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Figure 1: D3Fields Representation and Application to Various Manipulation Tasks. D3Fields take in
multi-view RGBD images and encode semantic features and instance masks using foundational models. The
gray and colored points in the bottom left visualize background and semantic features mapped to RGB space
using Principal Component Analysis (PCA), demonstrating consistency across instances. We use our represen-
tation for diverse tasks in a zero-shot manner. These tasks are defined by 2D goal images with diverse instances
and styles. We address pick-and-place tasks such as shoe organization and tasks requiring dynamic modeling
like collecting debris. We also demonstrate in the office table organization that our framework can accomplish
3D manipulation and compositional task specification.

Abstract:1

Scene representation has been a crucial design choice in robotic manipulation2

systems. An ideal representation should be 3D, dynamic, and semantic to meet3

the demands of diverse manipulation tasks. However, previous works often lack4

all three properties simultaneously. In this work, we introduce D3Fields — dy-5

namic 3D descriptor fields. These fields capture the dynamics of the underlying6

3D environment and encode both semantic features and instance masks. Specif-7

ically, we project arbitrary 3D points in the workspace onto multi-view 2D vi-8

sual observations and interpolate features derived from foundational models. The9

resulting fused descriptor fields allow for flexible goal specifications using 2D10

images with varied contexts, styles, and instances. To evaluate the effectiveness11

of these descriptor fields, we apply our representation to a wide range of robotic12

manipulation tasks in a zero-shot manner. Through extensive evaluation in both13

real-world scenarios and simulations, we demonstrate that D3Fields are both gen-14

eralizable and effective for zero-shot robotic manipulation tasks. In quantitative15

comparisons with state-of-the-art dense descriptors, such as Dense Object Nets16

and DINO, D3Fields exhibit significantly better generalization abilities and ma-17

nipulation accuracy.18
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1 Introduction19

The choice of scene representation is critical in robotic systems. An ideal representation should be20

simultaneously 3D, dynamic, and semantic to meet the needs of various robotic manipulation tasks21

in our daily lives. However, previous research into scene representations in robotics often does not22

encompass all three properties. Some representations exist in 3D space [1, 2, 3, 4], yet they overlook23

semantic information. Others focus on dynamic modeling [5, 6, 7, 8], but only consider 2D data.24

Some other works are limited by only considering semantic information such as object instance and25

category [9, 10, 11, 12, 13].26

In this work, we aim to satisfy all three criteria by introducing D3Fields, unified descriptor fields27

that are 3D, dynamic, and semantic. D3Fields take in arbitrary points in the 3D world coordinate28

frame and output both geometric and semantic information related to these points. This includes29

the instance mask, dense semantic features, and the signed distance to the object surface. Notably,30

deriving these descriptor fields requires no training and is conducted in a zero-shot manner using31

large foundational vision models and vision-language models (VLMs). Specifically, we first use32

Grounding-DINO [14], Segment Anything (SAM) [15], XMem [16], and DINOv2 [17] to extract33

information from multi-view 2D RGB images. We then project the 3D points back to each camera,34

interpolate to compute representations from each view, and fuse these data to derive the descriptors35

for the associated 3D points, as shown in Fig. 1 (left). By leveraging the dense semantic feature and36

instance mask of our representation, we can robustly track 3D points of the target object instance37

and train dynamics models. These learned dynamics models can then be incorporated into a Model-38

Predictive Control (MPC) framework to plan for manipulation tasks.39

Notably, the derived representations allow for goal specification using 2D images sourced from the40

Internet, phones, or those generated by AI models. Such goal images have been challenging to41

manage with previous methods, because they contain varied styles, contexts, and object instances42

different from the robot’s workspace. Our proposed D3Fields can establish dense correspondences43

between the robot workspace and the target configurations. These correspondences give us the task44

objective, enabling us to plan the robot’s actions with the learned dynamics model within the MPC45

framework. This task execution process does not require any further training, offering a flexible and46

convenient interface for humans to instruct robots.47

We evaluate our method across a wide range of household robotic manipulation tasks in a zero-48

shot manner. These tasks include organizing shoes, collecting debris, and organizing office desks,49

as shown in Fig. 1 (right). Furthermore, we offer detailed quantitative comparisons between our50

method and other state-of-the-art dense descriptor techniques. Our results indicate that our approach51

significantly outperforms in terms of generalizability and manipulation accuracy.52

To summarize our contributions: (1) We introduce a novel representation, D3Fields, that is 3D,53

dynamic, and semantic. (2) We present a novel and flexible goal specification method using 2D54

images that incorporate a range of styles, contexts, and instances. (3) Our proposed robotic manip-55

ulation framework supports zero-shot generalizable manipulation applicable to a broad spectrum of56

household tasks.57

2 Related Works58

2.1 Foundation Models for Robotics59

Foundation models generally refer to those trained on broad data, often using self-supervision at60

scale, which can then be adapted (e.g., fine-tuned) to various downstream tasks. Large Language61

Models (LLMs) have showcased promising reasoning abilities for language. Robotics researchers62

have recently released a series of works that leverage LLMs, including SayCan [18] and Inner Mono-63

logue [19], to directly generate robot plans. Some later works have used LLMs as a code generator:64

Code as Policies [20] uses 2D object detectors as the perception API, whereas VoxPoser [21] cre-65

ates a 3D value map. Yet, their perception modules fall short in modeling the precise geometry and66
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Figure 2: Overview of the proposed framework. (a) The fusion process fuses RGBD observations from
multiple views. Each view is processed by foundation models to obtain the feature volume W . Arbitrary 3D
points are processed through projection and interpolation. (b) After fusing information from multiple views, we
obtain an implicit distance function to reconstruct the mesh form. We also have instance masks and semantic
features for evaluated 3D points, as shown by the mask field and descriptor field in the top right subfigure.
(c) Given a 2D goal image, we use foundation models to extract the descriptor map. Then we correspond 3D
features to 2D features and define the planning cost based on the correspondence.

dynamics of objects. Our D3Fields aim to address this by focusing on detailed 3D geometry and67

dynamics.68

Meanwhile, foundational vision models, such as SAM [15] and DINOv2 [17], have demonstrated69

impressive zero-shot generalization capabilities across various vision tasks. However, their focus70

is primarily on 2D vision tasks. Grounding these models in a dynamic 3D environment remains a71

challenge. The recent GROOT project showcases how to construct 3D object-centric representa-72

tions using foundational models and exhibits notable few-shot generalization capabilities [22]. Still,73

GROOT does not emphasize learning about object dynamics or achieving zero-shot generalizable74

robotic manipulation.75

2.2 Representation for Visual Robotic Manipulation76

Scene representation has been a pivotal component in robotic manipulation systems. Some early77

work relies on 2D representations, such as bounding boxes [23, 24]. Many recent methods construct78

particle representations of the environment and employ learned dynamics to capture the system’s79

underlying structure [25, 3, 7, 8, 26, 27, 28, 29]. They demonstrate impressive results in unstructured80

environments and with non-rigid objects. However, they are not semantic, which can hinder their81

ability to generalize to new tasks and scenarios. Some research opts for a fixed-dimension latent82

vector derived from high-dimensional sensory inputs as the representation [30, 5, 6, 31, 32, 33, 34,83

35, 36, 2], but such a representation does not scale well to complex manipulation tasks that require84

high precision and explicit scene structures. Other approaches use 6 DoF object poses as their85

representation [9, 10, 37, 38], though focusing primarily on grasping tasks instead of more dynamic86

ones. In this work, we aim to address these issues by introducing D3Fields, a representation that87

models dynamic 3D environments at varying semantic levels.88

2.3 Neural Fields for Robotic Manipulation89

Researchers have presented a variety of works using neural fields as a representation for robotic90

manipulation [39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 41]. Among them, Neural91

Descriptor Fields are the most relevant to ours [42]. They build neural feature fields that generalize to92



different instances with several demonstrations; but they focus on learning geometric, not semantic93

features, which hinders cross-category generalization.94

Recently, a series of works distilled neural feature fields using foundation models such as CLIP95

and DINO for supervision [53, 54]. LeRF distills neural feature fields to handle open-vocabulary96

3D queries and develops task-oriented grasping based on it [55, 56]. Shen et al. [57] use a similar97

distilled feature field for the grasping task. Both methods require dense camera views to train the98

neural field. GNFactor addresses this by introducing a voxel encoder [58]. However, distilling99

foundation models to create neural feature fields has drawbacks: (1) They often require dense camera100

views for a quality field. (2) Distilled neural fields need retraining for new scenes, limiting their101

generalization and making them ineffective for dynamic scenes. In contrast, our D3Fields do not102

need extra training for new scenes and can work with sparse views and dynamic settings.103

3 Method104

In this section, we introduce the problem formulation in Section 3.1 and define camera transforma-105

tion and projection notations in Section 3.2. The construction of D3Fields is detailed in Section 3.3.106

Section 3.4 discusses tracking keypoints and learning dynamics, while Section 4.3 showcases how107

our representation enables zero-shot generalizable manipulation skills.108

3.1 Problem Formulation109

Given a 2D goal image I, we denote the corresponding scene representation as sgoal. Our goal is to110

find the action sequence {at} to minimize the task objective:111

min
{at}

c(sT , sgoal),

s.t. st = g(ot), st+1 = f(st, at),
(1)

where c(·, ·) is the cost function measuring the distance between the terminal representation sT and112

the goal representation sgoal. Representation extraction function g(·) takes in the current multi-view113

RGBD observations ot and outputs the current representation st. f(·, ·) is the dynamics function that114

predicts the future representation st+1, conditioned on the current representation st and action at.115

The optimization aims to find the action sequence {at} that minimizes the cost function c(sT , sgoal).116

3.2 Notation: Camera Transformation and Projection117

We assume all cameras’ intrinsic parameters K and extrinsic parameters T are known. The camera118

i extrinsic parameters are defined as follows.119

Ti =

[
Ri ti
0T 1

]
∈ SE(3), (2)

where Euclidean group SE(3) := {R, t | R ∈ SO3, t ∈ R3}. For a 3D point x in the world frame,120

we could obtain projected pixel ui and distance to camera ri as follows:121

ui = π (Ki (Rix+ ti)) , ri = [0, 0, 1]T (Rix+ ti) , (3)

where π performs perspective projection, mapping a 3D vector p = [x, y, z]T to a 2D vector q =122

[x/z, y/z]T .123

3.3 D3Fields Representation124

We fuse observation ot from multiple views to build the implicit 3D descriptor fields F t(·). For125

simplicity, we will represent ot as o, and F t(·) as F(·) in this subsection. The implicit 3D descriptor126

field F(·) is defined as127

(d, f ,p) = F(x), (4)
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Figure 3: Representation and Tracking Visualizations. (a) To verify that the representation is both 3D and
semantic, we visualize the representation across different object categories. Mask fields color 3D points based
on their instance masks, which clearly differentiates between instances. Descriptor fields color 3D points by
mapping features to RGB space using PCA. They display a consistent color pattern within a category, such as
mug handles being colorized as green for different mug instances. (b) To demonstrate that our representation is
dynamic, we apply it to tracking tasks and showcase two tracking examples, both of which involve 3D motions
and partial observations in single views. The robust 3D tracking results confirm that our representation is 3D,
dynamic, and semantic.

where x is an arbitrary 3D point in the world frame, and (d, f ,p) is the corresponding geometric128

and semantic descriptor. d ∈ R is the signed distance from x to the surface. f ∈ RN represents the129

semantic information of N dimension. p ∈ RM denotes the instance probability distribution of M130

instances. M could be different across scenarios.131

More specifically, we denote a single view RGBD observation from camera i as oi = (Ii,Ri),132

where RGB image Ii ∈ RH×W×3, and depth image Ri ∈ RH×W . For an arbitrary 3D point x, we133

project it to image space using Eq. 3 and use bilinear interpolation to obtain the corresponding depth134

r′i = Ri[ui]. Then the descriptors from camera i are135

di = r′i − ri, d′
i = max(min(di, µ),−µ),

fi = Wf
i [ui], pi = Wp

i [ui],
(5)

where DINOv2 [17] extracts the semantic feature volume Wf
i ∈ RH×W×N from RGB observa-136

tion Ii. Wp
i ∈ RH×W×M is the instance mask volume using Grounded-SAM [14, 15]. µ is the137

truncation threshold for TSDF.138

We fuse descriptors from all K views as follows:139

vi = H(di + µ), wi = exp

(
min (µ− |di|, 0)

µ

)
, (6)

and then140

d =

∑K
i=1 vid

′
i

δ +
∑K

i=1 vi
, f =

∑K
i=1 viwifi

δ +
∑K

i=1 vi
,m =

∑K
i=1 viwimi

δ +
∑K

i=1 vi
, (7)

where H is the unit step function and δ is a small value to avoid numeric errors. vi = 0 when141

x is not observable in camera i, because if x is occluded in camera i, it should not contribute to142

the descriptor of x. In addition, we could only have a confident estimation when x is close to the143

surface. Therefore, wi will decay as |di| increases. For x that is far away, f and m will degrade to144

0T .145

We convert the implicit field function F(·) to a set of keypoints s. First, we create voxels x ∈146

RW×L×H×3 in the workspace and evaluate (d, f ,p) = F(x). We filter out xi ∈ x where di is147

large or pi has a low probability to avoid empty space and the background. After obtaining filtered148

points x′, we use farthest point sampling to find surface points s ∈ R3×ns of an instance.149
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Figure 4: Qualitative results. We qualitatively evaluate our proposed framework on household manipulation
tasks, both in the real world and in simulation, encompassing tasks such as organizing utensils, fruits, shoes,
food, and mugs. The figure highlights that our representation can generalize across varied instances, styles,
and contexts. For instance, in the organizing fruits example, the goal image, unlike the workspace, is styled as
a sketch drawing. Because our representation can map bananas with varied styles and appearances to similar
features, the banana in the workspace can correspond to the banana in the sketch. This allows the task to be
successfully completed. This wide range of tasks showcases the generalization capabilities and manipulation
precision of our framework.

3.4 Keypoints Tracking and Dynamics Training150

This section will present how to use the dynamic implicit 3D descriptor field F(·) to track keypoints151

and train dynamics. Without losing generalization, consider the tracking of a single instance st ∈152

R3×ns . For clarity, we denote f and d from F(·) as Ff (·) and Fd(·). We formulate the tracking153

problem as an optimization problem:154

min
st+1

||Ff (s
t+1)−Ff (s

0)||2. (8)

Since F(·) is differentiable, we could use a gradient-based optimizer. This method could be naturally155

extended to multiple-instance scenarios. We found that relying solely on features for tracking is156

unstable. We added rigid constraints and distance regularization for a more stable tracking.157

Keypoint tracking enables dynamics model training on real data. We instantiate the dynamics model158

f(·, ·) as graph neural networks (GNNs). We follow [59] to predict object dynamics. Please refer159

to [25, 59] for more details on how to train the GNN-based dynamics model. The trained dynamics160

will be used for trajectory optimization in Section 3.5.161

3.5 Zero-Shot Generalizable Robotic Manipulation162

As described in Section 3.3, we denote initial tracked points and features as s0 and f0. We estimate163

sgoal ∈ R2×ns of goal image Igoal as follows:164

αij = exp
(
||Wf

goal[ui]− f0j ||2
)
,

wij =
exp (sαij)∑H×W

i=1 exp (sαij)
,

(9)

then we have sgoal,j =
∑H×W

i=1 wijui, where Wf
goal is the feature volume extracted from Igoal using165

DINOv2. s is the hyperparameter to determine whether the heatmap wij is more smooth or concen-166

trating. Although Eq. 9 only shows a single instance case, it could be naturally extended to multiple167

instances by using instance mask information.168
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Figure 5: Quantitative Evaluation. We perform real-world quantitative evaluations by measuring final goal-
achieving performance and keypoints correspondence accuracy. (a) We use IoU to measure goal-achieving
performance. Results indicate that our method aligns with the goal configurations much better than DON and
DINO across various object categories and scenarios. (b) We measure the keypoints correspondence accuracy
according to the fraction of points with accurate matches, with correct matches determined by a distance thresh-
old. Our method is consistently better at aligning with the goal image, regardless of the chosen threshold.

However, sgoal is in the image space, while st is in the 3D space. We bridge this gap by introducing169

a reference camera with approximate intrinsic and extrinsic parameters K′ and T′. Instead of ren-170

dering images in the reference view, we focus on projecting 3D keypoints into 2D images and define171

the task cost function in image space as follows:172

c(st, sgoal) = ||π
(
K′ (R′st + t′

))
− sgoal||22. (10)

4 Experiments173

In this section, we evaluate our representation across various manipulation tasks with varying goal174

image styles, instances, and contexts. We visualize D3Fields and showcase tracking results in Sec-175

tion 4.2. Then, we highlight our framework’s zero-shot generalizability in both real-world and176

simulated tasks in Section 4.3. Finally, a quantitative comparison with baselines in Section 4.4177

underscores our framework’s generalization and manipulation precision.178

4.1 Experiment Setup179

In the real world, we employ four OAK-PRO D cameras to gather RGBD observations and use the180

Kinova® Gen3 for action execution. In simulation, we utilize OmniGibson and deploy Fetch for181

mobile manipulation tasks [60]. Our evaluations span a variety of tasks, including organizing shoes,182

collecting debris, tidying the office table, arranging utensils, and more.183

We implement the baseline methods using Dense Object Nets (DON) and DINO for feature extrac-184

tion [61, 54]. We quantitatively evaluate these methods on five object classes for single-instance185

manipulation tasks in the real world. The results and analysis are presented in Section 4.4.186

4.2 Descriptor Fields Visualization and Keypoints Tracking187

D3Fields provide a good 3D semantic representation, as shown in Fig. 3(a). We first visualize the188

mask fields by coloring 3D points according to their most likely instance, and our visualization189

shows a clear 3D instance segmentation. Additionally, we map the semantic features to RGB space190

using PCA, as with DINOv2 [17]. Visualization of the descriptor fields reveals that D3Fields retain191

a dense semantic understanding of objects. In the provided shoe example, even though various shoes192

have distinct appearances and poses, they exhibit similar color patterns: shoe heels are represented193

in green, and shoe toes in red. We observed similar patterns when evaluating the model on mugs194

and forks.195

As discussed before, D3Fields can also capture scene dynamics. We evaluate it by tracking the196

object keypoints. We show two examples of 3D keypoint tracking in Fig. 3(b). In the first example,197



a shoe is pushed and then flipped. Although only a portion of the shoe is visible from the view, our198

framework tracks it reliably. In another example, a shoe is lifted and then set down. Despite parts of199

the shoe being out of the camera’s view, we can robustly track it in 3D.200

4.3 Zero-Shot Generalizable Manipulation201

We conduct a qualitative evaluation of D3Fields in common household robotic manipulation tasks202

in a zero-shot manner, with partial results displayed in Fig. 1 and Fig. 4. The following capabilities203

of our framework are observed:204

Generalization to AI-Generated Goal Images. In Fig. 1, the goal image, rendered in a Van Gogh205

style, depicts shoes distinct from those in the workspace. Since D3Fields encode semantic informa-206

tion, capturing shoes with varied appearances under similar descriptors, our framework can manip-207

ulate shoes based on AI-generated goal images.208

Compositional Goal Images and 3D Manipulation. Using the office desk organization example209

in Fig. 1, the robot first arranges the mouse and pen according to the goal image. It then repositions210

the mug from the box to the mug pad, referencing a goal image of the upright mug.211

Generalization across Instances and Materials. Granular objects, unlike rigid ones, have more212

complex dynamics. Our framework effectively handles these materials, as shown in the debris col-213

lection in Fig. 1. Fig. 4 further showcases our framework’s instance-level generalization, where the214

goal image displays instances different from the workspace.215

Generalization across Simulation and Real World. We evaluated our framework on household216

tasks in the simulator, as shown in the utensil organization and mug organization examples in Fig. 4.217

Given goal images taken from the real world, our framework can also manipulate objects to the goal218

configurations. Our framework demonstrates generalization capabilities between simulation and the219

real world.220

4.4 Quantitative Comparisons with Baselines221

In Fig. 5(a), we measure performance using the IoU between the goal image mask and the final222

state mask after manipulation, with higher values indicating better alignment. Evaluating across five223

object classes, our method consistently outperforms the baselines, underscoring its generalization224

and manipulation accuracy. While DINO struggles with distinguishing object components, leading225

to imprecise results, it still works better than DON. Although DON performs well on familiar object226

classes and configurations, it lacks generalization in novel scenarios.227

In Fig. 5(b), we present the correspondence results. We manually label corresponding keypoints228

on both the goal image and the final manipulation result to evaluate the correspondence accuracy.229

We calculate the fraction of accurately matched points based on a distance threshold. Our method230

consistently outperforms the baselines, regardless of the threshold. DINO ranks second, while DON231

lags behind. Consistent with Fig. 5(a), our method excels in generalization and accuracy, DINO is232

broadly applicable but less precise, and DON struggles with generalization.233

5 Conclusion234

In this work, we introduce D3Fields, which implicitly encode 3D semantic features and 3D instance235

masks, and model the underlying dynamics. Our emphasis is on zero-shot generalizable robotic236

manipulation tasks specified by 2D goal images of varying styles, contexts, and instances. Our237

framework excels in executing a diverse array of household manipulation tasks in both simulated238

and real-world scenarios. Its performance greatly surpasses baseline methods such as Dense Object239

Nets and DINO in terms of generalization capabilities and manipulation accuracy.240
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