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ReWiTe: Realistic Wide-angle and Telephoto Dual Camera Fusion
Dataset via Beam Splitter Camera Rig

Anonymous Authors

Wide-angle Ground-truthTelephoto

Figure 1: Examples of the input pair of telephoto (T) and wide-angle (W) images from the dual cameras, along with the
ground-truth (GT) image in the proposed ReWiTe dataset. Notably, all three images are captured by real cameras and none of
them are synthesized. The quality of the GT image is as high as that of the input T image. In addition, the GT image shares the
same optical path and field of view (FOV) with the input W image, providing annotations for the input W image at every pixel.
The red boxes indicate the enlarged image regions.

ABSTRACT
The fusion of images from dual camera systems featuring a wide-
angle and a telephoto camera has become a hotspot problem re-
cently. By integrating simultaneously captured wide-angle and
telephoto images from these systems, the resulting fused image
achieves a wide field of view (FOV) coupled with high-definition
quality. Existing approaches are mostly deep learning methods,
and predominantly rely on supervised learning, where the training
dataset plays a pivotal role. However, current datasets typically
adopt a data synthesis approach, where the wide-angle inputs are
synthesized rather than captured using real wide-angle cameras,
and the ground-truth image is captured by wide-angle cameras
whose quality is substantially lower than that of input telephoto
images captured by telephoto cameras. To address these limitations,
we introduce a novel hardware setup utilizing a beam splitter to
simultaneously capture three images, i.e. input pairs and ground-
truth images, from two authentic cellphones equipped with wide-
angle and telephoto dual cameras. Specifically, the wide-angle and
telephoto images captured by cellphone 2 serve as the input pair,
while the telephoto image captured by cellphone 1, which is cal-
ibrated to match the optical path of the wide-angle image from
cellphone 2, serves as the ground-truth image, maintaining quality
on par with the input telephoto image. Experiments validate the
efficacy of our newly introduced dataset, named ReWiTe, which can
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significantly enhance the performance of various existing methods
for the real-world wide-angle and telephoto dual image fusion task.

CCS CONCEPTS
• Computing methodologies;

KEYWORDS
Dataset, Beam Splitter, Realistic, Wide-angle and Telephoto

1 INTRODUCTION
The deployment of dual camera systems with a wide-angle (W)
camera and a telephoto (T) camera have become widespread in
mainstream smartphones, e.g. iPhone 15, HuaWei Mete 60, OPPO
find x7. As Fig. 1 shows, the images from the W camera have wide
field of view (FOV), and the images from the T camera have high
definition quality. It is a natural idea to let the dual cameras si-
multaneously shoot images and fuse these two images to generate
the result with both wide FOV and high definition quality. Conse-
quently, this problem has emerged as a recent hotspot in the field
[20].

In existing state-of-the-art approaches, some utilize the tradi-
tional image blending framework [6]. However, this method is
limited because the input T image has a smaller field of view (FOV)
than the input W image. Consequently, it can only enhance the
center overlapping regions and cannot enhance the un-overlapping
regions. Deep learning based super-resolution methods [14, 20] ex-
hibit strong capabilities and substantial potential in addressing this
problem. The mainstream methods among them rely on supervised
learning, where the training data plays a crucial role in training a
robust model.

The current W and T dual camera fusion datasets are primarily
synthetic, e.g. CameraFusion [20]. As shown in Fig. 2 and Table 1,
they use dual camera systems to shootW and T images. The shot T

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 2: A comparison between our ReWiTe dataset and the synthesized CameraFusion dataset. In ReWiTe, all input pairs of
telephoto (T) and wide-angle (W) images are captured using real cameras, with the ground-truth (GT) image captured by a
real T camera as well. In contrast, in CameraFusion, the input W image is synthesized from the GT image through artificial
degradation, and the GT image is captured by a W camera, which has significantly lower quality compared to the T camera.
‘Wide’ is short for the wide-angle camera, and ‘Tele’ is short for the telephoto camera.

image serves as the input T image, while the shot W image serves
as the ground-truth (GT) image. To synthesize the input W image,
the GT image undergoes distortions such as downsampling and
noise addition. However, since the GT image is shot by theW cam-
era, the quality of input T image is significantly higher than that
of the GT image. This quality difference can confuse the network
during training, leading it to produce outputs similar to the GT
image despite the reference T image which has superior quality.
Consequently, the trained model may incorrectly utilize the high-
quality reference to generate lower-quality results, which is not
the intended outcome. In addition, the quality difference between
the synthesized input W image and the GT image is artificially
introduced, through operations like downsampling and noise addi-
tion. These synthetic distortions can hardly accurately simulate the
real quality distortion occurring throughout the complex imaging
pipeline, including processes like optical lens effects, demosaicing,
tone adjustment, image enhancement, denoising, etc.

As mentioned by [11], due to the inherent characteristics of deep
learning networks and the limitations associated with synthetic
datasets, the necessity for realistic training data in this domain be-
comes apparent. This motivates us to construct a realistic dataset in
this paper. Our approach involves using a real dual-camera system
to capture the input pair of W and T images, ensuring that their
qualities remain realistic without artificial degradation. Addition-
ally, we employ another T camera to capture an image with the
same optical path as theW image, which serves as the GT image
for the W input. This approach guarantees that the GT image is
realistic and maintains a quality level as high as the reference T
image. By doing so, we encourage the training of deep models to
fully leverage the high-quality details present in the T input to

enhance the W input. Example images from ReWiTe are shown in
Fig. 3.

To build the ReWiTe dataset, we build a hardware, as shown
in Fig. 4. Our hardware includes two cellphones, a beamsplitter,
and a fixation device. The captured images from the T camera of
cellphone No.1 is used as the GT image. TheW and T cameras of
cellphone No. 2 capture images as the input W and T images. The
beamsplitter divides the optical path into a 50%-50% split, allowing
the T camera of cellphone No. 1 and theW camera of cellphone No.
2 to capture images from the same optical path. We conduct the
calibration for image alignment and mitigating their differences in
color and scale.

In addition to constructing the ReWiTe dataset, we conduct ex-
periments to evaluate the performance of various state-of-the-art
(SOTA) methods on ReWiTe. Furthermore, we utilize the training
data provided by ReWiTe to retrain these SOTA methods and eval-
uate their performance once more. Quantitative and qualitative
results demonstrate that our ReWiTe dataset can enhance the ac-
curacy of various state-of-the-art algorithms compared to models
trained on synthetic datasets such as CameraFusion [20].

Contributions: To the best of our knowledge, this is the first
realistic dataset for the telephoto and wide-angle dual camera image
fusion task. It provides 342 sets of authentic input telephoto images,
input wide-angle images and ground-truth images for training and
testing purposes.

2 RELATEDWORK
2.1 Related datasets
In related image enhancement problems for camera imaging, a
common method to build datasets is to generate synthetic datasets
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Figure 3: Examples of the input pair of Telephoto (T) and Wide-angel (W) images and the Ground-truth (GT) image of the
proposed ReWiTe dataset. The red boxes indicate the enlarged image regions.

for training and testing, such as CUFED5 [27] for reference-based
super-resolution, DIV2K [3], Set5 [4], Set10 [29], Urben100 [8] for
single image super resolution, CameraFusion [20] and MiddleBury
[17] for W and T dual camera fusion. In these datasets, the ground
truth images are artificially degraded to generate the input images.
The degradation process involves operations like downsampling,
adding blur, introducing random noise, and applying compression
noise. However, the manual degradation process can hardly simu-
late the imaging differences among cameras with varying imaging
pipelines and parameters, leading to a disconnect between training
data and real-world application scenarios.

To the best of our knowledge, the problems with accessible real
annotated data include 1) obtaining real annotated data for single
image denoising through shooting a burst of images and then av-
erage [1, 2], and 2) obtaining real annotated data for single-image
super-resolution through a beam splitter system [11]. The latter
one motivates us to also use a beam splitter to build the ReWiTe
dataset.

Table 1 shows the summary of exiting multi-image and single-
image super resolution datasets. Among the existing datasets, none
of them can provide all the real images of T, W, and GT. This
motivates us to establish real annotated data for the emerging
problem ofW and T dual camera fusion.

Table 1: Summary of existing image fusion and super-
resolution datasets. While realistic datasets exist for the
single-image super-resolution task, e.g. RealSR [5] and Im-
agePairs [11], there is a lack of realistic datasets for the W
and T dual camera fusion task. The proposed ReWiTe dataset
aims to address this limitation.

Dataset Telephoto (T) Wide-angle (W) Ground-truth (GT)
DIV2K[3] N/A Synthetic Real

Urban100 [8] N/A Synthetic Real
RealSR [5] N/A Real Real

ImagePairs [11] N/A Real Real
CUFED5 [27] Real Synthetic Real

CameraFusion [20] Real Synthetic Real
MiddlyBury [17] Real Synthetic Real
Our ReWiTe Real Real Real

2.2 Related methods
Although theW and T dual-camera image fusion problem does not
need to enhance the pixel resolution, most of existing methods are
super-resolution methods.

The mainstream existing methods are supervised methods, in-
cluding DCSR [20] and FaceDeblurSig [12], TTSR [24], SRNTT
[26], MASA [16] and Shim20 [18]. They have to be trained on syn-
thetic datasets currently due to the lack of real data for supervision.
Additionally, they exhibit insufficient control over artifacts.
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Table 2: Camera parameters of OPPO Find X6 that are used
in our hardware.

Camera T of cellphone2 W of cellphone2 T of cellphone1
Sensor 1/1.56 inch 1/1.56 inch 1/1.56 inch

Pixel size 1um 1um 1um
Resolution 50mp 50mp 50mp

FOV 36° 84° 36°
Focal length 65mm 24mm 65mm

Table 3: Image resolution in the ReWiTe dataset.

T input 3496*2472
W input 3496*2472

GT 3496*2472

Self-supervised learning, e.g. Selfedzsr [28] and Zedusr [23], ad-
dress the issue of lacking real data in supervised learning. They
propose warping T images toW perspectives as ground truth for
network training. However, the inherent occlusion challenges in na-
tive T andW images remain unresolved. In addition, these methods
often impose certain requirements on the model. Not all backbone
models can be easily integrated into self-supervised networks.

Stereo super-resolution methods, like StereoSR [9] and PASSR
[19], use homogeneous dual-camera configurations as input, deviat-
ing from the current mainstream camera setups. The enhancement
potential of homogeneous configurations is less than that of hetero-
geneous configurations, and they also face the challenge of lacking
real datasets.

In single-image super-resolution methods, benefiting from real
datasets such as ImagePairs [11], models can have effective training.
In self-supervised/unsupervised learning methods, GANs [21, 22]
surpass the quality limits of ground truth theoretically but are
prone to generating artifacts, conflicting with the requirements of
mobile imaging applications. To solve the problem in this paper,
single-image super-resolution methods fail to use the high-quality
reference T images.

3 REWITE DATASET
The building of the ReWiTe dataset includes 1) the beam splitter
camera rig based hardware design, and 2) the calibration for the
built hardware and the shot images.

3.1 Hardware Design
The hardware design objective is to enable three cameras to simul-
taneously capture images and ensure that the shot input W image
and the shot GT image share the same optical path. The primary
challenge lies in constructing the beam splitter-based camera rig.

One possible approach for spectral division involves inserting
a beamsplitter between the lens and the sensor [7]. However, this
method cannot use commercial phone cameras as the camera of
the dataset system because it requires a complete reconstruction
of the entire camera components, including the lens, sensor, ISP,
etc. The advantage of this approach is that the calibration of the
spectral division system becomes somewhat simpler. However, the
imaging effects produced by these reconstructed components are
difficult to maintain consistent with the quality of real commercial
cellphones. Because the final usage of dual camera fusion is mostly
for phone camera systems, we did not adopt this approach.

Another approach to spectral division is to split the light before
the lenses of commercially available cellphone cameras, which is the
approach we have taken. This increases the difficulty of calibration
as each of the three hardware components—the two cellphones
and the beamsplitter—has six degrees of freedom in motion. They
need to be jointly calibrated to the accurate spectral path. Despite
the calibration challenges, this approach allows to obtain the most
authentic images because the entire imaging process occurs within
the commercially available cellphones. Apart from a halving of light
intensity due to spectral division, the rest of the imaging process
is identical to capturing images using a cellphone in real-world
scenarios. Thus, we adopted this approach.

Our hardware consists of two cellphones, a beamsplitter, and a
fixation device. The optical path of the three cameras on the two
cellphones using our hardware is shown in Fig. 4. The 3D model of
our hardware is shown in Fig. 5, and the real hardware is shown in
Fig. 6. The important parts of our hardware are detailed below.

• Cellphones: We use two OPPO Find X6 cellphones. The cam-
era parameters are shown in Table 2. The cellphone No. 2
serves for capturing the inputW and T images simultane-
ously, namedW2 and T2. The optical path of the T camera
of cellphone No. 1 is aligned with theW camera of cellphone
No. 2, and the image shot by this T camera, named T1, is used
to generate the ground truth image of the input W image.
The parameters of the W and T cameras are shown in Table
2. The censors of the two cameras are the same, but the lens
are different.

• The beamsplitter: It is a cube with the size of 60𝑚𝑚×60𝑚𝑚×
60𝑚𝑚. The beam splitter divides the optical path into a 50%-
50% split, allowing the cameras on both sides of the beam
splitter to capture images from the same optical path.

• Fixation device: The fixation device includes beamsplitter
fixation and cellphones fixation. They ensure stability during
shooting.

• Position adjustment knobs: The front-back, left-right, and
up-down adjustment knobs can adjust the two cellphones
in six directions, so as to enable us to align the T camera
of cellphone No. 1 with the W camera of cellphone No. 2
during the calibration.

We utilize the W and T cameras of the OPPO Find X6 cell-
phones for our study, without considering other industrial cameras
or DSLR cameras. This decision is driven by the widespread usage
of smartphone cameras today. The potential application ofW and T
dual-camera image fusion is predominantly in smartphones, which
already possess the necessary dual-camera systems, computational
resources, and high demand from users. Different camera choices
would result in varying quality differences between dual-camera
images. To ensure that our dataset corresponds to practical sce-
narios, we opt to use phone cameras to capture the images and
construct the dataset.

We have root access on the OPPO Find X6 cellphones that are
used in our hardware, and we deliberately refrain from letting
the cellphones run the enhancement methods inside the phone’s
imaging software to avoid them changing the image quality.
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Figure 4: Design diagram of our hardware and the spectral
division system. It consists of two cellphones with T and W
dual cameras, a beamsplitter to divide the optical path into a
50%-50% split, and the fixation device.We perform calibration
to let the T camera of cellphone 1 share the same optical path
of the W camera of cellphone 2. ‘Wide’ is short for the wide-
angle camera, and ‘Tele’ is short for the telephoto camera.

Left-right knob

Up-down knob

Cellphone1 

Cellphone2

Fixation device

Front-back knob

Figure 5: 3D structure of our hardware. The six knobs are
designed to perform the calibration.

Figure 6: The real photos of our hardware. We use two OPPO
Find X6 cellphones to build the hardware.

To enable simultaneous image capture by the W and T cameras
on cellphone No. 2, we developed a synchronization control soft-
ware on the cellphone. To enable simultaneous image capture by
the cameras on cellphone No. 2 and the T camera on cellphone
No. 1, we utilize Bluetooth shutters to control the shutters of the
cellphones.

foreground
background

Figure 7: An example of selected calibration scenes with rich
occlusions, where we perform coarse and fine alignment to
ensure that the shot images from the W camera of cellphone
2 and the T camera of cellphone 1 have no occlusions.

Calibrated ground-truth

Original wide-angle Calibrated wide-angle

Original ground-truth

Wide-angle with marked overlap region

Scale
Alignment

Original telephoto Telephoto with marked overlap region

Scale
Alignment

Color
Alignment

Guide

Overlap
Region

Calculation

Overlap
Region

Duplicate
Calibrated telephoto

Figure 8: The process of scale alignment and color alignment
during the calibration. In the scale alignment, we calculate
the overlap regions between the original Wide-angle (W)
and GT images. The overlap regions of the original W image
is upsampled to the size of the original GT image, so as to
make the calibrated W image and the GT image have the
same FOV. The overlap region is duplicated for the original
Telephoto (T) image to perform its scale alignment, so as to
keep the FOV differences of theW and T images not changed
after the calibration. In the color alignment, to address tonal
differences between the calibrated W image and the original
GT image, using the calibrated W image as the guide, the
original GT image is tone mapped to obtain the calibrated
GT image.

3.2 Calibration
After setting up the hardware, we proceed with calibration to gen-
erate images for the ReWiTe dataset. Firstly, we conduct coarse and
fine hardware alignment to ensure that the W camera of cellphone
2 capturing the input W image and the T camera of cellphone 1
capturing the GT image share precisely the same optical path, and
that there are no occlusions between the capturedW and GT im-
ages. We select scenes with rich occlusions to perform the coarse
and fine alignment, as Fig. 7 shows. Secondly, as illustrated in Fig.
8, we perform scale alignment and color alignment, to ensure that
the calibrated W and GT images have the same FOV and color
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Figure 9: An example of the marked problematic regions
during the manual annotation.

tone, while maintaining consistent FOV differences between the
calibrated W and T images as observed in the original W and T
images. Thirdly, as demonstrated in Fig. 9, we conduct manual an-
notation to mark problematic regions where theGT image provides
incorrect annotation for the inputW image.

• Coarse alignment: The fundamental purpose of the align-
ment is to make the input W image and the ground truth
image without occlusion. We perform coarse alignment by
using the knobs to move the position and shooting angle
of the cellphone No. 1 and cellphone No. 2. As shown in
Figure 7, we select scenes with rich occlusions to perform
the alignment.

• Fine alignment: After the coarse alignment, we fix the cell-
phone No. 2 and continue to adjust the knobs of cellphone
No. 1. By observing the occlusion information between W2
and T1 at different knob positions, we continuously adjust
the position of cellphone No. 1, until the occlusions do not
appear.

• Scale alignment: Through the operations in the above two
steps, we have obtained occlusion-freeW2 and T1. However,
since they are captured by cameras with different FOVs, the
image scales are different, and, in the un-overlapping regions,
the T1 image cannot provide the corresponding GT infor-
mation for the input W image. We perform scale alignment
to make the sizes of the same objects inW2 and T1 consis-
tent so that the GT image can provide the corresponding
annotation for every pixel of the calibrated W image. We
perform this alignment by calculating SIFT features [15] on
both W2 and T1, finding overlap regions between similar
features, and computing a projection transformation matrix
to enlarge the overlap region of W2. To keep the FOV dif-
ferences between the calibrated W and T images consistent
with the FOV differences between the original W and T im-
ages, we duplicate the overlap region to the original T image
and enlarge the overlap region of the original T image with
the same transformation of the originalW image.

• Color alignment: Due to differences of the capturing devices,
W2 and T1 exhibit substantial color variations. We employed
a 3D color tone adjustment method, calculating a 256×256×

256 color mapping matrix to adjust the color tone of T1.

T𝑎𝑙𝑖𝑔𝑛𝑒𝑑1 ( 𝑗, 𝑖) = 𝛼T1,W2 (T1 ( 𝑗, 𝑖)) (1)

𝛼T1,W2 =

∑
( 𝑗,𝑖 ) ∈𝜔 (k) W2 ( 𝑗, 𝑖)

|𝜔 (k) | (2)

where 𝜔 (k) is the set of pixels in T1 whose intensities are
equal to k, and |𝜔 (k) | is the number of pixels in the set 𝜔 (k).

• Image cropping: The images captured by cellphones have a
resolution of 4K. However, the boundary regions of these
images may exhibit darkening due to vignetting effects. To
mitigate the impact of these effects on image quality, we crop
out the boundary regions of the captured images, resulting
in a cropped resolution of 3496 × 2472, as shown in Table 3.

• Manual annotation: As shown in the Figure 9, our image cap-
ture process may encounter situations where some regions
are not calibrated correctly, such as fast-moving objects, cali-
bration errors, or defocusing of T andGT images. To prevent
these regions from impacting the quality of our training data,
we conduct manual annotation to mark out these problem-
atic areas.

In scale alignment, there are two approaches: upsampling the
overlap region of theW image to match the size of the GT image
or downsampling the GT image to match the size of the overlap
region of theW image. Both methods accomplish scale alignment,
but the downsampling approach sacrifices details in the GT image,
resulting in smaller quality differences between theW input and
GT images compared to the upsampling approach. To ensure that
the training data reflects higher quality differences between the
inputW and GT images, we select the upsampling approach.

4 EXPERIMENTAL RESULTS
4.1 Comparison algorithms
The comparisonmethods we select are the SOTA dual camera image
fusion/super-resolution methods, including DCSR [20], SelfDZSR
[28], ZeDUSR [23], the SOTA reference-based super-resolution
methods, including C2-matching [10], , MASA [16], TTSR [24],
SRNTT [26], and the SOTA single-image super resolution methods,
including RCAN [25], EDSR [14], Real-ESRGAN [22].

4.2 Experimental protocol
For dual-camera imaging in cellphones, the task primarily belongs
to image fusion and enhancement. Both the input W and T images
have the same resolution, such as 4K, and the desired output should
also maintain this resolution, e.g. 4K. There is typically no require-
ment from users to upscale the resolution to 8K, 16K, or higher.
Therefore, when constructing the ReWiTe dataset, we ensure that
the inputW, input T, and the GT images have identical resolutions,
as indicated in Table 3.

However, in many comparison algorithms discussed in Section
4.1, the models default to increasing the pixel resolution of the
input image, such as 2x or 4x upsampling, and the upsampling ratio
remains fixed unless the model structure is modified.

For fair comparison, as depicted in Fig. 11, we adhere to these
methods by downsampling the input W images by a factor of four
to generate inputs for the comparison algorithms.
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the red-box region. Please see more results in supplementary materials.
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Figure 11: The experimental process to test the comparison
algorithms. Because many comparison algorithms perform
pixel resolution enlargement by default, for fair comparison,
we follow their experimental pipeline. We downsample the
input Wide-angel (W) image of ReWiTe with 4 times and use
the downsampled images as the input of the algorithm. We
use the input Telephoto (T) image of ReWiTe as the reference,
and the Ground-truth (GT) image of ReWiTe as the GT.

4.3 Results
Table 4 and Fig. 10 show the quantitative and qualitative results of
different comparison algorithms. We also show the example results
of algorithms trained on CameraFusion vs. ReWiTe in Fig. 12.

As shown, when the training data transfers from the synthetic
dataset of CameraFusion to our realistic dataset of ReWiTe, all the
comparison algorithms obtain positive quality improvements. This
verifies the benefits of the proposed ReWiTe dataset for various
algorithms in fusing realW and T images.

Table 4: Average PSNR (dB)/SSIM values of different methods
on ReWiTe. CF is short for CameraFusion. These methods
are trained on the training set of CameraFusion and ReWiTe,
respectively. They are tested on the testing set of ReWiTe.

Methods PSNR SSIM PSNR SSIM
ReWiTe (Trained on CF) ReWiTe (Trained on ReWiTe)

C2-matching [10] 23.9730 0.8142 24.1500 0.8222
DCSR [20] 24.7196 0.8134 25.9661 0.8445

SelfDZSR [28] 24.9197 0.8385 25.9197 0.8510
ZeDUSR [23] 24.1709 0.8135 25.2618 0.8369
MASA [16] 23.7011 0.7977 24.9713 0.8154
TTSR [24] 22.1456 0.7188 25.5980 0.8286
SRNTT [26] 23.5913 0.8105 24.3436 0.8124
RCAN [25] 24.1709 0.8138 25.1189 0.8371
EDSR [14] 24.3540 0.8189 25.4792 0.8355

Real-ESRGAN [22] 22.1188 0.7465 24.4143 0.8192
SwinIR [13] 22.4462 0.7848 24.7440 0.8277

Among the results, the performances of dual camera image
fusion/super-resolutionmethods, i.e. DCSR, SelfDZSR, and ZeDUSR,
unsurprisingly achieve the best results. They utilize both the input
W image and the input T image to estimate the output and are
typically designed to solve this task.

Single-image super-resolution algorithms, i.e. RCAN, EDSR, Real-
ESRGAN, and SwinIR, are not competitive to dual camera image
fusion/super-resolution methods. This is because these algorithms
only utilize the inputW image to super-resolve the output without
leveraging the input T image at all. This observation underscores
the advantages of incorporating the input T image in addressing
this problem.

Reference-based super-resolution algorithms, i.e. C2-matching,
MASA, TTSR, and SRNTT, utilize both inputW images and input
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T images to estimate the output. However, the their performances
fall below dual-camera image fusion algorithms, and are even lower
than some single-image super-resolution algorithms. The reason
is that, due to the assumptions of input and reference images shot
in different scenes, positions, and time, they usually try to transfer
more high-quality details from the reference image into the input
low-resolution image, even if the textures of the two images are
not exactly the same. While this can usually improve the visual
quality, the structure change of textures or even artifacts may be
introduced into the results, leading to loss of PSNR/SSIM values.

5 CONCLUSIONS
This paper introduces a realistic W and T dual camera fusion
dataset, named ReWiTe. It is created using theW and T cameras
of one cellphone to capture the input pair of W and T images,
while the T camera of another cellphone is used to capture the GT

image. A hardware setup employing a beam-splitter is designed,
and a series of calibration processes are conducted to ensure that
the input W image and the GT image share the same optical path.
Consequently, the GT image maintains consistent quality with the
input T image and provides annotations for the input W image at
every pixel. Experimental results demonstrate the effectiveness of
the ReWiTe dataset in enhancing various existing methods for the
real-world W and T dual camera fusion task.
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