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ABSTRACT

Recent research on compressing deep neural networks has focused on reducing
the number of parameters. Smaller networks are easier to export and deploy on
edge-devices. We introduce Adjoined networks as a training approach that can
regularize and compress any CNN-based neural architecture. Our one-shot learning
paradigm trains both the original and the smaller networks together. The param-
eters of the smaller network are shared across both the architectures. We prove
strong theoretical guarantees on the regularization behavior of the adjoint training
paradigm. We complement our theoretical analysis by an extensive empirical evalu-
ation of both the compression and regularization behavior of adjoint networks. For
resnet-50 trained adjointly on Imagenet, we are able to achieve a 13.7x reduction
in the number of parameters1 and a 3x improvement in inference time without any
significant drop in accuracy. For the same architecture on CIFAR-100, we are able
to achieve a 99.7x reduction in the number of parameters and a 5x improvement in
inference time. On both these datasets, the original network trained in the adjoint
fashion gains about 3% in top-1 accuracy as compared to the same network trained
in the standard fashion.

1 INTRODUCTION

Neural networks have achieved state-of-the art performance on computer vision such as classifica-
tion, object detection Redmon et al. (2016), image segmentation Badrinarayanan et al. (2017) and
many more. Since the introduction of Alexnet Krizhevsky et al. (2012), neural architectures have
progressively gone deeper with an increase in the number of parameters. This includes architectures
like Resnet He et al. (2016) and its many variants (xresnet He et al. (2019), resnext Xie et al. (2017);
Hu et al. (2018) etc.), Densenet Huang et al. (2017), Inception networks Chen et al. (2017) and many
others.

While these networks achieve exceptional performance on many tasks, their large size makes it
difficult to deploy on many edge devices (like mobile phones, iot and embedded devices). Unlike
cloud servers, these edge devices are constrained in terms of memory, compute and energy resources.
A large network performs a lot of computations, consumes more energy and is difficult to transport
and to update. A large network also has a high prediction time per image. This is constraint when
real-time inference is needed. Thus, compressing neural networks while maintaining accuracy has
received significant attention in the last few years.

Pruning - These techniques involve removing parameters (or weights) which satisfy some criteria.
For example, in weight pruning, all the parameters whose values are below some pre-determined
threshold are removed Han et al. (2015). A natural extension of this is channel pruning Liu et al.
(2017) and filter pruning Li et al. (2016) where entire convolution channel or filter is removed
according to some criteria. However, all of these methods involve multiple passes of pruning followed
by fine-tuning and require a very long time to compress. Moreover, weight pruning doesn’t give the
benefit of faster inference times unless there is hardware support for fast sparse matrix multiplications.
In this paper, we propose a one-shot compression procedure (as opposed to multiple passes). To the
best of our knowledge, pruning techniques have not been successfully applied (without significant
accuracy loss) to large architectures like Resnet-50 considered in this paper.

1For size comparison, we ignore the parameters in the last linear layer as it varies by dataset and are typically
dropped during fine-tuning. Else, the reductions are 11.5x and 95x for imagenet and cifar-100 respectively.
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Figure 1: Training paradigm based on adjoined networks. The original and the compressed version
of the network are trained together with the parameters of the smaller network shared across both.
The network outputs two probability vectors p (original network)and q (corresponding to the smaller
network).

Quantization and low-precision training - In quantization-based techniques, multiple parameters
are quantized such that share the same value. Hence, only the effective values and their indices
need to be stored Han et al. (2015). This method of scalar quantization can be extended to vector
quantization where a group of parameters share values Carreira-Perpinán & Idelbayev (2017). In a
recent work, Stock et al. (2019) used a clustering based approach for vector quantization of resnet
architectures. A similar approach is low-precision training where the goal is to train networks with
integer or ternary or binary weights instead of floating point numbers Shayer et al. (2017); McDonnell
(2018); Courbariaux et al. (2015). As before, these techniques assume the availability of special
hardware which supports fast inference.

Small architectures - Another approach is to design smaller architectures which can run efficiently
on edge devices. SqueezeNet Iandola et al. (2016), MobileNet Sandler et al. (2018) and EfficientNet
Tan & Le (2019) to name a few. In this paper, our goal is to design a paradigm which can compress
any architecture. Hence, the direction of architecture search is orthogonal to our approach.

To summarize, most of the current approaches suffer from one of the two problems. (1) Require
the availability of special hardware to support fast inference. (2) Require large training time as they
alternate between pruning and fine-tuning. In this work, we propose a novel training paradigm based
on adjoined networks which can compress any neural architecture, provides inference-time speedups
and works at the application layer (does not require any specialized hardware).

As shown in Fig. 1, in the adjoint training paradigm, both the original and the compressed network
are trained together at the same time. The parameters of the larger network are a super-set of
the parameters of the smaller network. Details of our design, how it supports fast inference and
relationship with other architectures (teacher-student Hinton et al. (2015), siamese networks Bertinetto
et al. (2016), slimmable networks Yu et al. (2018), deep mutual learning Zhang et al. (2018) and lottery
ticket hypothesis Frankle & Carbin (2018)) are discussed in Section 2. In our training paradigm, we
get two outputs p and q corresponding to the original and smaller networks respectively. We train the
two networks using a novel time-dependent loss function, adjoint loss described in Section 3. The
adjoint loss not only trains the smaller network but also acts as a regularizer for the bigger (original)
network. In Section 4, we provide strong theoretical guarentees on the regularization behaviour of
adjoint training. We also show that training and regularizing in the adjoint fashion is better than other
regularization techniques like dropouts Srivastava et al. (2014).

In Section 5, we describe our results. We run several experiments on various datasets like ImageNet
Russakovsky et al. (2015) and CIFAR-10 and CIFAR-100 Krizhevsky et al. (2009). For each of these
datasets, we consider different architectures like resnet-50 and resnet-18. On CIFAR-100, the adjoint
training paradigm allows to compress resnet-50 architecture by 99.7x without losing any accuracy.
The compressed architecture has an inference speed of 5x when compared against the original, bigger
architecture. Moreover, the original network gains 3.58% in accuracy when compared against the
same network trained in the standard (non-adjoint) fashion. On the same dataset, for resnet-18, we
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Figure 2: (Top) Standard 2d-convolution operation. The inputs, outputs and convolution filters are all
3d volumes. (Bottom) Adjoint convolution operation. The convolution layer receives two inputs inp1
and inp2. Standard convolution operation is applied on inp1 to get out1. For the second input, only a
fraction of the conv filters are used (rest can be treated as zero or omitted) to get out2.

acheive a compression factor of 49x at an inference speed of 3x with the bigger network gaining
5.55% accuracy (over the non-adjoint counterpart). On Imagenet, for resnet-50, we are able to
compress it by 13.7x at an inference speed of 3x. In this case, the bigger network gains 2.43% over
its non-adjoint cousin clearly showing that it is better to train the networks together.

2 ADJOINED NETWORKS

In our training paradigm the original (bigger) and the smaller network are trained together. The
motivation for this kind of training comes from the principle that good teachers are lifelong learners.
Hence, the bigger network which serves as a teacher for the smaller network should not be frozen (as
in standard teacher-student architecture designs Hinton et al. (2015)). But rather both should learn
together in a ‘combined learning environment’, that is, adjoined networks.2 By learning together both
the networks can be better together.

We are now ready to describe our approach and discuss the design of adjoined networks. But before
that, let take a re-look at the standard convolution operator. Let x ∈ Rh×w×cin be the input to a
convolution layer with weights W ∈ Rcout×k×k×cin where cin, cout denotes the number of input
and output channels, k the kernel size and h,w the height and width of the image. Then, we have that

y = conv(x,W)

In the adjoint paradigm, a convolution layer with weight matrix W and a binary mask matrix
M ∈ {0, 1}cout×k×k×cin receives two inputs x1 and x2 of size h×w× cin and outputs two vectors
y1 and y2 as defined below.

y1 = conv(x1,W) y2 = conv(x2,W ∗M) (1)

Here M is of the same shape as W; and ∗ represents an element-wise multiplication. note that the
parameters of the matrix M are fixed before training and not learnt. The vector x1 represents an input
to the original (bigger) network while the vector x2 is the input to the smaller, compressed network.
For the first convolution layer of the network x1 = x2. But the two vectors are not necessarily
equal for the deeper convolution layers (Fig. 1). The mask matrix M serves to zero-out some of
the parameters of the convolution layer thereby enabling network compression. In this paper, we
consider matrices M of the following form.

M := aα = matrix such that the first
cout
α

rows are all 1 and the rest 0 (2)

2Throughout the paper, we use the term adjoined networks and adjoint training paradigm interchangeably.
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Consider another matrix rβ of the same shape as M which is such that β fraction of the entries
(selected uniformly at random) are zero and the rest are one. We achieve further compression, by
multiplying aα by rβ . In Section 5, we run experiments with M := aα for α ∈ {4, 8, 16} and for
various choices β ∈ {0.1, . . . , 0.9}. Putting this all together, we see that any CNN-based architecture
can be converted and trained in an adjoint fashion by replacing the standard convolution operation by
the adjoint convolution operation (Eqn. 1). Since the first layer receives a single input (Fig. 1), two
copies are created which are passed to the adjoined network. The network finally gives two outputs
p corresponding to the original (bigger or unmasked) network and q corresponding to the smaller
(compressed) network where each convolution operation is done using a subset of the parameters
described by the mask matrix M (or Mα). We train the network using a novel time-dependent
loss function which forces p and q to be close to one another (Defn. 1). Before we describe our
loss function in detail, we first compare our approach to other similar approaches and ideas in the
literature.

Similar architectures - The idea of training two networks together was recently considered by Zhang
et al. (2018). Rather than using a teacher to train a student, they let a cohort of students train together
using a distillation loss function. In this paper, we consider we train a teacher and a student together
rather than a cohort of students. We also use a novel time-dependent loss function. Moreover, we
also provide theoretical guarantees on the efficacy of our approach. Another related architecture
was considered in the work of Slimmable Networks Yu et al. (2018). Here different networks (or
architectures) are switched on one-at-a-time and trained using the standard logistic loss function. By
contrast, in this work, both the networks are trained together at the same time using a novel loss
function (adjoint-loss). Moreover, in this work, we show compression and regularization results on
large-scale datasets like Imagenet and for large architectures like Resnet-50.

Siamese networks is a neural network design that is used to compare two input vectors. Also called
twin networks, they consist of two networks with identical parameters. Given two input vectors, the
network returns two output vectors which are then used to compute the similarity between the input
vectors Bromley et al. (1994). More recently, siamese networks have been used in face verification
Taigman et al. (2014). The design of adjoined network also uses two architectures. However, both
the architectures are not identical. Rather one is a super-set of the other. Also, rather than working on
two different input vectors, adjoined networks work on a single input.

Lottery ticket hypothesis Frankle & Carbin (2018) says the following. A neural network contains
within it a subset of parameters which are ‘special’. These 10 − 20% special parameters won the
lottery during the network initialization process and it is possible to prune and train the original
network to using only these special parameters. Thus, some weights in the network are just ‘lucky’
that they happened to be initialized in the ‘right’ way which made training possible with only these
subsets of parameters. In our design, rather than relying on random initialization, we “force” some
parameters to be special through the use of the mask matrix M and then training the two networks
together through the adjoint-loss (Defn. 1).

3 ONE-SHOT REGULARIZATION AND COMPRESSION

In the previous section, we looked at the design on adjoined networks. For one input (X,y) ∈
Rh×w×cin × [0, 1]nc , the network outputs two vectors p and q ∈ [0, 1]nc where nc denotes the
number of classes and cin denotes the number of input channels (equals 3 for RGB images).
Definition 1 (Adjoint loss). Let y be the ground-truth one-hot encoded vector and p and q be output
probabilities by the adjoined network. Then

L(y, p, q) = −y log p + λ(t)KL(p, q) (3)

where KL(p, q) =
∑
i pi log

pi
qi

is the measure of difference between two probability measures
Kullback & Leibler (1951). The regularization term λ : [0, 1]→ R is a function which changes with
the number of epochs during training. Here t = current epoch

Total number of epochs equals zero at the start of training
and equals one at the end.

In our definition of loss function, the first term is the standard cross-entropy loss function which trains
the bigger network. To train the smaller network, we use the predictions from the bigger network as a
soft ground-truth signal. We use kl-divergence to measure how far the output of the smaller network
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is from the bigger network. This also has a regularizing effect as it forces the network to learn from a
smaller set of parameters. Note that, in our implementations, we use KL(p, q) =

∑
pi log

pi+ε
qi+ε

to
avoid rounding and division by zero errors where ε = 10−6.

At the start of training, p is not a reliable indicator of the ground-truth labels. To compensate for this,
the regularization term λ changes with time. In our experiments, we used λ(t) = min{4t2, 1}. Thus,
the contribution of the second term in the loss is zero at the beginning and steadily grows to one at
50% training. We experiment with different choices of the regularization function λ the results of
which are in the appendix .

Comparison with dropout - Our idea of using only a subset of the parameters has some similarity
to using dropouts where a fraction of the parameters are initialized to zero at training time. In this
case, only the output of the smaller network is used to train the parameters. In our case, we use
both the outputs. Our experiments show that training the networks together is a much more effective
regularization strategy as compared to dropouts.

4 THEORY: REGULARIZATION BEHAVIOR

To study the regularization behavior of adjoint training paradigm (or the loss function), we consider
the following neural network model. A multi-layer neural network that has only convolution or
linear fully-connected layers with two possible choices for activation function, ReLU or the linear
function. Although neural networks used in practice often have other types of layers max-pooling,
batch-normalization etc. and other possible activation functions, the proposed model is often studied
as a first step towards understanding the dynamics and behavior of deep networks (for example in
Phuong & Lampert (2019), Saxe et al. (2013), Kawaguchi (2016) and Hardt & Ma (2016)). We are
now ready to state the main theoretical result of this paper.

Theorem 4.1. Given a deep neural network A which consists of only convolution and linear layers.
Let the network use one of f(x) = min{x, 0} (relu) or f(x) = x (linear) as the activation function.
Let the network be trained using the adjoint loss function as defined in Eqn. 3. Let X be the set of
parameters of the network A which is shared across both the smaller and bigger networks. Let Y be
the set of parameters of the bigger network not shared with the smaller network. Let p be the output
of the larger network and let q be the output of the smaller network. Then, the adjoint loss function
induces a data-dependent regularizer with the following properties.

• For all x ∈ X , the induced L2 penalty is given by
∑
i pi
(
log′ pi − log′ qi

)2
• For all y ∈ Y , the induced L2 penalty is given by

∑
i pi
(
log′ pi

)2
Proof sketch To analyze the induced L2 penalty, we consider the second order taylor approximation
of the kl-divergence term for all parameters x ∈ X and for all y ∈ Y. By treating, pi (and qi) as
functions of the given parameter x (or y) and careful analysis gives us the result of the theorem. The
detailed derivations are in the appendix .

Thm. A.1 shows that for that shared parameters x, adjoint loss penalizes those parameters whose rate
of change between the larger and smaller networks is large (on the log scale). Hence, it encourages’
parameters that have similar behavior (rate of change) on both the networks. Similarly, for the
over-parameterized weights of the model y, the regularization imposed by the adjoint loss is such
that if these parameters change a lot (on the log scale) then the penalty imposed on such parameters
is more. Thus, adjoint loss “encourages" such parameters not to change by a lot thereby enabling
compression.

5 EXPERIMENTS

We are now ready to describe our experiments in detail. We run experiments on five different datasets.
(1) Imagenet - an image classification dataset Russakovsky et al. (2015) with 1000 classes and about
1.2M images . (2) CIFAR-10 - a collection of 60k images in 10 classes. (3) CIFAR-100 - same as
cifar-10 Krizhevsky et al. (2009) but with 100 classes. (4) Imagewoof - A proxy dataset Howard
(2019); Shleifer & Prokop (2019) containing 10 different dog breeds from imagenet. (5) Oxford-IIIT
Pets - a dataset Parkhi et al. (2012) of pets containing 37 classes with approximately 200 images per
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Adjoint-small vs teacher - student vs standard

Network Dataset Mask
matrix (M ) #params Speed

gain
Adjoint
(small)

Teacher
student Standard

Resnet-50 Cifar-10 a8 ∗ r0.9 88.9× 4× 90.05 89.44 90.25
Cifar-100 a16 ∗ r0.9 99.6× 4.7× 64.54 63.62 65.31
Imagenet a4 13.7× 3.1× 71.84 70.55 73.414

Imagewoof a4 ∗ r0.8 44.8× 3.1× 84.76 83.88 85.2
Pets a4 ∗ r0.5 24.15× 3.1× 85.38 84.97 85.31

Resnet-18 Cifar-10 a16 ∗ r0.9 68.7× 2.6× 87.67 88.43 88.17
Cifar-100 a4 ∗ r0.9 48.9× 2.1× 61.42 60.69 61.39
Imagewoof a4 ∗ r0.5 21.8× 2.1× 82.81 82.61 83.35
Pets a2 ∗ r0.5 7.2× 1.7× 83.62 80.98 84.84

Table 1: The #params column is the ratio of number of parameters of the smaller network compared
against the standard full network. The speed gain column denotes the ratio of inference time. The
last three columns compare the accuracies (in %) of the the smaller network trained using the adjoint
paradigm vs the the accuracy of the same network trained using the teacher student paradigm against
the accuracy of the standard full network. aα is as defined in Eqn. 2 and rβ denotes a random matrix
with β fraction of its entries are zero. ∗ denotes element-wise dot-product. Detailed results can be
found in the appendix .

class. For each of these datasets, we use standard data augmentation techniques like random-resize
cropping, random flipping etc. The details are provided in the appendix .

We train two different architectures on all of the above datasets. Namely, resnet50 and resnet18. The
detailed architecture diagram can be found in supplementary material. On each dataset, we first train
these architectures in the standard non-adjoint fashion using the cross-entropy loss function. We will
refer to it by the name standard or standard-full. Next, we train the adjoint network, obtained by
replacing the standard convolution operation by the adjoint convolution operation, using the adjoint
loss function. In the second step, we obtain two different networks. In this section, we refer to them
by ajoint-full and the adjoint-small networks. We compare the performance of the adjoint-full and
adjoint-small networks against the standard network. One point to note is that we do not replace the
convolutions in the stem layers but only those in the res-blocks. Since most of the weights are in the
later layers, this leads to significant space and time savings while retaining competitive accuracy.

We ran our experiments on gpu enabled machine using pytorch. We trained all our networks using
the adam optimizer with a cosine learning rate schedule with gradual warm-up. The parameters of
the network were randomly initialized. Unless otherwise specified, we train both the standard and
adjoint networks for the same number of epochs. We have also open-sourced our implementation 3.

In Section 5.1, we describe our results for compression. In Section 5.2, we show the strong regu-
larizing effect of adjoint training. In Section 5.3, we compare our approach to dropouts, a popular
approach to regularizing deep neural networks. In total, we ran close to 150 different experiments
covering different datasets, different masking matrices etc. The detailed results are included in the
appendix .

5.1 COMPRESSION

Table 1 compares the performance (top 1% accuracy)of the adjoint-small network against the per-
formance of standard-full network. We use the aα as the masking matrix (defined in Eqn. 2). The
mask is such that the last (1− 1

α ) filters are zero. Hence, these can be pruned away to support fast
inference. Using aα suffices for speed optimization. But, we can get a further reduction in the number
of parameters, by multiplying the adjoint matrix by another random matrix r. This matrix is such that
only a fraction of its entries are non-zero. Hence, using such a mask matrix further reduces the model
size.

3The code can be found at https://github.com/utkarshnath/Adjoint-Network.git
4We train on imagenet using the standard pytorch code Facebook (2020). The accuracy is the same as

reported for multi-gpu training on imagnet by nvidia Nvidia (2020)
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Figure 3: (Left) Plot of validation cross-entropy loss of the adjoint-16 full and standard resnet50
network on CIFAR-100. (Right) Plot of validation cross-entropy loss of the adjoint-4 full and standard
resnet50 network on Imagenet

Adjoint-full vs standard

Network Dataset Mask
matrix (M ) Adjoint-full Standard

Resnet-50 Cifar-10 a16 91.34 90.25
Cifar-100 a16 69.07 65.31
Imagenet a4 75.84 73.41
Imagewoof a4 ∗ r0.9 86.3 85.2
Pets a2 87 85.31

Resnet-18 Cifar-10 a8 90.26 88.17
Cifar-100 a4 66.84 61.39
Imagewoof a4 84.16 83.35
Pets a8 86.33 84.84

Table 2: The last two columns show the accuracies (in %) of the network trained in the adjoint
fashion and the same network trained in the standard way. In all cases the adjoint network exceeds
the accuracy of the standard full network. aα, rβ are as in Table 1. Detailed results can be found in
the appendix .

We also observe that resnet-50 is a bigger network and can be compressed more. Also, different
datasets can be compressed by different amounts. For example, on cifar-10 and 100 datasets, the
network can be compressed by factors ∼ 90x while for other datasets it ranges from 7x to 44x. Our
goal is to compare the adjoint models against the standard models. Note that in all the cases, the drop
in accuracy is small, a maximum of −1.4% over all the datasets. In some cases, the smaller network
even outperforms the bigger network. We also compare the performance of the smaller network
trained in the adjoint fashion against the same network trained using the standard teacher-student
paradigm. On all the datasets and for all architectures (except one) that we considered, adjoint
training paradigm out-performed teacher student training.

5.2 REGULARIZATION

Table 2 compares the performance of the adjoint-full network against the performance of the cor-
responding standard-full network. We see a consistent trend that the network trained adjointly
outperforms the same network trained in the standard way. We see maximum gains on cifar-100,
exceeding accuracies by as much as 5.5%. Even on imagenet, we see a gain of about 2.5%. Fig.
3 shows the plot of validation cross-entropy loss as a function of the number of epochs. For a fair
comparison, we look at the −y log p (Eqn. 3) term of the adjoint loss function. By regularizing the
loss function, we are able to train longer while decreasing the loss function. On the other hand, the
network trained in the standard fashion starts to over-fit after a while (as evident in the loss profile).
Fig. 3 shows the loss plot on one architecture for two datasets. Similar plots on other datasets and for
other architectures are available in the appendix .
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Figure 4: (Left) Plot of validation cross-entropy loss of the adjoint-16 full and standard + dropout
resnet50 network on CIFAR-100. (Right) Plot of validation cross-entropy loss of the adjoint-4 full
and standard + dropout resnet50 network on Imagenet

Adjoint-full vs standard + dropouts

Network Dataset Mask
matrix (M ) Full Std + dropout

Resnet-50 Cifar-10 a16 91.34 90.11
Cifar-100 a16 69.07 66.66
Imagenet a4 75.84 69.54
Imagewoof a4 ∗ r0.9 86.3 82.76
Pets a4 86.73 84.7

Resnet-18 Cifar-10 a8 90.26 89.04
Cifar-100 a4 66.09 64.3
Imagewoof a4 84.16 82.1
Pets a8 86.33 82.61

Table 3: The last two columns show the accuracies (in %) of the network trained in the adjoint fashion
vs the same network trained in the standard way using dropouts. In all cases the adjoint network
exceeds the accuracy of the standard one. aα, rβ are as in Table 1. Details can be found in the
appendix .

5.3 COMPARISON AGAINST DROPOUTS

Table 3 compares the performance of the adjoint-full network against the performance of the corre-
sponding standard-full network where the standard network was trained using dropouts. We see a
consistent trend that the network trained adjointly outperforms the same network trained with dropout
regularization. We see maximum gains on imagenet, exceeding accuracies by as much as 6.3%. On
cifar and imagewoof, we see gains of about 3%. As is evident from our experiments, dropouts are not
very effective regularizers on the imagenet dataset. Fig. 4 shows the plot of validation cross-entropy
loss as a function of the number of epochs. As before, we only look at the−y log p (Eqn. 3) term. The
above results show that adjoint training is much more effective regularization strategy as compared
against dropouts. Similar plots on other datasets and for other architectures are available in the
appendix .

6 CONCLUSION

In this work, we introduced the paradigm of Adjoined network training. We showed how this
approach to training neural networks can allow us to compress large networks like Resnet-50 by
13x, (even going up to 99.7x on some datasets) while retaining the accuracy. We showed that the
idea of adjoining two networks together can be used to regularize any architecture. We showed that
adjoining a large and a small network together enables the large network to significantly exceed its
own accuracy (when trained in the standard way) and is a much more effective regularization strategy
than dropouts.
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A REGULARIZATION THEORY

Theorem A.1. Given a deep neural network A which consists of only convolution and linear layers.
Let the network use one of f(x) = min{x, 0} (relu) or f(x) = x (linear) as the activation function.
Let the network be trained using the adjoint loss function as defined in Eqn. 3. Let X be the set of
parameters of the network A which is shared across both the smaller and bigger networks. Let Y be
the set of parameters of the bigger network not shared with the smaller network. Let p be the output
of the larger network and let q be the output of the smaller network. Then, the adjoint loss function
induces a data-dependent regularizer with the following properties.

• For all x ∈ X , the induced L2 penalty is given by
∑
i pi
(
log′ pi − log′ qi

)2
• For all y ∈ Y , the induced L2 penalty is given by

∑
i pi
(
log′ pi

)2
Proof. We are interested in analyzing the regularizing behavior of the following loss function.
−y log p + KL(p, q) y is the ground truth label, p is the output probability vector of the bigger
network and q is the output probability vector of the smaller network. Recall that the parameters of
smaller network are shared across both. We will look at the second order taylor expansion for the
kl-divergence term. This will give us insights into regularization behavior of the loss function.

Let x be a parameter which is common across both the networks and y be a parameter in the bigger
network but not the smaller one.

D(x) =
∑
i

pi(x)
(
log pi(x)− log qi(x)

)
and D(y) =

∑
i

pi(y)
(
log pi(y)− log qi

)
For the parameter y, qi is a constant. Now, computing the first order derivative, we get that

D′(x) =
∑
i

p′i(x)
(
log pi(x)− log qi(x)

)
+ p′i(x)−

q′i(x)pi(x)

qi(x)

D′(y) =
∑
i

p′i(y)
(
log pi(y)− log qi

)
+ p′i(y)

Now, computing the second derivative for both the types of parameters, we get that

D′′(x) =
∑
i

p′′i (x)
(
log pi(x)− log qi(x)

)
+ p′i(x)

(
p′i(x)

pi(x)
− q′i(x)

qi(x)

)
+ p′′i (x)

− qi(x)q
′
i(x)p

′
i(x) + qi(x)q

′′
i (x)pi(x)− q′i(x)q′i(x)pi(x)
q2i (x)

D′′(y) =
∑
i

p′′i (y)
(
log pi(y)− log qi

)
+
p′i(y)p

′
i(y)

pi(y)
+ p′′i (y)

D′′(x) =
∑
i

p′i(x)p
′
i(x)

pi(x)
− 2p′i(x)q

′
i(x)

qi(x)
+
q′i(x)q

′
i(x)pi(x)

q2i (x)
=
∑
i

pi(x)

(
p′i(x)

pi(x)
− q′i(x)

qi(x)

)2
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=
∑
i

pi(log
′ pi − log′ qi)

2 (4)

Similarly, for the parameters only in the bigger network, we get that

D′′(y) =
∑
i

p′i(y)p
′
i(y)

pi(y)
=
∑
i

pi(log
′ pi)

2 (5)

Note that y represents the over-parameterized weights of the model. The equations above show
that the regularization imposed by the KL-divergence term on these parameters is such that if these
parameters change a lot (on the log scale) then the penalty imposed on such parameters is more. Thus,
the kl-divergence term encourages such parameters not to change by a lot.

B DATA AUGMENTATION

We use different data-augmentation techniques for different datasets. Below are the details.

• Cifar-10, Cifar-100 and Oxford pets
We apply the following set of transforms for these datasets. (1) We flip the image with
probability 0.5. (2) With probability 0.75, we rotate the image by degree d chosen uniformly
at random from (−maxd,maxd). maxd = 25.0 for the cifar datasets andmaxd = 10.0 for
the pets dataset. (3) With probability 0.75, we apply the contrast and brightness transforms.
(4) With probability 0.75, we apply the warp and zoom transforms. (5) We normalize
the image by first dividing all the pixel values by 255. and then subtracting the mean
[0.485, 0.456, 0.406] and dividing by the variance [0.229, 0.224, 0.225].

• Imagenet and Imagewoof
On these two datasets, we apply the following set fo transforms. (1) Random resize cropping
- Crop a rectangular region with aspect ratio in [3/4, 4/3] (selected uniformly at random)
with area in [0.08, 1.0] of the original area. (2) Flip the image horizontally with probability
0.5. (3) Normalize the image by dividing all pixel values of 255.0.

For cifar-10 and cifar-100, input size is 32× 32 for all the other datasets, the input size is 224× 224.
The above transforms are applicable for the training dataset. For validation, we use center crop
- select the center of the image with 85% area, followed by a normalization step. Note that our
data augmentation are not heavily optimized for accuracy. Rather our goal is to compare adjoint
training with standard training. Hence, we use the same data augmentation steps for both the
trainings. For standard training, our accuracies are still comparable to the accuracies reported in
the literature on these datasets using the resnet18 and resnet50 architectures. However, the adjoint
training methodology proposed in this paper outperforms the network trained in the standard way.

More details of the data-augmentation can be found in the code provided with the supplementary
materials.

C RESNET ARCHITECTURE DIAGRAM

→

[ conv(3, 16)
conv(16, 64)
conv(64, 64)

]
stem

→MaxPool→ ResBlock(16, 64)
x3

→ ResBlock(64, 128)
x4

→ ResBlock(128, 256)
x6

→ ResBlock(256, 512)
x3

→ AverageAdaptivePool→ Linear

Figure 5: Architecture diagram for resnet50 network used in this paper. conv(ni, no) is a combination
of convolution layer with ni input and no output channels followed by a batch norm and relu layer.
The ResBlocks are as defined in Fig. 6.
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−→

[conv(4ni, no)
conv(no, no)

conv(no, 4no)

]
−→

[conv(4no, no)
conv(no, no)
conv(no, 4no)

]
x (l − 1)

Figure 6: A ResBlock with l layers and input ni and output no.

The architecture for resnet50 is depicted in Figs. 5 and 6. Each conv layer is actually a combination
of three layers. A standard convolution layer followed by a batch normalization layer followed by a
relu activation. The ResBlock refers to the residual blocks in resnet architecture. Note that the skip
connections are not shown in these diagrams. For a resnet18 architecture, each resblock is repeated
twice instead of 3, 4, 6 and 3 times. Also, the resblock does not have a factor four in the convolution
input and output.

For adjoint networks, the convolution parameters of all the last three resblocks are shared across both
the original and the smaller architecture. Note that both the networks have different parameters for
the batch-norm layers.

D DETAILED EXPERIMENTAL RESULTS

D.1 EXPERIMENTS ON CIFAR-10

(a) Without random mask (b) With random mask

Figure 7: Validation loss for the various training paradigms for resnet50 trained on Cifar-10. All the
adjoint plots correspond to the bigger network.

(a) (b)

Figure 8: Validation loss for the various training paradigms for resnet50 trained on Cifar-10. Valida-
tion loss for the various training paradigms for resnet50 trained on Cifar-10. All the adjoint plots
correspond to the bigger network.
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(a) Without random mask (b) With random mask

Figure 9: Validation loss for the various training paradigms for resnet18 trained on Cifar-10. All the
adjoint plots correspond to the bigger network.

(a) (b)

Figure 10: Validation loss for the various training paradigms for resnet18 trained on Cifar-10. All the
adjoint plots correspond to the bigger network.

Training with resnet50 on cifar-10

Training paradigm Masking matrix (M ) top-1 full top-5 full top-1
small

top-5
small

Standard-full 90.25 99.67

Standard-full + dropout
(0.75)

90.11 99.68

Adjoint-4 a4 90.83 99.7 90.25 99.6

Adjoint-8 a8 91.06 99.67 89.77 99.63

Adjoint-16 a16 91.34 99.71 89.88 99.61

Adjoint-4 a4 ∗ r0.5 90.56 99.75 90.13 99.73

Adjoint-4 a4 ∗ r0.9 91.12 99.69 90.1 99.7

Adjoint-8 a8 ∗ r0.5 91.01 99.77 89.64 99.71

Adjoint-8 a8 ∗ r0.9 91.31 99.73 90.05 99.61

Adjoint-16 a16 ∗ r0.5 91.13 99.59 89.81 99.63

Adjoint-16 a16 ∗ r0.9 91.2 99.68 89.42 99.61

Table 4: Accuracy for the various training paradigms for resnet50 trained on Cifar-10
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Training with resnet18 on cifar-10

Training paradigm Masking matrix (M ) top-1 full top-5 full top-1
small

top-5
small

Standard-full 88.17 99.41

Standard-full + dropout
(0.5)

89.04 99.55

Adjoint-2 a2 88.75 99.54 88.06 99.41

Adjoint-4 a4 89.8 99.73 88.74 99.64

Adjoint-8 a8 90.26 99.72 88.62 99.62

Adjoint-16 a16 89.58 99.61 87.94 99.57

Adjoint-4 a4 ∗ r0.9 89.88 99.65 88.59 99.53

Adjoint-4 a4 ∗ r0.9 89.75 99.56 88.34 99.48

Adjoint-8 a8 ∗ r0.5 89.96 99.61 87.85 99.52

Adjoint-8 a8 ∗ r0.9 89.4 99.56 87.61 99.51

Adjoint-16 a16 ∗ r0.9 89.66 99.52 87.67 99.35

Table 5: Accuracy for the various training paradigms for resnet18 trained on Cifar-10

D.2 EXPERIMENTS ON CIFAR-100

(a) Without random mask (b) With random mask

Figure 11: Validation loss for the various training paradigms for resnet50 trained on Cifar-100. All
the adjoint plots correspond to the bigger network.

(a) (b)

Figure 12: Validation loss for the various training paradigms for resnet50 trained on Cifar-100. All
the adjoint plots correspond to the bigger network.
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(a) Without random mask (b) With random mask

Figure 13: Validation loss for the various training paradigms for resnet18 trained on Cifar-100. All
the adjoint plots correspond to the bigger network.

(a) (b)

Figure 14: Validation loss for the various training paradigms for resnet18 trained on Cifar-100. All
the adjoint plots correspond to the bigger network.
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Training with resnet50 on cifar-100

Training paradigm Masking matrix (M ) top-1 full top-5 full top-1
small

top-5
small

Standard-full 65.31 87.35

Standard-full + dropout
(0.75)

66.66 88.24

Adjoint-4 a4 67.15 89.04 64.73 87.6

Adjoint-8 a8 68.75 90.79 65.37 88.88

Adjoint-16 a16 69.07 91.11 65.11 89.08

Adjoint-4 a4 ∗ r0.5 67.47 89.78 64.71 88.12

Adjoint-4 a4 ∗ r0.6 67.45 89.22 64.56 87.56

Adjoint-4 a4 ∗ r0.7 67.35 89.69 64.26 87.84

Adjoint-4 a4 ∗ r0.8 67.82 89.71 64.71 88.13

Adjoint-4 a4 ∗ r0.9 67.57 89.99 65.04 88.24

Adjoint-8 a8 ∗ r0.5 68.7 90.57 65.35 89.05

Adjoint-8 a8 ∗ r0.6 68.86 90.68 65.47 89.27

Adjoint-8 a8 ∗ r0.7 68.57 90.71 64.76 88.6

Adjoint-8 a8 ∗ r0.8 67.82 89.84 64.76 88.01

Adjoint-8 a8 ∗ r0.9 69.09 90.99 65.11 89.13

Adjoint-16 a16 ∗ r0.5 68.59 91.13 64.53 89.1

Adjoint-16 a16 ∗ r0.6 68.04 90.79 64.55 88.66

Adjoint-16 a16 ∗ r0.7 68.85 91.03 64.76 88.99

Adjoint-16 a16 ∗ r0.8 68.52 90.93 64.35 89.29

Adjoint-16 a16 ∗ r0.9 68.89 90.79 64.54 89.48

Table 6: Accuracy for the various training paradigms for resnet50 trained on Cifar-100
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Training with resnet18 on cifar-100

Training paradigm Masking matrix (M ) top-1 full top-5 full top-1
small

top-5
small

Standard-full 61.39 85.38

Standard-full + dropout
(0.5)

64.3 88.13

Adjoint-4 a4 66.84 89.2 62.73 87.4

Adjoint-8 a8 66.09 89.43 61.38 87.12

Adjoint-16 a16 64.48 89.02 57.84 85.24

Adjoint-4 a4 ∗ r0.5 66.54 89.56 62.64 87.38

Adjoint-4 a4 ∗ r0.6 65.81 89.49 62.26 87.52

Adjoint-4 a4 ∗ r0.7 65.88 89.75 61.7 87.53

Adjoint-4 a4 ∗ r0.8 66.13 89.55 61.91 87.08

Adjoint-4 a4 ∗ r0.9 66.29 89.55 61.42 86.89

Adjoint-8 a8 ∗ r0.5 65.63 89.28 60.64 86.79

Adjoint-8 a8 ∗ r0.6 65.14 89.08 60.08 86.39

Adjoint-8 a8 ∗ r0.7 64.49 89.03 58.93 85.63

Adjoint-8 a8 ∗ r0.8 64.88 89.17 59.45 86.09

Adjoint-8 a8 ∗ r0.9 64.34 88.54 58.17 85.15

Adjoint-16 a16 ∗ r0.5 63.66 88.38 56.22 84.68

Adjoint-16 a16 ∗ r0.6 64.07 88.27 56.83 84.22

Adjoint-16 a16 ∗ r0.7 63.14 88.02 54.78 83.65

Adjoint-16 a16 ∗ r0.8 63.26 87.85 54.52 83.2

Adjoint-16 a16 ∗ r0.9 62.32 87.37 52.88 82.13

Table 7: Accuracy for the various training paradigms for resnet18 trained on Cifar-100

D.3 EXPERIMENTS ON IMAGENET

Figure 15: Validation loss for the various training paradigms for resnet50 trained on Imagenet. All
the adjoint plots correspond to the bigger network.
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Training with resnet50 on imagenet

Training paradigm Masking matrix (M ) top-1 full top-5 full top-1
small

top-5
small

Standard-full 73.41 91.07

Standard-full + dropout
(0.75)

69.54 88.88

Adjoint-4 a4 75.84 92.77 71.84 90.42

Adjoint-8 a8 73.46 91.52 64.7 85.96

Table 8: Accuracy for the various training paradigms for resnet50 trained on imagenet

D.4 EXPERIMENTS ON IMAGEWOOF

(a) Without random mask (b) With random mask

Figure 16: Validation loss for the various training paradigms for resnet50 trained on imagewoof. All
the adjoint plots correspond to the bigger network.

(a) (b)

Figure 17: Validation loss for the various training paradigms for resnet50 trained on imagewoof. All
the adjoint plots correspond to the bigger network.
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(a) Without random mask (b) With random mask

Figure 18: Validation loss for the various training paradigms for resnet18 trained on imagewoof. All
the adjoint plots correspond to the bigger network.

Figure 19: Validation loss for the various training paradigms for resnet18 trained on imagewoof. All
the adjoint plots correspond to the bigger network.

Training with resnet18 on imagewoof

Training paradigm Masking matrix (M ) top-1 full top-5 full top-1
small

top-5
small

Standard-full 83.35 98.3

Standard-full + dropout
(0.5)

82.1 98.09

Adjoint-4 a4 84.16 98.38 82.96 98.3

Adjoint-8 a8 84.11 98.54 81.25 98.02

Adjoint-16 a16 83.59 98.43 79.37 97.78

Adjoint-4 a4 ∗ r0.5 84.14 98.48 82.81 97.99

Adjoint-4 a4 ∗ r0.9 83.82 98.17 80.54 98.02

Adjoint-8 a8 ∗ r0.5 84.27 98.69 81.69 98.28

Adjoint-8 a8 ∗ r0.9 84.06 98.41 78.8 97.78

Table 9: Accuracy for the various training paradigms for resnet18 trained on imagewoof
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Training with resnet50 on imagewoof

Training paradigm Masking matrix (M ) top-1 full top-5 full top-1
small

top-5
small

Standard-full 85.2 98.4

Standard-full + dropout
(0.75)

82.76 98.38

Adjoint-4 a4 85.52 98.3 85.26 98.17

Adjoint-8 a8 85.62 98.59 84.11 98.35

Adjoint-16 a16 85.28 98.54 82.94 98.12

Adjoint-4 a4 ∗ r0.5 85.75 98.48 85 98.48

Adjoint-4 a4 ∗ r0.6 85.75 98.69 85.15 98.54

Adjoint-4 a4 ∗ r0.7 85.31 98.38 84.5 98.35

Adjoint-4 a4 ∗ r0.8 85.65 98.64 84.76 98.43

Adjoint-4 a4 ∗ r0.9 86.3 98.59 84.27 98.48

Adjoint-8 a8 ∗ r0.5 85.72 98.67 83.95 98.28

Adjoint-8 a8 ∗ r0.6 85.62 98.64 84.01 98.41

Adjoint-8 a8 ∗ r0.7 85.62 98.48 83.3 98.35

Adjoint-8 a8 ∗ r0.8 85.49 98.51 82.52 98.38

Adjoint-8 a8 ∗ r0.9 85.65 98.75 83.41 98.33

Adjoint-16 a16 ∗ r0.5 86.01 98.56 83.09 98.25

Adjoint-16 a16 ∗ r0.8 85.39 98.61 82.73 98.12

Adjoint-16 a16 ∗ r0.9 85.33 98.67 82.26 98.38

Table 10: Accuracy for the various training paradigms for resnet50 trained on imagewoof

D.5 EXPERIMENTS ON OXFORD-PETS

(a) Without random mask (b) With random mask

Figure 20: Validation loss for the various training paradigms for resnet50 trained on oxford-pets All
the adjoint plots correspond to the bigger network.
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Figure 21: Validation loss for the various training paradigms for resnet50 trained on oxford-pets. All
the adjoint plots correspond to the bigger network.

(a) Without random mask (b) With random mask

Figure 22: Validation loss for the various training paradigms for resnet18 trained on oxford-pets. All
the adjoint plots correspond to the bigger network.

(a) (b)

Figure 23: Validation loss for the various training paradigms for resnet18 trained on oxford-pets. All
the adjoint plots correspond to the bigger network.
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Training with resnet50 on oxford-pets

Training paradigm Masking matrix (M ) top-1 full top-5 full top-1
small

top-5
small

Standard-full 85.31 97.63

Standard-full + dropout
(0.5)

84.7 98.1

Adjoint-2 a2 87 98.03 86 98.1

Adjoint-4 a4 86.73 98.24 85.58 98.03

Adjoint-8 a8 85.85 98.24 84.03 98.1

Adjoint-2 a2 ∗ r0.5 86.6 97.22 85.85 97.36

Adjoint-2 a2 ∗ r0.9 85.52 98.17 85.58 97.69

Adjoint-4 a4 ∗ r0.5 86.12 97.9 85.38 97.56

Adjoint-4 a4 ∗ r0.9 85.25 97.63 83.69 97.69

Adjoint-8 a8 ∗ r0.5 86.33 98.37 84.64 97.63

Adjoint-8 a8 ∗ r0.5 85.85 98.37 81.93 98.51

Table 11: Accuracy for the various training paradigms for resnet50 trained on oxford-pets

Training with resnet18 on oxford-pets

Training paradigm Masking matrix (M ) top-1 full top-5 full top-1
small

top-5
small

Standard-full 84.84 97.76

Standard-full + dropout
(0.5)

82.61 97.09

Adjoint-2 a2 84.5 97.56 83.89 97.36

Adjoint-4 a4 86.33 98.3 83.08 97.76

Adjoint-8 a8 85.52 98.71 82.61 97.97

Adjoint-2 a2 ∗ r0.5 84.91 97.69 83.62 97.63

Adjoint-2 a2 ∗ r0.9 83.76 97.76 80.71 97.22

Adjoint-4 a4 ∗ r0.5 85.65 97.9 82.74 97.83

Adjoint-4 a4 ∗ r0.9 84.84 97.83 80.51 97.09

Adjoint-8 a8 ∗ r0.5 85.31 97.9 82.07 97.63

Adjoint-8 a8 ∗ r0.9 83.33 97.9 76.72 96.48

Adjoint-16 a16 ∗ r0.5 84.5 97.83 77.46 96.75

Adjoint-16 a16 ∗ r0.9 82.27 97.76 72.05 95.26

Table 12: Accuracy for the various training paradigms for resnet18 trained on oxford-pets

E CHOOSING THE REGULARIZATION FUNCTION

Finally, we compare different choices of regularization function for the adjoint loss (Eqn. 3). For all
the previous experiments, we use the ‘quadratic’ function λ(t) = min{4t2, 1}. In this section, we fix
the architecture, dataset and mask matrix as resnet18, cifar100 and Adj-4 respectively and vary the
regularization function. We look at different functions which includes exponential and trigonometric
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Figure 24: Validation cross entropy loss for various regularization functions. The networks were
trained using Adj-4 mask matrix on cifar-100 using resnet-18.

Adjoint trained with different regularization functions
Regularization function λ(t) top-1 full top-1 small
1− cos(t) −2.86 −3.14
t −0.1 −0.15
min{4t2, 1} 0.00 0.00

exp(t)− 1 −0.37 +0.38

Table 13: The effect of training with different regularization functions on the top-1 accuracies of
the bigger and the smaller networks. The quadratic function min{4t2, 1} is used as the base for
comparison.

functions. Table 13 and Fig. 24 both show the same trend. The cos function performs the worst while
the rest have similar performance. We conjecture that any function that is close to zero for t ← 0
and grows to one eventually should be a reasonable choice for the regularization function. Note that
throughout our discussion, we have used λ(t) = cmin{4t2, 1} with c = 1. Depending on the dataset,
other values of c maybe more appropriate.
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