning benchmarks: CIFAR100 and Mini-ImageNet.
We also conduct experiments on fine-grained and medical imaging datasets, and the corresponding
settings and detailed results are provided in the supplementary material.

For conventional continual learning, we follow the two standard configurations used in GMM [5]:
B0, in which all classes are equally divided among different tasks, and B100 (i.e. Tiny-ImageNet)
in which the first task contains 100 classes (half of the dataset) and the rest are equally divided into
subsequent tasks. For few-shot continual learning, we follow the data splits proposed by [48]. For
both datasets, we divide the data into two parts: a base session and incremental sessions. The base
session consists of 60 classes with full access to all associated data. Each incremental session follows
a 5-way 5-shot setting, introducing 5 new classes with only 5 samples per class.

We build our expanding knowledge graph based on ConceptNet, which is a large-scale, multilingual
knowledge graph that represents common-sense relationships between words and phrases in natural
language. It consists of over 8 million nodes and approximately 21 million edges, connecting concepts
through 50 relationships including “IsA”, “PartOf”, “UsedFor” and “HasProperty”, etc.

Implementation details. For the Knowledge Graph part, we follow ZSL-KG [35] to use a 2-hop
ImageNet-based knowledge graph extracted from ConceptNet [45] as the initial G described in
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Table 1: The performance comparison results between our method and other methods on Tiny-
ImageNet and ImageNet-R.

Type Method Exemplar
Tiny-ImageNet ImageNet-R

B100-5 tasks B100-10 tasks B100-20 tasks B0-10 tasks
Avg Last Avg Last Avg Last Last

Conventional

EWC [24] % 19.01 6.00 15.82 3.79 12.35 4.73 35.00
LwF [25] % 22.31 7.34 17.34 4.73 12.48 4.26 38.50
iCaRL [40] ! 45.95 34.60 43.22 33.22 37.85 27.54 -
EEIL [6] ! 47.17 35.12 45.03 34.64 40.41 29.72 -
UCIR [15] ! 50.30 39.42 48.58 37.29 42.84 30.85 -
PASS [69] % 49.54 41.64 47.19 39.27 42.01 32.93 -
DyTox [11] ! 55.58 47.23 52.26 42.79 46.18 36.21 -

Discriminative
PT models

Continual-CLIP[49] % 70.49 66.43 70.55 66.43 70.51 66.43 72.00
L2P [56] % 83.53 78.32 76.37 65.78 68.04 52.40 72.92
DualPrompt [55] % 85.15 81.01 81.38 73.73 73.45 60.16 68.82
CODA-Prompt [44] % 85.91 81.36 82.80 75.28 77.43 66.32 73.88
MoE-CLIP [59] % 81.12 76.81 80.23 76.35 79.96 75.77 80.87
RAPF [17] % 78.64 74.67 77.42 73.57 76.29 72.65 80.28
Linear Probe % 74.38 65.40 69.73 58.31 60.14 49.72 45.17

Generative
PT models

Zero-shot % 58.16 53.72 58.10 53.72 58.13 53.72 67.38
GMM [5] % 83.42 76.98 82.49 76.51 81.70 76.03 80.72
KG-GMM (Ours) % 86.17 81.86 84.37 78.16 83.18 78.32 84.29

section 3.2. G contains 574270 nodes E, 50 relations R and 1380131 edges F . For the Generative
Multi-modal model part, we follow GMM to use the MiniGPT-4 [68] framework as the image and text
encoder. In the B0 setting of all datasets, we employ a 200-iteration warmup with a learning rate of
3e-6 and a learning rate from 3e-5 to 3e-6 with a cosine decay scheduler in the following fine-tuning
phase. In the B100 setting, we first employ a learning rate of 3e-6, and then on the subsequent tasks,
we adopt a lower learning rate of 3e-7, both employing a cosine decay scheduler.

Baselines and evaluating metrics. We follow GMM [5] to compare with three different categories
of methods, including conventional train-from-scratch based [40, 15, 65, 58, 11, 43, 25, 6, 69],
discriminative pre-trained based [56, 55, 44] and generative pre-trained based [5]. The evaluation
metrics for the experiments are defined as follows: “Avg” represents the model’s average accuracy
across all tasks, while “Last” denotes the model’s accuracy on all test sets after fine-tuning the final
task. For few-shot continual learning, we also add a new metric Harmonic Accuracy [37] (HAcc) to
check the balanced performance between the base and new classes. AH = 2×A0×An

A0+An
, where A0 is

the acc of base classes and An is the average of all classes. We report an average accuracy of three
runs based on three different class orders. Please refer to the Supplementary Material for detailed
results of different orders.

4.2 Experiments on Conventional CIL

In Tab. 1, we present experiments on 100 base classes with 5, 10, and 20 incremental tasks settings
on Tiny-ImageNet, and B0-10 tasks setting on ImageNet-R. Our KG-GMM demonstrates superior
performance across all settings of these two datasets. On Tiny-ImageNet, our method consistently
outperforms others in all settings, particularly we outperform GMM by 2.93% on average in three
settings in terms of Last accuracy. On ImageNet-R, our model achieved an impressive last task
performance of 84.29%, surpassing the previous SOTA GMM by 3.57%, the previous best prompt-
based method CODA-Prompt by 10.41%.

4.3 Experiments on Few-shot CIL

In Tab. 2, we present the comparison results of our method against other baselines on Mini-ImageNet
for few-shot class incremental learning. The table shows that our model lags behind several ImageNet-
21K pre-trained methods in the base session, it achieves state-of-the-art results in all subsequent eight
sessions. Specifically, in the final session, our method reaches an accuracy of 78.07%, outperforming
DualPrompt [55] by 21.26% points, CODA-Prompt [44] by 16.93% points, and the previous best
GMM [5] by 2.89% points. Notably, our model leads GMM by 1.64% points in the first incremental
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Table 2: Comparison results of our method with other conventional baselines and methods on the
Mini-ImageNet and CIFAR100 for few-shot class incremental learning. The table includes one base
task and eight incremental tasks. PD is the performance drop between the first and last session. ∗

indicates our re-implementation based on PILOT [46].

Method
Mini-ImageNet CIFAR100

0 4 8 PD↓ HAcc↑ 0 4 8 PD↓ HAcc↑
iCaRL 61.31 30.49 17.21 44.10 32.45 64.10 27.93 13.73 50.37 41.45
EEIL 61.31 33.14 19.58 41.73 28.43 64.10 28.96 15.85 48.25 32.43
LUCIR 61.31 25.68 14.17 47.14 35.65 64.10 31.61 13.54 50.56 39.67
TOPIC 61.31 37.48 24.42 36.89 32.98 64.10 40.11 29.37 34.73 25.23
CEC 72.00 56.70 47.63 24.37 15.96 73.07 58.09 49.14 23.93 22.46
F2M 72.05 56.71 47.84 24.21 19.21 71.45 57.76 49.35 22.06 19.37
MetaFSCIL 72.04 57.58 49.19 22.85 14.35 74.50 59.48 49.97 24.53 3.60
Entropy-reg 71.84 57.01 48.21 23.63 19.29 74.40 59.71 50.14 24.26 11.53
L2P∗ 94.12 70.94 56.83 37.29 0.00 91.22 68.66 54.89 36.33 0.00
DualPrompt∗ 93.97 70.61 56.80 37.17 0.10 91.08 68.45 54.67 36.41 0.10
CODA-Prompt∗ 95.37 74.47 61.14 34.23 0.00 93.55 71.91 59.32 34.23 0.00

Zero-shot 58.08 58.19 54.95 3.13 52.47 74.13 72.59 67.93 6.20 64.75
GMM 89.35 83.61 75.18 14.17 71.45 91.53 85.65 81.47 10.06 75.43
KG-GMM (Ours) 90.99 85.63 78.07 12.93 74.81 91.83 86.23 82.37 9.46 79.68

session and extends this lead to 2.89 points in the final session, indicating that our approach more
effectively mitigates forgetting through the integration of LLM and knowledge graphs.

Tab. 2 also presents the comparison results of our method against other baselines on CIFAR100 for
few-shot class incremental learning. The results indicate that our method also achieves superior
performance on low-resolution datasets, outperforming the previous state-of-the-art method GMM by
0.90% points,the traditional train-from-scratch method Entropy-reg [28] by 32.23% points, and the
state-of-the-art prompt-based method CODA-Prompt [44] by 23.05% points in the final session. Note
that although our method shows only a slight improvement over GMM in the last session, it achieves
a 4.25% gain in Harmonic Accuracy. This indicates that our approach better balances learning new
classes while retaining previously learned ones.

Table 3: Ablation study results of the description
labels and the Graph-Augmented Inference on
ImageNet-R B0-10 tasks.

Method Accuracy

GMM 80.72
GMM+Descriptions Labels 80.95
KG-GMM w/o Graph-Augmented Inference 82.77
KG-GMM 84.29

Table 4: Time complexity analysis on the last
task of B0-10 tasks setting of the ImageNet-R
dataset.

Relation Stored r = 0 r = 2 r = 3 (Ours) r=4

Avg text length (c) 30 51 75 102
Generation cost (s) 6.54 7.42 9.67 12.63
Storage (MB) 0 0.05 0.07 0.08
Graph Inference (ms) 0 0.46 0.53 0.62
Accuracy (%) 81.03 81.92 84.29 84.31

4.4 Further Analysis

Ablation study on different components. In Tab. 3, we present ablation studies to validate
the effectiveness of our method. We first use the GPT-3.5 generated descriptions (using the same
prompt question as our method) for each class as the text in the image-text pair of the original GMM.
The results show that without the explicit guidance of the relation keywords, the rich information
brought by the text has almost no improvement over the simple text labels used in the original GMM.
Besides, we show that using only the head entity ĥ provided by the search results in KG (third row in
Tab. 3 shows considerable improvement (82.77%), but combined with the text output, our proposed
KG-GMM achieves the best results 84.29%.

Ablation on Max tokens. In Fig. 5 we present the comparative analysis of maximum token limits on
model performance and inference time. The experiments were conducted on ImageNet-R, comparing
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Image Ground-Truth label

Granny Smith

GMM predicted text

This is a photo of 
a apple.

KG-GMM predicted text

Apple IsA Fruit
Apple HasColor Green
Apple AtLocation Store

GMM prediction

Pineapple

KG-GMM Prediction

Granny Smith

Hammerhead This is a photo of 
a shark. Great White Shark

Shark RelatedTo Head
Shark RelatedTo Hammer
Shark AtLocation Sea

Hammerhead

Goldfinch This is a photo of 
a bird. Hummingbird

Bird RelatedTo Gold
Bird AtLocation Backyard
Bird IsA Finch

Goldfinch

Fox Squirrel This is a photo of 
a fox. Red Fox

Fox IsA animal
Fox HasContext movies
Fox RelatedTo Red

Red Fox

Afghan Hound This is a photo of 
a horse. Zebra

Horse RelatedTo barn
HorseSynonym Horse
Horse AtLocation farm yard Barn

Figure 4: Text examples of our methods against the original GMM.

our KG-GMM method with the baseline approach GMM+Descriptions that utilizes class descriptions
generated by GPT-3.5 for data augmentation. Inference time was measured as the averaged processing
duration per batch (size=64). Notably, our method achieves near-optimal performance at 20 tokens,
while GMM+Descriptions exhibits slower performance growth with increasing tokens. This indicates
that the knowledge graph-augmented GMM produces more informative outputs at lower token
constraints, demonstrating two key advantages: 1) Enhanced information efficiency through KG-
enhanced training enables effective knowledge condensation, and 2) Superior performance is attained
with reduced computational overhead.
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Figure 5: Model Accuracy vs. Inference
Time comparison regarding max tokens con-
figured during inference.

Time complexity analysis. In Tab. 4, we present the
additional storage and inference costs associated with
selecting different numbers of relations r per class
with a total batch size of 64. For r = 0, we used
GMM’s default prompt, “This is a photo of [CLS]”,
while for r = 2 and r = 3, the average generated text
lengths correspond to 51 and 75 characters, respec-
tively. “Generation cost” represents the time required
to generate text, measured in seconds, “Storage” de-
notes the additional memory usage from the knowl-
edge graph, measured in MB, and “Graph inference”
indicates the time needed to obtain the graph-based
prediction ĥ, measured in milliseconds.

As shown in Tab. 4, the storage and inference over-
head of the knowledge graph is minimal (0.07MB and
0.53ms for r = 3). The primary cost arises during
the inference phase (generating longer texts increases
inference time with higher values of r). Balancing inference time with performance gains, we select
r = 3 as our final hyperparameter. We also conduct experiments on analysing memory overhead
and training time between our method and the original GMM. Experimental results demonstrate
that compared to the original GMM, our method requires a maximum memory footprint of 169 KB,
while utilizing this additional memory allocation to preserve exemplars yields no corresponding
performance improvement. We refer the readers to the Section A.3 for detailed experiments.

Illustration of corrected predictions. In Fig. 4 we present some visual examples of our proposed
KG-GMM in terms of the predicted text and final prediction in the B0-10 tasks setting of the
ImageNet-R dataset. We can see that the GMM can still recognize a shark but lose the ability to
classify it to the right subclass (hammerhead). Instead, our KG-GMM can extract rich information
from the relation contained in the predicted text and locate it to the right class. We refer the readers
to the supplementary materials for more visualization results including failure cases.

9



5 Conclusions

In this paper, we propose KG-GMM, a novel method to combine MLLMs and knowledge graphs
to tackle the catastrophic forgetting problem in continual learning. Our method gradually builds a
graph in the process of learning new classes, assigning each class with r different relations to enhance
discriminability between semantic similar classes. During inference, we use the generated relations
to locate the specific class, combined with the predicted text, our KG-GMM can effectively preserve
much of the LLM’s generalization ability while providing more accurate category predictions for
given test images. Extensive experiments show that our method outperforms the state-of-the-art
baselines for exemplar-free class incremental learning.
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A Appendix / supplemental material

A.1 Different class order

Since the constructed sub-graph is influenced by the order in which classes are encountered, different
class orders result in different sub-graphs. To evaluate this effect, we conducted multiple experiments
with varying class sequences, and the results are presented in Tab. 5 and Tab. 6. As shown, while our
model’s performance fluctuates due to the order variations, it consistently maintains a high level of
accuracy, demonstrating the robustness of our method.

Table 5: Comparison results between our method and other methods on Tiny-ImageNet and ImageNet-
R under different class orders.

Type Method Exemplar
Tiny-ImageNet ImageNet-R

B100-5 tasks B100-10 tasks B100-20 tasks B0-10 tasks
Avg Last Avg Last Avg Last Last

Conventional

EWC [24] % 19.01 6.00 15.82 3.79 12.35 4.73 35.00
LwF [25] % 22.31 7.34 17.34 4.73 12.48 4.26 38.50
iCaRL [40] ! 45.95 34.60 43.22 33.22 37.85 27.54 -
EEIL [6] ! 47.17 35.12 45.03 34.64 40.41 29.72 -
UCIR [15] ! 50.30 39.42 48.58 37.29 42.84 30.85 -
PASS [69] % 49.54 41.64 47.19 39.27 42.01 32.93 -
DyTox [11] ! 55.58 47.23 52.26 42.79 46.18 36.21 -

Discriminative
PT models

Continual-CLIP[49] % 70.49 66.43 70.55 66.43 70.51 66.43 72.00
L2P [56] % 83.53 78.32 76.37 65.78 68.04 52.40 72.92
DualPrompt [55] % 85.15 81.01 81.38 73.73 73.45 60.16 68.82
CODA-Prompt [44] % 85.91 81.36 82.80 75.28 77.43 66.32 73.88
MoE-CLIP [59] % 81.12 76.81 80.23 76.35 79.96 75.77 80.87
RAPF [17] % 78.64 74.67 77.42 73.57 76.29 72.65 80.28
Linear Probe % 74.38 65.40 69.73 58.31 60.14 49.72 45.17

Generative
PT models

Zero-shot % 58.16 53.72 58.10 53.72 58.13 53.72 67.38
GMM [5] % 83.42 76.98 82.49 76.51 81.70 76.03 80.72
KG-GMM (Ours) order1 % 85.88 80.93 83.91 77.35 82.98 77.95 84.30
KG-GMM (Ours) order2 % 86.35 82.02 84.45 78.47 83.43 78.66 84.62
KG-GMM (Ours) order3 % 86.27 82.62 84.75 78.67 83.13 78.36 83.95
KG-GMM (Ours) % 86.17 ± 0.21 81.86 ± 0.70 84.37 ± 0.35 78.16 ± 0.58 83.18 ± 0.19 78.32 ± 0.29 84.29 ± 0.27

Table 6: Comparison results of our method with other conventional baselines and methods on the
mini-ImageNet dataset for few-shot class incremental learning under different class orders. The table
includes one base task and eight incremental tasks. PD is the performance drop between the first and
last session. ∗ indicates our re-implementation based on PILOT [46].

0 1 2 3 4 5 6 7 8 PD↓ HAcc↑
iCaRL [40] 61.31 46.32 42.94 37.63 30.49 24.00 20.89 18.80 17.21 44.10 32.45
EEIL [6] 61.31 46.58 44.00 37.29 33.14 27.12 24.10 21.57 19.58 41.73 28.43
LUCIR [15] 61.31 47.80 39.31 31.91 25.68 21.35 18.67 17.24 14.17 47.14 35.65
TOPIC [48] 61.31 50.09 45.17 41.16 37.48 35.52 32.19 29.46 24.42 36.89 32.98
CEC [61] 72.00 66.83 62.97 59.43 56.70 53.73 51.19 49.24 47.63 24.37 15.96
F2M [43] 72.05 67.47 63.16 59.70 56.71 53.77 51.11 49.21 47.84 24.21 19.23
MetaFSCIL [8] 72.04 67.94 63.77 60.29 57.58 55.16 52.90 50.79 49.19 22.85 14.35
Entropy-reg [28] 71.84 67.12 63.21 59.77 57.01 53.95 51.55 49.52 48.21 23.63 19.29
L2P∗ [56] 94.12 87.20 80.99 75.67 70.94 66.76 63.11 59.81 56.83 37.29 0.0
DualPrompt∗ [55] 93.97 86.85 80.67 75.31 70.61 66.44 62.77 59.58 56.80 37.17 0.1
CODA-Prompt∗ [44] 95.37 88.86 82.69 77.87 74.47 70.16 66.46 63.73 61.14 34.23 0.0

Zero-shot 58.08 58.95 57.76 57.89 58.19 57.42 56.26 54.82 54.95 3.13 52.47
GMM 89.35 88.40 86.11 85.07 83.61 81.35 78.97 77.34 75.18 14.17 71.45
KG-GMM order 1 91.32 89.87 87.92 87.67 85.24 83.12 80.97 79.43 77.82 13.50 74.59
KG-GMM order 2 91.54 90.14 88.13 87.83 85.42 83.69 81.45 80.23 78.43 13.11 74.87
KG-GMM order 3 90.12 88.40 88.28 86.37 86.23 84.28 80.95 79.23 77.95 12.17 74.96
KG-GMM avg 90.99 ± 0.39 89.50 ± 0.61 88.11 ± 0.02 87.29 ± 0.43 85.63 ± 0.19 83.70 ± 0.22 81.12 ± 0.05 79.63 ± 0.19 78.07 ± 0.07 12.93 ± 0.31 74.81 ± 0.02

A.2 Experiments on fine-grained and medical datasets

We conducted exploratory experiments on several fine-grained datasets and medical imaging datasets,
as detailed below:

A.2.1 Datasets and settings

CUB-200 [52] is a fine-grained bird species dataset with detailed part-level attributes. We con-
struct a knowledge graph using each class’s most certain attributes (confidence score 4), such as
has_bill_shape::hooked or has_bill_shape::cone, resulting in approximately 17 relations per class
after our graph construction method. All 200 classes are equally separated into 10 tasks.
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HAM-10000 [50] is a medical image dataset of 10,000 pigmented skin lesions of 7 classes for
melanoma classification. Since we could not find a suitable knowledge graph for medical data, we
instead used DeepSeek-O1 to generate 10 representative attributes for each of the 7 classes (such
as color_dominance::light brown, background_skin::No pigmentation), serving as their semantic
descriptions or attribute sets. We follow [2] to separate 7 classes in 3 tasks, containing [2,2,3] classes
each.

FVGC-Aircraft [31] is a dataset comprising 100 different aircraft classes. As no suitable external
knowledge graph was available, we utilized the structured metadata provided with the dataset.
Specifically, each aircraft class is described using three hierarchical levels: 41 manufacturers, 70
families, and 100 variants. These are represented as three relations—hasManufacturer, hasFamily,
and hasVariant—with each class associated with exactly one relation at each level, resulting in three
relations per class.

Herbarium [9] is a dataset containing 46,000 herbarium specimens across more than 680 species
within the flowering plant family Melastomataceae. Due to the limited rebuttal time, it was difficult to
process the entire dataset, so we randomly selected 10 species and used DeepSeek-O1 to generate six
attribute-based relations: hasLeafShape, hasLeafMargin, hasLeafVeins, hasFlowersColor, hasStem,
and hasFruit, each with corresponding class-specific properties. The selected classes were evenly
divided into 5 tasks, with 2 species per task.

Table 7: Performance comparison across fine-grained and medical datasets.

Datasets CUB-200 HAM-10000 FGVC-Aircraft Herbarium19

Avg Last Avg Last Avg Last Avg Last

GMM 49.34 40.39 79.22 63.81 51.63 47.25 86.34 79.88
KG-GMM 52.65 43.84 81.45 64.34 51.88 47.88 88.59 81.14

The experimental results in Tab. 7 demonstrate that, with sufficiently rich KG information (CUB-200,
HAM-10000), our method consistently improves upon GMM. When relevant knowledge is limited
(as in the case of FVGC-Aircraft), the performance gains from our method are relatively modest.

A.3 Analysis on training overhead

In Tab. 8 we present more detailed comparisons on memory footprint (additional memory occu-
pied by graph-based labels), training overhead (training time per batch), KG time (time used for
constructing sub-graph G′

t), and the final accuracy. The experimental results demonstrate that the
graph-based labels incur only a marginal overhead compared to word-based labels, requiring at most
169KB of additional memory and 0.07 seconds of extra processing time. Notably, when convert-
ing this 169KB capacity into exemplars for memory replay, the performance improvement proved
statistically insignificant (from 80.72 to 80.91). This observation substantiates that our proposed
method achieves substantial performance enhancements while maintaining minimal computational
and storage overhead.

Table 8: Training overhead analysis on ImageNet-R.

Method Memory Usage Training Time KG Time Acc

GMM 244K 0.36 0 80.72
KG-GMM (task 1) 332K 0.40 2.46 –
KG-GMM (task 6) 368K 0.41 2.57 –
KG-GMM (task 10) 413K 0.43 2.73 84.29
GMM + 3 exemplar 484K 0.36 0 80.91

A.4 More visualization results

In Fig. 6, we provide additional visual examples of our methods against the original GMM. It can
be observed that KG-GMM utilizes attributes such as the bird’s color and location to refine its
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Image Ground-Truth label

Granny Smith

GMM predicted text

This is a photo of 
a apple.

KG-GMM predicted text

Apple IsA Fruit
Apple HasColor Green
Apple AtLocation Store

Goldfinch

Tree frog

GMM prediction

Pineapple

KG-GMM Prediction

Granny Smith

Hammerhead This is a photo of 
a shark. Great white shark

Shark RelatedTo Head
Shark RelatedTo Hammer
Shark AtLocation Sea

Hammerhead

This is a photo of 
a bird. Hummingbird

Bird RelatedTo Gold
Bird AtLocation Backyard
Bird IsA Finch

Goldfinch

This is a photo of 
a toad. Newt

Toad RelatedTo Frog
Toad AtLocation Tree
Toad IsA Amphibian

Tree frog

Tarantula This is a photo of 
a spider.

Spider web
Spider IsA Arachnid
Spider AtLocation USA
Spider RelatedTo Tarantula

Tarantula

Cobra This is a photo of 
a snake. Iguana

Snake IsA reptile
Snake AtLocation zoo
Snake RelatedTo python Iguana

Basset Hound This is a photo of 
a hound.

Afghan Hound
Hound IsA hound
Hound  CapableOf bark
Hound  IsA dog

Beagle

Great white shark This is a photo of 
a shark. Great white shark

Shark IsA Animal
Shark RelatedTo Great
Shark AtLocation Ocean

Great white shark

Figure 6: More text examples of our methods against the original GMM. The first four examples
illustrate how our method corrects the model drift in continual learning. The last two examples with
red boxes, showcase where both our method and GMM made incorrect predictions.

classification to the finer-grained category of “goldfinch.” In contrast, the original GMM, although
retaining knowledge of the broader category, loses the ability to distinguish finer details after learning
additional concepts. However, for certain categories that belong to the same broader class (e.g.,
hound) and have nearly identical characteristics (i.e., similar relations), our method may still make
errors, though it typically misclassifies them into closely related categories (e.g., misclassifying a
Basset Hound as a Beagle rather than an Afghan Hound based on text similarity). We believe that if
similar classes were more distinctly separated with different relations or finer-grained graphs with
detailed attributes were incorporated, it would further enhance our method’s performance.

A.5 Limitations and Border Impact

There are still several limitations in our work. As our work represents the first attempt to integrate
knowledge graphs with continual learning, our experiments were primarily conducted on established
continual learning benchmarks. We acknowledge that collecting KGs for some specialized datasets
(e.g., fine-grained classification datasets and medical datasets) is tricky and remains unexplored.
Furthermore, given that our primary baseline comparison focuses on GMM [5], our experiments were
limited to consistent backbone architectures (EVA-CLIP and Vicuna-7B). Employing more advanced
visual-language models could yield performance improvements. With the rapid development of LLMs,
continual learning methods will become more important across various applications. Knowledge
graphs emerge as a valuable yet previously underutilized tool for mitigating generalization loss during
continual fine-tuning of LLMs. Exploring optimal methodologies for KG integration presents a
promising research direction worthy of in-depth investigation.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction in Section 1 accurately reflect our contributions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of our work in Appendix A.5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: We do not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer:[Yes]
Justification: All information are detailed in Section 4
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: All datasets can be obtained on the internet. We will soon open source our
code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide specific details of all experiments in Sec 4

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide experiment results on three different class orders in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide sufficient information on the computer resources in Appendix A.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the NeurIPS Code of Ethics, and conduct research with it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impacts in Appendix A.5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All existing assets we use are cited in section 4

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

22

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We describe the usage of the Vicuna 7B in Section 3
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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