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Abstract

We introduce cognitive information filters as an algorithmic approach to mitigating
information overload using choice architecture: We develop a rational inattention
model of boundedly rational multi-attribute choice and leverage it to programmati-
cally select information that is effective in inducing desirable behavioral outcomes.
By inferring preferences and cognitive constraints from boundedly rational behav-
ior, our methodology can optimize for revealed welfare and hence promises better
alignment with boundedly rational users than recommender systems optimizing
for imperfect welfare proxies such as engagement. This has implications beyond
economics, for example for alignment research in artificial intelligence.

1 Introduction

Information overload is ubiquitous, as constraints on our cognitive capacity to process information
adversely impact the quality of the decisions we make. Limited attention and cognition have important
consequences for welfare and markets [McFadden, 2023], and have consequently become of central
interest to economists and policy-makers concerned that “individuals are able to pay only limited
attention to important aspects of their environment, often have a difficult time processing information,
and make cognitive errors even in simple situations”, as stated in the National Academies’ recent
consensus study report on behavioral economics [Buttenheim et al., 2023, p. 7].

Behavioral scientists often rely on nudges such as choice architecture to aid boundedly rational
choosers in making better decisions, but identifying reliable nudges with significant effect sizes
can be difficult and costly [DellaVigna and Linos, 2022, Mertens et al., 2022, Maier et al., 2022]
– particularly with heterogeneous populations. In contrast, algorithmic recommender systems are
designed to learn from observing individual user choices, but they often suffer from misalignment
due to the difficulty of inferring users’ preferences from their boundedly rational behavior [Kleinberg
et al., 2022].

In this paper, we introduce cognitive information filters as a principled, algorithmic approach to
mitigating information overload, based on an information-theoretic model of decision-making under
cognitive costs. Specifically, we first develop a rational inattention [Sims, 2003, Maćkowiak et al.,
2023] model of multi-attribute choice to describe the behavior of a decision-maker (receiver) facing
cognitive information processing costs. We then use model-based, online reinforcement learning to
solve the information design problem of a sender choosing which options and features (attributes)
are accessible to the rationally inattentive receiver, in order to nudge or persuade them. Observing
only the receiver’s choices, the sender learns from repeated interactions which information is most
effective in attaining desirable receiver choices, by inferring the receiver’s unobservable preferences
and cognitive constraints.
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Our approach explicitly addresses the challenge of inferring the preferences of boundedly ratio-
nal users, by building on recent advances in cognitive economics [e.g. Woodford, 2020, Caplin,
2023] to develop a more principled approach to choice architecture and information design. Careful
information-theoretic modeling opens the door for algorithmically tailoring information to decision-
makers’ revealed preferences and cognitive constraints. By allowing the sender to optimize for re-
vealed welfare, this approach promises to be (1) less paternalistic than traditional nudging techniques,
and (2) less susceptible to misalignment than recommender systems that optimize for imperfect
welfare proxies such as engagement.

2 Model

Figure 1: Illustration of the model. In each period, Alice
chooses the subset Yt of Xt on which Bob can acquire
costly information before making a choice at.

We model the repeated interaction of a
sender (“Alice”) with a receiver (“Bob”).
In each period t, Bob makes a choice
at from a grand set of m choice options
with n features characterized by a ma-
trix Xt ∈ X := Rm×n. Bob’s utility
uw(a,X) = eTaXw is linear with prefer-
ence weights w ∈ Rn and ea the a-th stan-
dard basis vector. Bob does not observe
Xt, but is rationally inattentive with a prior
belief Xt

iid∼ µ ∈ ∆(Rm×n) and marginal
information costs κ. Bob can acquire costly
information on a subset Yt ∈ Y := Rk×l

of k ≤ m options and l ≤ n features.

This subset is determined by Alice’s choice
of an action selection matrix At ∈ Rk×m

and a feature selection matrix Ft ∈ Rl×n

as Yt = AtXtF
T
t , which we refer to as

the filtered state. Before choosing the fil-
ters At and Ft, Alice observes Xt, but not
Bob’s type θ := (w, κ) ∈ Θ, which is static and distributed according to θ ∼ τ ∈ ∆(Θ). Alice
maintains a belief bt ∈ ∆(Θ) about Bob’s type, with b0 = τ ; her utility v(at,Xt, θ) may or may not
be aligned with Bob’s.

Given At and Ft, Bob (who is strategically naïve with respect to Alice) chooses a state-dependent
stochastic choice function Pt : Y → ∆(A(At)), i.e. a distribution over the available choice set
A(At) conditional on the filtered state Yt, so as to maximize expected utility net of information
costs Kθ(P ;A,F, µ) = κIP (a;Y), which are linear in the Shannon mutual information between
the filtered state and action.1 Bob’s problem is thus

P ∗
t = argmax

Pt

∫
X

∑
at∈A(At)

Pt(at|AtXtF
T
t ; θ,At,Ft, µ)uθ(at,AtXt)dµ(Xt)−Kθ(Pt;At,Ft, µ)

(1)

The timing in each period t ∈ {0, . . . ,∞} is as follows:

1. Alice observes the realization of Xt ∼ µ, but not θ (instead maintaining belief bt ∈ ∆(Θ)).
2. Given Xt and bt, Alice chooses At and Ft.
3. Bob observes θ, At, and Ft, but not Xt (instead maintaining belief µ ∈ ∆(X )).
4. Bob chooses P ∗

t (·|Yt; θ,At,Ft, µ).
5. at ∼ P ∗

t (·|Yt; θ,At,Ft, µ) is realized, Bob receives uθ(at,AtXt)−Kθ(P
∗;At,Ft, µ).

Alice observes at, forms posterior belief bt+1(θ|a0, . . . , at), and receives utility∫
Θ
bt+1(θ) [v(at,AtXt, θ)− (1− α)Kθ(P

∗
t ;At,Ft, µ)] dθ, internalizing Bob’s informa-

tion costs with a discount factor α ∈ [0, 1].
1This formulation is well-known to be equivalent to the choice of a costly Blackwell information structure

and making a choice contingent on the signal realization [e.g. Matejka and McKay, 2015, Corollary 1].
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3 Results

Solving Bob’s Problem Bob’s problem is a non-trivial rational inattention problem with a matrix
state and the added complexity that the information structure is restricted to conditioning on the
accessible part Yt of the state Xt. The following novel result generalizes Bucher and Caplin [2021]
to provide an interpretable solution in analytical closed form. The only condition we impose on the
prior is that it is row-exchangeable (i.e., across actions): for any permutation matrix P it must be the
case that µ(X) = µ(PX) for all X ∈ X . This assumption allows for arbitrary statistical dependency
across features, and for values to be correlated across actions as long as they are exchangeable.

Theorem 1 Given a row-exchangeable prior µ, Bob’s problem (eq. 1) has a solution

P ∗
t (at|Yt; θ,At,Ft, µ) =

zθ(at,Yt;At,Ft, µ)∑
c∈A(At)

zθ(c,Yt;At,Ft, µ)
∀at ∈ A(At)

and P ∗
t (at|Yt; θ,At,Ft, µ) = 0 for all at /∈ A(At), where

zθ(at,Yt;At,Ft, µ) = exp

(
1

κ
eTat

AtEµX|Y [Xt|Yt,At,Ft]w

)
.

Note in particular that Bob’s choice behavior depends on his posterior belief about Xt after observing
the realization of a costly signal on Yt, so Bob can make an inference about hidden features from
observing accessible ones, as long as they are correlated. For a proof, we refer to Bucher and Dayan.

Figure 2: Bob’s gross welfare under three different information policies F (columns 1-3) along with
the welfare-maximizing information policy (column 4), for an example with two options and two
features, as a function of Xa1 −Xb1 and Xa2 −Xb2. Each row corresponds to a set of parameters
including Bob’s preference w and the correlation ρ across features under his prior µ.
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Figure 2 illustrates, for an example with two options and two features, how the welfare resulting
from Bob’s choices depends on his preference weights w and his prior belief µ (across the figure’s
rows) as well as on Alice’s choice of Ft (across columns). Note how our model captures information
overload: The rationally inattentive Bob may, depending on the realization of Xt, be better off (in
terms of gross welfare) when one of the attributes is occluded. When choosing At and Ft, Alice
does not know Bob’s type, however.

Solving Alice’s Problem Alice faces the dynamic problem (with discount factor γ) of learning
which filters result in desirable behavior while inferring Bob’s type from his behavior, a form of
inverse reinforcement learning. We cast Alice’s problem as a partially observable Markov decision
process (POMDP), which gives rise to the Bellman optimality equation

V ∗(X, b, µ) =

max
A,F

Eθ∼b

 ∑
a∈A(A)

P ∗(a|AXFT ; θ,A,F, µ) (Rα(a,X, θ,A,F;µ) + γEX′∼µ[V
∗(X′, b′(a), µ)])


where Rα(a,X, θ,A,F;µ) = v(a,AX, θ) − (1 − α)Kθ(P

∗;A,F, µ) and b′(a) is the posterior
belief upon observing Bob’s choice of a.

Figure 3: Cumulative mean regret under the learned
policy (blue) compared to the full-information baseline
(orange), for an example with τ having binary support.

Trading off exploration and exploitation,
Alice should experiment efficiently with
different information designs in order to
learn in repeated interactions what infor-
mation is most effective in light of Bob’s
latent preferences and information costs.

To solve Alice’s problem we rely on an
online reinforcement learning algorithm
based on Monte Carlo planning [Silver and
Veness, 2010]. Figure 3 shows, for an ex-
ample with binary Θ, simulated sample tra-
jectories for the cumulative mean regret
under Alice’s information policy compared
to the full-information policy as a bench-
mark, demonstrating how Alice learns to
achieve a higher mean reward than the full-
information baseline.

4 Discussion

Our approach to algorithmic choice architecture uses model-based reinforcement learning to solve the
information design problem of a sender deciding which options and features to show to a boundedly
rational decision-maker. In order to model the effect of information overload and cognitive costs, we
introduce a novel information-theoretic model of multi-attribute choice based on rational inattention
theory. How robust the sender’s solution is to misspecified models of the receiver’s behavior is an
open question.

By inferring preferences from boundedly rational behavior, our methodology can explictly optimize
for revealed consumer welfare, and is thus less paternalistic than traditional nudging. It also promises
better alignment of artificial agents with the preferences of boundedly rational humans. This has
implications beyond economics, for example for alignment research in artificial intelligence.

While the exposition has, motivated by benevolent nudging, focused on the case of aligned preferences,
this need not be the case in our model: Alice might also want to persuade Bob, so our model shares
features of Bayesian persuasion with a rationally inattentive receiver [cf. Bloedel and Segal, 2021],
albeit with a more applied focus on situations in which receiver preferences are unknown and the
sender is restricted to revealing true information.
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